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Structure of visual biases 

revealed by individual differences 
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Multiple studies have shown that certain visual stimuli are perceived in 

accordance with strong biases that are both robust within individuals and highly 

variable from one individual to the next. These biases undergo small changes 

over time that demonstrate that they constitute latent states of the visual 

system. The literature to date indicates that the individual biases for different 

stimulus classes are independent of each other. Here we asked whether some of 

these biases are nonetheless related to one another. We measured individual 

biases for five classes of stimuli in 1000 participants. The stimuli were two 

different versions of two-dimensional apparent motion, smooth motion in Glass 

patterns, and two different structure-from-motion stimuli. There were 

pronounced individual biases in all stimuli, and these biases varied in direction 

and strength across individuals. Some biases were not independent: the two 

biases for apparent motion direction were most strongly correlated, and they 

were both correlated, but less strongly, to the bias direction for smooth motion. 

While all other pairs of biases had unrelated directions, the strengths of all 

biases were correlated. The correlation of bias strengths may be due to either a 

common factor across the stimulus types, or an attentional effect. Only a tiny 

fraction of the between-participant variance can be explained by age and gender. 

These results show that latent states of the visual system that we measure as 

individual biases are organized in a structured way, and call out for further study 

of this under-explored aspect of visual perception. 

Keywords: vision, perceptual bias, individual differences, motion perception, 

ambiguous motion 

Introduction 

Recently it has become clear that the appearance of many supra-threshold visual stimuli is highly 

observer-dependent, as revealed both by formal experiments (Afraz et al., 2010; Boeykens et al., 2019; 

Carter & Cavanagh, 2007; Cretenoud et al., 2021; Drissi-Daoudi et al., 2020; Finlayson et al., 2020; 

Goutcher, 2016; Greenwood et al., 2017; Grzeczkowski et al., 2017; Houlsby et al., 2013; Hwang & 

Schütz, 2020; Kosovicheva & Whitney, 2017; Mamassian & Wallace, 2010; Moutsiana et al., 2016; 

Schütz, 2014; Schütz & Mamassian, 2016; Schwarzkopf et al., 2011; Schwarzkopf & Rees, 2013; Wang 

et al., 2020; Wexler, 2018; Wexler et al., 2015; Witzel et al., 2017) as well as by popular phenomena such 

as #TheDress and #TheShoe. Similar idiosyncratic phenomena exist in auditory perception (Deutsch, 

1986; Pressnitzer et al., 2018), in temporal processing (Grabot & Kayser, 2020; Grabot & van 

Wassenhove, 2017), or in motor control (Schütz, 2014; Lebovich et al., 2019). Robust idiosyncratic 

effects seem to occur nearly everywhere we look for them. Individual differences are often described in 
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terms of perceptual biases where the same physical stimulus is consistently perceived by each 

individual, but in different ways by different individuals. 

 

Are individual differences in perception permanent, or can they change over time? The answer to this 

question depends on their neural substrate, which can be more permanent or transitory. On the most 

permanent end of the spectrum, individual differences could be due to interindividual variations in 

brain anatomy such as differences in size or structure of cortical areas (Llera et al., 2019). Anatomical 

variations have been associated with some idiosyncratic perceptual effects (Moutsiana et al., 2016; 

Schwarzkopf et al., 2011; Schwarzkopf & Rees, 2013). Less permanent are interindividual differences 

in brain connectivity (Finn et al., 2015), which may undergo long-term changes due to learning and 

perceptual experience. Connectivity differences have been tied to interindividual perceptual differences 

(Genç et al., 2011). Finally, the brain, as a complex system, can obviously be in one of many transitory 

states (Bassett & Gazzaniga, 2011; Sporns, 2010; Lebovich et al., 2019; Turkheimer et al., 2021), as 

manifested through spiking patterns on single-neuron or population levels, or through synaptic 

weights. Although not as commonly evoked as the more permanent factors, interindividual differences 

in transitory brain states may also underlie interindividual differences in perception. Obviously, the 

more transitory the neural substrate, the more individual perceptual factors or biases can change over 

time. 

