Supporting Information

2-Azahetaryl-2-(oxoindolin-2-ylidenes)acetonitriles as colorimetric probes for Zn: synthesis and optical properties

Dedicated to Prof. Olga A. Zaporozhets in memoriam.

Vladyslav V. Shcherban^{a*}, Olena O. Kuleshova ^{a,b}, Tetiana Ye. Keda ^{a*}, Olga V. Khilya ^a, Emmanuel Gras ^{b, 1}, Yulian M. Volovenko ^a

^a Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Lva Tolstoho Street 12, Kyiv 01033, Ukraine

^b Laboratoire de Chimie de Coordination, Centre National de la Recherche Scientifique,

UPR8241, Université Fedérale Toulouse Midi-Pyreńeés, 205, Route de Narbonne, Toulouse F-31077, France

Corresponding authors

Vladyslav V. Shcherban: schcherban@gmail.com Tetiana Ye. Keda: tetianakeda@knu.ua

¹ LHFA CNRS - UMR 5069, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9

Table of Contents

1.	¹ H, ¹³ C Data	3
2.	Photostability test	.16
3.	Absorption properties of probe 3a-c, 4 and 3b-Zn ²⁺ , 4-Zn ²⁺ in H ₂ O/DMS	50
sol	utions	.16
4.	Deprotonation studies	.20
5.	Complexation studies	.22
6.	Selectivity studies	.23
7.	Detecting of Zn ²⁺ in serum model solution	.24

1. ¹H, ¹³C Data

ylidene)acetonitrile (3a), Solvent: DSMO- d_6

Figure S2. ¹³C-NMR spectra of the compound (*Z*)-2-(benzo[*d*]thiazol-2-yl)-2-(3-oxoindolin-2-

. . f1 (мд) . **Figure S3.** ¹H-NMR spectra of the compound (*Z*)-2-(benzo[*d*]thiazol-2-yl)-2-(5-methyl-3-oxoindolin-2-ylidene)acetonitrile (**3b**), Solvent: DMSO- d_6

Figure S4. ¹³C-NMR spectra of the compound (*Z*)-2-(benzo[*d*]thiazol-2-yl)-2-(5-methyl-3-oxoindolin-2-ylidene)acetonitrile (**3b**), Solvent: DMSO- d_6

Figure S5. ¹H-NMR spectra of the compound (*Z*)-2-(benzo[*d*]thiazol-2-yl)-2-(5-methyl-3-oxoindolin-2-ylidene)acetonitrile (**3b**), Solvent CD_2Cl_2

Figure S6. ¹H-NMR spectra of the compound (Z)-2-(benzo[d]thiazol-2-yl)-2-(5-methoxy-3-oxoindolin-2-ylidene)acetonitrile (**3c**), Solvent: DMSO- d_6

Figure S7. ¹³C-NMR spectra of the compound (*Z*)-2-(benzo[*d*]thiazol-2-yl)-2-(5-methoxy-3-oxoindolin-2-ylidene)acetonitrile (**3c**), Solvent: DMSO- d_6

f1 (мд) . 50 -10

		- I - I		· · ·			- · ·		- I - I	· · ·			- · ·				- · ·	- I '		· · ·			
20	210	200	190	180	170	160	150	140	130	120	110 f1 (100 мд)	90	80	70	60	50	40	30	20	10	0	-1

Figure S10. The NMR chemical shifts of 4 found by 2D experiments (COSY, HMQC, HMBC)

¹ H	Position of cross peaks in ¹³ C dimension				
	HMQC	НМВС			
7.16	123.8	114.6, 125.7, 138.2, 151.7, 184.6			
7.49	126.0	120.01, 149.9			
7.49	126.6	111.6, 141.7			
7.53	114.6	123.8, 151.7			
7.67	138.3	151.7, 125.7, 114.6			
7.72	125.7	138.3, 151.7, 184.6			
7.86	111.6	141.7, 126.6			
7.87	120.01	149.9, 126.0			
11.37	-	119.97, 145.9, 151.7, 184.6			

Table S1. The full list of heteronuclear correlations 1H–13C, founded for compound 4 inHMQC and HMBC spectra (Solvent: DMSO- d_6)

Figure S11. COSY NMR spectrum of the compound 4, Solvent: DMSO- d_6

Figure S12. HMQC NMR spectrum of the compound 4, Solvent: DMSO- d_6

Figure S13. HMBC NMR spectrum of the compound 4, Solvent: DMSO- d_6

2. Photostability test

The photostability test was performed for the studied dyes in DMSO as a control for the absorbance of a diluted solution of the appropriate concentration. Dye **3b** was used as an example.

