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Abstract

In this paper, we present a methodology to achieve high-fidelity sim-
ulations of chemically reacting hypersonic flows and demonstrate our
numerical solver’s capabilities on a selection of configurations. The
numerical tools are developed based on previous in-house codes for
high-speed simulations with improvements in both numerical and phys-
ical modeling. Additionally, a modular, open-source library is coupled
with the flow solver for modeling real-gas effects in variable atmo-
spheric mixtures. Verification against literature is done for canoni-
cal flat-plate boundary layers with various choices for gas modeling,
with excellent agreement observed in all cases. The implementation
of an artificial-diffusivity shock-capturing numerical scheme is then
verified for supersonic shockwave–boundary-layer interaction (SBLI)

1

http://arxiv.org/abs/2210.05547v2


Springer Nature 2022 LATEX template

2 Computational tool for chemically reacting hypersonic flows

cases and the improved code’s capabilities are demonstrated for the
cases of hypersonic SBLI and a sonic jet injection in a hypersonic
crossflow, at higher enthalpy levels than those previously investigated.
The results show excellent agreement with previous observations in
the literature. The work presented in this paper demonstrates the
range of applications that can be investigated with this tool, high-
lights the need for accurate physicochemical modeling, and paves the
way for addressing increasingly more complex configurations and flows.

Keywords: hypersonics, boundary layers, reacting flow, chemistry,
shockwave–boundary-layer interaction

1 Introduction

Recent advances in the aerospace sector have pushed the limits of vehicle
design to far higher speeds and more extreme conditions than ever before. The
revival of interest for complex orbital and inter-planetary missions, and the
pursuit of commercial hypersonic flight, create the need for accurate and reli-
able atmospheric (re-)entry and hypersonic cruise vehicle design. Hypersonic
boundary layers have posed a significant research and engineering challenge
in this context, with fundamental research in hypersonic aerothermodynamics
becoming a necessity [3, 37, 66, 75].

The flow environment encountered near the walls of a vehicle or object
traveling at hypersonic speeds is an extremely complex problem, where the
interfaces between disciplines become unclear. The interplay between thermo-
dynamics, chemistry, and fluid mechanics creates an interdisciplinary problem
that needs to be tackled by accounting for a variety of interconnected phe-
nomena. Even in cases where each of these phenomena is well understood on
its own, their combination is not always easy to model, predict, and interpret,
as highlighted by a recent article [37] discussing these interactions for high-
enthalpy high-speed flows; interactions which had already been recognized
three decades earlier [24].

It is notoriously difficult and expensive to collect reliable experimental and
in-flight data for hypersonic flows [67]. Due to the cost and difficulty of reliable
experimental studies, accurate and reliable numerical simulations to character-
ize and predict the flow environment become even more indispensable. Typical
numerical codes and tools fail to describe the complex and intricate nature of
hypersonic flow, either due to unsuitable numerical techniques, or simply the
lack of models for the multiphysical aspects of the flow.

The need for accurate and robust numerical simulations of hypersonic
boundary layers has led researchers to the development of computational tools
that solve the governing equations in the hypersonic flow regime. Initially
focusing on the stability and transition of boundary layers, early investigations
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have tried to extend concepts from subsonic and supersonic flow to the hyper-
sonic regime for transition and instability evolution prediction [10, 38–40]. The
recent work at the von Karman Institute for Fluid Dynamics (VKI) has pro-
vided thorough investigations of the effects of chemistry [49, 51–53, 78, 79, 81]
and surface features, such as roughness, curvature [82, 83], and outgassing
[50, 51, 54, 62], on the stability of boundary layers, using linear and nonlin-
ear [49–54, 62, 78, 79, 81–83] stability analysis tools. An important outcome is
the conflicting results these authors have sometimes found, which indicate, as
they note, the immaturity of our understanding at this stage, concluding that
incorrect modeling of transport phenomena could be as inaccurate as neglect-
ing chemical activity altogether. Similar work has been conducted by the group
of Candler using linear stability theory (LST) [25, 27] and parabolized stabil-
ity equations (PSE) [26] for reacting flows, extending to shape optimization of
hypersonic bodies [28, 58].

The thermal and chemical non-equilibrium (TCNEQ) effects are a signif-
icant modeling challenge in hypersonic flow simulations. At such high-energy
gas states and given the extremely short time scales of hypersonic flows, there
is no guarantee that collisions are frequent enough for energy exchange and
chemical processes to reach equilibrium. Therefore, the composition and prop-
erties of the gases vary in space and time, following the relevant kinetics and
thermodynamics. This creates the need for far more sophisticated gas models
for the thermodynamic and transport properties of such gases. The significance
of finite-rate phenomena is summarized in a recent comprehensive review [4].
In the continuum regime, the Navier-Stokes equations still hold for hypersonic
reacting gases, with some necessary modifications for the gas properties and
the addition of extra equations to model the chemical reactions and track the
gas composition [29].

State-of-the-art tools for TCNEQ models have been developed to simulate
the time evolution of the governing equations. A variety of powerful tools
based on finite-volume techniques and multi-temperature (MT) models have
been developed based on the work of Candler and MacCormack [5], leading
to the numerical codes DPLR, using the data-parallel line relaxation (DPLR)
method [80], and US3D [6, 7]. Such codes can be used for extracting the base
flow for stability calculations or to simulate directly the nonlinear evolution
of the flow [73, 74]. Such direct numerical simulation (DNS) results reveal
the underlying mechanisms of transition and serve as benchmarks for lower-
fidelity prediction methods. More recent results have extended such simulations
further into the turbulent regime [11–13, 59, 60, 68]. Other approaches have
used high-order finite-difference large-eddy simulation (LES) and DNS solvers
for such studies [18, 21, 42–48]. Initial efforts have been made to include real-
gas effects and chemical non-equilibrium (CNEQ) modeling in the simulations
by these authors.

