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Abstract
Functional classification of proteins from sequences alone has become a critical bottleneck in understanding the
myriad of protein sequences that accumulate in our databases. The great diversity of homologous sequences hides,
in many cases, a variety of functional activities that cannot be anticipated. Their identification appears critical for a
fundamental understanding of the evolution of living organisms and for biotechnological applications. ProfileView is
a sequence-based computational method, designed to functionally classify sets of homologous sequences. It relies on
twomain ideas: the use of multiple profile models whose construction explores evolutionary information in available
databases, and a novel definition of a representation space in which to analyze sequences with multiple profile mod-
els combined together. ProfileView classifies protein families by enriching known functional groups with new se-
quences and discovering new groups and subgroups. We validate ProfileView on seven classes of widespread
proteins involved in the interaction with nucleic acids, amino acids and small molecules, and in a large variety of
functions and enzymatic reactions. ProfileView agrees with the large set of functional data collected for these pro-
teins from the literature regarding the organization into functional subgroups and residues that characterize the
functions. In addition, ProfileView resolves undefined functional classifications and extracts the molecular determi-
nants underlying protein functional diversity, showing its potential to select sequences towards accurate experimen-
tal design and discovery of novel biological functions. On protein families with complex domain architecture,
ProfileView functional classification reconciles domain combinations, unlike phylogenetic reconstruction.
ProfileView proves to outperform the functional classification approach PANTHER, the two k-mer-based methods
CUPP and eCAMI and a neural network approach based on Restricted Boltzmann Machines. It overcomes time com-
plexity limitations of the latter.

Key words: genome, metagenome, evolution, functional classification, protein classification, profile model, profile,
cryptochrome, photolyase, photoreceptor, WW domain, glycoside hydrolase, Radical SAM, Haloacid
Dehalogenase, B12-binding domain containing, methylthiotransferase, SPASM/twitch domain containing.

Introduction
Functional classification of biological sequences is funda-
mental to understanding the ever-increasing genomic
and metagenomic sequence data accumulating in our da-
tabases. This quest depends on the correct domain anno-
tation of coding genes (Ponting and Dickens 2001; De
Filippo et al. 2012; Prakash and Taylor 2012) which, in
the past, was handled by sequence homology and feature-
based approaches.

The first and most intuitive approach searches for se-
quences homologous to already known protein or domain

sequences (Hawkins et al. 2006; Wass and Sternberg 2008;
Loewenstein et al. 2009; Clark and Radivojac 2011; Törönen
et al. 2018) and does so either by direct pairwise sequence
alignment or by passing through protein signatures,
which are descriptions of protein or domain families de-
rived from multiple sequence alignments. It is based on
the “orthology-function conjecture” for which orthologs
carry out biologically equivalent functions in different or-
ganisms, in contrast to paralogs whose functions typically
diverge after duplication (Gabaldón and Koonin 2013).
Due to complex processes of evolution, many homologs
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have diversified their functions and the sequence hom-
ology approach should be applied with great awareness:
different levels of similarity in homology should induce dif-
ferent levels in functional annotation transfer. This repre-
sents a serious pitfall for this approach. A second pitfall is
linked to the production of profile models, describing fea-
tures conserved across sequences. Indeed, these families
may consist of a few members highly divergent from
each other (rare) or a continuum of thousands of se-
quences due to the absence of strong functional/evolu-
tionary pressure, which challenges the definition of the
family and produces totally degenerated super-family/
clan models (most frequent) of restrained use.

The second class of methods is based on the selection of
an appropriate set of features (such as short sequence seg-
ments or wavelet decompositions) (Karchin et al. 2005;
Wen et al. 2005; Bonetta and Valentino 2020; Wan and
Jones 2020). Other computational schemes use protein
structure (Pazos and Sternberg 2004; Pal and Eisenberg
2005; Lee et al. 2007; Dawson et al. 2017), phylogenetics
and evolutionary relationships (Eisen 1998; Engelhardt
et al. 2005, 2011; Gaudet et al. 2011; Sahraeian et al.
2015; Gumerov and Zhulin 2020), interaction and associ-
ation data (Deng et al. 2004; Letovsky and Kasif 2003;
Vazquez et al. 2003; Nabieva et al. 2005; Sharan et al.
2007; Cao et al. 2014; Pham and Lichtarge 2020), and a
combination of these (Shin et al. 2007; Furnham et al.
2012; Boari de Lima et al. 2016; Cao and Cheng 2016;
Zhang et al. 2017; Kulmanov and Hoehndorf 2020), with
the evident dependence on the availability of different
data-types and a large and highly diversified dataset of
sequences.

Novel computational approaches that classify se-
quences by function and overcome the intrinsic limita-
tions of existing methods would help screen sequences
to design accurate experiments directed to functional test-
ing and to discover new functions. ProfileView is a compu-
tational method conceived for this purpose, capable of
classifying hundreds/thousands of homologous sequences
into functional groups. It is strongly based on the under-
standing of the structure of sequence data imposed by
the evolutionary history of the sequences. The first main
step of ProfileView is to encode functional and structural
information belonging to the protein family into multiple
profile models that capture the diversity of the homolo-
gous sequences in the family. Based on the set of different
models for the family, the second main step of ProfileView
is to define an original sequence space which organizes se-
quences by function. Biologically interpretable informa-
tion and functional motifs are extracted from the
classification process. In other words, family members
are organized in a tree structure, where subfamily delinea-
tion is possible thanks to the hierarchical organization. The
presence of multiple functions in a family or subfamily
makes it desirable to subdivide its members into smaller
groups in order to capture differences in function-related
features at a lower level than the subfamily. ProfileView
representative models and their specific conserved motifs

have proven to be good indicators of this functional delin-
eation. ProfileView can be applied on a large scale to a wide
variety of datasets.

In the past, the usage of multiple profile models demon-
strated to be powerful in the context of domain annota-
tion (Bernardes et al. 2016; Ugarte et al. 2018), where
they have proven be highly accurate on whole genomes
and metagenomic/metatranscriptomic datasets, allowing
the discovery of new sequences enriching protein families
(Fortunato et al. 2016; Amato et al. 2017). Here, we take on
a new challenge and use these models to capture the var-
iety of functional motifs characterizing a protein family.
Their construction requires a relatively small number of se-
quences (a minimum of 20), and therefore, they can en-
code even functional motifs that are poorly represented
within large sets of natural sequences, generating a pos-
sibly very large motifs diversification.

To highlight its power and generality, we applied
ProfileView to seven protein families whose members are
characterized by a large functional diversity, multiple
members are functionally well-characterized proteins
and subfamilies delineations have been validated experi-
mentally together with their functional motifs: the
Cryptochrome/Photolyase Family (CPF), the glycoside
hydrolase enzymes GH30 family, the enzyme superfamily
Haloacid Dehydrogenase (HAD/b-PGM/Phosphatase-like
subgroup) and four others (the WW domains and three
protein subgroups belonging to the enzyme superfamily
Radical SAM, the B12-binding domain containing, the
Methylthiotransferase and the SPASM/twitch domain
containing). These families and subgroups allowed us to
demonstrate the power in feature extraction, the simpli-
city in the interpretability of the results and the methodo-
logical approach, and the computational efficiency of
ProfileView compared to a recent artificial neural net-
works approach to sequence classification (Tubiana et al.
2019). Comparisons are also made with the PANTHER clas-
sification system (Mi et al. 2012, 2013), the CUPP (Barrett
and Lange 2019) and the eCAMI (Xu et al. 2020) platforms.
For each protein family, ProfileView agrees with all avail-
able experimental data. For those sequences that were
not experimentally validated before, ProfileView provided
a functional classification supported by functional motifs.

New Approaches
Proteins carry out their functions primarily through their
constituent motifs and domains. Motifs and domains are
evolutionarily more conserved than other regions of a pro-
tein and tend to evolve as units, which are gained, lost, or
combined together as one module (Basu et al. 2009). A do-
main is a conserved sequence pattern, defined as an inde-
pendent structural unit. It consists of more than 40 and up
to 700 residues, with an average length of 100 residues. A
motif is a short conserved sequence pattern usually smaller
than a domain. It is often associated with a distinct struc-
tural site performing a particular function. Our methodo-
logical approach to sequence classification, ProfileView,
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explores domain functions in proteins, possibly with com-
plex domain architectures, and makes the hypothesis that
the set of positions in a protein structure that are essential
for its functional activity might have evolved within do-
mains in alternative ways leading to functional differenti-
ation within a protein family. Identifying these
differences at the residue level then becomes crucial for
functional classification, and ProfileView meets the chal-
lenge by identifying the diversity of functional motifs
from sequences.

Converting Sequences in Multidimensional Vectors
with Profile Models
The ProfileView method is outlined hereafter and illu-
strated in figure 1. ProfileView takes as input a set of hom-
ologous sequences and a protein domain, and returns a
classification of the sequences in functional subgroups to-
gether with functional motifs contained in the domain and
characterizing the subgroups.

The first main idea of ProfileView is to extract conserved
patterns from the space of available sequences through
the construction of many profile models for a protein do-
main family that should sample the diversity of the avail-
able homologous sequences and reflect shared structural
and functional characteristics. These models, called
Clade-Centered Models or CCM (Bernardes et al. 2016;
Ugarte et al. 2018), are built as conservation profiles
from close sequences. Compared to consensus models
(e.g., a pHMM Eddy 1998) which are constructed from
large sets of homologous sequences including distant
ones, CCMs avoid the loss of functional signals due to dis-
tant sequences. To build CCMs, we consider the full set of
Pfam sequences Si associated with a domain Di (Finn et al.
2014) and, for each sequence sj [ Si, we construct a CCM
“seeded” from that sequence; if Si is too large (e.g., compris-
ing tens of thousand sequences), we sample its sequences
by first clustering Si as explained in Materials andMethods.
A CCM seeded from sj is built as a pHMM from a set of
UniProt sequences close to sj (see Materials and
Methods). Such a CCM displays features characteristic of
sj and that might differ for sk [ Si. The more sj and sk are
divergent, the more the CCMs seeded from them are ex-
pected to highlight different features. CCM high specificity,
obtained by considering UniProt domain sequences that
display a high sequence identity to the seed sequence sj,
captures feature characteristics of protein interaction sites
and/or determinants of functional specificity for the protein
family. Note that in the past, we constructed CCMs to im-
prove domain annotation (Bernardes et al. 2016; Ugarte
et al. 2018) and, for those models, we employed less restrict-
ive conditions for sequence selection in UniProt. In practical
terms, this first main idea of ProfileView is implemented
into a precompiled library of models associated with the
protein domain given as input (fig. 1A).

The second main idea of ProfileView is to use CCMs to
embed input sequences into a multidimensional represen-
tation space, where each dimension is associated with a

CCM (fig. 1B). Namely, for each input sequence to be clas-
sified, each model is matched against the sequence, and
the value of the match, expressing how close a model is
to the sequence, is recorded as a vector entry (see colored
rows in the matrix of fig. 1B, left). This space is thought of
as a “functional space” because nearby sequences, match-
ing similar profile motifs, are supposed to share the same
functional motifs. ProfileView clusters sequences (con-
verted into vectors) within this space by hierarchical clus-
tering and provides a classification tree whose internal
nodes are, whenever possible, annotated by representative
models and by functional motifs (fig. 1B, right, and 1C).
Subtrees endowed with representative models are indica-
tors of functional specificities and we shall argue that they
can be used to subdivide family or subfamily members into
smaller groups, in order to capture differences in function-
related features of the family, that is, creating groups that
preferably include only one function (fig. 1D). Such sub-
trees will be described by functional motifs, that is groups
of positions, not necessarily consecutive in the protein se-
quence, that are conserved in most sequences of the sub-
tree. Positions in a functional motif can be specific to the
subtree or shared among subtrees allowing for overlapping
positions between representative motifs.

