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Abstract 

 Gastrulation and neurulation are successive morphogenetic processes that play key roles 

in shaping the basic embryonic body plan. Importantly, they operate through common cellular and 

molecular mechanisms to set up the three spatially organized germ layers and to close the neural 

tube. During gastrulation and neurulation, convergent extension movements driven by cell 

intercalation and oriented cell division generate major forces to narrow the germ layers along the 

mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction 

also makes an important contribution to promote the formation of the blastopore and the bending 

of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors 

and critically involved in a wide variety of developmental processes, from gastrulation and 

neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects 

in the morphogenesis of different organs and the co-existence of distinct congenital diseases, 

such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review 

outlines our current understanding of non-canonical Wnt signaling, commonly known as 

Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and 

neural tube closure during development and disease. It also attempts to identify unanswered 

questions that deserve further investigations. 
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Introduction	

Morphogenetic movements of gastrulation set up the three spatially organized germ layers 

(ectoderm, mesoderm and endoderm). Neurulation occurs directly after gastrulation to transform 

the neural plate into a neural tube, the precursor of the central nervous system. Therefore, 

gastrulation and neurulation are fundamental developmental events that play critical roles in 

shaping the basic embryonic body plan. Moreover, they operate through common as well as 

conserved cellular and molecular mechanisms. Convergent extension (CE) movements are 

mostly driven by cell intercalations that promote extensive exchange of places between 

neighboring cells [1,2,3,4,5]. While mediolateral intercalation occurs in a coplanar manner, radial 

intercalation takes place between adjacent planes. During these processes, lateral cells move 

toward the dorsal midline to narrow the germ layers and promote neural tube closure, while 

dorsal midline cells extend along the anteroposterior (AP) axis to lengthen the embryo [6]. Other 

asymmetric cell behaviors, such as oriented cell division and apical constriction, also make an 

important contribution to epithelial morphogenesis during gastrulation and neurulation [7,8,9].  

The phenomenon of planar cell polarity (PCP) is widely conserved among metazoan and 

is critically involved in coordinating cellular orientation within the plane of an epithelium or a 

tissue. In vertebrates, as in Drosophila, PCP is mostly regulated by a set of evolutionarily 

conserved proteins including Frizzled (Fzd), Dishevelled (Dvl), Celsr (cadherin EGF LAG seven-

pass G-type receptor), Vangl, Prickle, and Ankrd6 (ankyrin repeat domain 6). These “core” PCP 

proteins form two separate complexes that localize to opposite cell borders [10,11,12]. They 

transduce Wnt/PCP signaling to regulate cytoskeletal rearrangements through distinct 

downstream effectors [11, 13]. Several vertebrate Wnt ligands, such as Wnt5a, Wnt5b, and 

Wnt11, are also important for activating Wnt/PCP signaling to instruct cellular polarization, 

although they are generally not considered as “core” PCP proteins [14]. Besides the “core” PCP 

pathway, there are also other conserved protein complexes that function as important PCP 

regulators. For example, the Fat and Dchs (dachsous cadherin-related) heteromeric 

protocadherins form ligand-receptor pairs and represent the second PCP pathway [15]; the Scrib 
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(Scrb1 or Scribble1) polarity system, consisting of Scrib, Dlg (Discs-large) and Lgl (Lethal-giant 

larvae) proteins in a complex, mostly contributes to establish baso-lateral cell identity [16].  

The Wnt/PCP pathway functions in a wide variety of morphogenetic processes and 

instructs cells with positional cues for directed movements [17]. Particularly, Wnt/PCP signaling is 

required for cell intercalations during gastrulation, neurulation, and asymmetric organogenesis [6, 

18,19,20]. Although Wnt/PCP signaling mostly contributes to mediolateral cell intercalation [21], 

there is increasing evidence that several “core” PCP proteins also mediate radial cell intercalation 

and contribute to the establishment of apico-basal polarity [22,23,24]. Dysfunctions of PCP 

regulators (herein referred to as proteins involved in Wnt/PCP signaling) are closely linked to the 

congenital disorder of neural tube defects (NTDs), such as spina bifida and anencephaly [25, 26]. 

This review aims to provide an outline of past achievements and recent advances in deciphering 

the implication of Wnt/PCP signaling during gastrulation and neural tube closure, by focusing on 

molecular and cellular mechanisms underlying the regulatory functions of PCP-related genes in 

development and disease. As an outcome, it attempts to identify challenges in understanding the 

functional interaction between different polarity pathways as well as the interplay between cell 

polarity and cell fate specification during morphogenetic movements. 

Planar cell polarity protein complexes	

Vertebrate Wnt signaling pathways include three branches that trigger distinct biological 

outcomes. In canonical Wnt or Wnt/ß-catenin signaling, Wnt ligands bind to Fzd receptors and 

LRP5/6 (low density lipoprotein receptor-related protein 5/6) co-receptors, leading to 

phosphorylation of Dvl and inhibition of the ß-catenin destruction complex consisting of 

GSK3ß/Axin/APC. Stabilized ß-catenin associates with T-cell factor in the nucleus to activate 

transcription of target genes and regulate cell fate specification. Non-canonical Wnt pathways 

include Wnt/PCP and Wnt/Ca2+ branches that signal independently of ß-catenin. Wnt/PCP 

signaling is activated by binding of non-canonical Wnt ligands to the Fzd-Ror1/2 (receptor 

tyrosine kinase-like orphan receptor 1/2) complex or the Fzd-Ryk (receptor tyrosine kinase) 

complex. As will be discussed later, there are also other co-receptors that can interact with non-

canonical Wnt ligands. The Wnt/PCP pathway functions to regulate cytoskeletal organization 
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through two classes of downstream effectors: the well-characterized planar polarity effector 