Figure S14. Absorption spectra of dye **3b** in DMSO as-prepared and after 24, 72, 96 h and 6 months of storage. C_{3b} = 50 µmol·L⁻¹

3. Absorption properties of probe 3a-c, 4 and 3b-Zn²⁺, 4-Zn²⁺ in $H_2O/DMSO$ solutions.

The molar absorption coefficient (ϵ , mol⁻¹Lcm⁻¹) was calculated according the Beer-Lambert law using value of the absorbance of solution at the appropriate wavelength of UV-Vis spectra.

	2	ax, ϵ_{max} (DMSO), 10^4		$\varepsilon_{\rm max}, 10^4$ $\Delta \varepsilon_{\rm max}, \%$							
Dye	nm			H ₂ O/DMSO, v/v							
			1/11	1/5	1/2	1/11	1/5	1/2			
3 a	520	1.48	1.59	1.59	0.85	7.4	7.4	-42.6			
3 b	530	1.38	1.46	1.43	1.44	5.8	3.6	4.3			
4	515	1.66	1.59	1.59	1.53	-4.2	-4.2	-7.8			

Table S2. Molar absorption coefficient of dyes 3a, 3b and 4 in DMSO and H₂O/DMSO

Figure S15. Absorption spectra of dye 3a-c and 4 in H₂O/ DMSO (1/5, v/v). $C = 10 \mu mol L^{-1}$

Figure S16. Absorption spectra of dye 3a in DMSO and H₂O/ DMSO. % (v/v) DMSO is shown in the inset. $C_{3a} = 34 \ \mu mol \cdot L^{-1}$

Figure S17. Absorption spectra of dye **3b** in Tris-buffer (pH 7.2) / DMSO without (a) and in the presence of **50** μ mol·L⁻¹ Zn²⁺ (b). % (v/v) DMSO is shown in the insets. C_{3b} = **50** μ mol·L⁻¹.

Table S3. The influence of water on the absorbance of dye **3b** and **3b-Zn²⁺** in solutions with different ratio H₂O (Tris-buffer, pH 7.2) / DMSO. $C_{3b} = C(Zn^{2+}) = 50 \mu \text{mol}\cdot\text{L}^{-1}$. Sample volume – 3.00 ml. $\Delta A_{640} = A_{640}(3b) - A_{640}(3b+Zn^{2+})$

Ma	V (DMSO),	$V(II \cap)$ m ¹	%	A	-640		
JN≌	ml	$V(\Pi_2 O), \Pi I$	DMSO	3b	3b+Zn ²⁺	ΔA_{640}	
1	2.83	0.17	94	0.0088	0.102	0.0932	
2	2.50	0.50	83	0.0154	0.1405	0.1251	
3	2.17	0.83	72	0.0159	0.1082	0.0923	
4	1.84	1.16	61	0.081	0.0854	0.0044	
5	1.17	1.83	39	0.0673	0.0727	0.0054	
6	0.85	2.15	28	0.0389	0.0389	0	
7	0.50	2.50	17	0.0349	0.0372	0.0023	
8	0.18	2.82	6	0.0452	0.0408	-0.0044	

Figure S18. Absorption spectra of dye 4 without (1) and in the presence of different amount of Zn^{2+} (2-5), $C_4 = 25.0 \ \mu mol \cdot L^{-1}$, Tris-buffer (pH 7.2)/DMSO with different %, v/v of DMSO. $C(Zn^{2+}), \ \mu mol \cdot L^{-1} : 0 \ (1), 5.0 \ (2), 15.0 \ (3), 24.0 \ (4), 43.0 \ (5).$

4. Deprotonation studies

Scheme S1. Possible way of negative charge delocalization upon deprotonation of 3b

Figure S19. Spectrophotometric titration plots at the absorption maxima of dye **3b** in H₂O/DMSO (1/5, v/v). pH corresponds to the calculated concentration of H⁺ in the aqueous part of the sample (0.5 ml). Black line corresponds to the absorption of neutral form; red line – absorption of anionic form of the dye.