The steps of ProfileView described in figure 1A–C, iden-
tifying subtrees and their representative motifs, do not use
any known functional information from experimentally
characterized sequences. This latter will be used for valid-
ating the method (fig. 1D) and for functional inference (fig.
1E) while searching for new sequences sharing a known
function. All details of the ProfileView pipeline are ex-
plained in Method.

Results
Protein Families Analyzed with ProfileView,
Validation and Inference
ProfileView was run on seven protein families. Three of the
analyzes are detailed below and four in supplementary
text 1, Supplementary Material online. The protein se-
quences to be classified for these families present different
characteristics, listed in table 1 (supplementary tables S1,
S2, Supplementary Material online) and supplementary
text 1, SupplementaryMaterial online. Their sequence length
spans from 30aa to 750aa and sequence similarity varies from
30% to more than 50% (supplementary table S1 and text 1,
Supplementary Material online). For each family, ProfileView
classification is based on one or two similar Pfam domains
occurring in their architecture. Length, sequence similarity,
and sequence identity for the domain regions contained
in the sequences to be classified are reported in
supplementary tables S2 and text 1, Supplementary
Material online. Number, sequence identity, and sequence
similarity of the seed sequences used to construct the
ProfileView model libraries are described in supplementary
table S3 and text 1, Supplementary Material online. For a
comparative view, see supplementary figure S1,
Supplementary Material online.

Profile Models Extract Features from Protein Sequence Data · https://doi.org/10.1093/molbev/msac070 MBE

3

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/4/m
sac070/6556147 by C

N
R

S user on 13 N
ovem

ber 2022

http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
https://doi.org/10.1093/molbev/msac070


ProfileView was validated on seven independent test
sets constituted by human curated functionally character-
ized sequences belonging to these seven protein families.
Within a family, sequences are characterized in several

functional subgroups, going from a minimum of four to
a maximum of nine (table 2 and supplementary text 1,
Supplementary Material online). In particular, the diffi-
culty in classification is expected to be nonuniform over

A C

B

D E

FIG. 1. Schema of the ProfileView approach, validation and functional inference. (A) Model library construction in ProfileView: representative
sequences of the domain under consideration are selected from the Pfam domain library. For each sequence, ProfileView searches for its close
homologs in UniProt (colored disks around the seed Pfam sequence, colored dot) and constructs a profile model seeded from that sequence.
(B) Given a set of unaligned sequences to classify, construction of the representation space: homologous protein sequences (light blue dots in
sequence space, center) are encoded into multidimensional vectors by the profile models constructed in A. For each sequence, each profile
model contributes two numerical scores to the vector, the normalized bit-score and the normalized weighted bit-score (see V and IX in
Materials and Methods). By clustering points in the multidimensional representation space, ProfileView outputs a classification tree of the
set of sequences where internal nodes are annotated by representative models (black dots), whenever possible. (C ) Analysis of the set of se-
quences in a subtree (see circled root in B) which is endowed with a representative model. The 2-dimensional plot illustrates all sequences
in the tree as points defined by their model’s two scores. Note that these scores are described in the two columns of the score matrix in B as-
sociated with the model. Sequences in the subtree (pastel blue points) are scored the highest. A functional motif, characterizing sequences in the
subtree, is associated with the representative model. (D) ProfileView validation on a set of sequences with a functionally characterized function.
Their position is identified in the tree (colored dots) and the subtrees grouping together sequences of the same functional class are used to
evaluate ProfileView. The existence of a representative model is indicated by a black dot. (E) Subtrees endowed with representative models
in D are used to infer a functional classification of sequences locating near functionally characterized ones. The emerald green subtree, endowed
with a representative model (D), groups no characterized sequence, indicating a potentially new functional class.
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different functional subgroups. Figure 1D describes the val-
idation pipeline (see Materials and Methods).

To validate ProfileView classification, we determined
whether functionally characterized sequences of the same
functional group localize together in the ProfileView tree.
Ideally, one would like ProfileView to split characterized se-
quences belonging to n functional subgroups into n distin-
guished subtrees endowed with representative models
(fig. 1D). Hence, if sequences belonging to the same func-
tional class are grouped together in a single subtree en-
dowed with a representative model (see Materials and
Methods), we consider them well-classified (W in table 2).
Some sequences might remain unclassified (U), some others
misplaced (M) in subtrees of the wrong functional sub-
group, and several sequences of the same functional sub-
group might group together in some subtree which is not
represented by a model. These different possibilities are in-
dicators of the difficulty in classifying sequences within sub-
groups. Dropping the condition on the existence of
representative models on subtrees, allows to show that,
very often, the topology of classification trees groups to-
gether unclassified sequences belonging to known function-
al groups, as for the Glycoside hydrolase family 30 (GH30)

for instance (table 2). In table 2 and supplementary text 1,
Supplementary Material online, for each protein family,
we provide a summary of ProfileView performance by re-
porting the total number of unclassified, misplaced and
well-classified sequences in ProfileView trees. A detailed de-
scription of ProfileView performance, for each functional
subgroup, is found in supplementary tables and supplemen-
tary figures cited in table 2 (supplementary text 1,
Supplementary Material online).

ProfileView identified a large number of functionally
known positions and specific protein residues in inter-
action with either nucleic acids, amino acids or small mo-
lecules. For two families, the CPF and the GH30, we shall
show in detail how ProfileView can provide a functional
classification for a large number of functionally uncharac-
terized sequences (fig. 1E and table 2), and novel informa-
tion on conserved amino acids that could be useful to
design testing experiments (see also the detailed analysis
of the WW domain family in supplementary text 1,
Supplementary Material online). Subtrees endowed with
representative models and grouping sequences of a specif-
ic function are used to infer the function for all sequences
in the subtree, and subtrees endowed with representative

Table 1. Characteristics of the Seven ProfileView Analyzes.

Superfamily/Family Characteristics of seqs to be

Classified

Information on the Model Library Construction

#seqs #filt seqs #func seqs Pfam Domain (accession code) #Pfam seqs Clust cond #profile models

Cryptochrome/Photolyase
(CPF)*

397 307 72 FAD (PF03441) 4,615 — 4,615

Glycoside hydrolase family 30
(GH30)*

1,803 1,675 695 Glyco-hydro-30 (PF02055)
Glyco-hydro-30-2 (PF14587)

1,894 — 1,894

Haloacid Dehalogenase*
HAD/b-PGM/
Phosphatase-like

391 259 259 HAD (PF12710)
HAD_2 (PF13419)

35,416 ≥40% 4,075

WW domain 349 349 54 WW (PF00397) 5,634 — 5,634
B12-binding

domain containing
273 258 258 B12-binding (PF02310)

B12-binding_2 (PF02607)
12,241 ≥60% 3,504

Radical Methylthiotransferase 400 393 393 Radical_SAM (PF04055) 83,232 ≥40% 4,501
SAM SPASM/twitch 128 29 29 SPASM (PF13186) 6,469 ≥60% 2,663

domain containing 128 115 115 Radical_SAM (PF04055) 83,232 ≥40% 4,501

NOTE.—List of protein families discussed in the main text (starred) and four more discussed in supplementary text 1, Supplementary Material online. For each family, we
report some characteristics of the sequences to be classified (number of sequences, number of sequences after filtering (steps II and III of the pipeline), number of sequences
with known function) and some information on the model library construction (Pfam domain used in classification, number of Pfam domain sequences, MMseq2 clustering
condition (when clustering is applied), number of constructed models). Further features are described in supplementary tables S1, S2, Supplementary Material online. The
SPASM/twitch domain containing family is considered twice because classified both with the SPAM domain and the Radical_SAM domain.

Table 2. Summary of ProfileView Performance in Classifying Functionally Characterized Sequences.

Protein Family # func subgrs Validation on Subtrees Table Figure

With Models w/o Models

U M W U M W

Cryptochrome/Photolyase (CPF) 5 1 0 71 1 0 71 S4 S2
Glycoside hydrolase family 30 - CAZy families 9 106 5 584 0 1 694 S6 5
HAD/b-PGM/Phosphatase-like 6 0 0 259 0 0 259 S8 6

NOTE.—For each protein family, the number of functional subgroups used in the evaluation is reported. The total number of unclassified (U), misplaced (M), and well-
classified (W) sequences is identified with respect to subtrees endowed with a representative model or not. Names of supplementary tables and figures where
ProfileView performance is described in detail, for each functional subgroup, are given.
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models and grouping sequences with no functional char-
acterization (e.g., emerald green tree in fig. 1E) are used
as indicators of potentially new functional classes.

ProfileView on the CPF Family
The CPF, involved in the interaction with nucleic acids,
amino acids, and small molecules, is widely distributed in
all kingdoms of life (Sancar 2003; Brettel and Byrdin
2010; Chaves et al. 2011; Jaubert et al. 2017). CPF members
share the same fold, yet can perform very different func-
tions and have completely different partners: crypto-
chromes (CRY) are mainly photoreceptors (PR) using
light to activate specific signaling pathways; some CRY
also acts as light-independent transcriptional regulators
of the circadian clock; photolyases (PL) are light-activated
enzymes repairing UV-damaged DNA (cyclobutane pyr-
imidine dimer (CPD) lesions or (6-4) lesions). There are
five main CPF functional groups: circadian, (6-4) photo-
lyase, CPD photolyase, ssDNA photolyase, and photo-
receptor. (See supplementary text 2, Supplementary
Material online, section 1, for more description.) On the
other hand, sequence similarity highlighted a finer classifi-
cation of CPF proteins splitting the five groups in several
subgroups (see, for instance, Emmerich et al. 2020).
Based on the current literature, we could identify 11 dis-
tinct subgroups: (6-4) photolyase, Animal photoreceptor
cryptochrome (PR CRY), transcriptional regulator, CRY

DASH, CRY Pro, Classes I, II, III CPD photolyase,
Plant-like photoreceptor CRY, Plant photoreceptor CRY,
and a new NCRY subgroup. Some of these subgroups of se-
quences have been experimentally characterized to share
the same function, as (6-4) photolyase and CRY Pro (fig.
2B, supplementary fig. S2, Supplementary Material online),
and some others are associated with very similar se-
quences, as (6-4) photolyase, Animal photoreceptor CRY,
and transcriptional regulator (supplementary figs. S3, S4,
Supplementary Material online).

In our analysis, we make the hypothesis that the FAD
(flavin adenine dinucleotide) binding domain, occurring
in all CPF sequences, contains all functional information
leading to a functional diversification of the family.
Indeed, all CPFs noncovalently bind FAD and share a
mechanism of FAD photoreduction by intra-protein elec-
tron transfer (Björn 2015). FAD can be in different oxida-
tion and protonation states (Sancar 2003), specifically
associated with different functions. The FAD domain is
known to interact specifically either with the damaged
DNA, with other domains present in CPF proteins (e.g.,
C-ter extensions in some photoreceptor cryptochromes)
or with other protein partners (Czarna et al. 2013).