 

Past studies that have measured individual biases in a few sessions over time have noted that biases 

generally seem stable (e.g., Carter & Cavanagh, 2007; Drissi-Daoudi et al., 2020). In our own previous 

work, we have shown that idiosyncratic differences—while remaining quite stable in many cases—do 

undergo change, and aspects of this change are systematic. Using large datasets with measurements on 

time scales ranging from seconds to months, we have shown that idiosyncratic perceptual biases 

undergo changes that obey certain regularities. For example, idiosyncratic biases can be momentarily 

deviated from their stable values, but tend to ‘decay’ or return to their original values over several tens 

of seconds (Wexler et al., 2015). When measured over time scales of hours (Wexler, 2018) or months 

(Wexler et al., 2015), idiosyncratic biases tend to undergo random walks or drifts. More important than 

the concrete dynamics is the fact the biases preserve state: they do not assume new, independent values 

every time they are measured. Instead, when they evolve, their new values tend to ‘remember’ past 

values, while adding small changes to these past values. Thus, at least certain kinds of idiosyncratic 

perceptual phenomena, which we measure and quantify as perceptual biases, do undergo change, with 

dynamics that are stateful, i.e., remembering their past values. These observations imply that at least 

some idiosyncratic perceptual phenomena are not due to permanent differences between observers’ 

brains, but to more transitory differences in connectivity, or differences in the state of neural activations 

and synaptic weights. 

 

Therefore idiosyncratic biases can be thought of as internal states of the brain, or memories. This leads 

us to ask an obvious question: how many of these internal states or memories exist? In our past work 

(Wexler et al., 2015) we studied two families of stimuli, which we called SFM (structure-from-motion) 

and TFM (transparency-from-motion). For each of the two families of stimuli, we measured an 

idiosyncratic bias, which was a two-dimensional vector. Measuring these two vectors in a large sample 

of observers, we found no correlation between them. In our other past work, we similarly found no 

correlations between idiosyncratic biases in transparency-from-motion and binocular rivalry (Hwang 

& Schütz, 2020) or between different motor responses to the same stimuli (Schütz, 2014). Thus, at least 

for these cases, it seems that there is an independent bias for each type of stimulus. In the present study, 

we ask whether there is an independent bias or internal state for every type of stimulus (and if so, what 

constitutes a stimulus type). If not, can we find stimuli whose biases are related? 
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In the current study we showed five types of stimuli to a large number (1000) of participants. 

Participants showed idiosyncratic differences in the perception of these stimuli, which we quantified 

by calculating a bias for each of the five stimulus types. All five biases were two-dimensional vectors. 

We computed between-participant correlations between these vectors in order to check if any of the 

biases were related to each other. In fact, we measured each of the biases twice, which allowed us to 

compare between-stimulus correlations to within-stimulus ones. 

Methods 

Participants 

Participants were recruited using the crowdsourcing platform Prolific.co, where they had previously 

signed up to participate in internet-based studies. All demographic data was self-reported and gathered 

on the crowdsourcing platform prior to signing up for our study. Participants were required to have 

reported being fluent in English, and to have no mental health conditions that are uncontrolled by 

medication and that impact their daily lives. Participants were also required to have a desktop or laptop 

computer available to perform the study (rather than a tablet or telephone). 1000 participants 

completed the study, and were paid £2.10 (the median duration of the study was 16.4 minutes). 

According to self-reports, 58.3% of the participants were men, 41.2% were women, and 0.5% did not 

report their gender. Of the 97.4% of the participants who reported their age, the youngest and oldest 

participants were 18 and 84 years old, with 25%, 50% and 75% percentiles being 24, 32, and 44 years 

old. 84.8% of the participants reported being right-handed, 11.5% left-handed, and 3.6% ambidextrous. 