(PPE) proteins such as Daam1 (Dishevelled-associated activator of morphogenesis 1), Rho 

family of small GTPases, and Jun N-terminal kinase (JNK), and the less-studied ciliogenesis and 

planar polarity effector (CPLANE) proteins including Intu, Fuz and Wdpcp [13]. Wnt/Ca2+ 

signaling triggers phospholipase C activity through heteromeric G-proteins to induce intracellular 

calcium flux and calcium-dependent responses. Dvl family proteins are important scaffolds that 

relay signals of all three Wnt branches. They can modulate the activation of Wnt/ß-catenin and 

Wnt/PCP pathways through conformational changes mediated by intramolecular interaction 

between the PDZ domain and the extreme C-terminus PDZ-binding motif [27, 28]. 

The six “core” PCP proteins display the characteristic feature of forming two separate 

complexes in planar polarized epithelia. Fzd, Dvl and Ankrd6 localize to the posterior side of the 

cell, while Vangl and Prickle reside at the anterior side; Celsr1 atypical cadherins are distributed 

on both sides and form homodimers between adjacent cells to propagate polarity information 

(Figure 1). Recent studies show that Celsr1 can also function in cis-interactions to organize Fzd6 

and Vangl2 into asymmetric junctional complexes [29]. The asymmetric localization of PCP 

protein complexes is a hallmark of planar polarization in the tissue. Fat and Dchs heteromeric 

protocadherins are also localized to opposite sides of adjacent cells to mediate cell-cell 

interaction, and their activities are positively or negatively regulated by the Golgi resident 

transmembrane kinase Fj (Four-jointed), respectively [30]. The Scrib polarity system not only 

regulates baso-lateral polarity but also modulates the localization of “core” PCP proteins, thus 

contributing to Wnt/PCP signaling [16]. Therefore, through multiple biochemical, functional and 

genetic interactions, the “core” PCP pathway, the Fat/Dchs polarity module and the Scrib polarity 

complex play essential roles in regulating gastrulation cell movements and neural tube closure. 

The following sections will detail their implications in these key developmental processes by 

emphasizing the consequences of their mutations or dysfunctions on the occurrence of NTDs. 

PCP proteins in morphogenetic movements of gastrulation 

 Wnt/PCP signaling does not appear to regulate dorsal closure during gastrulation in 

Drosophila [11]. However, its requirement for CE movements during gastrulation has been well 
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documented in vertebrates, particularly using Xenopus and zebrafish as models [6, 31,32,33]. 

The formation of the primitive streak in amniotes and mammals also involves CE movements and 

requires a functional Wnt/PCP pathway [34, 35]. Mediolateral cell intercalations are major forces 

that drive CE movements to narrow and elongate tissues in the early embryo, while radial cell 

intercalations result in thinning of multilayered epithelia during large-scale morphogenesis (Figure 

2A,B). Apical constriction that changes tissue curvature and folds epithelial surface also 

contributes to gastrulation, particularly blastopore formation and mesendoderm invagination. In 

addition, asymmetric cell division that leads to differential partitions of signaling proteins can 

contribute to cell lineage specification (Figure 2C). PCP proteins regulate these asymmetric cell 

behaviors for proper morphogenesis to establish the embryonic axes. Thus, the coordinated 

actions of embryonic patterning and gastrulation cell movements orchestrate the formation and 

the spatial organization of the three germ layers, thereby setting up the basic embryonic body 

plan [36].  

Non-canonical Wnt ligands in gastrulation 

Zebrafish mutants for wnt11f2, previously known as wnt11 or silberblick (slb), show 

abnormal extension of the axial tissue in a cell non-autonomous manner [37]. In these embryos, 

there is a slowed migration of hypoblast cells within the forming germ ring due to the defective 

orientation of cellular protrusions along the movement directions [38]. Analysis by in vivo live 

imaging also reveals a disrupted animal-vegetal polarity of cell intercalations and cell divisions in 

the dorsal tissues [8]. Wnt11f2 regulates these polarized cell behaviors by modulating cellular 

cohesion through Rab5c-mediated E-cadherin endocytosis [39]. It also induces the asymmetric 

accumulation of Fzd7 receptor and the recruitment of Dvl at the plasma membrane of adjacent 

cells, leading to locally an increase of Celsr2-mediated cell contact persistence [40]. In Xenopus, 

inhibition of Wnt11 function using a dominant negative mutant blocks gastrulation by specifically 

disrupting Wnt/PCP signaling [41]. Interestingly, Xenopus Wnt11 regulates CE movements by 

promoting the formation of adhesion-modulating complexes consisting of Fzd7 and paraxial 

protocadherin (PAPC) or Fzd7 and C-cadherin, which function in parallel to prevent C-cadherin 

clustering and reduce cell adhesion [42]. These observations suggest that Wnt11-mediated 



	 7	

signaling induces cell shape changes and intercalation behaviors at least partially through 

regulation of cell adhesion.  

It is worth mentioning that wnt11f2 mutants also show craniofacial defects and cyclopia at 

larval stages due to defective formation of midline structures in the gastrula. Indeed, wnt11f2 

belongs to the “midline group” genes whose mutations impair the extension of axial tissues and 

remotely affect the development of head cartilages [43]. Similarly, mutations of other components 

in the Wnt/PCP pathway that disrupt the proper positioning of the prechordal mesoderm at the 

end of gastrulation can also cause craniofacial phenotypes [44, 45].  