The objective of this work is to develop a versatile computational tool that
is able to accurately model hypersonic boundary layers including a number of
phenomena involved in realistic problems, such as finite-rate chemistry effects
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and shockwaves. For that, we extend a high-order finite-difference tool [56, 57]
to include finite-rate chemistry modeling and shockwaves, building on previous
work by Sayadi et al. [65] and Marxen et al. [48]. The real-gas and finite-
rate chemistry effects are included by coupling our numerical tool with the
Mutation++ library [69, 71], an open-source library developed by the VKI that
is able to accurately calculate the thermodynamic, transport, and chemical
kinetics properties of various high-enthalpy weakly-ionized gases. Verification
of our computational tools is performed against previous results, while some
new results are presented that showcase its capability to handle more complex
cases. This novel computational tool is capable of including a multitude of
physics that are very rarely dealt with simultaneously by numerical codes.

This paper is organized as follows. The fundamentals of hypersonic fluid
dynamics are presented in Section 2, including the governing equations and
basic modeling aspects. The numerical techniques employed are described in
Section 3. Code verification and validation, and new results for more complex
cases are discussed in Section 4. Finally, the main results are emphasized and
conclusions are drawn in Section 5.

2 Background theory

In the following, we describe the general equations governing the flow problems
discussed in this work. Our starting point is an overview of the conservation
equations, followed by a detailed discussion of the various terms and modeling
choices.

2.1 Governing conservation equations

The nondimensional Navier-Stokes equations for fluids that consist of a mix-
ture of species, S, are presented in Eqs. (1–4). Equation (1) is the continuity
equation, describing the global mass conservation in the system. Equation (2)
corresponds to the set of mass conservation equations for each species, with
the net production rate terms, ω̇s, appearing on the right-hand side. For non-
reacting gas mixtures, where the mixture composition can be considered either
constant or a direct function of the thermodynamic state, only the global
mass conservation, Eq. (1), is needed; the species mass conservation equations,
Eq. (2), are not necessary and can be omitted in this case. In order to ensure
global mass conservation, in the case of a finite-rate reacting mixture with a
varying composition, Eq. (1) needs to be solved together with Eq. (2) for all but
one species. The omitted species is selected based on numerical considerations,
commonly avoiding species with the smallest concentrations. Alternatively, all
the species mass conservation equations can be solved while Eq. (1) is relaxed.
For gases in thermal non-equilibrium (TNEQ), in which case different energy
levels are treated independently, additional energy conservation equations are
needed; these cases are not investigated in this work, since our attention is
focused on cases where CNEQ effects are dominant.
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∂ρ

∂t
+∇ · (ρu) = 0 (1)

{

∂ρs
∂t

+∇ · (ρsu+ ρsVs) = ω̇s

}

, ∀ s ∈ S (2)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · τ (3)

∂ρe0
∂t

+∇ · (ρh0u) = ∇ · (τ · u)−∇ · q (4)

The nondimensional quantities are time, t, density, ρ, velocity, u, pressure,
p, stress tensor, τ, total energy, e0, total enthalpy, h0, and heat flux, q, along
with the partial density, ρs, the net mass production rate, ω̇s, and the diffu-
sion velocity, Vs, for species s. More details regarding the derivation of the
equations and the validity of assumptions are provided in [1, 19, 29].

The governing equations, Eqs. (1–4), can be brought into the following
compact form, seen in Eqs. (5) and (6).

∂Q

∂t
= −∇ ·FC +∇ ·FD + S = F (Q) (5)

Q =
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(6)

As mentioned above, there are Ns conservation equations for the species,
so the total problem involves Ns+5 equations. However, only Ns−1 of the Ns

species conservation equations need to be solved. Therefore, the final problem
involves Ns + 4 scalar equations.

The nondimensionalization of the equations is done with the reference
parameters in Eq. (7), where T̃ ref = (γ̃∞ − 1)T̃∞ and the speed of sound is c.

ρ =
ρ̃

ρ̃∞
, p =

p̃

ρ̃∞c̃2∞
, T =

T̃

T̃ ref

, u =
ũ

c̃∞
, ρs =

ρ̃s
ρ̃∞

, Vs =
Ṽs

c̃∞

k =
k̃

k̃∞
, µ =

µ̃

µ̃∞

, e0 =
ẽ0

c̃2∞
, h0 =

h̃0

c̃2∞
, ω̇s =

˜̇ωs

ρ̃∞c̃∞/L̃ref

(7)

The definitions in Eq. (8) are used for the nondimensional total energy, e0,
internal enthalpy, h, and total enthalpy, h0, respectively.

e0 =
e

Ec
+

1

2
||u||2 , h = e+

p

ρ
, h0 = e0 +

p

ρ
, (8)
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where the nondimensional internal energy is denoted e. The stress tensor, τ,
and heat flux, q, are computed as in Eqs. (9) and (10), respectively.

τ =
µ

Re∞

(

∇u+ (∇u)T − (∇ · u) I
)

(9)

q = − k

Re∞Pr∞Ec∞
∇T +

∑

s∈S

ρshsVs (10)

The second term on the right-hand side of equation Eq. (10) is included only
in the case of finite-rate chemistry (see Section 2.2.1.1). The nondimensional
Reynolds number, Re∞, and Prandtl number, Pr∞, are defined in the free
stream at the domain inlet. The Eckert number, Ec∞, is also computed at the
free stream and is equal to one by design. These nondimensional quantities are
defined as

Re∞ =
ρ̃∞c̃∞L̃ref

µ̃∞

, P r∞ =
µ̃∞c̃p∞
k̃∞

, Ec∞ =
c̃2∞

c̃p∞T̃ ref

. (11)

The thermodynamic properties and equation of state, as well as the transport
properties and the chemical kinetics terms depend on the modeling choices
and are discussed in detail in the following Section 2.2.

2.2 Thermodynamic and chemical models

A variety of models with different levels of complexity are implemented in
the solver used in this work. In the following, we discuss the details of each
modeling approach and the implications of the underlying assumptions on the
closure of the governing equations.