91.2% reported that English was their first language; 48.4% reported that they currently resided in the 

UK, 45.6 in the USA, and the rest in other countries or did not report residence. 

 

This study was approved by the local ethics committee (CER Université Paris Descartes). Participants 

were deemed to have given informed consent by proceeding to the on-line experiment after having been 

informed of the nature of the study. 

Apparatus 

The experiment was performed within an internet browser window on each participant’s own 

computer (either desktop or laptop, but neither tablet nor telephone). From data reported by the 

participant’s internet browser, we determined that 73.7% of the participants had Windows as their 

operating system, 19.2% Mac OS, 4.1% Chrome OS, and 3% other types of Linux. The most common 

browsers were Chrome (73.7%), Firefox (14%), Edge (6.1%), Safari (4.4%), and Opera (1.5%) (Internet 

Explorer was excluded because it was incompatible with the experiment software). The most common 

monitor resolutions were 1920x1080 (23.9%), 1366x768 (22.7%), 1440x900 (12%), 1536x864 

(11.3%), and 1280x720 (5.8%). The experimental software automatically switched to full-screen mode 

whenever possible (and otherwise requested that the participant do so manually). We found that 90.9% 

of our participants were in full-screen mode; in the remainder, the browser window filled a median of 

84.6% of the area of the monitor. The experimental software attempted to draw the visual stimulus on 

every monitor refresh. We calculated an approximate monitor refresh rate by taking the mean of the 

actual number of refreshes per second during all stimuli. We found that 90.9% of the participants had 

refresh rates between 50 and 70 Hz, 2.3% below 50 Hz, and 6.8% above 70 Hz.2 

                                                             
2 We attempted to draw the stimulus on every monitor refresh using the requestAnimationFrame() function in 

Javascript. Low refresh rates were likely due to underpowered or overloaded computers, while high rates were 
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Stimuli 

There were five types of stimuli. They have in common that each stimulus has an ambiguous orientation 

(direction of motion or tilt), which we will call N, and is compatible with two orientations, N and N + 

180 deg.3 Each block of 16 trials had equally spaced values of N = 5.625, 16.875, …, 163.125, 174.375 

deg, in random order. The duration of all stimuli was 900 ms. Examples of stimuli are shown in Figure 

1. In the descriptions of the stimuli below and throughout the rest of this article, we will describe lengths 

and positions using approximate lengths on the monitor.4 

 

AM1 (apparent motion of type 1: see http://lab-perception.org/demo/penta?exp=am1). A grating in 

which the luminance varied sinusoidally in one dimension, with spatial period 1.06 cm, tilted 

counterclockwise from the vertical by angle N. Two alternating images were shown: a first image with 

a random phase, and a second one in which the first grating was displaced in the direction  by half a 

cycle, i.e., by 0.53 cm. Each image was shown for 150 ms, so the temporal frequency was 3.33 Hz. The 

direction of motion was therefore ambiguous, either N or N + 180 deg—the directions of the two 

smallest displacements compatible with the stimulus (Ullman, 1979). Participants reported perceived 

motion direction, by selecting one of two arrows. 

 

AM2 (apparent motion of type 2: see http://lab-perception.org/demo/penta?exp=am2). Similar to 

AM1, except that the sinusoidal grating was replaced by a two-dimensional square grid of circular dots 

(radius 0.1 cm). Initial offset or phase in both directions was random. The stimulus is compatible with 

motions in the directions N and N + 180 deg, for the same reason as AM1. Participants reported 

perceived motion direction, by selecting one of two arrows. Stimuli similar to AM1 and AM2 have been 

used before to study idiosyncratic biases in apparent motion perception (Laubrock et al., 2008; 

Morikawa & McBeath, 1992; Schütz, 2014; Williams et al., 2003). 