Wnt5a and Wnt5b display both specific and redundant roles during CE movements in 

different species. In zebrafish, Wnt5a can interact with the CD146 receptor, also known as 

melanoma cell adhesion molecule, to regulate cell motility during gastrulation [46], while Wnt5b 

signals through Ryk and focal adhesion kinase (Fak) to induce cellular polarization [47, 48]. In 

addition, Wnt5b functions specifically in posterior regions of the zebrafish gastrula to regulate cell 

elongation and CE movements, while it shows redundant roles with Wnt11f2 in more anterior 

regions [49]. In Xenopus, Wnt5a specifically interacts with Ror2 to regulate PAPC expression and 

CE movements through activation of JNK signaling, suggesting that it can also elicit 

transcriptional responses [50]. Importantly, Wnt5a and Wnt11 can provide directional cues to 

establish cellular polarization. In ectodermal cells of Xenopus midgastrula, they instruct PCP by 

orienting the Vangl2-Prickle3 complex to anterior cell borders, away from their source [51]. In the 

avian embryo, Wnt5a and Wnt5b may function redundantly with Wnt11 to regulate cell migration 

through the primitive streak [52]. In mice, Wnt5a and Wnt11 are also required for the migration of 

axial and paraxial mesodermal precursor cells to promote notochord formation through regulation 

of epithelial-mesenchymal transition [53]. 

“Core” PCP proteins in asymmetric cellular behaviors during gastrulation 

Extensive analyses have provided important insights into the functions of “core” PCP 

proteins in morphogenetic movements of gastrulation. Pioneer studies in Xenopus demonstrate 

that disrupting the functions of Fzd7 or Dvl impairs CE movements but not embryonic patterning 

[54,55,56]. More recent studies by mutational analyses indicate that zebrafish maternal-zygotic 
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Dvl2 and Dvl3a cooperatively regulate CE movements independently of Wnt/ß-catenin signaling, 

suggesting an important contribution of maternal PCP proteins to morphogenetic movements that 

occur after zygotic genome activation [45]. The membrane recruitment of Dvl by Fzd receptors is 

important for its activity in Wnt/PCP signaling [28, 57]. In zebrafish, Celsr1 is required for the 

formation of Fzd-Dvl complex, at least by regulating membrane recruitment of Dvl [58]. Prickle1 

regulates Wnt/PCP signaling during gastrulation cell movements through interaction with Dvl and 

activation of JNK signaling [59,60,61]. It shows asymmetric localization in cells undergoing CE 

movements and is enriched at the anterior edge, while Dvl is accumulated at the posterior side 

[62]. This segregation of PCP proteins helps to define distinct anterior and posterior cell 

properties and provides bias for cell intercalations. Accordingly, inappropriate functioning of 

Prickle1 causes CE defects, likely by disrupting Fzd-dependent membrane recruitment of Dvl 

[59]. Intriguingly, recent studies suggest that diffusely distributed cytoplasmic Prickle1 

counteracts the activity of Dvl2 to increase F-actin content and cortical tension in Xenopus 

prechordal mesoderm cells, thereby generating mechanical forces to promote cell migration and 

rearrangements during radial cell intercalations [22]. 

As Prickle1, zebrafish Vangl2 (also known as Strabismus or Trilobite) displays stage-

dependent membrane accumulation and enrichment in highly elongated cells undergoing 

mediolateral intercalation [63]. Both gain and loss of Vangl2 function disrupts Wnt/PCP signaling 

and affects mediolateral cell polarity necessary for effective intercalation and directed migration 

[64,65,66]. In the Xenopus gastrula, Vangl2 is also enriched at the constricted apical surfaces of 

blastopore bottle cells. This asymmetric localization plays a role in blastopore formation and 

closure by promoting the apical accumulation of Rab11 and its associated motor protein Myosin 

V, suggesting that Vangl2 can also regulate apico-basal polarity during morphogenetic 

movements [67].  

In zebrafish, Ankrd6 (previously known as Diversin) is required for gastrulation cell 

movements through interaction with Dvl and activation of JNK [68, 69]. However, biochemical and 

functional analyses suggest that Ankrd6 represents a molecular switch to stimulate Wnt/PCP 

signaling but suppress Wnt/ß-catenin pathway in a dose-dependent manner [69]. Therefore, 
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Ankrd6 may also function in embryonic patterning, and how this impacts on cell behavior changes 

needs further investigation. 

In amniotes, mediolateral cell intercalation has been shown to define the primitive streak 

before gastrulation [70]. This event occurs in a subdomain of the epiblast where the primitive 

streak will form during gastrulation and requires the function of several “core” PCP proteins 

including Dvl, Celsr1, Vangl2 and Prickle1 [70]. Therefore, Wnt/PCP signaling promotes primitive 

streak formation before gastrulation. Interestingly, as discussed above, this pathway remains 

active during gastrulation to regulate cell exit from the primitive streak [52]. 

Co-receptors of the Wnt/PCP pathway in convergent extension movements 

 Glypican 4 (Knypek in zebrafish), a member of the heparan sulfate proteoglycans 

(HSPGs) family, functions as a co-receptor for a variety of growth factors and regulates CE 

movements in zebrafish and Xenopus by promoting Wnt/PCP signaling [44, 71]. Both functional 

and biochemical analyses suggest that it interacts with Wnt5a and Wnt11 during gastrulation [71]. 