2.2.1 Multi-component gas mixtures with variable
composition

In the general case, a reacting gas in a high-enthalpy flow is considered a
multi-component mixture that consists of a set of species S, interacting via
a defined network of reactions, as seen in Section 2.2.1.1. The variation of
the species fractions makes the chemical reaction and diffusion terms in the
governing equations significant, hence they need to be modeled using various
assumptions.

For a multi-component gas mixture, the global mixture properties are
derived from the species properties based on,

ρ =
∑

s∈S

ρs , e =
∑

s∈S

Yses , h =
∑

s∈S

Yshs , (12)
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where the species mass fraction is Ys =
ρ
s

ρ , with
∑

s∈S Ys = 1. The mixture’s
thermodynamic and transport properties depend, in general, on any two ther-
modynamic properties, for example the temperature and the pressure, which
define the thermodynamic state of the mixture, and on its composition. The
composition is generally an independent variable. It can potentially become
dependent on other thermodynamic quantities for the special cases seen in
Section 2.2.1.2.

The individual species properties are accurately computed using kinetic
theory and statistical mechanics [69, 70]. The thermochemical library Muta-
tion++ [71] is used to compute thermodynamic and transport properties at
different conditions.

2.2.1.1 Finite-rate chemistry and CNEQ

When finite-rate chemistry cannot be neglected, the species mass production
rate, ω̇s, and the species diffusion velocities, Vs, need to be modeled. These
terms are described in this section.

In a general case, a set of reactions, R, is considered depending on the
mixture in question. Each reaction, r is characterized by a reaction rate,
Rr, which is computed by the forward rate, kf r

, and the backward rate,
kbr. These, in turn, are obtained according to experimentally or theoreti-
cally calibrated Arrhenius formulas in the form kf r

= CrT
nr exp (T ar/T ), and

kbr = kf r/Keqr
(T ), where Keqr

is the reaction equilibrium constant at specific
conditions. This description is given in Eq. (13) for a generic reaction.

Reaction (r):
∑

s∈S

ν′r,sSs

kf r−−⇀↽−−
kbr

∑

s∈S

ν′′r,sSs (13)

The net reaction rate is then given by

Rr =

[

kf r
Πs

(

ρs
M s

)ν′

r,s

− kbrΠi

(

ρs
M s

)ν′′

r,s

]

·
∑

s∈S

(

Zr,s
ρs
M s

)

, (14)

where the species molar mass is M s and the efficiency of species s as a third-
body in reaction r is Zr,s. The net mass production rates for species s from all
reactions are obtained as

ω̇s = M s

∑

r∈R

(

ν′′r,s − ν′r,s
)

Rr. (15)

The reader is referred to the description provided in [69, 71], on which the
Mutation++ library is based, for further details.

The diffusion flux, Js = ρsVs appearing in Eq. (2) also needs to be modeled
in this case. Following the description in [46], and under the same assump-
tions, neglecting thermal and barodiffusion, the diffusion driving force for each
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species, ds, reduces to its molar fraction gradient,

ds = ∇Xs. (16)

In the general case, the diffusion velocity for each species s,Vs, is then the solu-
tion of the Stefan-Maxwell linear system of equations for a multi-component
mixture,

{

∑

i∈S

Qs,iVi = −ds

}

, ∀ s ∈ S (17)

where, Qs,i is the Stefan-Maxwell interaction coefficient for the pair of species
s and i.

While solving the system in Eq. (17) is the most accurate way to calculate
the diffusion fluxes in a multi-component gas mixture, simpler formulations
are found in the literature under the same assumptions [15, 63]. A simpler
expression based on Fick’s diffusion model (applicable to binary mixtures)
with a mass correction is given below in Eq. (18),

Js = −cM sDs∇Ys + cYs

∑

i∈S

M iDi∇Yi. (18)

Here, c =
∑

s∈S(ρs/M s) and Ds is the averaged diffusion coefficient for
species s, defined as

Ds =
1−Xs

∑

r 6=s Xr/Ds,r
. (19)

In lieu of solving a linear system of equations of size Ns, using this model,
the diffusion flux is computed from an algebraic equation, at a significantly
reduced computational cost. Both implementations are available in the solver
presented here, and the accuracy of the simplified approach is verified for
practical cases. The constraints seen in Eq. (20) have to be respected for the
kinetic and diffusive terms, hence

∑

s∈S

ω̇s = 0 ,
∑

s∈S

ρsVs = 0. (20)

The heat flux takes the original form shown in Eq. (10), where the thermal
conductivity is replaced by its frozen composition value. The diffusive heat flux
is then taken into account explicitly through the second term in that definition.
The remaining relevant thermodynamic and transport properties are given by
general relations that are implemented in the Mutation++ library.

2.2.1.2 Special cases: frozen and equilibrium flow

There exist two extreme cases for a multi-component mixture, where its
composition becomes irrelevant.

• Frozen composition, when the reaction time scale is too long compared to
the flow time scale, hence the composition of the flow is generally constant
in time.
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• Local thermodynamic equilibrium (LTE), when the reaction time scale
is short enough for the reactions to bring the mixture to a state of local
equilibrium, where the composition is identical to its equilibrium composi-
tion that can be computed from thermodynamic relations by maximizing
the system entropy or, equivalently, minimizing the Gibbs free energy.

In both cases of frozen composition and local thermodynamic equilib-
rium (LTE), the mixture composition becomes a dependent variable, directly
computed for a given thermodynamic state. Therefore, the species mass conser-
vation equations, Eq. (2), and the corresponding reaction and diffusion terms
are not needed. The heat flux takes the simplified form shown in Eq. (21),

q = − k

Re∞Pr∞Ec∞
∇T , (21)

where the thermal conductivity is computed at either frozen or LTE conditions.
In the latter case, the diffusive effect at equilibrium is included in its value.

In situations between these extremes, finite-rate chemistry needs to be
tracked as described in Section 2.2.1.1 and the mixture composition changes
in space and time.