 

GLA (Glass motion: see http://lab-perception.org/demo/penta?exp=gla). Static images in which pairs 

of dots are separated by the same displacement vector (or rotation), known as Glass patterns, create a 

vague impression of motion along the axis of the vector, but whose direction is obviously ambiguous 

(Glass, 1969). Rapid sequences, in which successive frames are uncorrelated and therefore carry no 

coherent motion signals, create a much more vivid perception of motion along the axis of the 

displacement vector (Ross et al., 2000; Donato, Pavan & Campana, 2020). Each frame of this stimulus 

consisted of 100 randomly-placed pairs of circular dots (radius 0.05 cm, separation between centers 

0.2 cm, some dots were occluded by the frame), separated by an axis oriented at angle N. On each 

stimulus frame (usually every 16.7 ms) a new image with different, uncorrelated dot pairs was 

displayed. Because this stimulus specifies only an axis and not a direction, it is compatible with motion 

in directions N and N + 180 deg. Participants reported perceived motion direction, by selecting one of 

                                                             
likely due to high-performance or variable refresh rate monitors. Regardless of monitor refresh rates, we 

attempted to draw stimuli at rates as close as possible to 60 frames per second. 
3 To describe the geometry of the stimuli, we will use a reference frame with origin at the center of the browser 

window, positive x axis pointing to the participant’s right, y axis upwards, and z axis towards the participant. 

Angles are zero in the direction of the positive x axis, positive for the participant’s counter-clockwise. For SFM 

stimuli, surface slant and tilt are defined by the normal vector (direction towards the participant): the angle 

between the normal vector and the z axis is the slant, the angle of the projection of the normal vector onto the xy 

plane the tilt. 
4 To draw items of approximately the same physical size on devices that have different pixel densities, browsers 

use an abstract unit of length called the ‘CSS pixel,’ defined as being approximately equal to 1/96 of an inch (World 

Wide Web Consortium, 2019). Our experimental software uses these units because it is the best automatic way to 

ensure roughly consistent lengths. For convenience, these units have been converted to centimeters. It is 

important to keep in mind that CSS lengths can differ from physical lengths by 10% or more. 
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two arrows. Although it is known that kinetic Glass patterns lead to the perception of fast motion (Ross 

et al., 2000), it has not been previously reported that the direction of this motion is subject to individual 

bias. 

 

SFM (structure from motion: see http://lab-perception.org/demo/penta?exp=sfm). The stimulus 

consisted of 284 dots, placed randomly and uniformly on a disk of radius 5.0 cm. In order to arrive at 

its central orientation, notionally this disk was first rotated in depth by 45 deg about an axis pointing 

upwards, and then rotated about an axis pointing out of the monitor by the stimulus tilt, equal to angle 

T . This surface therefore had slant of 45 deg, and a tilt T  that varied from trial to trial. During the trial, 

this virtual surface was rotated in depth about axis (cos T , sin T , 0) where T  = T  + 45 deg, in order to 

obtain an intermediate level of shear (Cornilleau-Pérès et al., 2002; van Boxtel et al., 2003). The rotation 

speed was 30 deg/s and the rotation was symmetric about the central orientation, so that over the 900 

ms duration of the stimulus, the orientation of the surface varied by a rotation between -13.5 and +13.5 

deg, about the above-mentioned axis, from the central orientation. On each frame, the positions of the 

dots were projected using parallel projection (i.e., a virtual dot having 3D coordinates (x, y, z) was drawn 

at coordinates (x, y) on the monitor), using circular dots of radius 0.05 cm. Because of the parallel 

 

Figure 1. Illustrations of two frames of each of the five stimulus types. In this figure, all of the directions 

or tilts are compatible with 28.125 deg, or the opposite direction, 208.125 deg. Animated examples can 

be seen at the web URLs given in the text. The images shown are screenshots from the actual 

experiment. AM1. A one-dimensional sinusoidal grating in luminance. The two frames differ by phase 