Mutations that disrupt the function of Knypek prevent mediolateral alignment and elongation of 

ectodermal and mesodermal cells in the paraxial region, leading to CE defects and shortened AP 

axis [44]. Ror2 and Ryk are also implicated in the regulation of cell polarity and CE movements 

during gastrulation in vertebrate embryos by functioning as co-receptors for Wnt5a or Wnt11 

[72,73,74,75].  

Protein tyrosine kinase 7 (PTK7) is an evolutionarily conserved transmembrane receptor 

that functions as a vertebrate-specific PCP regulator in many developmental processes [76]. In 

zebrafish, Ptk7 regulates Wnt/PCP signaling by potentiating the activity of Wnt5 and Wnt11; 

maternal-zygotic ptk7 mutants show impaired mediolateral intercalation [77]. However, it is not 

entirely clear how Ptk7 signals in the Wnt/PCP pathway to polarize cell behaviors because CE 

defects caused by its loss of function can be rescued by expression of a membrane-tethered 

extracellular domain of the protein [77]. Knockout of Ptk7 in mice also leads to defective 

mediolateral and radial intercalations, but the identity of Wnt ligands that interact with Ptk7 in 

these processes remains unclear [78]. Studies in Xenopus suggest that Ptk7 functions in 

Wnt/PCP signaling during morphogenetic movements of gastrulation at least through JNK-
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mediated transcriptional response. In this context, Ptk7 interacts with Wnt5a and cooperates with 

Ror2 to modulate PAPC expression [79].  

Other polarity regulators in gastrulation cell movements 

Studies in zebrafish have identified additional polarity regulators that function in 

morphogenetic movements during gastrulation. Maternal-zygotic Dchs1b may be involved in 

prechordal mesodermal migration and CE movements by regulating actin or microtubule 

organization in a Fat-independent manner [80]. Maternal but not zygotic Scrib1 shows strong 

genetic interaction with Vangl2 and the two proteins may form a functional complex in CE 

movements [81]. Moreover, Scrib1 also interacts with LPP, a zyxin-related actin cytoskeleton 

protein, to promote the dorsal convergence of paraxial cells [82]. The PDZ domain protein Mcc 

(mutated in colorectal cancer) directly interacts with the cytoplasmic tail of Vangl2 and can 

function as an effector of Wnt5a/Ror2/Vangl2 signaling to activate RhoA and JNK in CE 

movements [83]. Recent research shows that the E3 ubiquitin ligase Mindbomb1 (Mib1) controls 

the endocytosis of Ryk in gastrulating cells, and therefore, zebrafish mib1 null mutants display 

defective PCP-dependent CE movements [84]. 

Wnt/PCP-regulated cytoskeletal rearrangements and adhesive changes during 

gastrulation 

Wnt/PCP-dependent cellular polarization is mediated by dynamic rearrangements of the 

actin and microtubule cytoskeleton. Key regulators of the cytoskeleton architecture including Rho 

and Rac are activated by Fzd receptors through Dvl and the PPE protein Daam1, a formin 

homology protein with actin-binding activity, thereby promoting asymmetric cellular activities [85, 

86]. Moreover, Wnt/PCP signaling mediated by Dvl and Knypek also controls the proper location 

of the microtubule-organizing center in both ectodermal and mesodermal cells undergoing CE 

movements [87, 88]. This influences the polarity of the microtubule cytoskeleton, which is 

required for the asymmetric distribution of PCP proteins [88]. There is also evidence that a 

spatiotemporal clustering of Prickle2 is correlated with alternative actomyosin oscillation across 

cell membranes of neighboring cells, which may modulate submembranous accumulations of F-

actin and	 facilitate CE movements [89]. These observations suggest that some PCP proteins can 
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function to set up the anisotropy of many cellular properties. Therefore, either gain or loss of their 

activity can disrupt asymmetric cellular behaviors and leads to CE defects [87].  

Polarized cellular protrusions also require Wnt/PCP-regulated organization of extracellular 

matrix (ECM). In Xenopus, inhibition of Wnt/PCP signaling disrupts fibronectin assembly in the 

blastocoel roof by reducing its mechanical tension [90]. Fzd7, Vangl2 and Prickle1 function in 

mediolateral intercalation of mesodermal cells by regulating fibronectin secretion and assembly at 

their outer surfaces that contact the overlying ectoderm and the underlying endoderm [91]. In 

zebrafish, “core” PCP proteins are also differentially involved in ECM organization [92]. Loss of 

Fzd7 leads to increased fibronectin assembly in the gastrula, while loss of Vangl2 or Prickle1 

decreases fibronectin protein levels, thus preventing polarized membrane protrusion and directed 

migration [93,94,95]. Therefore, Wnt/PCP-dependent ECM organization and cell-substrate 

adhesion are important to promote polarized cell behaviors for asymmetric movements [96]. 

PCP regulatory genes in neural tube closure and neural tube defects 

The neural plate emerges at the end of gastrulation as the neuroectodermal tissue above 

the dorsal mesoderm lengthens into columnar cells (Figure 3). The neural tube can be formed 

through two different processes, called primary and secondary neurulation, which involve fusion 

of the neural folds or epithelialization from a solid cord of neural tube progenitor cells at the tail 

bud region, respectively [25]. During primary neurulation in mammals, birds and Xenopus, neural 

folds arise bilaterally at the boundaries between the neural plate and the surrounding epidermis. 