2.2.2 Calorically and thermally perfect gases

When the gas is assumed to be calorically or thermally perfect, the compo-
sition becomes irrelevant. The chemical diffusion and reaction terms in the
governing equations vanish, and the thermodynamics and transport properties
become simple functions of the thermodynamic state of the gas, resulting in a
nondimensional equation of state given by

p = ρ
γ − 1

γEc∞
T . (22)

It should be noted that this formulation is valid in this form only for the
calorically perfect gas (CPG) and thermally perfect gas (TPG) models. In the
case of reacting mixtures with variable composition, the right hand side needs
to be scaled by a factor accounting for the change of gas constant and depends
on the composition.

In the case of a CPG, the thermodynamic properties, such as the specific
heat, are considered constant. The internal energy and enthalpy thus become
linear functions of temperature, in nondimensional form γ∞e = T , which is
derived from the dimensional form h̃ = c̃p∞T̃ . Nondimensionally, k = µ.

In the case of a TPG, the thermodynamic properties are generally functions
of temperature. Since the specific heat is now itself a function of temperature,
the internal energy and enthalpy become nonlinear functions of temperature.
The relations used are based on the work presented in [39, 45]. The specific
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heat is given as

c̃p

(

T̃
)

= c̃p
0



1 +
γ̃∞ − 1

γ̃∞

(

Θ̃

T̃

)2

eΘ̃/T̃

eΘ̃/T̃ − 1



 , (23)

where Θ̃ = 3055K and c̃p
0 such that c̃p

(

T̃∞

)

= c̃p∞. The transport proper-

ties (viscosity and thermal conductivity) can be constant or follow analytical
expressions as functions of temperature.

In both the CPG and TPG assumptions, the viscosity is computed using
Sutherland’s law,

µ̃
(

T̃
)

= C̃1

T̃
3/2

T̃ + T̃S

, (24)

where C̃1 = 1.458× 10−6 kgm−1s−1K−1/2 and T̃S = 110.4K.
In addition, in both cases the heat flux takes the simplified form seen in

Eq. (21) as the diffusive heat flux vanishes. In CPG, the equilibrium conduc-
tivity is assumed constant, k̃ = k̃∞, while k can be computed as in Eq. (7).
Whereas, in TPG, the equilibrium thermal conductivity is approximated by
Keyes’ law,

k̃
(

T̃
)

= C̃2

T̃
1/2

1 +
(

C̃3/T̃
)

10−C̃4/T̃
, (25)

with C̃2 = 2.646× 10−3Wm−1K−3/2, C̃3 = 245.4K, C̃4 = 12K.

3 Numerical framework

The following section outlines the numerical framework of the Navier-Stokes
solver and the implementation of the models described so far.

3.1 Discretization in space and time

The computational tools developed are based on the original Navier-Stokes
solver developed by Nagarajan [56, 57]. The code has been applied to DNS
and LES studies of flat-plate boundary layers in the subsonic [65] and the
supersonic [45–48] regime.

Space discretization is done using fourth-order or sixth-order compact finite
differences [36]. The governing equations are formulated in curvilinear coordi-
nates and solved on a staggered grid, as seen in Fig. 1. A detailed discussion
of the curvilinear transformation is found in [56].

Time discretization is done using explicit third-order or fourth-order
Runge-Kutta schemes. Specifically, the low-memory two-register RK3 scheme,
the three-register total variation diminishing (TVD) RK3 and RK4 [8, 35] are
implemented.
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x

y

τ node

ρ node

ρu node

ρv node

Fig. 1: Schematic of a staggered grid in two dimensions. The cell-centered
ρ nodes are where scalar variables are stored and computed, while the inter-
face nodes ρu and ρv are where the streamwise and wall-normal velocities,
fluxes, and gradients are stored and computed. The τ nodes are the grid nodes
where the grid is generated, and where the solution is interpolated for post-
processing and presentation. Extension to three dimensions is trivial, with
an additional ρw node at the interface in the page-normal direction, for the
spanwise velocities, fluxes, and gradients.

3.2 Boundary conditions

A general sketch of the domain of interest is presented in Fig. 2. A reference
solution (typically, a self-similar boundary layer) is prescribed in the sponge
regions, and the time-advanced solution is forced towards that reference by
incorporating damping source terms in the right-hand side of the equations,
as seen in Eq. (26).

∂Q

∂t
= F (Q)− σ (x) (Q−Qref) (26)

The sponge parameter σ (x) is a smooth third-order polynomial function of
space, vanishing inside the domain and reaching a high value near the bound-
aries which is selected empirically. The sponge can be completely omitted
at the inflow in cases where it is not necessary, such as hypersonic flow
where upstream-traveling disturbances are minimal. Flow perturbations are
also forced to vanish inside the sponge regions. The wall boundary is either
adiabatic or isothermal, while no slip and no catalysis is permitted for the
reacting cases. Other boundary conditions, such as blowing and suction at the
wall, isolated roughness geometries, or jet injections, are also implemented and
available.

3.3 Shock-capturing scheme

In the presence of shocks and discontinuities special treatment is necessary. Out
of the variety of approaches that exist, we opted for a numerical scheme based
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Sponge regions

x

y

Wall

Inflow

Unperturbed free-stream

OutflowBoundary-layer edge

Fig. 2: Schematic of a generic computational domain. Inflow and outflow can
be enforced with reference solutions. The same approach is used at the free-
stream. The wall is non-catalytic, either isothermal or adiabatic. A variety of
forced boundary conditions can be applied locally on the wall.

on artificial molecular and bulk viscosity. This scheme has previously been
implemented and verified for shock capturing in hypersonic flow simulations.
Further details can be found in [16, 32, 34, 41].

3.4 Coupling with the Mutation++ library

The thermodynamic and transport properties, and the source terms for chem-
ical kinetics models, are extracted from the Mutation++ library [71]. The
library, written in C++, is coupled with the solver, written in Fortran 95, using
a wrapper interface that facilitates the library function calls by implementing
them as functions and subroutines in the solver. An on-the-fly communica-
tion between the solver and the library is necessary, with constant evaluation
of the thermochemical and transport properties at each grid point, given the
local state vector. Quantities are therefore exchanged between the solver and
the library for each grid point, at each time step. These function evaluation
calls add a significant computational overhead to the solver, since each state
evaluation involves the iterative solution of nonlinear equations. Concepts and
techniques that would accelerate these evaluations are investigated as part of
ongoing work. The library offers valuable modularity, decoupling the thermo-
chemical model from the core of the solver, and offering multiple capabilities
to change gas mixtures, databases, and models.