No	nЦ	$\lambda_1 = 5$	30 nm	$\lambda_2 = 680 \text{ nm}$		
JNO	рп	А	рКа	А	рКа	
1	10.15	0.463	-	0.037	-	
2	12.70	0.429	13.44	0.066	13.43	
3	13.19	0.391	13.69	0.105	13.66	
4	1348	0.355	13.81	0.135	13.79	
5	13.69	0.312	13.83	0.175	13.81	
6	13.85	0.271	13.83	0.214	13.81	
7	13.98	0.242	13.85	0.241	13.82	
8	14.09	0.200	13.79	0.274	13.78	
9	14.18	0.162	13.70	0.310	13.68	
10	14.27	0.137	13.64	0.329	13.64	
11	14.34	0.101	13.44	0.361	13.44	
12	14.41	0.072	_	0.386	-	
13	14.48	0.055	_	0.400	_	

Table S4. Calculation data of the ionization constant of dye 3b in H₂O/DMSO solutions.

Table S5. Calculation data of the ionization constant of dye 4 in $H_2O/DMSO$ solutions.

Mo	nU	$\lambda_1 = 5$	15 nm	$\lambda_2 = 6$	45 nm
JNO	рп	A	рКа	A	рКа
1	13.43	0.573	-	0.003	-
2	13.76	0.565	-	0.003	-
3	14.17	0.561	15.69	0.014	15.77
4	14.30	0.547	15.53	0.015	15.86
5	14.52	0.512	15.37	0.044	15.48
6	14.61	0.477	15.23	0.069	15.33
7	14.69	0.428	15.08	0.113	15.12
8	14.76	0.335	14.81	0.188	14.84
9	14.82	0.245	14.56	0.264	14.57
10	14.88	0.153	-	0.345	-
11	14.93	0.107	-	0.378	-

5. Complexation studies

Figure S20. Absorption spectra of different concentrations probe **3b** solutions in the presence of Zn^{2+} , $C(Zn^{2+}) = 10.0 \ \mu mol \cdot L^{-1}$, Tris-buffer (pH 7.2)/DMSO (1/5, v/v)

Figure S21. Absorption spectra of different concentrations probe 4 solutions in the presence of Zn^{2+} , $C(Zn^{2+}) = 4.8 \ \mu mol L^{-1}$, Tris-buffer (pH 7.2)/DMSO (1/3, v/v).

N⁰	C_{3b} , μ mol·L ⁻¹	ΔA_{600}	lgK ^f
1	2.04	0.010	10.26
2	2.63	0.013	10.28
3	3.13	0.015	10.25
4	3.78	0.018	10.26
5	4.61	0.022	10.28
6	5.12	0.025	10.31
7	5.88	0.027	10.28
8	6.36	0.029	10.28

Table S6. Calculation data of the affinity constant of the Zn^{2+} complex with probe 3b by the Bent-French method

Table S7. Calculation data of the affinity constant of the Zn^{2+} complex with probe 4 by the Bent-French method

N⁰	C ₄ , μ mol·L ⁻¹	ΔA_{590}	lgK ^f
1	1.1	0.009	12.77
2	1.4	0.010	12.69
3	1.7	0.011	12.55
4	2.0	0.012	12.49
5	2.5	0.013	12.41
6	3.0	0.014	12.32
7	3.4	0.015	12.28
8	4.0	0.016	12.22

6. Selectivity studies

Figure S22. Absorption spectra of probe **3b** without and in the presence of different ions after 60 min prepared of solution. Tris-buffer (pH 7.2)/DMSO (1/5, v/v); $C_{3b} = 50.0 \ \mu mol \ L^{-1}$; Concentration, $\mu mol \ L^{-1}$: 100 (Ba²⁺, Ca²⁺); 10 (Fe²⁺, Ni²⁺, Cd²⁺, Co²⁺, Cu²⁺,

Zn²⁺).

Figure S23. Absorption spectra of probe **3b** without (0) and in the presence of 10 μ mol·L⁻¹ Co²⁺ after 15 min (1), 30-60 min (2-6) of prepared. C_{3b} = 50.0 μ mol.L⁻¹, Tris-buffer (pH 7.2)/DMSO (1/5, v/v).