They elevate and converge toward the midline for fusion to form the neural tube by a “zippering” 

process either initiating at different closure sites along the AP axis or occurring simultaneously at 

all axial levels. In zebrafish and other teleost fish, the neural tube is formed through a process 

similar to secondary neurulation, without the formation of neural folds. As gastrulation, 

neurulation also involves cell intercalation and apical constriction, which generate major forces 

driving the AP elongation and bending of the neural plate. Disruption of these polarized cell 

behaviors prevents neural tube closure and are associated with varying forms of NTDs (Table 1), 

which are the most common congenital malformations affecting the central nervous systems. The 

implication of PCP genes in NTDs has been extensively reviewed recently [26]. By integrating 
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data obtained from complementary animal models with advances on the study of congenital 

disorders, this work focuses on the analysis of molecular and cellular mechanisms underlying the 

regulatory roles of PCP-related genes in neural tube closure during development and disease. It 

not only discusses Wnt/PCP signaling in primary and secondary neurulation but also highlights 

recent advances in the study of somatic mutations of “core” PCP genes associated with NTDs. 

Asymmetric localization of “core” PCP proteins in the neuroectoderm 

 The subcellular localization of several “core” PCP proteins displays asymmetric bias in the 

neural epithelium. In Xenopus, Vangl2 is enriched at anterior cell boundaries, which is dependent 

on its interaction with Prickle and Par3 proteins [97, 98]. Wnt5a gradients can provide instructive 

cues to promote the anterior localization of Vangl2 by inducing its phosphorylation [98]. A recent 

study further suggests that Fzd3, which is specifically expressed in the neuroectoderm [99], 

promotes the anterior accumulation of Vangl2-Prickle3 complexes by phosphorylating Vangl2 on 

specific threonine residues [100]. In addition, the Vangl2-Prickle3 complex is also enriched near 

the outermost surface of deep neural plate cells that undergo radial intercalations during 

neurulation [23]. These observations indicate that Vangl2 and Prickle3 can regulate both 

mediolateral and radial cell intercalations in the neuroepithelium. Importantly, the asymmetric 

enrichment of PCP proteins is closely correlated with actomyosin-driven contractile behaviors of 

cell-cell junctions [101]. Moreover, Myosin II can exert a positive feedback on the asymmetric 

localization of Vangl2 protein, suggesting that mechanical forces contribute to establish PCP in 

the neural plate [98]. Accordingly, diffusion of locally expressed Wnt11 in the posterior 

neuroectoderm acts with anisotropic tension imposed by unidirectional tissue stretch to orient 

PCP through regulation of cell shape changes [102]. Therefore, interactions between “core” PCP 

proteins and actomyosin-mediated contractility regulate polarized cellular behaviors necessary for 

driving neural tube closure, such as mediolateral cell intercalation that elongates the neural plate 

along the AP axis and apical constriction that causes bending of the neural plate [19].  

“Core” PCP proteins in neural tube development and disease 

Functional studies using animal models and analyses of genetic mutations in humans 

have firmly demonstrated the contribution of PCP proteins to neural tube closure. In Xenopus, 
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Dvl2 regulates CE movements in the mesoderm and neural plate to generate parallel forces for 

elongating the AP axis [103]. Perturbation of its function prevents fusion of nascent neural folds 

and closure of the neural tube [104]. In mice, all the three Dvl genes (Dvl1, Dvl2 and Dvl3) are 

involved in neural tube closure, but Dvl2 appears to play a predominant role [105,106,107]. Since 

different Dvl genes exhibit partial redundant functions and cooperatively regulate Wnt/PCP 

signaling in CE movements, PCP-dependent neural tube closure is extremely sensitive to Dvl 

dosage [108, 109]. Consistent with their importance for neurulation, missense mutations of 

different DVL genes have been identified in patients with NTDs or Dandy-Walker malformation	

characterized by abnormal cerebellar development [110, 111]. However, these missense variants 

likely produce complex effects, by differentially disrupting the activity of all three Wnt signaling 

branches. 

 Vangl paralogs are critically involved in neural tube closure [112]. In Xenopus, an optimal 

level of Vangl2 is crucial for proper cellular polarization underlying normal cell intercalation. 

Therefore, either an increase or a decrease of Vangl2 activity disrupts CE movements of the 

neuroepithelium and inhibits neural tube closure [113]. This suggests that Wnt/PCP signaling 

should be tightly regulated at local levels to confirm the tissue-level constraints. In zebrafish, the 

neural tube is essentially formed through cavitation of the neural keel, a process similar to 

secondary neurulation. Vangl2-mediated Wnt/PCP signaling regulates neural tube formation by 

promoting polarization of neural progenitors along the AP axis and re-intercalation of mitotic 

daughter cells into the neuroepithelium, thereby coupling cell division and neurulation [9]. In mice, 

missense or null mutations of Vangl2 impair CE movements of the neuroepithelium and produce 

NTDs, with severity depending on the reduction of Vangl2 activity [114,115,116,117]. It is likely 

that Vangl2 regulates Wnt/PCP signaling in a dosage-sensitive manner. Thus, heterozygosity of 

the Looptail mutation, which results in a single amino acid substitution that is predicted to 

produce a malfunctional Vangl2 protein, can exacerbate NTDs in mice carrying heterozygous or 

homozygous mutations of other polarity genes, often resulting in craniorachischisis [105, 107, 

118,119,120,121,122]. There is a possibility that the malfunctional Vangl2 protein aggravates 