ProfileView is validated on two different types of
data: functionally characterized CPF sequences and func-
tionally characterized positions within CPF sequences.
These latter are compiled in a manually curated list of po-
sitions (supplementary file, Supplementary Material online

A B C

FIG. 2. ProfileView representation space for the CPF family, classification tree, validation on experimental data, and inference. (A)
Two-dimensional projection of the ProfileView representation space for 307 FAD-binding domain CPF sequences obtained by Principle
Component Analysis (PCA). The axes correspond to the first and second PCA components explaining the 63.8% and 17.6% of the dispersion,
respectively. Seventy-two experimentally functionally classified sequences are colored (legend “Function”). Unclassified sequences are left light
gray. When a sequence is known to have a double function, both colors are indicated and the inside color refers to the known primary function.
For instance, five of the eight ssDNA photolyase sequences (red purple) located on the top of the plot are double function (compare to the first
ring in B). (B) ProfileView classification tree. External colored squares define known functions for the sequences (legend “Function”). Some func-
tionally characterized sequences are known to hold multiple functions and are labeled by two colors. The function “signaling” (dark gray) refers
to signaling processes of different nature (photoreceptor, transcription, unknown). Numbers on the internal nodes correspond to the percent-
age of sequences in the corresponding subtree that are separated from the remaining sequences in the tree by the a representative model oc-
curring in the model library (see supplementary fig. S2, Supplementary Material online for details). Colored subtrees are identified by
representative models and they correspond to known CPF classes (legend “Cryptochrome/Photolyase Family”), with the exception of the
NCRY subtree. (C ) Inferred function for unclassified sequences (gray dots in A), where colors (legend “CPF”) correspond to the identified sub-
trees endowed with representative models on the ProfileView tree in B.
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“CPF_mutants_used_for_validation.xlsx”) from the litera-
ture. Furthermore, we combined them with structural
modeling to analyze CPF subgroups in detail.

Validation of ProfileView on the Functional Diversity of CPF
Members
The ProfileView representation space shows a coherent or-
ganization, where sequences with the same functional
characterization (see “Function” in fig. 2A and B and
supplementary fig. S2, Supplementary Material online)
tend to occur together in space (fig. 2A, table 2). Their lo-
calization is analyzed further in the ProfileView classifica-
tion tree, comprised of 11 subtrees (T1 . . . T3, T5 . . . T12
in fig. 2B and supplementary fig. S2, Supplementary
Material online). We observe an almost perfect split of
71 out of 72 functionally characterized CPF sequences
(see labels in the outer circles of fig. 2B, colors as in
“Function”) across the eight distinguished subtrees
T1 . . . T8, all endowed with a representative model. Their
classification in the five CPF functional classes is described
in supplementary table S4, Supplementary Material online.
Note that the (6-4) photolyase class divides in two sub-
trees, distinguishing (6-4) photolyase sequences (T2)
from the known CRY Pro sequences (T3). This split, also re-
cognized in the phylogenetic trees of the CPF family
(supplementary figs. S3 and S4, Supplementary Material
online; see also figs. 3A, 3C and 3D), is due to sequence di-
vergence highlighting specific traits of the CRY Pro se-
quences such as the four FeS-binding cysteines which are
missing in the (6-4) photolyase subgroup (Ma et al.
2019). In contrast, the CPD photolyase class divides in
two distinguished subtrees corresponding to the

subgroups Classes I and III CPD photolyase (T4) and
Class II CPD photolyase (T5), which are not identified in
the phylogenetic trees of the CPF family. In particular,
ProfileView further divides Classes I and III CPD photolyase
into two subtrees, one for Class I CPD photolyase (T10) and
the other for Class III CPD photolyase (T9). Finally, the
photoreceptor sequences are divided in two subtrees,
one grouping Animal photoreceptor CRY (T8) and the
other Plant photoreceptor CRY (T7).

Most importantly, at the root, the ProfileView tree top-
ology organizes large subtrees consistently with known
functional subgroups (fig. 3A). Namely, the ProfileView
tree separates light-independent circadian transcriptional
regulator CRY (T1) from the light-dependent (6-4) photo-
lyase (T2) and Animal photoreceptor CRY (T8; fig. 3E). It
also clearly separates the DNA repair (6-4) photolyase
from the Animal photoreceptor CRY. It reconciles classes
I and III CPD photolyase into a single subtree (T4), while
keeping them distinct (T9, T10), and it clearly separates
them from Plant (T7) and Plant-like photoreceptor CRYs
(T11; fig. 3F). For the characterized sequences displaying
double function (supplementary fig. S2, Supplementary
Material online), their DNA repair/photolyase activity
(either CPD or (6-4)) is consistently determined by
ProfileView that groups these sequences in the photolyase
subtrees. At the best of our knowledge, these sharp
separations, in agreement with known functional charac-
terizations, have never been obtained by sequence analysis
before.

Interestingly, the ProfileView tree allowed for the iden-
tification of a yet functionally uncharacterized subtree
(T12, named NCRY; see the light beige subtree in figs. 2B

A

C D E F

B

FIG. 3. Topological comparison between the ProfileView classification tree and the phylogenetic trees for the CPF family and the FAD-binding
domain. (A) Schema illustrating the topological structure of the ProfileView tree in figure 2B and supplementary figure S2, Supplementary
Material online. Colors correspond to subtrees where the characterized sequences of the same functional group are over-represented (bottom).
The domain architectures known to be characteristic of each subtree are reported (see B for more details). (B) Domain architectures for proteins
belonging to different subtrees of A are reported (colors as in A). C- and N-terminal regions are indicated with gray boxes. Dashed border lines
indicate terminal regions present only occasionally in an architecture. (C ) Scheme of the main topological structure of the CPF phylogenetic tree
constructed from the 307 CPF sequences containing the FAD binding domain. Colors as in A. See the CPF phylogenetic tree in supplementary
figure S3, Supplementary Material online. (D) Scheme of the main topological structure of the FAD phylogenetic tree constructed from the 307
FAD-binding domain sequences. Colors as in A. See the FAD phylogenetic tree in supplementary figure S4, Supplementary Material online. (E,F )
Two zooms on subtrees of the ProfileView classification tree involving classes of CPF sequences described in A. Colors as in A.
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and 3A) of proteins showing strong sequence divergence.
The same subtree was also identified by sequence similar-
ity network analysis in (Emmerich et al. 2020) without in-
ferring any functional classification for it, and by the
phylogenetic tree based on the FAD-binding domain in
CPF sequences (FAD tree, for short; fig. 3D) which places
it close to the Animal photoreceptor CRY (T8) and CRY
DASH (T6). ProfileView positions NCRY close to the
Plant photoreceptor CRY and Plant-like photoreceptor
CRY (green subtrees in fig. 3A). In contrast, the phylogen-
etic tree of CPF sequences (CPF tree, for short) includes
NCRY within Class I CPD photolyase (cyan subtree in fig.
3B). To our knowledge only one protein from this family
has been characterized and it was shown to bind FAD
but to lack DNA repair/photolyase activity (Worthington
et al. 2003) which is in accordance with the position of
this family in our functional tree. This finding highlights
the potential of ProfileView to reveal novel functional
classes within a protein family. (See also supplementary
fig. S5, Supplementary Material online.)

Overall, the 11 subtrees in figure 3A (T1 . . . T3, T5 . . . T12
in figure 2B and supplementary fig. S2, Supplementary
Material online) are uniquely associated with known func-
tional classes (see supplementary table S4, Supplementary
Material online). This provides the first proof of the meth-
od’s classification power for inferring known functions and
suggesting potentially new ones.

Comparison of the ProfileView Tree with the FAD and CPF
Phylogenetic Trees
The comparison of ProfileView classification tree (fig. 2B)
with the CPF tree (supplementary fig. S3, Supplementary
Material online) and the FAD tree (supplementary fig.
S4, Supplementary Material online) highlights important
differences in the topological organization of major func-
tional classes. A drawing in figures 3A, 3C and 3D compares
the three trees for easy visualization. We notice that the
CPF phylogenetic tree (fig. 3C): (1) incorrectly groups se-
quences exhibiting disparate functions, for instance Plant
photoreceptor CRY and Plant-like photoreceptor CRY
are clustered within Class III CPD photolyase; (2) hides
the NCRY subtree within class I CPD photolyase; (3) mixes
light-dependent and light-independent proteins in a sub-
tree where Animal photoreceptor CRY and circadian tran-
scriptional regulator are clustered within (6-4) photolyase
sequences.

It is interesting to notice that the compatibility of do-
main architectures associated with different functional
classes of CPF sequences (fig. 3B) is coherent with the
ProfileView tree topology (fig. 3A, bottom) and much
less so with the CPF phylogenetic tree. Compare, for in-
stance, the architectures for the classes Plant-like photo-
receptor CRY, Plant photoreceptor CRY and NCRY, or
those for classes I and III CPD photolyase. All members
of these classes have a PHR domain in which a specific
CPF FAD-binding domain is found, but C- and
N-terminal extensions of variable sequence or length.
The architectures for Plant-like photoreceptor CRY,

Plant photoreceptor CRY and NCRY possess N- or
C-terminal extensions whereas classes I and III CPD photo-
lyase only possess the PHR domain. Classes which are topo-
logically close in the ProfileView tree preserve sequence/
length characteristics of C- and N-terminal regions and
agree with what is expected in contrast to the subtrees
of the CPF phylogenetic tree. Similar observations can be
highlighted by comparing the ProfileView tree with the
FAD phylogenetic tree (fig. 3D).

Representative Models, Motifs and Validation of ProfileView
on Functionally Characterized Positions
ProfileView associates representative models and func-
tional motifs to the subtrees of its classification tree.
They are used to highlight subfamily delineations and mo-
lecular determinants underlying functions and interac-
tions, respectively.

A representative model for a subtree of the ProfileView
tree is a profile model that ideally “separates” the se-
quences in a subtree from all other sequences in the tree
(step IX of ProfileView pipeline in Materials and
Methods). Representative models can be used to subdivide
members of a family or subfamily into smaller groups to
capture function-related differences at a lower level of
the ProfileView tree, that is, creating groups that prefer-
ably include only one function. CPF subtrees correspond-
ing to known functional classes in figure 2B and
supplementary figure S2, Supplementary Material online
are characterized by representative models that separate
at least 50% of the sequences in a subtree from all other
sequences in the ProfileView tree (see labels reporting
the proportion of sequences supported by a model on
the nodes in supplementary fig. S2, Supplementary
Material online). An automatic procedure in ProfileView
identifies representative models.

Given a representative model for a subtree, the set of
conserved positions in the model uniquely defines a motif
for the subtree (step X of ProfileView pipeline in Materials
and Methods). The motifs associated with the 11 CPF
functional subtrees are reported in supplementary
figures S6, S7, Supplementary Material online with the ex-
ception of Classes I and III CPD photolyase, known to share
the same function, which we grouped together by consid-
ering the representative model of the minimal subtree in-
cluding both classes. The only subtree associated with two
distinct representative models, covering two different re-
gions of the FAD-binding domain sequence, is the
light-independent transcriptional regulator tree
(supplementary fig. S8, Supplementary Material online,
fig. 4A and B). Figure 4C shows the alignment of the two
transcriptional regulator motifs with the (6-4) photolyase
motif and the Animal photoreceptor CRYmotif, where po-
sitions 50–126 are not covered by the two transcriptional
regulator motifs. These positions comprise the
FAD-binding domain region directly involved in proton
or electron transfer to the FAD chromophore and provide
evidence that proton/electron transfer is not involved in
the function of light-independent transcriptional
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repressors (fig. 4C) despite the importance of the FAD
chromophore in their regulation (Hirano et al. 2017).