Figure S24. Absorption spectra of probe **3b** (1); **3b** with Zn^{2+} in the presence of $Na_2S_2O_3$ (2); **3b** with Cu^{2+} without (3) and in the presence of $Na_2S_2O_3$ (4); **3b** with Zn^{2+} and Cu^{2+} without (5) and in the presence of $Na_2S_2O_3$ (6). Tris-buffer (pH 7.2)/DMSO (1/5, v/v); $C_{3b} = 40.0 \mu \text{mol}\cdot\text{L}^{-1}$; Concentration of $Zn^{2+} - 9.0 \mu \text{mol}\cdot\text{L}^{-1}$; $Cu^{2+} - 20.0 \mu \text{mol}\cdot\text{L}^{-1}$; $Na_2S_2O_3 - 1.0 \text{ mmol}\cdot\text{L}^{-1}$.

The thiosulfate ion is a well-known masking agent for Cu^{2+} due to the formation of complex compounds, particularly in the determination of Zn^{2+} with EDTA in the presence of Cu^{2+} .^{1,2} Figure S24 shows the successful masking of 20.0 μ mol·l⁻¹ Cu^{2+} by 1.0 mmol·l⁻¹ $Na_2S_2O_3$ under optimal conditions for the complexation of probe **3b** with Zn^{2+} .

The initial 50-fold excess of thiosulfate ions allows us to predict the formation of $Cu(S_2O_3)_n^{-1}$ ⁽²ⁿ⁻¹⁾ anionic complexes with n=1-3 in the solution.³⁻⁵

7. Detecting of Zn²⁺ in serum model solution

The model solutions of 2 times diluted pre-treated blood serum with 5.0 and 10.0 μ mol·L⁻¹ Zn²⁺ were performed using Tris-buffer (pH=7.2) as a solvent. Concentration of components in each solution was as follows, mmol·L⁻¹: NaCl –120, KCl – 2.4, CaCl₂ – 1.5, MgCl₂ – 0.6, CuSO₄, FeSO₄ – 0.005, Na₂S₂O₃ - 1.0. Sample preparation: 2.5 ml of 40 μ mol·L⁻¹ of probe **3b** solution in DMSO was mixed with 0.5 ml of model solution. Spectrum of each sample in cuvette (1.00 cm) was recorded at 380-800 nm versus Tris-buffer (pH 7.2)/DMSO (1/5, v/v) as a blank solution. Figure S25 shows the absorption spectra. Concentration of Zn²⁺ in sample was calculated using equation: ΔA_{600} =(0.005±0.002) + (0.0111±0.0002)·C_{Zn}, μ mol·L⁻¹, where ΔA_{600} = Aⁱ₆₀₀ – A₆₀₀(**3b**). The data obtained are listed in Table S8.

Figure S25. Absorption spectra of probe **3b** with spiked samples of serum model solution. $C_{3b} = 40.0 \ \mu \text{mol} \cdot \text{L}^{-1}$, Tris-buffer (pH 7.2)/DMSO (1/5, v/v): a) raw spectra; b) obtained as $\Delta A_{\lambda} = A_{\lambda i} - A_{\lambda 0}$. Concentration of Zn²⁺ is shown in the insets.

Table S8. Recovery values of Zn^{2+} for spiked samples of serum model solution. n=3

Added, µmol·L ⁻¹	Found, µmol·L ⁻¹	Recovery (%)	RSD, %
5.0	5.1	102.7	0.43
10.0	10.4	104.1	0.38