180 deg, making the direction of apparent motion ambiguous. AM2. A two-dimensional array of dots 

with the same spatial frequency as AM1. As for AM1, the phase difference is 180 deg, resulting in 

ambiguous apparent motion. GLA. Each frame consists of ‘Glass patterns’ of pairs of dots, separated by 

the same 2d vector. A sequence of such Glass patterns with the same separation vector was shown (but 

with the frames independent of one another), resulting in perception of very fast motion along the axis 

of the separation vector, but with ambiguous direction. SFM. A set of dots simulating a plane slanted in 

depth, undergoing a rotation in depth. (The frames shown are the starting point and endpoint of the 

rotation.) Because we used a parallel projection, the tilt (the direction of the plane’s norm, as projected 

onto the image) is ambiguous up to 180 deg. TFM. Two sets of dots move in opposite directions, without 

any depth cues. (For clarity the two sets are shown here in different colors; in the actual stimulus all 

dots were black. The frames shown are the starting point and endpoint of the motion.) When viewing 

this sequence, most observers perceive one of the two sets of dots as transparent and closer to them 

than the other set. Which of the two directions of motion is perceived as transparent and closer 

constitutes the 180-deg ambiguity. 
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projection, this stimulus is compatible with tilts T  and T  + 180 deg. Participants reported perceived tilt 

by selecting one of two icons, depicting the possible tilts unambiguously.5 

TFM (transparency from motion: see http://lab-perception.org/demo/penta?exp=tfm). Two sets of 

dots, without any depth cues, moved in opposite directions T  and T  + 180 deg. Each set of dots moved 

at speed 1.76 cm/s, and the average number of dots visible in each set was 127. Each dot was drawn as 

a circle of radius 0.05 cm. Although no explicit depth cues are present, for most observers the two sets 

of dots are seen at different depths, with one set of dots perceived as transparent and closer to the 

observer, and often as more salient, than the other (Gibson et al., 1959; see references in Mamassian & 

Wallace, 2010). Participants reported which of the two directions of motion, T  or T  + 180 deg, 

corresponded to the closer or more salient set.  

All stimuli were displayed for 900 ms, at a frame rate as close as possible to 60 Hz. All but SFM were 

enclosed inside a circular frame, a light gray annulus with inside radius of 4.8 cm and outside radius of 

5.3 cm. All stimuli were black (lowest available luminance level), with the exception of AM1 which was 

a sinusoidal luminance grating. The background was white (highest available luminance). A red fixation 

dot with radius 0.1 cm was shown in the center of the window throughout the stimulus, and for 750 ms 

immediately prior. 

Procedure 

After being recruited to take part in the study, participants’ browsers were redirected to our own server 

which hosted the experiment. The experiment was programmed in Javascript, and made use of the 

HTML5 canvas element for high-performance display functions. Participants were asked to close other 

applications and browser tabs on their computers as much as possible, and to run the experiment in a 

calm environment where they would not be disturbed, and to sit upright throughout. The experimental 

software verified that participants were using a desktop or laptop computer, and a browser that was 

compatible with the software (a vast majority were). The browser window was then put into full-screen 

mode (if this was not possible, participants were asked to switch to full-screen mode manually). 

The experiment consisted of 10 blocks, two of each of the five stimulus types. Each block consisted of 

16 trials. The 16 trials in each block were in pseudorandom order, but the order of the trials was the 

same for the two blocks of the same stimulus type. In one group of participants (N = 105), the two blocks 

of each stimulus type immediately succeeded one another. In a second group (N = 895), each stimulus 

type occurred once in the first five blocks, and once again and in the same order in the second five 

blocks. In both groups, the first three stimulus types were AM1, AM2, and GLA (in random order), 

followed by SFM and TFM (in random order). This order of conditions was chosen to simplify 

instructions that were similar for the first three stimulus types. 

Prior to the first block of each stimulus type, the participant was led through step-by-step instructions 

for performing the task, on two trials (which could be repeated if requested by the participant). They 

were then given five practice trials (which could also be repeated), after which the main 16 trials of the 

block were performed. When the two blocks of each stimulus type did not immediately follow one 

another, at the start of the second block two practice trials were performed. 