3.4.1 Comparison between perfect-gas and real-gas models

Benchmark simulations have been run to compare the accuracy and computa-
tional cost of the various thermochemical models implemented in the solver.
The flexibility and extended validity of the use of Mutation++ comes with a
large computational cost. The total simulation time is increased by more than
one order of magnitude when using the CNEQ model compared to the CPG
model, and by a factor of about five compared to the TPG model. A reduction
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of about 40% in computational cost can be achieved using an algebraic diffu-
sion model, as discussed in Section 2.2.1.1, compared to the Stefan-Maxwell
diffusion model, with minimal impact on the accuracy for the cases investigated
in this work.

4 Results

In this section, a set of cases are investigated in order to verify the methodology
presented so far and to investigate the effect of gas model selection on the
resulting flow in different configurations. These cases include adiabatic and
isothermalMa = 10 laminar boundary layers, forced with Tollmien-Schlichting
waves (see Table 1), laminar shockwave–boundary-layer interaction (SBLI) at
Ma = 2 and Ma = 5.92, and a jet in hypersonic crossflow at Ma = 5.

4.1 Hypersonic flat-plate boundary layers

A set of two hypersonic boundary layers in Earth’s atmosphere at Ma = 10,
based on Marxen et al. [46, 48], are considered here to verify the implemen-
tation of the numerical method presented in Section 3. First, the steady state
solution and then the growth rate of forced Tollmien-Schlichting instabilities
inside the two-dimensional boundary layer are compared. The main config-
urations considered are: (i) case I (isothermal), and (ii) case A (adiabatic),
referring to the boundary condition imposed on the wall. The setup parame-
ters and freestream conditions for both cases are presented in Table 1, where
ω and A are related to the forced perturbation and explained in Section 4.1.1.

Isothermal Case (I) Adiabatic Case (A)
Ma∞ 10.0
Re∞ 105

T̃∞[K] 278 350
p̃
∞
[Pa] 4135 3596

Twall/T̃∞ 4.31 -
ω 45 34

A/Ma∞ 10−3

Table 1: Thermodynamic and freestream conditions for the Ma = 10
hypersonic boundary layers investigated in this study (adapted from [46]).

The computational domain considered here has a finer resolution than in
the previous studies. The nondimensional grid size in the streamwise direction
is ∆x = 0.075, simulating a domain from x0 = 14.0 to x1 = 86.0 using 960 grid
points. The sponge regions extend for 5 and 15 nondimensional units at the
inflow and outflow, respectively. In the wall-normal direction, 211 grid points
are used, clustered near the wall using Eq. (27), with the last 26 points in the
free stream used in the sponge region. Table 2 summarizes the details of the
computational domain as well as the resulting resolution.
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y(m) = y0+(y1−y0)

(

(1− κy)

(

m− 1

NY − 1

)3

+ κy

(

m− 1

NY − 1

)

)

, m ∈ [1, NY ]

(27)

Case x0 x1 y0 y1 κx κy Nx Ny

Case A 14.0 86.0 0 1.6 1.0 0.15 960 211
Case I 14.0 86.0 0 1.6 1.0 0.15 960 211

Table 2: Mesh configuration for the hypersonic boundary layer simulations

All three thermochemical models are systematically tested on both cases.
The CNEQ model uses a 5-component air mixture composed of N2,O2,N,O,
and NO.

4.1.1 Disturbance forcing

Tollmien-Schlichting waves are harmonically forced on the converged steady-
state solution of the unforced equations using blowing and suction on a strip
extending from x = 19.3 to x = 20.7. For case A, the wall condition is
switched to isothermal for the perturbations, assuming only small deviations
from the steady-state temperature. The disturbance has a nondimensional
forcing frequency ω given in Eq. (28).

ω = FMa2∞Re∞, with F = 2πf̃
µ̃∞

ρ̃∞ũ2
∞

(28)

Here f̃ is the dimensional frequency of the disturbance. The forcing ampli-
tude is small enough to ensure that the disturbance evolution is linear, i.e.
A = 10−3Ma∞.

The simulation is advanced until transient effects are advected out of the
domain and a time-periodic state is achieved. Flow snapshots are collected
over two forcing periods and the Fourier transformation is applied, giving a
complex Fourier coefficient φ̂j for a given harmonic j and a given quantity
φ ∈ [ρ, u, v, w, T , . . .]. Only the results for the first harmonic are presented in
Section 4.1.2 and Section 4.1.3. The streamwise disturbance amplification is
computed using the wall-normal maxima of the amplitudes of the disturbance
quantity φ̂1,

φ̂max
1 (x) = max

y
(|φ̂1(x, y)|) (29)

and the normalized growth rate αi,1 is computed as follows, for example for
the wall-normal velocity, i.e for φ = v, it is

αi,1(x) =
1

v̂max
1

∂v̂max
1

∂x

Rex
Re∞

. (30)
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In all the above, sponge regions are not considered in the calculations. In
the following analysis, the streamwise varying Reynolds number is defined as
Rex =

√
xRe∞Ma∞.

4.1.2 Isothermal wall – Case I

The mean streamwise velocity and temperature profiles at a streamwise
Reynolds number location Rex = 2000 for case I are presented in Fig. 3, com-
pared with the results of Marxen et al. [46], where only the TPG model was
investigated. This figure shows both TPG profiles to be in perfect agreement
as expected. In addition, both the LTE and CNEQ models show only minor
differences compared to the TPG solution. This is expected as the isothermal
condition induces a maximum temperature of Tmax ≈ 1740K in the bound-
ary layer. Below 2000K air chemistry is known to be mostly irrelevant [1] with
almost negligible dissociation. Hence, the thermally perfect gas assumption
holds reasonably well, resulting in similar behavior regardless of the model
selected.
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Fig. 3: (a) Streamwise velocity, u, and (b) temperature, T , profiles in the
boundary layer for case I at Rex = 2000. Current results (solid lines) are
compared to Marxen et al. [46] (dotted lines with symbols) for different gas
models: TPG (black), LTE (blue), CNEQ (red).