To validate ProfileView motifs, we exploited the func-
tional information derived by characterized mutations
and looked whether their conserved amino acid positions
would identify known functional natural variations, single
amino acid residue replacements by site-directed muta-
genesis or random mutagenesis, and structural specificity

when structures were available. For this purpose, we
manually curated a list of experimentally characterized
positions in the CPF sequences (see supplementary
file, Supplementary Material online “CPF_mutants_
used_for_validation.xlsx”). Most of these positions display
mutations causing loss of function or phenotypic changes.
They are often involved in binding with other proteins,
DNA substrates or with the cofactor FAD; active amino

A

C

B

D

FIG. 4. Transcriptional regulator motifs and their comparison with (6-4) photolyase and Animal photoreceptor CRY motifs. (A,B) two motifs of
conserved residues present in light-independent transcriptional regulator sequences. They are extracted from two representative models
(supplementary fig. S8, Supplementary Material online) of the “yellow” subtree of figure 3A and E (see bottom). Numbers (under the letters)
correspond to positions in a model, and they are not comparable between motifs. A colored dot, piled below a motif, indicates that the corre-
sponding position is well conserved (see Materials and Methods) in the representative model of the subtree of that color in figure 3A. Circled
dots indicate positions that are less conserved (see Materials and Methods). For each motif, colored dots are ordered, from top to bottom, de-
pending on best E-values given by hhblits to the pairwise model alignments. (C ) Representative motifs associated with the transcriptional regu-
lator (yellow), (6-4) photolyase (red) and Animal photoreceptor CRY (orange) subtrees of ProfileView tree (bottom) are aligned. Numbered
positions correspond to conserved positions belonging to the associated representative motif. The absence of the number indicates less con-
served positions. The alignment has been constructed using transcriptional regulator motifs as template models and all others as query models.
The length of a motif depends on the length of the associated model, selected as best representing the sequences in a subtree. (D) PDB structure
(4CT0) of the interacting mouse cryptochrome mCRY1 (grey) and Period2 mPER2 (black) involved in the circadian clock. Residues L6, N38, L42,
and K44 are specific to light-independent transcriptional regulators (supplementary text 2, Supplementary Material online).
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acids involved in catalytic or allosteric sites, such as DNA
repair for photolyases or post-translational modifications
in CRY, are also identified. Supplementary table S5,
Supplementary Material online summarizes how many
ProfileView positions are validated by current experimen-
tal evidence. Interestingly, ProfileView finds a number of
highly specific positions for CPF functional classes that
have not been reported in the literature before. We dis-
cussed these positions together with other observations
in supplementary text 2, Supplementary Material online.
They illustrate the great deal of functional information
that can be extracted from representative motifs and be
used to design tailored experiments for discovering new
functional activities or novel biological mechanisms in-
volving the FAD-binding domain.

How ProfileView Representative Motifs Distinguish
Evolutionary Close Sequences?
ProfileView can distinguish very similar sequences asso-
ciated with different functions. We illustrate this crucial
feature with a concrete example, based on representation
models and motifs. CPF sequences U5NDX3 and R7UL99
are grouped together by phylogenetic analysis because
they are very similar (sequence identity is 61.8% and se-
quence similarity is 74.7%) and are classified in different
functional groups by ProfileView, as a photolyase and a
transcriptional regulator respectively. The conserved posi-
tions belonging to the photolyase functional motif (motif
called “(6-4) photolyase” in supplementary fig. S6,
Supplementary Material online) are shown in the
alignment reported in supplementary figure S9,
Supplementary Material online. For almost all positions
in the motif the corresponding amino acid is conserved
in both sequences (green) as expected by the high se-
quence identity of the alignment. For positions 1 (L), 33
(I), and 135 (K) in the motif, the amino acid is conserved
only in the U5NDX3 sequence (the corresponding amino
acids in R7UL99 are colored blue). Viceversa, positions
136 (K) and 160 (Y) in the motif are conserved in
R7UL99 but not in U5NDX3. Even in the presence of this
high sequence conservation, the (6-4) photolyase motif
distinguishes the sequences by providing higher matching
value for U5NDX3 than for R7UL99. Among the five posi-
tions, two of them, 1 and 135, are highly conserved in the
photolyase family and variable in the transcriptional regu-
lator family (see missing yellow dots below the (6-4)
photolyase motif in supplementary fig. S6,
Supplementary Material online) making the U5NDX3 se-
quence closer in classification space to the photolyase sub-
group than R7UL99. Note that these observations concern
the dimension of ProfileView classification space which is
associated with the “(6-4) photolyase” model. Ultimately,
it is the contribution of all profile models, one for each di-
mension of the space, that will define the position of the
sequences bringing them closer either to the photolyase
subgroup or the transcriptional regulator subgroup.

A second example is reported in supplementary figure
S10, Supplementary Material online for sequences

Q6MDF3, D8UF46, and Q485Z2. The position of the se-
quences in the CPF phylogenetic trees (supplementary
figs. S3 and S4, Supplementary Material online) could
wrongly suggest an ancestral function, conserved in para-
phyletic groups separated by clades where neofunctionali-
zation would occur. In contrast, a sequence alignment
analysis (see legend in supplementary fig. S10,
Supplementary Material online) driven by representative
motifs highlights specific positions that explain the func-
tional classification of the three sequences.

ProfileView on the GH30 Family of the CAZy
Database
The glycoside hydrosylases (EC 3.2.1.-), in short GH, are a
widespread group of enzymes which hydrolyse the glyco-
sidic bond between two or more carbohydrates or be-
tween a carbohydrate and a noncarbohydrate moiety.
Their classification, based on substrate specificity and oc-
casionally onmolecular mechanisms, has proven to be par-
ticularly difficult. For this purpose, a vast knowledge on
these enzymes has been meticulously curated in the
CAZy database (Lombard et al. 2014). The GH30 is one
of the GH families that has been organized in subfamilies
in CAZy (http://www.cazy.org/GH30.html). It counts nine
different subfamilies (GH30-1,…, GH30-9) corresponding
to 11 different enzymatic chemical reactions. Some of
these subfamilies are functionally classified in CAZy and
some others are left unclassified.

Validation of ProfileView on the Functional Diversity of
GH30 Sequences
We considered a set of 1675 GH30 sequences and their 695
functionally classified sequences in CAZy (table 2).
ProfileView representation space and ProfileView tree for
these sequences have been constructed using models
coming from two similar PFAM domains: PF02055
(Glyco_hydro_30) and PF14587 (Glyco_hydr_30_2).

ProfileView classifies 584 out of 695 sequences well,
within eight subtrees (T1, T2, T3, T6, T7, T10, T11, T12 in
fig. 5) and leaves 106 sequences unclassified and five mis-
placed (supplementary tables S6 and S7, Supplementary
Material online, and fig. 5). Noticeably, all unclassified se-
quences in CAZy subfamilies GH30-3, GH30-4, and
GH30-5 are grouped by ProfileView into three subtrees
missing a representative model (T4, T5, T8, respectively).
All misplaced sequences in CAZy subfamily GH30-6 are
grouped into the same subtree missing a representative
model (T9). Furthermore, the same subtrees separate
well the EC numbers in CAZy functional annotation
(supplementary table S7, Supplementary Material online).

In figure 5, the existence of multiple representative
models for the internal nodes of the ProfileView classifica-
tion tree highlights a possible functional sub-
characterization for several CAZy subfamilies. For instance,
note that the two CAZy reactions 3.2.1.45 and 3.2.1.21
+3.2.1.37 for GH30-1 are identified in distinguished sub-
trees (green and violet labels are associated with reactions
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3.2.1.45 and 3.2.1.21+3.2.1.37 in fig. 5) separated by a rep-
resentative model. Furthermore, for the GH30-3 subfamily,
several sequences labeled by CAZy reaction 3.2.1.75 occur
in different subtrees endowed with representative models,
highlighting potential functional differences within this
subfamily.

ProfileView on the Enzyme Superfamilies of the
Structure-Function Linkage Database
The Structure–Function Linkage Database (SFLD) is a
manually curated classification resource describing struc-
ture–function relationships for functionally diverse en-
zyme superfamilies (Schnoes et al. 2009; Akiva et al.
2014). Despite their different functions, the members of
these superfamilies “look-alike,” which facilitates annota-
tion errors. We challenge ProfileView against these sets

of sequences and show that its classification meets the
functional information in SFLD.

SFLD is organized in superfamilies whose members are
subdivided into subgroups using sequence information,
and finally into families, that is, sets of enzymes known
to catalyze the same reaction using the same mechanistic
strategy. Subgroups are not organized by function, and the
functional specificity of the sequences is detailed at the
family level. We consider two different superfamilies,
Haloacid Dehydrogenase and Radical SAM, because of
their wide variety of functions. Indeed, the Haloacid
Dehydrogenase family is characterized by 25 subgroups or-
ganized in 22 families and 20 different reactions, and the
Radical SAM family by 58 subgroups organized in 98 fam-
ilies and 85 reactions (see sfld.rbvi.ucsf.edu/archive/
django/superfamily/index.html for a detailed description).
We analyzed the HAD/b-PGM/Phosphatase-like subgroup

FIG. 5. ProfileView tree of GH30 sequences. The tree is based on the construction of models for the two pfam domains PF02055
(Glyco_hydro_30) and PF14587 (Glyco_hydr_30_2). Black dots in the tree indicate the existence of representative models separating at least
75% of the sequences in the subtree (note that lowering the threshold to 50% provides comparable results). The first external ring contains the
labels of CAZy subfamilies (GH30-1, …, GH30-9), also indicated in larger characters on the annotated tree for an easier reading. Sequences and
their classification correspond to those used in figure 3 of Barrett and Lange (2019). The second ring reports the existence of an “EC number”
providing the functional annotation in CAZy. The EC numbers and their associated colors are indicated on the top left (GH30-1: 3.2.1.45 and
3.2.1.21+3.2.1.37; GH30-2: 3.2.1.37; GH30-3: 3.2.1.75; GH30-4: 3.2.1.38; GH30-5: 3.2.1.164; GH30-6: –; GH30-7: 3.2.1.*; GH30-8: 3.2.1.8, 3.2.1.136,
3.2.1.8+3.2.1.136; GH30-9: 3.2.1.31). The third ring reports CUPP clustering (Barrett and Lange 2019). Different colors are used to indicate dif-
ferent CUPP clusters. See supplementary table S6, Supplementary Material online. The fourth and most external ring reports eCAMI clustering
(Xu et al. 2020). Different colors are used to indicate different eCAMI clusters.

Profile Models Extract Features from Protein Sequence Data · https://doi.org/10.1093/molbev/msac070 MBE

11

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/4/m
sac070/6556147 by C

N
R

S user on 13 N
ovem

ber 2022

https://sfld.rbvi.ucsf.edu/archive/django/superfamily/index.html
https://sfld.rbvi.ucsf.edu/archive/django/superfamily/index.html
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac070#supplementary-data
https://doi.org/10.1093/molbev/msac070


of Haloacid Dehydrogenase and three subgroups of
Radical SAM: B12-binding domain containing,
Methylthiotransferase and SPASM/twitch domain con-
taining (see supplementary text 1, Supplementary
Material online). ProfileView functional classification has
been validated on the SFLD families associated with the
four subgroups.

ProfileView on the HAD/b-PGM/Phosphatase-like Subgroup
The 259 characterized functions included in this
subgroup comprise 2-haloacid dehalogenase, beta-
phosphoglucomutase, phosphonoacetaldehyde hydro-
lase, and phosphatases of various specificities (see
sfld.rbvi.ucsf.edu/archive/django/subgroup/1129/index.
html). We run ProfileView on a model library con-
structed from the two similar Pfam domains HAD
and HAD_2 (see tables 1 and 2). ProfileView classifies
well all-known sequences belonging to known charac-
terized functions in distinguished subtrees endowed
with representative models. Neither unclassified nor
misplaced sequences were identified, as illustrated in
figure 6 and supplementary table S8, Supplementary
Material online.