PCP defects by interfering with the proper localization of other “core” PCP components. In 
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humans, heterozygous missense mutations of VANGL1, which disrupt the interaction of VANGL1 

and DVL in Wnt/PCP signaling, are linked to varying degrees of spina bifida [123]. Depending on 

the variants, heterozygous missense mutations of VANGL2 result in open spinal bifida and closed 

spinal NTDs or cause anencephaly and are lethal to the fetus [124, 125]. These observations 

reveal a critical role for VANGL-mediated Wnt/PCP signaling in neural tube closure and strongly 

implicate VANGL as a risk factor and the genetic causation of human spinal NTDs. Indeed, 

neural tube closure is particularly vulnerable to loss of Vangl2 activity. Recent research using 

mouse embryos indicates that an absence of Vangl2 function in a minority (16%) of 

neuroepithelial cells can non-autonomously prevent neural fold elevation by inhibiting apical 

constriction of neighboring cells, suggesting that tissue mosaicism generated by post-zygotic 

mutations of some PCP genes may lead to severe failure of morphogenesis [126]. Consistently, 

somatic mutations of FZD6, VANGL1 and CELSR1 have been associated with human NTDs 

[127], suggesting that disruption of Wnt/PCP signaling during different stages of embryonic 

development can contribute to defective morphogenesis of the neural tube. 

Fzd1 and Fzd2 genetically interact with Vangl2 in Wnt/PCP signaling to regulate various 

tissue fusion processes, including neural tube closure at different locations along the neural axis 

[122]. Combined knockout of Fzd3 and Fzd6 in mice causes craniorachischisis with almost 100% 

penetrance [128]. Heterozygous missense or frameshift mutations of the human FZD6 gene have 

been shown to cause different forms of NTDs [129]. Homozygous Celsr1 mutant mice fail to 

initiate neural tube closure, resulting in craniorachischisis [130], while heterozygous missense 

variants of CELSR1 may represent the underlying pathogenic mechanism of craniorachischisis 

as well as other forms of NTDs in humans [131,132,133]. In chick embryos, Celsr1 in floor plate 

cells recruits Fzd receptors and Dvl to regulate actomyosin-dependent mediolateral contraction of 

adherens junctions, promoting bending of the neural plate by causing simultaneous midline 

convergence and apical constriction [134]. Prickle1 is required for junctional neurulation in the 

chick spinal cord, which is a process involving the fusion and connection of the primary neural 

tube with the posterior neural tube formed by secondary neurulation from the caudal cell mass 

[135]. Heterozygous missense mutations of PRICKLE1 in humans have been reported to cause 
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varying degrees of spina bifida [136]. Although it is unclear how Ankrd6 regulates neural tube 

closure, rare missense mutations that disrupt its activity in the balance of Wnt/PCP and Wnt/ß-

catenin signaling have been identified in human NTDs [137]. The CPLANE protein Fuz, a 

vertebrate ortholog of Drosophila Fuzzy, is required for neural tube closure in Xenopus and mice 

likely by regulating ciliogenesis in the neural plate [138,139,140]. Consistently, mutations of FUZ 

affecting the formation of primary cilia and ciliary length have been associated with both open and 

closed NTDs in humans, which are spinal defects exposed at birth or covered by the skin, 

respectively [141]. 

Other PCP-related genes in neural tube morphogenesis 

Fat1 and Fat4 protocadherins show genetic interaction in cranial neural tube closure, and 

loss of their functions in mice causes exencephaly [142, 143]. They may function as cis-

heterodimers to modulate cytoskeletal organization and apical constriction [142]. However, it is 

unclear whether they regulate polarized cell behaviors and cell-cell interaction by forming ligand-

receptor pairs with Dchs protocadherins.  

Mutations that impair Scrib function in mice severely affect neural tube closure and cause 

craniorachischisis by disrupting cell intercalation required for neural plate CE movements and by 

preventing apical constriction necessary for neural plate bending [119, 144, 145]. Scrib may 

regulate polarized cell behaviors by influencing the localization and expression of junctional and 

cytoskeletal proteins [144]. It also directly binds to Vangl2 through its PDZ domains to promote 

the proper localization of Vangl2 in mouse neuroepithelial cells [146]. Combined heterozygous 

mutations of Scrib and Vangl2 or Scrib and Celsr1 produce variable phenotypes ranging from 

craniorachischisis to other forms of NTDs  [144, 145, 147, 148]. Further supporting its implication 

in neural tube closure, there are several studies linking heterozygous missense mutations of 

SCRIB gene with human NTDs [131, 146, 149].  

Dishevelled binding antagonist of ß-catenin 1 (Dact1), also known as Dapper1, is a 

cytoplasmic protein that interacts with Dvl2 and Vangl2 to regulate their expression at the post-

translational level [150,151,152]. Knockout of Dact1 in mice disrupts Wnt/PCP signaling and 

causes malformations at the posterior primitive streak [152, 153]. Consistent with its requirement 
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for CE movements and neural tube closure, several rare heterozygous missense mutations that 

lead to loss or reduction of DACT1 activity have been identified in human NTDs [154]. 

SEC24B is a cargo-binding protein in the coat protein complex II (COPII) and is involved 

in vesicle trafficking. It functions in Wnt/PCP signaling by selectively sorting Vangl2 to COPII 

during neural tube closure. In mice, mutations of Sec24b gene that introduce a premature stop 

codon disrupt PCP-dependent CE movements and cause craniorachischisis by inhibiting proper 

endoplasmic reticulum (ER) to Golgi transport of Vangl2 [155, 156]. Heterozygous missense 

mutations of SEC24B that disrupt the subcellular localization of Vangl2 have been associated 

with open and closed spina bifida in humans [157].  