In Fig. 4 we see the baseflow solution for the streamwise velocity, in Fig. 4a,
and a snapshot of the evolution of the forced perturbation, in Fig. 4b. Finally,
Fig. 4c shows the growth rate αi of the Tollmien-Schlichting waves in this
case. While some differences are observed upstream, perfect agreement is found
downstream with the results of Marxen et al. [46] for the TPG model. The cur-
rent simulations are better resolved than those of Marxen et al. [46], and the
improved resolution has been found to explain the more accurate prediction
and the disappearance of small oscillations upstream. Interestingly, despite the
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CNEQ baseflow being almost identical to that of the TPG model, the instabil-
ity grows earlier in the boundary layer and to a higher amplitude compared to
the case modeled using a TPG assumption. Thus, finite-rate chemistry alters
the growth and decay of the perturbations directly, even though it has a neg-
ligible effect in the baseflow solution, potentially altering the stability and
transition behavior without an obvious effect on the baseflow.
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Fig. 4: (a) Mean streamwise velocity field, u, and (b) wall-normal perturbation
velocity field, v′, for case I. (c) Streamwise growth rate, αi, of the linear pertur-
bation in the isothermal boundary layer with respect to Rex. Current results
(solid lines) are compared to Marxen et al. [46] (dotted lines with symbols) for
different gas models: TPG (black), CNEQ (red).

4.1.3 Adiabatic wall – Case A

In the adiabatic case, a higher freestream temperature is imposed by design
to promote CNEQ effects.
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The mean flow and temperature profiles at a streamwise Reynolds number
location Rex = 2000 are presented in Fig. 5 and compared to the results of
Marxen et al. [46]. Similar to the isothermal case, practically perfect agreement
is found for all models compared to the previous results. However, in this
case the baseflows differ significantly depending on the model used for the
gas. Wall temperature decreases significantly from a frozen-chemistry (fixed-
composition) assumption to a CNEQ model to an LTE model. These results
indicate that the CNEQ effects in the flow are significant in this case and need
to be accounted for to achieve accurate baseflow predictions.
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Fig. 5: (a) Streamwise velocity, u, and (b) temperature, T , profiles in the
boundary layer for case A at Rex = 2000. Current results (solid lines) are
compared to Marxen et al. [46] (dotted lines with symbols) for different gas
models: TPG (black), LTE (blue), CNEQ (red), frozen chemistry (green). (c)
Species mass fractions at Rex = 2000. From left to right : N , NO, O, O2, N2.
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Due to the near-wall temperature approaching Twall ≈ 4900K near the
inflow, N2 and O2 rapidly start to dissociate to N,O,NO through endother-
mic chemical reactions. This is illustrated in Fig. 5c, presenting all the mass
fraction profiles at the streamwise location where Rex = 2000. Close to the
wall, O2 mass fraction decreases while O and NO are produced. To a smaller
extend, N is also created through N2 dissociation. Moreover, the dissociated
species concentrations (O,NO,N) build up as the species are also convected
downstream while continuously being produced. Consequently, the wall tem-
perature decreases progressively along the streamwise direction due to cooling
by endothermic dissociation.

In Fig. 6 we see the baseflow solution for the streamwise velocity, in Fig. 6a,
and a snapshot of the evolution of the forced perturbation, in Fig. 6b. Figure 6c
shows the corresponding growth-rates in the adiabatic case. Correct agreement
is found for the CNEQ model up to Rex = 1950. Downstream, the computed
growth rate differs slightly from the previous results but the overall trend is
similar. This difference is explained by the evolution of the thermodynamic
and kinetics models used in the corresponding libraries. The growth rate in
the TPG model is however noticeably different compared to the cases using
the CNEQ model, highlighting the inadequacy of such models in high-enthalpy
cases.

In order to confirm the reduction in CPU time using Ramshaw’s sim-
plified algebraic diffusion model (see Section 2.2.1.1), with negligible impact
on the accuracy of the results, the base flow and growth rates of Tollmien-
Schlichting waves for case A are computed using equation Eq. (18). Base flows
are practically identical in terms of all relevant variables. Similarly, as shown
in Fig. 6c, the growth rate is in almost perfect agreement with that computed
using the Stefan-Maxwell model. A slight discrepancy is observed, which can
be attributed to small changes in the diffusion fluxes. Therefore, Eq. (18) is
a good compromise between performance and physical accuracy. The same
model was also used in various numerical studies of hypersonic boundary layer
with finite-rate chemistry [11–13, 59].

4.2 2D shockwave–boundary-layer interaction

Supersonic and hypersonic flows over complex geometries usually present
SBLI. The large pressure gradient induced by the impinging shock may cause
separation of the boundary layer with the occurrence of a recirculation bub-
ble. This bubble can in turn change the stability characteristics of the flow on
the vehicle surface. In the following section, we first validate the capability of
the code to accurately simulate SBLI against a benchmark shockwave lami-
nar boundary layer experiment. Then, a higher Mach number case is designed,
based on [23], with a high freestream temperature, to directly assess the effect
of finite-rate chemistry compared to a perfect gas assumption.



Springer Nature 2022 LATEX template

Computational tool for chemically reacting hypersonic flows 19

20 40 60

x

0.0

0.5

1.0
y

-0.000
0.250
0.500
0.750
1.000

(a)

20 40 60

x

0.0

0.5

1.0

y

-0.001
-0.001
0.000
0.001
0.001

(b)

1600 1800 2000 2200
 Rex

−0.15

0.00

0.15

 α
i

(c)

Fig. 6: (a) Mean streamwise velocity field, u, and (b) wall-normal perturbation
velocity field, v′, for case A. (c) Streamwise growth rate, αi, of the linear per-
turbation in the adiabatic boundary layer with respect to Rex. Current results
(solid lines) are compared to Marxen et al. [46] (dotted lines with symbols)
for different gas models: TPG (black), CNEQ with the Stefan-Maxwell multi-
component diffusion model (red), CNEQ with Ramshaw’s simplified diffusion
model (green).