5 According to the standard definition of tilt, described above, surfaces seen from above (e.g., the floor) have 

upward tilt (90 deg), and ones seen from below have downward tilt (270 deg). Because this is counter-intuitive, 

the tilts reported in the Results section have been additionally rotated by 180 deg. 
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Each trial began with a fixation point shown by itself for 750 ms, followed by the stimulus whose 

duration was 900 ms. After this the stimulus and fixation point were replaced by two icons to the left 

and to the right of the center of the window, one of which the participant selected with the mouse cursor. 

For the AM1, AM2, GLA and TFM stimuli the icons were arrows pointing in opposite directions; for SFM, 

they were surfaces with opposite tilts. After guiding the cursor to one of the icons (which changed color 

when the cursor approached) and clicking a mouse button to confirm the response, participants were 

directed to return the cursor to the center of the window in order to begin the next trial. When a 

participant either failed to respond or move the cursor to the center of the window for more than 3 s, a 

textual reminder was displayed. 

Results 

Raw data is available at https://osf.io/qb4my/. 

Bias distributions of individual stimuli 

We computed two-dimensional bias vectors for each participant and each stimulus family as follows: 

where Ni is the reported motion direction for AM1, AM2, GLA, and TFM stimulus families, and the 

reported tilt for SFM; N is the number of trials. The normalization factor 

is included in order for the maximum length of the bias vector to be equal to 1 (here n is the number of 

unique directions or tilts). The interpretation of the bias vector B is as follows. Its length (from 0 to 1) 

is a measure of bias strength. The maximum value, 1, corresponds to all reported directions lying in one 

180 deg semicircle. The direction of the vector corresponds to the bias direction: the preferred direction 

for AM1, AM2, GLA, and TFM, and the preferred tilt for SFM. 

Distributions of the bias vectors in our population are shown in Figure 2 for the five stimulus families. 

The figure shows the population distributions of the 2D vectors (inside unit disks because their 

maximum length is 1), as well as the distributions of their lengths (bias strengths) and angles (bias 

directions). As can be seen in the second row of Figure 2, the biases are clearly unevenly distributed. 

More precisely, bias strengths (shown as orange bars) are sharply peaked at their maximum, 1. For 

comparison, the blue bars in the second row show the distribution of bias strengths if there were no 

biases—if all responses were independent random choices (obtained by simulating random, 

independent responses on every trial). The differences between the empirical and null bias strength 

distributions are so large—given the N = 1000 sample size—that Kolmogorov-Smirnov p-values were 

too small to compute. Bias directions are also non-uniformly distributed around the circle: the Rayleigh 

test for uniformity yields � � 10��� for all five stimulus families (Mardia & Jupp, 1999). 

An obvious pattern in the distributions shown in Figure 2 is the peaks in the cardinal directions. 

However, the four peaks in the cardinal directions tend to have unequal sizes. For all five stimuli, the 
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peak to the bottom is stronger than the peak to the top, and the peak to the right stronger than the peak 

to the left (see the percentages on the bottom row of Figure 2). A bootstrap analysis corrected for false  

discoveries from multiple tests revealed that all bottom-top and right-left asymmetries were 

statistically significant, with the highest p value equal to 0.0011 (Efron & Tibshirani, 1993; Benjamini & 

Hochberg, 1995).6  

                                                             
6 The tests were performed by resampling participants’ biases, drawing randomly with replacement the same 

number of biases as the actual number of participants. For each resample we calculated an asymmetry index: for 

example, for a right-left asymmetry we calculated the number of biases falling within 45° of the rightward 

direction, and subtracted the number of biases falling within 45° of the leftward direction. We drew 105 such 

bootstrap resamples, and calculated the empirical distribution of the resulting asymmetry indices. The fraction of 

resamples with negative indices was an estimate for the probability of the null hypothesis (Efron & Tibshirani, 

 