Comparison of ProfileView with Other
Computational Approaches
ProfileView is compared with the PANTHER classification
system (Mi et al. 2012, 2013) and the two k-mer-based
platforms CUPP (Barrett and Lange 2019) and eCAMI
(Xu et al. 2020). One more comparison with CUPP and
the state-of-the-art neural network approach based on
Restricted Boltzman Machines (RBM) described in
(Tubiana et al. 2019) are reported in supplementary text
1, Supplementary Material online (on the WW domain
family). In all comparisons, ProfileView outperforms or is
on par with the functional classification considered.

ProfileView and PANTHER
PANTHER (Mi et al. 2012, 2013) is a large curated biologic-
al database of gene/protein families and their functionally
related subfamilies which has been designed to classify and
identify the function of gene products. PANTHER provides
data and tools to group sequences in functional clusters.
Unlike ProfileView, it does not organize them in a distance
tree, missing the possibility to identify large-scale function-
al properties for groups of sequences that cluster together,
such as light-dependent/independent CPF sequences.

FIG. 6. ProfileView classification tree of the HAD/b-PGM/Phosphatase-like subgroup of Haloacid Dehydrogenase in SFLD. Validation test of
ProfileView performance. See supplementary table S8, Supplementary Material online.
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We annotated the 307 sequences belonging to the CPF
family with PANTHER and compared PANTHER to
ProfileView on the 72 functionally characterized CPF se-
quences. For easier visualization, we reported PANTHER
classification of the full set of CPF sequences on both
the ProfileView classification tree and the CPF distance
tree in supplementary figures S11 and S12,
Supplementary Material online. Supplementary table S9,
Supplementary Material online reports PANTHER classifi-
cation of the 72 functionally characterized sequences. As
ProfileView, PANTHER associates sequences in Class II
CPD photolyase and CRY Pro to specific functional classes.
In contrast, it associates many functional classes with the
Plant Photoreceptor CRY. This implies, on the one hand,
that PANTHER does not sharply identify the subset of
Plant Photoreceptor CRY sequences and, on the other
hand, that it suggests a finer functional delineation within
this subset. In this regard, we notice that PANTHER asso-
ciations in the Plant Photoreceptor CRY subtree of
supplementary figure S11, Supplementary Material online
correspond to the topology of the ProfileView Plant
Photoreceptor CRY subtree. Moreover, several PANTHER
classes (e.g., cryptochrome-1, (6-4) photolyase isoform A,
and SI:CH1073-390K14.1) are associated with distinct
CPF classes. Some associations are clearly faulty as it is
the case for the (6-4) PL sequences annotated as circadian
regulators, and for the Class I CPD photolyase sequences
classified as (6-4) PL. Note that PANTHER class SI:
CH1073-390K14.1 recognizes both Plant photoreceptor
Cry and Class III CPD photolyase, and that sequences in
the NCRY subtree are annotated as (6-4) photolyase while
they are PRs according to us and to (Emmerich et al. 2020).

ProfileView and the Two k-mer-based Platforms CUPP
and eCAMI
CUPP (Barrett and Lange 2019) and eCAMI (Xu et al. 2020)
are two computational approaches designed to classify
carbohydrate-active enzymes by using short peptide/
k-mer sequences expected to be enzyme specific. In
CUPP and eCAMI, proteins sharing the same peptide pro-
file are claimed to share the same function.

The set of GH30 sequences used to validate ProfileView
(fig. 5) was also used for the evaluation of CUPP (Barrett
and Lange 2019). CUPP splits these sequences in 33 groups
and organizes them in a dendogram (Barrett and Lange
2019) whose topology is reported in supplementary
figure S13A, Supplementary Material, online. The dendo-
gram is composed of nine subtrees corresponding to the
nine CAZy subfamilies. A schematic comparison of CUPP
dendrogram (Barrett and Lange 2019) and ProfileView
tree is given in supplementary figure S13B,
Supplementary Material, online. Both their topologies
highlight the separation of the CAZy subfamilies GH30-1,
GH30-2, GH30-3, and GH30-9 from the other subfamilies.
ProfileView tree separates further subfamilies GH30-4 and
GH30-5 from the remaining ones.

A detailed analysis of the CAZy subfamilies indicates
similar sequence organization for both ProfileView and

CUPP. For instance, CUPP organizes GH30-1 sequences
by splitting them in five clusters (Barrett and Lange
2019) that are easily identified in ProfileView tree, where
three representative models are associated with three of
CUPP clusters (purple, fuchsia, and dark blue in third circle
of annotation in fig. 5). In contrast, the classification of
CAZy subfamilies GH30-4 and GH30-5 (fig. 5) highlights
a large number of CUPP clusters while ProfileView groups
GH30-5 into three main subtrees and GH30-4 into one.
Two of the three ProfileView subtrees grouping GH30-5
are characterized by representative models. Interestingly,
the remaining sequences are clusterized by CUPP into sev-
eral clusters and no representative model is found by
ProfileView, indicating the difficulty of both methods in
classifying this group of sequences.

On the GH30 family, eCAMI performs very similarly to
CUPP (compare the two most external layers of fig. 5).
eCAMI tends to group sequences in a larger number of
clusters than CUPP. This cluster fragmentation corre-
sponds to small ProfileView subtrees and affects the
same sets of sequences that are of difficult classification
for CUPP.

To test the general applicability of ProfileView versus
CUPP and eCAMI, both designed to classify
carbohydrate-active enzyme sequences, we also compared
the three approaches on the CPF sequences. CUPP and
eCAMI were run using both FAD and PHR sequences.
CUPP tree and its associated clusters are represented in
supplementary figure S14, Supplementary Material online
for FAD sequences (see also supplementary fig. S15,
Supplementary Material online). CUPP: (1) groups all to-
gether the CPF classes “Transcriptional regulators,” (6-4)
photolyase and Animal photoreceptor CRY. Hence, distin-
guished functions are shared in the same subtree. In par-
ticular, it does not distinguish light dependent from light
independent protein sequences; (2) does not distinguish
Classes I and III CPD PL; (3) places the CRYPro subtree
far from the remaining subtrees while, in ProfileView,
CRYPro is located closer to Class II CPD photolyase; (4)
splits the CRY DASH tree into two distinguished subtrees,
one of which contains no sequence with a known func-
tional annotation.

In addition, CUPP successfully classifies a larger number
of sequences (corresponding to the leaves left uncolored in
supplementary fig. S14, Supplementary Material online) in
the CPF family compared to ProfileView, which did not
find sufficient confidence among its models to include
some input sequences in its tree (Steps II and III of
ProfileView pipeline in Materials and Methods).
Viceversa, there are sequences that have been classified
by ProfileView and that do not belong to CUPP classifica-
tion (see uncolored sequences within CUPP clusters in
supplementary fig. S14, Supplementary Material online).
We also notice that, like ProfileView, CUPP: (1) groups
Class II CPD photolyase in a single subtree, and (2) distin-
guishes NCRY sequences.

When CUPP considers the whole PHR sequence, the
topology of the CUPP tree (supplementary fig. S16B,
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Supplementary Material online) gets closer to ProfileView
topology even though CUPP mixes up Classes I and III CPD
photolyase as well as light-dependent (6-4) photolyase and
Animal photoreceptor CRY sequences; the NCRY subtree
locates close to photolyases (supplementary fig. S15,
Supplementary Material online); the higher number of
CUPP clusters fragments the functional organization, as
for instance for Class II CPD PL.

CUPP and eCAMI clustering can be visualized on the
ProfileView tree in supplementary figure S17,
Supplementary Material online. As observed for the
GH30 family, eCAMI tends to group sequences in a larger
number of clusters than CUPP. For CPF sequences, it sepa-
rates some Animal photoreceptor CRY sequences from
transcriptional regulators and (6-4) photolyases, clustered
together by CUPP. It does not separate transcriptional reg-
ulators and (6-4) photolyases though. Furthermore, in
agreement with ProfileView, it distinguishes between
Classes I and II CPD photolyase sequences based on the
FAD domain. In contrast, eCAMI divides the set of charac-
terized sequences of Class I CPD photolyase on FAD and
PHR sequences into several clusters (supplementary fig.
S17, Supplementary Material online).

Overall, this analysis highlights CUPP’s and eCAMI lim-
itations in handling arbitrary protein families.

Discussion
The availability of large amounts of (meta)genomic data
allows for a deeper exploration of living organisms and
the processes underpinning their genetic, phylogenetic,
and functional diversification. Computational approaches,
capable of highlighting these diversities and identifying
what is functionally novel in sequence information, will
make the first fundamental step in the discovery of new
candidates whose functional activity will be tested experi-
mentally. Moreover, due to the huge amount of sequences
that will be acquired in coming years (1 zetta-bases/year
are expected in 2025 Stephens et al. 2015), there will no
longer be a way to examine this mass of data with an “ex-
pert eye” and computational approaches will play a key
role in extracting new information and in functional
classification.

Today, we can characterize homologs on the basis of
their similarity using distance measures that model the
evolution of the entire sequences. However, as shown
here and elsewhere (Schnoes et al. 2009; Mi et al. 2012;
Akiva et al. 2014; Barrett and Lange 2019), this computa-
tional approach is insufficient to provide insights on the
functional activities of proteins, and a large number of se-
quences are still not functionally annotated. Some of these
protein families, like the seven families discussed in this
study, are extremely important in medicine, biology, envir-
onmental science and biotechnology due to their key roles
in cancer biology, DNA repair, drug delivery strategies,
chronobiology, and photobiology, specific enzymatic reac-
tions, the formation of protein–protein interaction net-
works, optogenetics. Thanks to their key role, over the

decades, experiments have accumulated an enormous
amount of functional information that we have used to
validate the ProfileView approach. ProfileView functional
organization of the seven families considered here agrees
with experimental evidence.

ProfileView highlights that the functional classification
of proteins depends on the nonlinear contribution of
many profile models and that conserved patterns in se-
quences are not sufficient alone to discriminate diversified
functions of complex protein families. This change of per-
spective in functional classification underlies the complex-
ity of the question and explains why this problem remains
wide open today despite the clear interest in classifying
protein families that have been extensively studied in mo-
lecular biology, such as transporters, signaling, and tran-
scription factors. Not least, the recent focus on de novo
genes points out that the notion of “function” is more
complicate than one might expect (Keeling et al. 2019).

By constructing multiple profile models characterizing
different conserved motifs in homologous domain se-
quences, ProfileView captures functional signals and, by
combining them, is able to successfully classify large
datasets.

Its main advantages compared to approaches devel-
oped before are as follows: (i) ProfileView is alignment-free
and avoids errors due to the difficulty of comparing distant
homologs; (ii) several profile models represent more pre-
cisely than a single consensus model the functional vari-
ability of protein families; (iii) large amounts of data are
not required to learn features and perform classification
because of a relatively small number of profile models,
which is reduced to a few thousand, and a construction
of profile models from a few dozen sequences; (iv) func-
tional annotation of many sequences does not need to
be known to explore with precision the space of sequences
and classify them; (v) ProfileView is a general approach ap-
plicable to proteins of arbitrary length and function.
Moreover, once a domain library is constructed,
ProfileView is computationally efficient in screening very
large sets of homologous sequences in a reasonable time.