SBLI Case x0 − x1 y0 − y1 κx κy Nx Ny

Ma∞ = 2.0 0.30− 1.55 0.0− 0.35 1.0 0.15 960 501
Ma∞ = 5.92 19.0 − 254.0 0.0− 36.0 1.0 0.15 960 450

Table 3: Mesh configuration for the two SBLI cases investigated.

4.2.1 2D SBLI at Ma = 2

The capability of the solver to correctly simulate compressible flows including
shocks is verified using a benchmark SBLI case, first investigated experimen-
tally by Hakkinen et al. [22] and later numerically in several studies [31, 55].
In this case, a laminar Ma∞ = 2 boundary layer over an adiabatic plate is
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separated by an impinging shock with a shock angle of θ ≈ 32°. The Reynolds
number based on the impinging location of the shock is Rex0

= 3·105. All other
flow conditions match the simulation by Katzer [31]. In the top-sponge opposite
of the wall, Rankine-Hugoniot oblique shock relations are used to propagate
the oblique shock downward, progressively introducing the discontinuity into
the domain.

The grid used in that case is finer than in the previous studies, using
respectively 960 and 501 points in the streamwise and wall-normal directions.
All grid parameters are specified in Table 3.

Figure 7 shows the density field after convergence of the residuals to
machine-precision. All relevant flow features of the SBLI are present: the recir-
culation bubble, the separation shock, the expansion fan, and the reflected
shock. The results compare well to those of [55]. Figure 8 presents the skin fric-
tion coefficient and wall pressure along the wall. These match previous results
almost perfectly.
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Fig. 7: Density contour for the Ma∞ = 2 laminar SBLI case. The impinging
and reflected shockwaves are visible, as well as the recirculation bubble and
other relevant flow features.

4.2.2 2D SBLI at Ma = 5.92

Furumoto et al. [17] studied the real-gas effects on a steady oblique SBLI at
Ma = 7. The high enthalpy at the freestream leads to Oxygen and Nitrogen
dissociation and reduction of the size of the recirculation region as well as peak
heating on the surface due to the endothermic real-gas effects. However, Furu-
moto et al. note that the thermochemical model used was rather simplistic.
More recently, Volpiani [77] studied an oblique SBLI at Ma = 6 in chemi-
cal non-equilibrium with both laminar and turbulent inflow boundary layers.
These results highlight the same trend, with a smaller recirculation bubble
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Fig. 8: Verification of the Ma∞ = 2 laminar SBLI case against literature. (a)
Skin friction coefficient and (b) normalized wall pressure streamwise distribu-
tions. The impinging shock location is marked with x0, and coincides with the
location of zero on the x-axis. Current results (solid black line) are compared
to Morgan et al. [55] (dashed lines with symbols).

and higher skin-friction at the wall when thermochemistry is considered in the
model. However, the thermochemical model was again simplistic compared to
the one included in Mutation++.
In this section, we propose to study the effects of finite-rate chemistry on a
steady SBLI at Ma = 5.92. A similar case was studied numerically in [23]
where the authors used freestream cryogenic conditions of the ACE Hyper-
sonic Wind Tunnel facility at Texas A&M University [72]. In this work, the
freestream Mach number and Reynolds number at impinging location Rex0

were kept the same as in [23], while the freestream pressure and temperature
have been increased to match the post-shock conditions of a 15°wedge fly-
ing at Ma = 14 at an altitude of 25 kilometers to promote real-gas effects.
The computational domain is a rectangle of size 256 × 36 reference length
units. The reference length is computed from the inflow Reynolds number
Reδ∗ = 9660 of the original study [23], with the updated freestream conditions,
p̃∞ = 60 967.0Pa and T̃∞ = 1110.5K, resulting in a similar impinging loca-
tion and corresponding Reynolds number, Rex0

= 1.15 ·106. A total of 960 grid
points are used in the streamwise direction and 450 in the wall-normal direc-
tion, clustered near the wall using Eq. (27). The mesh configuration is specified
in Table 3. For this case, both the TPG and CNEQ models are investigated.

The skin friction coefficient and wall pressure for both the TPG and CNEQ
models are presented in Fig. 9. The length of the separation bubble is smaller
when considering CNEQ effects, in agreement with literature. This is expected
with the high concentration of dissociated species in the bubble as seen in
Fig. 9c. Just upstream of the reattachment location, the flow exhibits higher
skin-friction and wall pressure in the CNEQ case before converging to the same
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value as the TPG case after reattachment. These trends are in agreement with
the results in [77].

25 75 125 175 225
x/δ ∗0

−2

−1

0

1

10
5
×
C
f

(a)

25 75 125 175 225
x/δ ∗0

0

1

2

3

4

p
/
p
∞

(b)

25 75 125 175 225
x/δ ∗

0

10-4

10-3

10-2

10-1

Y
s

(c)

Fig. 9: (a) Skin-friction coefficient and (b) normalized wall pressure stream-
wise distribution for the Ma∞ = 5.92 SBLI. Comparison of TPG (black lines)
and CNEQ (red lines) results. (c) Mass fraction distributions at the wall for
the SBLI in CNEQ. From top to bottom : N2, O2, O, NO, N .

4.3 Jet in hypersonic crossflow

Normal jet injection into a high-speed crossflow is another canonical flow con-
figuration relevant to a wide range of applications in hypersonic flight. For
example, proposed designs of scramjet engines use sonic under-expanded jet
injection into a supersonic crossflow to enhance fuel and oxidizer mixing and
sustain supersonic combustion. One can also use jet injection into a superson-
ic/hypersonic crossflow as a reaction control system (RCS) for aerodynamic
maneuvering during atmospheric flight [20]. The jet in supersonic crossflow has
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also been the subject of a wide range of experimental [2, 14, 64] and numerical
studies [9, 33, 61]. The results presented in this section are two-dimensional.
Thus, some similarity can be found with the interaction of hypersonic flow
over an axisymmetric double cone [76].