PTK7 displays conserved roles in neural tube morphogenesis. Inhibition of PTK7 function 

in Xenopus impairs CE movements of the neural plate by preventing Dvl membrane localization 

mediated by Fzd7 and the adaptor protein RACK1 [118, 158]. In mice, PTK shows strong genetic 

interaction with Vangl2 or Celsr1 and is required for the initiation of neural tube closure [118, 

159]. Its loss of function disrupts the polarity of cell motility and intercalation in the neural plate by 

preventing polarized localization of Myosin IIB, leading to craniorachischisis [160]. Consistent 

with this importance in neural tube closure, rare heterozygous missense mutations of PTK7 gene 

have been associated with various forms of NTDs in human patients [161, 162].  

Although LRP6 generally functions as a co-receptor in Wnt/ß-catenin signaling, there is 

evidence that it regulates neural tube closure through the Wnt/PCP pathway. In mice, both gain 

and loss of LRP6 activity affect neural tube closure and cause varying degrees of NTDs, which 

may be attributed to defective Wnt/ß-catenin or Wnt/PCP signaling [163,164,165,166,167,168]. 

Heterozygous missense mutations in LRP6 that disrupt Wnt/ß-catenin or Wnt/PCP signaling, or 

both, have been identified in human NTDs [169,170,171]. The mechanism by which gain and loss 

of LRP6 link Wnt/PCP signaling to NTDs remain elusive. It is possible that the extracellular 

domain of LRP6 antagonizes Wnt/PCP signaling through sequestration of non-canonical Wnt 

ligands such as Wnt5a and Wnt11 [172, 173]. Therefore, LRP6 may serve as a molecular switch 

from Wnt/ß-catenin or Wnt/PCP signaling during neural tube closure in a dosage-dependent 

manner. 
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Wnt/PCP signaling in secondary neurulation 

It is well established that Wnt/PCP signaling plays crucial roles in primary neurulation, as 

discussed above. However, there is also evidence that PCP genes are involved in secondary 

neurulation. In mice, analyses of genetic interactions between multiple heterozygous mutations of 

PCP genes indicate that some double heterozygous mutants exhibit NTDs that may result from 

impaired secondary neurulation [148]; conditional knockout of Vangl2 in the surface ectoderm 

during neurulation disrupts polarized cell body orientation and results in caudal spina bifida that 

may be partially due to secondary neurulation defects [174]. Interference with the activity of PPE 

proteins such as Cdc42 and Rac1 disrupts mesenchymal-epithelial transition during secondary 

neurulation in the chick embryo [175]. As aforementioned, secondary neurulation occurs 

throughout the neural axis in zebrafish, Vangl2-mediated Wnt/PCP signaling is required for neural 

tube formation by polarizing neural progenitors along the AP axis [9]. Furthermore, it is likely that 

closed spina bifida occurs as a consequence of defective secondary neurulation [176]. Indeed, 

mutations of PCP genes can cause varying degrees of NTDs. Specifically, some heterozygous 

missense mutations in CELSR1, VANGL1 and VANGL2 genes have been identified in human 

NTDs with phenotypes reminiscent of abnormalities in secondary neurulation [124, 132, 177, 

178]. These observations suggest that there are common molecular mechanisms regulating 

primary and secondary neurulation. The implication of Wnt/PCP signaling in secondary 

neurulation may be dependent on the genetic interactions, dosage or activity, and spatiotemporal 

expression of different PCP genes. 

Concluding remarks 

Gastrulation and neurulation are highly coordinated morphogenetic processes that are 

regulated by common molecular and cellular mechanisms. The “core” Wnt/PCP pathway 

functions in cooperation with or independently of other PCP regulatory genes to control polarized 

cellular behaviors. Extensive studies using different animal models have greatly advanced our 

understanding on the implication of these PCP regulators in morphogenetic cell movements that 

contribute to establish the basic body plan. However, there also raise many intriguing questions 

that deserve future investigation.  
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It is well documented that “core” PCP proteins display polarized localization within the cell 

of various organs undergoing asymmetric morphogenesis [20]. This feature seems to be also 

conserved in cells undergoing mediolateral and radial intercalations during gastrulation and 

neurulation. In addition to instructive cues provided by Wnt gradients [51], mechanical signals 

generated by cell movements also play an important role to redistribute PCP proteins. In 

Xenopus, it has been shown that mechanical strain acts through microtubules to determine the 

axis of planar polarity and transport PCP proteins in a directed manner [179, 180]. Thus, it will be 

of interest to decipher the interplay between different polarity modules and mechanotransduction 

during morphogenetic movements of gastrulation and neurulation. 