ProfileView demonstrated to discover potentially inter-
esting CPF proteins whose function could be tested experi-
mentally to identify new light-responsive proteins with
novel features. Photoactive proteins are of interest for bio-
technology and any computational approach to finding
them is desired. More broadly, ProfileView has the poten-
tial to greatly expand our understanding of the mechan-
isms developed by nature to exploit light for functional
purposes. ProfileView also organized theWWdomain fam-
ily in subtrees of sequences, corresponding to a large spec-
trum of differences in binding affinity to various ligands,
which have been experimentally observed. It demon-
strated that a large variety of sequence motifs covers this
spectrum and it identified these motifs. It could classify
protein superfamilies in the manually curated CAZy and
SFLD databases by accurately identifying differences in
their multiple enzymatic reactions. Compared to
Tubiana et al. (2019), a computational approach also based
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on sequence analysis, ProfileView described differences
among binding motifs in much greater detail, opening
new avenues in the discovery of alternative binding pat-
terns in protein–protein interaction networks. It has
been compared favorably to other classification tools like
PANTHER, CUPP, and eCAMI, on the CPF, the WW do-
mains and the GH30 family classified in the
Carbohydrate-Active Enzymes database CAZy.

The ProfileView method makes no assumptions about
the complexity of the domain architecture of a protein
family. For the applications discussed here, ProfileView op-
erates under the assumption that the analysis of a single
domain is sufficient to functionally classify very different
protein families, possibly with complex domain architec-
ture. For CPF sequences, we observed that ProfileView clas-
sification tree is in agreement with the known domain
architectures for CPF subfamilies and potentially on their
evolution. This result highlights an “extra” structure on
the CPF family and points to a much more general ques-
tion about the precise relationships between the evolution
of domain architectures and the evolution of functions for
a protein family. In principle, we cannot exclude that do-
main multiplicity and/or domain order might play a role
for functional classification of some protein families
(Basu et al. 2009; Lees et al. 2016). To test this hypothesis,
ProfileView could be used to systematically classify known
protein families based on single domains. Such classifica-
tion will clarify, on the one hand, the large-scale applicabil-
ity of ProfileView and, on the other hand, will contribute to
our understanding of the (combined) evolution of func-
tions and domain architectures.

On the methodological side, ProfileView addresses the
problem of extracting biological information about pro-
tein families from the huge space of natural sequences.
Sampling of distant sequences could be realized using dif-
ferent distance measures. This is an important direction of
investigation that could lead to finer biological informa-
tion extracted from sequences.

From the algorithmic point of view, ProfileView is sur-
prisingly simple compared to the Restricted Boltzmann
Machines (RBM) model used in Tubiana et al. (2019) to
classify WW domain homologs. RBM are generative sto-
chastic (single layer) artificial neural networks that can
learn a probability distribution over a set of inputs. Once
the machine is trained on protein sequences, it can be
used to either generate new protein sequences that look
“alike” the ones that have been used in the training or to
estimate the probability for a sequence to be generated
by the model. RBM learn collective modes by extracting
short sequence motifs from sets of sequences based on
correlation patterns among alignment positions. These
motifs might reveal structural, functional and phylogenet-
ic features and they are used to define a representation
space where to classify sequences. RBM generative nature
makes training challenging by an algorithmic point of view
since intensive sampling from large training sets is re-
quired. In contrast, ProfileView constructs profile models
seeded from distant homologous sequences. To construct

a model, ProfileView requires a very small number of nat-
ural sequences, 20 or more, that are similar to the seed se-
quence. Also, ProfileView makes no use of positional
correlations nor generates artificial sequences. Its profile
models encode conserved patterns ignoring those parts
of the homologous sequences appearing variable (see dis-
cussion on the two CPF sequences U5NDX3 and R7UL99
above). The number of models is not a restriction for
the construction of the classification space.

The intrinsic simplicity of ProfileView makes it possible
to envision new directions of investigation such as the de-
sign of a ProfileView extension that could consider motifs
across multiple domains, for proteins of complex domain
architectures. Indeed, the fine understanding of functional
mechanisms might need more sophisticated computa-
tional approaches than ProfileView. For instance, for the
CPF classification based on the FAD-binding domain,
ProfileView highlights functional differences between large
classes of CPF sequences, helping to model the proximity
between these classes with an appropriate identification
of a functional tree topology. To find functional differences
within classes and to anticipate the existence of a double
function (see supplementary fig. S2, Supplementary
Material online), the interplay between domains in the
CPF sequence might have to be considered as highlighted
in Rosensweig et al. (2018).

ProfileView is deeply rooted in the evolutionary infor-
mation encoded in genomic sequences. For this reason,
it is expected to contribute to fundamental questions of
genome evolution, such as accurate reconstruction of
gene duplication history. A fundamental question in this
regard concerns the functional distinction of paralogous
genes within a phylogenetic tree and within a single spe-
cies. The power of multiple profile models in identifying
different functional determinants between homologs
should be able to do the same between paralogs.

Last, even though ProfileView has been applied here to
the classification of entire protein sequences, it can handle
metagenomic sequences as well. In this regard, it is import-
ant to highlight that the majority of metagenomic andme-
tatranscriptomic data come from organisms that cannot
be cultured and may never be isolated. Therefore, new
conceptual approaches to explore their biology in complex
ecosystems are desperately needed. ProfileView increases
knowledge on the biology of organisms whose ecological
role has been recognized (e.g., marine microbes) but which
are still not accessible to functional investigations, thus
opening a new avenue for functional exploration.

Materials and Methods
Datasets Used to Validate the Method
Datasets of Sequences to be Classified
The seven protein families used to evaluate ProfileView
performance are listed in table 1 (first column). Their
sets of homologous sequences to be classified (see table 1,
second column, for their number) were retrieved from
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publicly available databases (see below). For each family, a
subset of sequences was functionally characterized (see
table 1, fourth column) and we used it for evaluation. All
families show multiple functions (table 2, second column).
The different characteristics of the protein families are
reported in table 1 and supplementary table S1,
Supplementary Material online.

CPF sequences were retrieved fromUniProt, JGI projects
(genome.jgi.doe.gov), and OIST projects (marinegenomics.
oist.jp). The set was constructed according to two main
criteria and contains: (1) CPF sequences known to have
a specific function according to experimental evidence
reported in the literature (see supplementary file,
Supplementary Material online for bibliographical refer-
ences); (2) CPF sequences that span the entire tree of
life; they belong to 146 species, 74 classes, and 40 phyla
(see supplementary file, Supplementary Material online
for the detailed list). In the text, a “CPF sequence” refers
to the full-length CPF sequence comprising the PHR do-
main, including the FAD-binding domain, and possibly
the C- and N-terminal extensions, whereas a “FAD se-
quence” refers to the FAD-binding domain sequence
exclusively.

The set of WW domain sequences was constructed
by combining the datasets of natural sequences ana-
lyzed in (Otte et al. 2003; Ingham et al. 2005; Russ
et al. 2005; Tubiana et al. 2019). Sixty sequences were ex-
perimentally characterized (Otte et al. 2003; Ingham
et al. 2005; Russ et al. 2005), and the remaining ones
were randomly selected in comparable proportion
from the three sets classified in (Tubiana et al. 2019)
as types I, II/III, and IV.

The set of GH30 sequences is the same as that used in
(Barrett and Lange 2019) (file GH30.faa provided with
the CUPP program v1.0.14 and containing 1803 se-
quences) and described in the Carbohydrate-Active
Enzymes database CAZy (http://www.cazy.org/GH30.
html). It is organized into several subfamilies of the
CAZy classification. Some of these subfamilies are func-
tionally classified by CAZy and others are left unclassified.
We used the annotation files in Barrett and Lange (2019),
where 721 of the 1803 sequences have mapping/labeling
to subfamilies GH30-1 through GH30-9. Note that, of
the 1675 sequences retained for ProfileView analysis after
filtering, 695 have a label in the GH30 ProfileView tree
(table 1).

The set of sequences of the HAD/b-PGM/
Phosphatase-like subgroup of the Haloacid Dehalogenase
(HAD) superfamily and the three subgroups of the
Radical-SAM superfamily (B12-binding domain containing,
Methylthiotransferase and SPASM/twitch domain con-
taining) were retrieved from the Structure-Function
Linkage Database (SFLD) (Schnoes et al. 2009; Akiva
et al. 2014). More precisely, each subgroup is defined by
the union of the sets of annotated sequences associated
with its families in SFLD. Given a subgroup, we considered
all of its families, even if they were represented by very few
sequences, possibly only one.

Datasets of Sequences Used for Model Library Construction
For all protein families, the domain(s) considered for mod-
el construction, their Pfam accession code, and the num-
ber of models constructed are shown in table 1. The
seed sequences seeding the models were retrieved from
the Pfam full set associated with the Pfam domain used
for classification. The seed sequences for FAD were re-
trieved from Pfam v31 while for all other domains we
used Pfam v32. For the three families, GH30, HAD/
b-PGM/Phosphatase-like and B12-binding domain con-
taining, Pfam contains two similar domains (see table 1,
fifth column) and we used the union of the Pfam se-
quences from both these domains.

For each seed sequence, the homologous sequences
used to build the profile model were retrieved from
Uniclust30, which is UniProtKB clustered to 30% identity
and for which a HHblits database is provided (Mirdita
et al. 2017).

Clade-Centered Models and a Multi-source
Functional Annotation
Widely used methods searching for homologous domain
sequences (Altschul et al. 1997; Eddy 2011; Remmert
et al. 2011) rely on a single-source annotation strategy,
where a single profile model (e.g., a pHMM Eddy 1998),
generated by the consensus of a set of homologous se-
quences, is used to represent a protein domain. The single-
source strategy usually works well for rather conserved
homologous sequences, but when the sequences are highly
divergent, the consensus signals become too weak to gen-
erate a useful probabilistic representation and the global
consensus models do not properly characterize domain
features. A multi-source domain annotation strategy
(Bernardes et al. 2016), in which protein domains are
represented by several profile models, called
Clade-Centered Models (CCM), was implemented in
CLADE (Bernardes et al. 2016) and MetaCLADE (Ugarte
et al. 2018) for genomes andmetagenomes/metatranscrip-
tomes, respectively. There, we showed that CCMs signifi-
cantly improve domain annotation for both complete
genomes and metagenomic/metatranscriptomic se-
quences. Because of their proximity to protein sequences,
CCMs are more specific and functionally predictive than
canonical global consensus models.

Here, we construct and use CCMs differently, with the
goal of better resolving the functional organization of se-
quences within protein families. In order to capture con-
served motifs that might be of functional relevance to
the family, we build CCMs that are highly specific. The mo-
tifs, which consist of conserved positions on subsets of
close homologs, will likely belong to protein interaction
sites and will be determinants of functional specificity.
To construct CCMs (see below, step I of the ProfileView
pipeline), we consider the FULL set of sequences Si asso-
ciated with a Pfam domain Di (Finn et al. 2014) and, for
each sequence sj [ Si, we construct a profile HMM by re-
trieving a set of homologous sequences close to sj from
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UniProt. Such a model displays features that are character-
istic of sj and that might differ from other sequences
sk [ Si. The rationale is that the more divergent sj and
sk are, the more we expect CCMs to highlight different fea-
tures within a protein family.

The ProfileView Method
The ten main steps of the ProfileView pipeline are ex-
plained in detail below. A flowchart is provided in figure
7. A hands-on description of the ten steps for the CPF fam-
ily is given in supplementary text 2, Supplementary
Material online.

ProfileView takes as input a Pfam domain D and a set of
homologous sequences S to be classified. If there are similar
Pfam domains (Pfam usually names them with a numerical
extension, as for instance HAD and HAD_2), the user may
decide to provide several alternative domains as input and
build the model libraryMD frommultiple domains accord-
ingly. The output of ProfileView is a classification tree with
representative models associated with internal nodes of the
tree, when they exist, and functional motifs characterizing
the sequences in the corresponding subtree.