Compound	λ, nm	LOD, μmol ·L ⁻¹	Object (Conditions)	Interfering ions (Masking agent)	References
Dithizone (1,5- Diphenylthiocarbazone)	538	0.2	Micellar solutions (pH 9, 0.05 M diethanolamine - HCl buffer with SDS)	Co ²⁺ , Pb ²⁺ , Cd ²⁺	6
PAR (4-(2-Pyridylazo) resorcinol)	495	1.0	Metalloproteins (pH 7.4, 50 mM Hepes buffer with guanidine hydrochloride)	Cu ²⁺ , Ni ²⁺	7
nitro-PAPS (3-[3-hydroxy-4- [(5-nitropyridin-2-yl)diazenyl]-N- propylanilino]propane-1- sulfonate)	574	0.15	Serum (pH 7.8-8.5, Tris- buffer)	Cu ²⁺ , Fe ²⁺ (CN ⁻)	8
5-Br-PAPS (2-(5-Bromo-2- pyridiylazo)-5-[N-n-propyl-N-(3- sulfopropyl)amino]phenol)	560	15	Serum (0.5 M ammonium acetate/7.2×10 ⁻³ M salicylaldehyde oxime-1%(v/v) Triton X-100-0.5 M hydrochloric acid)	Fe ²⁺ , Cu ²⁺ (salicylaldehyde oxime, Na ₃ Cit)	9
TCPP (5,10,15,20-tetrakis(4- carboxylphenyl)-porphyrin)	423	0.9	Natural waters and nutritional supplement (pH 9, Pb ²⁺ and 0.05 M borate buffer)	Fe ³⁺ (0.1% (w/v) NH ₂ OH)	10
Xylenol orange (2,2',2",2"'- {(1,1-Dioxo-2,1\certch{0}-benzoxathiole- 3,3(1H)-diyl)bis[(6-hydroxy-5- methyl-3,1- phenylene)methylenenitrilo]}tetra acetic acid)	580	0.6	Pharmaceuticals (pH = 5-6, Acetate buffer with 1 mM CDC; stability - 3 h; with CDC up to 7 days)	Al ³⁺ , Fe ³⁺ , Cu ²⁺ , Ni ²⁺ , Pb ²⁺ (NaF, EDTA)	11
Zincon (2-carboxy-2'- hydroxy- 5'-sulfoformazylbenzene monosodium salt)	620	0.2	Metalloproteins (pH = 8.5 - 9.5, urea; stability - 1-2 h)	Co ²⁺ in the presence of Cu ²⁺ , Cu ²⁺ (EDTA)	12
3b ((Z)-2-(benzo[d]thiazol-2-yl)- 2-(5-methyl-3-oxoindolin-2- ylidene)acetonitrile)	600 640	0.5 0.4	Serum model solution (stripped of protein) (Tris-buffer (pH 7.2)/DMSO (1/5, v/v))	Co ²⁺ after 30 min of prepared, Cu ²⁺ (1.0 mM Na ₂ S ₂ O ₃)	This work

Table S9. Comparison of reported colorimetric probe with proposed for detection of Zn^{2+6-12}

References

1. Halliday, C.; Leonard, M. Selective and precise photometric titration of metal ions with EDTA using masking agents. Part III. Determination of calcium, lead and zinc in mixtures using simple inorganic ions as masks. *Analyst* **1987**, *112*, 1731-1734.

2. Smith, R.M.; Martell, A.E. Inorganic Ligands. In Critical Stability Constants; Springer, Boston, MA, 1976.

3. Rabai, G.; Epstein, I. Equilibria and kinetics of the fast interaction between copper(II) and thiosulfate ions in aqueous solution. *Inorg. Chem.* **1992**, *31*, 3239-3242.

4. Senanayake, G. Role of copper(II), carbonate and sulphite in gold leaching and thiosulphate degradation by oxygenated alkaline non-ammoniacal solutions. *Miner. Eng.* **2005**, *18*, 409-426.

5. Black, S.B. The thermodynamic chemistry of the aqueous copper-ammonia thiosulfate system. Ph.D. Thesis, Mudoch University, 2006. https://researchrepository.murdoch.edu.au/id/eprint/336/2/02Whole.pdf (accessed 2022-10-09).

6. Abdel-Latif, M. Direct determination of zinc using dithizone in micellar solution. *Anal. Lett.* **1994**, *27*, 2341-2353.

7. Säbel, C.; Shepherd, J.; Siemann, S. A direct spectrophotometric method for the simultaneous determination of zinc and cobalt in metalloproteins using 4-(2-pyridylazo)resorcinol. *Anal. Biochem.* **2009**, *391*, 74–76.

8. Makino, T. A Sensitive, direct colorimetric assay of serum zinc using nitro-PAPS and microwell plates. *Clin. Chim. Acta* **1991**, *197*, 209–220.

9. Hayashibe, Y.; Takeya, M.; Sayama, Y. Direct Determination of Zinc in Human Serum by Flow-Injection Spectrophotometric Analysis. *Anal. Sci.* **1994**, *10*, 795-799.

10. Kilian, K.; Pyrzyńska, K. Spectrophotometric study of Cd(II), Pb(II), Hg(II) and Zn(II) complexes with 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin. *Talanta* **2003**, *60*, 669–678.

11. Benamor, M.; Belhamel, K.; Draa, M. Use of xylenol orange and cetylpyridinium chloride in rapid spectrophotometric determination of zinc in pharmaceutical products. *J. Pharm. Biomed. Anal.* **2000**, *23*, 1033–1038.

12. Säbel, C.; Neureuther, J.; Siemann, S. A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using zincon. *Anal. Biochem.* **2010**, *397*, 218–226.