The nondimensional parameter that governs the development of flow
features is the jet to crossflow momentum ratio J [30], given as,

J =
ρjU

2
j

ρ∞U2
∞

.

A case is designed by considering a 15° wedge flying at Ma = 9 at an alti-
tude of 25 kilometers. This configuration results in a Ma = 5 boundary layer
past the nose shock. A self-similar solution with freestream values assigned
to post-shock conditions and an adiabatic wall results in Twall ≈ 4000 Kelvin
(K). This temperature is sufficiently hot to observe intensified dissociation of
O2 into atomic Oxygen and thus can result in a flow in CNEQ. For this case,
the CNEQ and TPG models are considered. The freestream and jet thermo-
dynamic conditions are summarized in Table 4. The computational domain
is a rectangle of size 32.5D × 10D where D̃ = 2mm is the jet slot width.
In the streamwise direction, the inflow starts at x0 = 38.5 and the injection
zone is around x = 52.5. The inflow and outflow sponges extend for 1 and 2
jet widths, respectively. In the wall-normal direction, grid points are clustered
near the wall using Eq. (27), and the last 20 points are used for the sponge.
The discretization for this case is specified in Table 5. The simulation is first
initialized with an adiabatic condition and the resulting wall temperature is
held constant after the jet injection is enforced.

Freestream Jet

Ma∞ p̃
∞
[Pa] T̃∞[K] ReD Majet p̃jet/p̃∞ T̃ jet/T̃∞ J

5 49800 947 25291 1.0 10.0 1.0 0.4

Table 4: Thermodynamic conditions for the 2D jet in hypersonic crossflow.

Case x0 − x1 y0 − y1 κx κy Nx Ny

JISC 38.5− 71.0 0.0− 10.0 1.0 0.15 1625 500

Table 5: Mesh configuration for the jet in hypersonic crossflow simulation.

Figure 10a shows a numerical Schlieren image (contours of the density
gradient norm) for the jet in crossflow simulation in CNEQ. A number of char-
acteristic flow features are observed. The incoming laminar boundary layer
encounters separation upstream of the injection zone, induced by the sepa-
ration shock created by the upstream unsteady recirculation bubble. A large
bow-shock forms in the freestream that diverts the flow. Moreover, a shear
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Fig. 10: Instantaneous (a) numerical Schlieren and (b) atomic Oxygen mass
fraction fields for the sonic jet in Ma∞ = 5 hypersonic crossflow. Jet location
is at x = 52.5. Configuration parameters may be found in Table 4 and Table 5.

layer emanates from the jet shock structures and the flow past the bow shock
induces vortex shedding. This results in a strong coupling between the shock
structures, the recirculation bubble, and the shear layer downstream of the
injection zone. The structure observed and these interactions are thus similar
to those observed for a Ma = 16 axisymmetric shock-dominated hypersonic
laminar separated flow over a double cone studied by Tumuklu et al. [76]. In
their study, a supersonic underexpanded jet is generated through an Edney
type IV pattern in the shock-laminar separation bubble. The jet is inherently
unsteady and becomes the root of the SBLI instability.

Areas of high concentration of O are observed inside the recirculation bub-
ble in Fig. 10b. In this high-temperature region, atomic Oxygen is produced
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Fig. 11: Instantaneous streamwise distribution of wall pressure for the sonic
jet in Ma∞ = 5 crossflow simulation. Comparison of TPG (black lines) and
CNEQ (red lines) results.

through the endothermic O2 dissociation. This reaction absorbs energy from
the flow and reduces the size of the recirculation bubble by 10% compared to
the TPG simulation Fig. 11. This observation holds for the duration of the
instantaneous snapshots considered and is similar to the trend observed in the
steady Ma = 5.92 SBLI comparison between the TPG and CNEQ models.
When CNEQ effects are considered, the adiabatic wall temperature decreases
due to endothermic reactions (by about 250K at the wall) and the boundary
layer becomes slightly thicker. The induced cooling effect near the wall leads
to a smaller recirculation bubble, and a weaker bow shock. Future work will
further analyze the effects of the finite-rate chemistry on the flow field com-
pared to the TPG thermodynamic model, as well as potential changes in the
instability characteristics of the flow field in a more realistic 3D configuration.

5 Conclusions

The major challenges posed by the need for space exploration and faster and
higher air travel have undoubtedly reinvigorated research interest in applica-
tions of hypersonic flow. At such high speed and high enthalpy regimes such as
the those encountered during atmospheric (re-)entry or sustained hypersonic
cruise, gases do not behave in ways that are predicted by the typical mod-
els of computational fluid dynamics (CFD) solvers, and improved models are
necessary. In addition, the complex flow scenario results in a large number of
phenomena that interact in often non-trivial manners.

In this work, we have presented a computational tool that can accurately
simulate flows at hypersonic speed, including high-enthalpy gas effects in the
presence of weak and strong shockwaves. We summarize some important mile-
stones in that direction toward our research objective, having verified our
numerical tools and tested their application to more complex and physically
relevant configurations. The agreement of the presented results is excellent, in
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particular in cases where chemistry and shockwaves significantly interact with
the flow and physics.

Extensive code verification has been completed, against previous results for
reacting boundary layers, SBLI cases, and complex jet injections in high-speed
crossflow. The applications have been extended in novel, higher-enthalpy cases
where the potential effects of gas thermochemistry are pronounced.

There are a number of directions in which there is significant potential
for improvement and extension of the tools’ capabilities. First, there are even
more accurate options for gas modeling, including state-to-state transitions
and taking into account chemistry at the wall (catalicity). Second, there is great
interest in extending our results for different gas mixtures, representing atmo-
spheric compositions of celestial objects interesting for space exploration, or for
more complex geometry configurations. Third, on the algorithmic side, there
are methodologies that can complement, or in some cases even replace, the
computationally expensive tasks of the thermochemical model library, using
tools from the fields of machine-learning and reduced-order modeling.
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