I. Model Library Construction (fig. 1A). To construct a
library of models MD for the domain D, we considered

FIG. 7. ProfileView flowchart. The ProfileView pipeline is organized in ten main steps: (I) construction of the model library for a domain or a few
similar domains chosen by the user, (II) sequence filtering based on matching/unmatching of the models on a sequence, (III) sequence selection
based on the quality of a match, (IV) filtering of models to reduce model redundancy, (V) association of two scores to each model hit, (VI)
construction of ProfileView space of sequences, (VII) dimensionality reduction of ProfileView sequence space, (VIII) construction of
ProfileView classification tree, (IX) identification of the best representative models for subtrees, (X) extraction of functional motifs from repre-
sentative models. User-editable parameters are highlighted in green and those that remain fixed are highlighted in cyan.
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sequences from the FULL dataset in Pfam database (Finn
et al. 2014) as “seeds” for the models. For each sequence,
we built a CCM (Bernardes et al. 2016) by searching in
Uniclust30 for highly significant matches of homologous
sequences having at least 60% identity with the seed se-
quence and covering at least 70% of it. More precisely, a
multiple sequence alignment is built using the command
hhblits of the HH-suite (Remmert et al. 2011) (with
parameters -qid 60 -cov 70 -id 98 -e 1e-10
and database uniclust30_2017_10) and subse-
quently converted into a pHMM with HMMER (Eddy
1998) in order to perform a sequence-profile comparison.
Typically, profile models are built from 50 to 100 se-
quences; a minimum of 20 sequences (heuristically deter-
mined threshold) is required.

Note that the FULL set of Pfam sequences associated
with a domainmight be very large and contain tens of thou-
sands of sequences. If so, we sample a few thousand se-
quences, by first clustering the set with MMseq2 (https://
github.com/soedinglab/MMseq2). The easy-cluster
command of mmseqs is used with two parameters:
--min-seq-id sets the minimum sequence identity
for clustering, and -c 0.8 considers matches above this
fraction of aligned/covered query/target residues.
MMseq2 is used to cluster close sequences together and
for this, we required that sequences in a cluster had more
than either 40 or 60% sequence identity (default set at
50%) depending on the protein family, so that several thou-
sands (up to 6000) representative sequences could be iden-
tified from different clusters. The selected representative
sequences were used as seeds to build profile models, as in-
dicated above.

If several similar Pfam domains are considered, as for the
GH30 and HAD families, the above procedure is applied to
the union of Pfam sequences associated with all domains.
(Ultimately, we observed that several similar domains
slightly improve classification.)

II. Sequence Filtering. After constructing the set of
modelsMD for the domain D, we discarded from the in-
put set of sequences S all sequences against which
HMMER (version 3.1b2) found no domain hit, regardless
of the hit score. For all protein families, table 1
(third column) reports the number of sequences after
filtering. Note that this filtering step, based on multiple
profile models, can identify domains in divergent
sequences where the consensus Pfam model cannot
provide a hit. See supplementary figure S18A,
Supplementary Material online for an illustration of se-
quence filtering.

III. Sequence Selection. Each CCM in MD is mapped
against the set S of all input sequences using HMMER.
Let H = {hs,m | s [ S, m [ MD, score(hs,m) . 0} be
the set of hits hs,m provided by hmmsearch, where s
is a sequence of S, m is a model of MD and
score(hs,m) is the bit-score assigned to hs,m. The bit-score
is a log-odds ratio score (in base two) comparing the
likelihood of the pHMM to the likelihood of a null
hypothesis (i.e., an i.i.d. random sequence model).

More formally,

score(hs,m) = log2
Pr(s | m)

Pr(s | null)

where Pr(s | m) is the probability of the pHMM m gen-
erating the sequence s and Pr(s | null) is the probability
of s being generated by the null model (Barrett et al.
1997).

We partitioned the hit set H in three subsets Full(H),
Overlap(H), Partial(H), where Full(H) contains all hits
that fully cover the associated model, Overlap(H) contains
all hits involving the extremes of a sequence covered only
partially by the associated model (this situation corre-
sponds to an “incomplete” sequence), and Partial(H) con-
tains all remaining hits. See supplementary figure S18B,
Supplementary Material online for an illustration of the
three matching types. More formally, a hit hs,m [ H be-
longs to Full(H) if the aligned region of m to s (excluding
gaps) covers at least 90% of the length of m. If hs,m repre-
sents an overlap between s and m (allowing an overhang
length of at most the 10% of the sequence length) then
hs,m [ Overlap(H). Otherwise, hs,m [ Partial(H).

To eliminate potentially incomplete sequences, a se-
quence s is retained only if:

1) either at most the 30% of its hits belong to
Overlap(H),

2) or, at least the 50% of its hits belong to either
Full(H) or Partial(H).

These two conditions were introduced to take into ac-
count that Pfam could also contain partial sequences
which could lead to the construction of very short models
(which could be fully aligned in potentially incomplete se-
quences). We refer to the reduced set of sequences as S∗.

IV. Data-Driven Selection of Models based on
Sequence Best Matching. In order to restrict the analysis
to a reduced set of models that remains representative of
MD, we kept only those models that achieve one of the k
best scores for at least a sequence in S∗, for k = 3 (de-
fault). The rationale of this model filtering is to get rid of
“noisy” models and, at the same time, significantly reduce
the size ofMD, from some thousands down to a few hun-
dreds. We refer to the reduced set of models as M∗

D. The
parameter k can be set by the user.

V. Association of Two ProfileView Scores to Model
Hits: The Normalized Bit-score and the Normalized
Weighted Bit-score. Let Ls be the number of positions
in a sequence s that match to a model m in a sequence-
profile alignment (that is, no gap is considered in the
counting). Given a hit hs,m, we define the following two
scores for it:

• a normalized bit-score ns(hs,m) = score(hs,m)/Ls;
• a normalized weighted bit-score nws(hs,m) =
Wscore(hs,m)/Ls, where Wscore(hs,m) is the sum of
bit-scores over those positions in the sequence-profile
alignment having a bit-score≥3 (that is, the positions
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where m and s strongly agree). More formally, let
s(si, mj) = log2 (e(si, mj)/bg(si)) be the log-odds ra-
tio of a residue si being emitted from a match state
mj with emission probability e(si, mj) and with null
model background frequency bg(si), defined by
HMMER during the model construction and differing
between amino acids (Eddy 1998). Given the list
〈(si1 , mj1 ), . . ., (siK , mjK )〉 of the aligned residues of s
against the model states of m and such that the pos-
terior probability, computed by HMMER, of each
aligned pair is greater than 75%, we define
Wscore(hs,m) =

∑K
z=1|s(siz ,mjz )≥3 s(siz , mjz).

Both scores are computed for all hits hs,m and used to con-
struct the ProfileView space of sequences.

VI. The Construction of a ProfileView Space of
Sequences (fig. 1B). For each sequence s [ S∗, we con-
struct a vector vs, where the dimension of vs is 2|M∗

D|
and |M∗

D| is the number of models in M∗
D. The vector

vs contains the pairs of values ns(hs,m) and nws(hs,m), for
each m [ M∗

D. If a model m does not have a hit on the
sequence s [ S∗, then we assume that hs,m � H and let
ns(hs,m) = 0 and nws(hs,m) = 0. Hence, we say that the
ProfileView space PV is a 2|M∗

D|-dimensional space,
where each dimension is associated with either the nor-
malized bit-score or the normalized weighted bit-score
for some model m [ M∗

D. Each sequence is a point in
PV and its position reflects the proximity of the sequence
to CCMs in M∗

D.
VII. PCA and Dimensionality Reduction for

ProfileView Space of Sequences. After constructing the
ProfileView space PV for the sequences s [ S∗,
Principal Component Analysis (PCA) is performed to re-
duce its number of dimensions. More precisely, PV is re-
duced to a p-dimensional space PV∗, where p is the
minimum number of principal components that explain
the c% of variance for the set S∗. By default, c = 99%.
This value should decrease the number of dimensions to
a few dozens. If a protein family is characterized by a large
diversity of representative sequences, the user may have to
loosen the constraints on variance by setting c to smaller
values. c is a parameter that can be set by the user.

VIII. The ProfileView Tree Construction (fig. 1B).
Sequences are clustered in PV∗ using a hierarchical
agglomerative strategy. Namely, we considered the
Euclidean distance between vectors and Ward’s minimum
variance method for merging clusters. The logic of this cri-
terion is to select, at each step, the pair of clusters that
minimize the total variance within the cluster after the
merging. Starting from all clusters being singletons, this
bottom-up algorithm completes in |S∗| − 1 agglomera-
tive steps and allows to represent clusters in a hierarchical
way and to define a rooted tree. More precisely, it pro-
duces a binary tree where each internal node defines a
cluster of two or more elements (according to the chosen
merge criterion). Moreover, in such a tree, the distances/
dissimilarities between the merged clusters are encoded
as edge weights.

IX. Association of Representative Models to
ProfileView Subtrees (fig. 1C). To better explore subtrees
in the ProfileView tree, potentially associated with known
functions, we associated a representative model to the sets
of sequences that label their leaves. Intuitively, a represen-
tative model separates a subset of sequences C from the
rest of the sequences of the tree (this set is designated
S∗ \ C) in the ProfileView space PV∗ (see fig. 1C). Given
a modelm in the library, let us call C∗m the maximal subset
of C where the model assigns higher scores to sequences in
C∗m than to sequences in S∗ \ C. This must apply to at least
one of the metrics—ns and nws*—which define PV∗ (see
step III). For each model m in the library, we compute C∗m
and choose the model with a C∗m of largest cardinality as
the representative model of C. If two models have the
same maximum cardinality, we choose the model m that
provides the best separation, that is, the model that max-
imizes the distance between the centroids of the sets C∗m
and S∗ \ C (again, computed according to the ns and
nws metrics). If C is the set of sequences of a subtree T
of the ProfileView tree (which is not the entire tree),
then a representative model m for C is associated with the
root of T when the following two conditions are met:
(1) C∗m includes at least half of the sequences in C and
(2) C∗m contains at least one sequence from each of the
child subtrees of T. Note that a node in the ProfileView
tree might be left without a representative model. When
ProfileView returns a representative model for a node of
the tree, it also returns a list of suboptimal models covering
either the same amount of sequences |C∗M| or 90% of |C|.

X. Motif Extraction from Representative Models. A
motif extracted from a representative model is the set
of all amino acids characterizing well-conserved columns
(i.e., match states) in the sequence alignment associated
with the model, according to the hhblits’ definition.
That is, given a column of the multiple sequence align-
ment related to the model, an amino acid is well con-
served if it occurs with a probability ≥ 0.6 before
adding pseudo-counts and including gaps in the fraction
count. See figure 1C.

On the Size and Diversity of the Model Library
ProfileView model library construction (step I) is designed
in such a way that sequences coming (possibly extracted)
from the Pfam FULL set would best represent the protein
family. To show the relevance of ProfileView’s automatic
construction, we have tested ProfileView on smaller sets
of Pfam “seed” sequences and have shown that not having
a large and diverse set of sequences hinders classification
performance. More precisely, we built two model libraries
for the CPF family by considering 10 and 100 “seed” se-
quences, respectively. These sequences have been random-
ly chosen in the FULL set of CPF sequences. The resulting
ProfileView trees are reported in supplementary figures
S19 and S20, Supplementary Material online. A straightfor-
ward comparison with figure 3 and supplementary figure
S2, Supplementary Material online shows the limitations
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of a functional classification based on a restricted number
of models.