 It becomes increasingly evident that Wnt/PCP signaling also couples embryonic polarity 

and patterning. The coordinated action of Wnt/PCP and Wnt/ß-catenin signaling regulates 

ectodermal cell fate during Xenopus development. Wnt/PCP signaling controls the apico-basal 

cell polarity by directing the asymmetric localization of the canonical Wnt co-receptor LRP6, 

leading to elevated Wnt/β-catenin signaling in the deep layer of ectoderm cells and differentiation 

of multiciliated cells [181]. Moreover, the asymmetric localization of PCP proteins can contribute 

to cell differentiation by promoting radial intercalation. The Vangl2-Prickle3 complex, for example, 

is enriched at the apical side of multiciliated cell progenitors, which undergo intercalation and 

move to the external surface during neurulation [98]. Wnt/PCP signaling also interacts with other 

patterning signals in morphogenetic cell movements. In zebrafish, it cooperates with Nodal 

signaling to regulate embryonic axis extension [182, 183]. Therefore, it will be of interest to 

elucidate how PCP proteins coordinate cell polarity with gene expression and how cell 

polarization is coupled with cell fate specification. However, since Wnt/PCP signaling can also 

induce transcriptional changes, specific readouts need to be applied for examination of cell 

behavior changes. Live imaging of cell behaviors and PCP protein dynamics should contribute to 

mechanistic analyses of PCP functions in morphogenesis [101, 184]. 

Since PCP proteins use similar cellular mechanisms, such as oriented cell division and 

cell intercalation, to regulate tissue and organ morphogenesis, it would be not surprising that their 

dysfunctions can cause general anomalies in multiple organs that display these PCP-dependent 
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cell movements. As such, mutations of PCP genes may need to be taken into consideration when 

there is a co-existence of NTDs and other congenital disorders. Biochemical and functional 

interactions between different polarity pathways in NTDs also need further investigations. 

Deciphering the detailed functions of PCP proteins and their interplay in regulating cell behaviors 

during development and disease should help to define therapeutic approaches targeting 

Wnt/PCP signaling. 
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Figure 1. Wnt/PCP signaling pathway and asymmetric distribution of “core” PCP protein 

complexes. (A) Wnt/PCP signaling is induced by non-canonical Wnt ligands binding to Fzd 

receptors and co-receptors such as Ror2, Ryk, glypican4/Knypek, and PTK7. Dvl-activated 

downstream effector proteins relay the signal to induce cytoskeletal rearrangements and/or 

transcription responses. The “core” PCP proteins form two separate complexes localized to 

opposite cell borders. The C-terminal cytoplasmic region of Vangl interacts with Prickle (Pk) and 

Scrib, which may contribute to the anterior localization of the Vangl-Prickle complex within a cell. 

Celsr protocadherins form homodimers between adjacent cells to propagate polarity information. 

Dvl family proteins function as important scaffolds in different Wnt signaling pathways. The N-

terminal DIX (blue diamond) is involved in Wnt/ß-catenin signaling, while the central PDZ, the C-

terminal DEP domains, and the extreme C-terminus PDZ domain-binding motif (PDB, purple 

triangle) regulate Wnt/PCP signaling. (B) Diagram shows the asymmetric subcellular localization 

of “core” PCP proteins within the epithelial plane. 
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Figure 2. Asymmetric cellular behaviors in morphogenetic movements during gastrulation and 

neurulation. (A) Mediolateral cell intercalation (“en face” view) drives CE movements to narrow 

and extend tissues along mediolateral and AP axes, respectively. (B) Radial cell intercalation 

(sagittal plane) reduces the number of cell layers and thins a multilayered epithelium into sheets 

or tubes. ECM deposition at the inner (basal) surface of the superficial layer can be also 

regulated by Wnt/PCP signaling and is involved in radial intercalation of multilayered deep cells. 

(C) Asymmetric cell division leads to differential partitions of signaling proteins and lineage 

segregation. 

 

Figure 3. Neural plate formation and neural tube closure. Transverse sections in successive 

stages of neurulation show bending of the neural plate and the convergence of neural folds with 

presumptive neural crest approaching at the dorsal midline. Apical constriction generates wedge-

shaped cells at the notochord (NC)-anchored medial hinge point (red) corresponding to the floor 

plate and at the dorsolateral hinge points (orange). These hinge points promote bending of the 

neural plate and convergence of the neural folds. It remains to be determined how PCP proteins 

regulate apical constrictions in different hinge points. 
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Table 1. Mutations of PCP regulatory genes linked to the congenital disorder of human NTDs. 

Genes Mutations* Phenotypes References 

FZD6** Heterozygous missense 
and frameshift 

Myelomeningocele, meningocele, 
caudal regression syndrome [127, 129] 

DVL1-3	 Heterozygous missense  Varying forms of NTDs [110, 111] 

VANGL1** Heterozygous missense Cranial, open and closed*** spinal 
dysraphisms [123, 127, 177] 

VANGL2 Heterozygous missense  Anencephaly, open spinal bifida, 
closed spinal NTDs*** [124, 125] 

PRICKLE1 Heterozygous missense  Varying degrees of open spina 
bifida  [136] 

CELSR1** Heterozygous missense  Craniorachischisis, other forms of 
NTDs, tight filum terminale*** [127, 131,132,133] 

ANKRD6 Heterozygous missense  Lipomyeloschisis, meningocele, 
scoliosis, and other forms of NTDs.  [137] 

SCRIB Heterozygous missense  Varying forms of open and closed 
NTDs [131, 146, 149] 

FUZ Heterozygous missense  Open and closed NTDs [141] 

PTK7 Heterozygous missense  Varying forms of NTDs [161, 162] 

DACT1 Heterozygous missense Craniorachischisis, closed NTDs, 
encephalocele [154] 

SEC24B Heterozygous missense  Open and closed NTDs [157] 

LRP6 Heterozygous missense Spina bifida [169,170,171] 

*Shown here are most frequently occurred mutations. Other mutations, such as truncations and inframe 
deletions, have been also identified in NTDs. 

**Somatic mutations of these genes have been also associated with NTDs. 
***Possible consequences of secondary neurulation defects. 

 

	

 