Parameters Used in ProfileView Analysis of the Seven
Protein Families
ProfileView was run with the same default parameters k =
3 and c = 99% on all protein families in table 1, with the
exception of the WW domain, which is characterized by
a wide variability of sequences. For theWWdomain family,
we set k = 5 and c = 80% (see steps IV and VII). The par-
ameter c = 80% allowed to obtain a space of 11 dimen-
sions starting from a total of 2,488, versus 206
dimensions obtained with a threshold of c = 99%. The
parameter k = 5 allowed to increase the number of best
matching models to 1,244 versus 845 obtained with
k = 3. Intuitively, to classify datasets of sequences with
high variability, such as the WW domain family, the num-
ber of models representing the dataset should be large
(.1,000).

Motif Graphical Representation
The model logos were built using the Weblogo python
package (Crooks et al. 2004) (version 3.7) which allowed
us to easily export sequence logos (Schneider and
Stephens 1990). Amino acids are colored according to
chemical properties: neutral polar amino acids (G, S, T,
Y, C) show in green, acidic polar (Q, N) violet, positively
charged (K, R, H) blue, negatively charged (D, E) red, and
hydrophobic (A, V, L, I, P, W, F, M) black.

The graphical representation of a motif associated with
some representative model has been augmented by add-
itional information that helps to easily compare the motif
across representative models. Namely, we have high-
lighted, by a colored “dot,” those positions that are well
conserved in other representative models. Given a refer-
ence model Mr and a query model Mq, a dot is put under
a well-conserved column of Mr , if there exists a column in
the query model Mq: (1) aligning in hhblits with a score
greater than +1.5 (i.e., fairly similar amino acid profiles)
and posterior probability greater than 0.8; (2) containing
a most conserved amino acid which is the same as in Mr

and is also well conserved. A circled dot indicates an
aligned column in Mq satisfying 1 but not 2. This means
that the most conserved amino acid in Mr shows ,60%
frequency in Mq. Note that, in this case, Mr and Mq might
display different most conserved amino acids.

It is important to note that given two models and one
position, the score assigned to that position in the hhblits
pairwise alignment of the models depends on the reliabil-
ity of the query-template alignment (https://github.com/
soedinglab/hh-suite/wiki). Depending on which of the
models is considered as template, the scores assigned to
the same position may vary (confidence values are ob-
tained from posterior probabilities calculated in the
Forward-Backward algorithm of hhblits). In particular,
hhblits warns that the confidence score for an aligned
position depends on the alignment confidence of the

neighboring regions. As a result, the alignment score of
some conserved positions may decrease due to the pres-
ence of a highly variable region in their vicinity, possibly
containing gaps. This explains why, for the aligned posi-
tions of two motifs, we may miss to indicate related posi-
tions or we may display different color dots. An example of
missing related positions is illustrated by position 102 in
the NCRY motif and position 103 in the Plant photorecep-
tor CRYmotif of CPF. The twomotifs clearly diverge within
the region adjacent to positions 102/103, justifying a diffi-
cult model alignment and a low confidence score at 102/
103. A second example, illustrating the asymmetry of col-
ored dots, is position 102 in the NCRY motif aligned with
position 95 in CRY Pro. While the CRY Pro motif records
the colored dot for a match with NCRY, this is not true
for the NCRY motif. In fact, while the two positions align
together with a confidence score of 0.8 for the CRY Pro
model taken as a template, they also align when the
NCRY model is taken as the template but with a confi-
dence score that drops at 0.6.

Phylogenetic Tree Construction for CPF, FAD, and
WW Sequences
The multiple sequence alignments of CPF sequences and
FAD sequences were computed using MUSCLE version
v3.8.31 (Edgar 2004), and were then trimmed using
trimAl version 1.4.rev22 (Capella-Gutiérrez et al. 2009)
with a gap cutoff of 0.01 (i.e., columns containing more
than 99% of gaps have been removed). Then, for each se-
quence alignment, we selected the best evolutionary mod-
el using ProtTest (version 3.4.2) (Darriba et al. 2011). More
precisely, the evolutionary model best fitting the data was
determined by comparing the likelihood of all models ac-
cording to the Akaike Information Criterion (AIC). The
model optimization of ProtTest was run using a
maximum-likelihood-tree strategy and the tree generated
for the best-fit model (VT+G+F) was considered as input
for the construction of the final phylogenetic tree (with
parameter a = 1.061). In particular, the construction of
a maximum-likelihood phylogenetic tree has been carried
out with PhyML 3.0 (Guindon et al. 2010) that optimized
the output tree with Subtree-Prune-Regraft (SPR) moves
and considering the SH-like approximate likelihood-ratio
test. Finally, branches with a support value smaller than
0.5 were collapsed. The phylogenetic tree for the set of
homologous CPF sequences used to validate ProfileView
is reported in supplementary figure S3, Supplementary
Material online and contains 307 leaves corresponding
to the 307 CPF sequences containing the FAD-binding
domain. The phylogenetic tree for the set of 307 FAD
sequences is reported in supplementary figure S4,
Supplementary Material online.

The procedure used to generate the phylogenetic tree
for WW domain sequences is the same as that used for
CPF and FAD sequences. The best-fit model (computed
with ProtTest) is RtREV+I+G, with parameters a =
1.647 and p-inv = 0.028.
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Phylogenetic and ProfileView trees have been generated
with iTOL (Letunic and Bork 2019).

Output Files of ProfileView
ProfileView produces several output datasets: the model
library, the ProfileView tree, the list of representative mod-
els associated with internal nodes of the tree.

Additionally, ProfileView offers the user the possibility
to choose a list of representative models to compare.
The first model on this list is considered a reference model.
A first output provides a logo showing all conserved posi-
tions together with a list of colored dots (possibly circled)
obtained after a pairwise comparison of a model in the list
with the reference model (see Materials and Methods
above; see for example fig. 1C). A second output provides
a logo that shows an intermediate representation of the
positions in the reference model, that is, it shows all con-
served positions in the associated motif and all positions
that are not conserved in the reference model but which
are conserved in some model in the list (see e.g., fig. 4C).

Comparison with Other Tools
CUPP (Barrett and Lange 2019), eCAMI (Xu et al. 2020),
and PANTHER (Mi et al. 2012, 2013) were run for compari-
son with ProfileView. CUPP v1.0.14 was run with
CUPPclustering.py and parameter-cluster to execute the
clustering (http://www.bioengineering.dtu.dk/CUPP). For
the comparison on the GH30 family, we considered the
“CUPP groups” predicted with the latest version of the
CUPP-Predict tool (v3.2.1) available at https://cupp.info.
Unfortunately, from the README, the updated “cluster-
ing” version of CUPP is still under development and
CUPP results on the CPF family still refer to the application
of CUPP version 1.0.14.

eCAMI was downloaded from https://github.com/
zhanglabNKU/eCAMI (commit 5b00a038).

The PANTHER HMM library version 15.0 and the
pantherScore2.2 tool (scoring protein sequences against
the library) were retrieved at http://www.pantherdb.org.
We used pantherScore2.2.pl with parameters
-l [PANTHER15.0 library] -D B -n, where -D
B allows to visualize the best hit in the output and -n al-
lows to visualize family and subfamily names in the output.

Evaluation
To assess the robustness of ProfileView classification, we
compared it to functional grouping in the literature. For
each protein family, we considered a set of functionally
characterized sequences that have been human curated
and, in most cases, tested experimentally. Each family is
characterized by several functional subclasses (table 2).
These datasets constitute independent sets for testing
ProfileView. These test sets are available at http://www.
lcqb.upmc.fr/profileview/.

We want to determine whether characterized se-
quences of the same functional group localize together
in the ProfileView tree. For this, we identify the largest

subtrees of at least 2 sequences, endowed with a represen-
tative model and comprising at least 75% of characterized
sequences which belong to the same functional class. We
use this overrepresentation of a functional subclass in a
ProfileView subtree to label the subtree with that function
and the characterized sequences as “well-classified” (de-
noted “W”). Note that some of the ProfileView subtrees
will be labeled by a function and others may not be.
Within subtrees labeled by a function, there may be char-
acterized sequences belonging to other functional sub-
classes that we denote as misplaced (denoted “M”).
Within subtrees that are not labeled by a function, there
might be characterized sequences belonging to functional
subclasses that we denote as unclassified (denoted “U”).
To resume, for each known functional subgroup of charac-
terized sequences in the dataset, we count:

1) the number of unclassified sequences (denoted “U”),
that is the number of characterized sequences that
do not belong to some subtree labeled by a function,

2) the number of misplaced sequences (denoted “M”),
that is the number of characterized sequences that
belong to a subtree labeled by a different functional
class,

3) the number of well-classified sequences (denoted
“W”), that is the number of characterized sequences
that are over-represented in a subtree and allowed
for the identification of its functional label.

These three numbers allow to evaluate whether
ProfileView classifies well or not sequences of a given pro-
tein family within different functional subclasses. Also,
since experimental functional accuracy might differ across
functional groups, we consider subtrees comprising at
least 75% of their characterized sequences within a func-
tional subgroup which are not endowed with a represen-
tative model. For them, we count W/M/U sequences.
These subtrees provide evidence of functional organiza-
tion while highlighting the difficulty of identifying motifs,
described by representative models that are specific to a
functional class.

Our evaluation criteria were designed to highlight sev-
eral possible scenarios. If a protein family is known to
have n functional subclasses and the ProfileView tree is
comprised of n subtrees labeled with the n distinguished
functions, the ProfileView classification can be considered
to be fully accurate for the protein family. On the other
hand, if some ProfileView subtree of sequences remains
unlabeled, this could suggest missing functional knowl-
edge for the protein family. Finally, since the experimental
functional accuracy between different functional groups
might differ, ProfileView might suggest an alternative se-
quence classification.

Computing Time and Memory Usage
The most costly computational part of the ProfileView
pipeline is the construction of the profile models for a pro-
tein domain sequence. The program was tested using 16
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threads on a single machine equipped with an Intel Xeon
E5-2670 CPU running at 2.60 GHz, with 128 GB of RAM,
and a Linux operating system (CentOS release 6.5).
Supplementary table S10, Supplementary Material online
summarizes, for each protein family, the time complexity,
and the RAM used for the model library construction and
the classification step.

The time used for the model library construction de-
pends on the number of models and the length of the
domain. Once a library is constructed, it can be used for
the analysis of different protein families. Note that the
library constructed for the Radical SAM domain was
used for both the Methylthiotransferase family and
the SPASM/twitch domain containing family analyzes
in supplementary text 1, Supplementary Material online.

Classification time depends on two main sub-steps:
(1) HMMER annotation, which mainly depends on the
number of sequence-model comparisons, rather than the
sequence length, and (2) the computation of the scores
used to construct the ProfileView sequence space. Step 2
is the most time-consuming as it involves the parsing of
all sequence-profile alignments. ProfileView current imple-
mentation of this part of the code is single-threaded but
this sub-step could be performed in parallel, possibly in fu-
ture versions of ProfileView.

Note that, for the WW domain family presented in
supplementary text 1, Supplementary Material online,
(Tubiana et al. 2019) indicates about 1–2 days of comput-
ing time on an Intel Xeon Phi processor with 2× 28 cores
to run RBM analysis. ProfileView classifies this family in less
than 9 h.

Implementation and Software Availability
ProfileView was developed and tested under a UNIX oper-
ating system, using Bash, Python, and R scripts. It exploits
GNU parallel (Tange 2018), if available on the system, in
order to run some jobs in parallel. It is implemented in
three main parts carrying out the following pipeline mod-
ules: the construction of a single-domain model library, the
generation of the ProfileView tree along with its represen-
tative models, the comparison of selected representative
models and the identification of conserved positions/mo-
tifs. ProfileView is available at http://www.lcqb.upmc.fr/
profileview/ under the version 2.1 of the CeCILL Free
Software License.

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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