Figure 2. The distributions of biases for each of the five stimulus families. The top row shows the 

density of the 2d bias vectors in the population. The length of the bias vector, between 0 and 1, is a 

measure of bias strength; its direction is the orientation of the bias. Higher densities are shown in red, 

lower ones in blue. The middle row shows probability distribution functions of the bias strengths alone 

(orange histograms). The blue histogram in the left-hand graph shows the null-hypothesis distribution 

of bias strengths (if the response on each trial were independent and random). The bottom row shows 

PDFs for bias directions alone, as a polar plot: at any given polar angle, the distance between the outer 

curve and the rim of the yellow circle is proportional to the PDF of bias direction at that angle (individual 

bias directions are shown as strokes on the rim of the yellow circle). The four numbers show the 

percentages of bias directions lying in 90° sectors centered on the four cardinal directions. The two 

smaller polar histograms beneath the SFM and TFM plots show the population distributions of bias 

directions for nearly identical stimuli from Wexler et al. (2015). 
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1993). We corrected the probability values for false discoveries due to multiple tests using the Benjamini-

Hochberg (1995) procedure, with the false discovery rate set to 5%. 

 

Figure 3. Between-participant correlations of the five biases. Each off-diagonal scatterplot shows the 

correlation between two different biases. The biases are 2-dimensional vectors, so their horizontal 

components are represented in blue, and their vertical components in orange. Each dot represents 

either the horizontal or vertical components of bias vectors for two different (see labels at bottom and 

left) in the same participant. Scatterplots on the diagonal represent correlations between the two 

repetitions of the same stimulus. To make the relationships between the dots easier to see, we jittered 

the dots by random numbers between -0.1 and +0.1 in both coordinates. The number above each 

scatterplot is the vector correlation coefficient, with uncorrected individual 95% confidence interval 

shown in the subscript (bootstrap with 10� samples). Coefficients in red are significantly greater than

zero, as revealed by the bootstrap test with correction for false discovery (FDR 5%). 
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It is worth pointing out that we have previously measured the population distributions of the SFM and 

TFM biases in a large population that are very similar to those found here: these distributions are shown 

in the smaller comparison figures at the bottom of Fig. 2 (Wexler, Duyck & Mamassian, 2015). 

 

To check to what extent participants’ data showed biases at the individual level, we analyzed the 

distributions of individual responses for each stimulus type. We applied the Rayleigh test for anisotropy 

or non-uniformity (Mardia & Jupp, 1999), corrected by the Benjamini-Hochberg control for false 

discoveries, with the false discovery rate set to 5%. For the five stimulus types we found that the fraction 

of participants having significantly anisotropic responses ranged from 85% to 95% (85% for AM1, 86% 

for TFM, 90% for GLA, 92% for SFM, 95% for AM2). 

Correlations between different biases 

The major goal of this study was to check whether the five biases that we measured were independent, 

or whether they co-varied to some degree. In other words, if you know the bias for one stimulus type 

for a given participant, to what extent can you predict his or her bias for another stimulus type? Because 

biases are two-dimensional vectors, to carry out these analyses we used a measure of vector correlation, 

generalizing Pearson correlation coefficients to vectors (Hanson et al., 1992; Buneo, 2011). As with the 

Pearson correlation, a vector correlation coefficient of +1 denotes two sets of 2D vectors identical up to 

scale and translation, but also rotation; a coefficient of -1 denotes a similar relation, but with an 

additional reflection; and a coefficient of 0 denotes no particular relation of these kinds between the 

sets of vectors. 

 

Figure 3 shows both the raw data of the bias vectors for each pair of stimulus conditions, and the 

correlation coefficients. Correlations between two sets of two-dimensional vectors are difficult to 

represent visually, because a scatterplot would require 4 dimensions. To simplify, we plot two-

dimensional scatterplots, but with the two bias vectors for each participant represented as two dots: a 

blue dot representing the horizontal components of the two vectors (its horizontal position 

representing the value for one stimulus type, the vertical position for the other), and an orange dot 

representing the vertical components of the two vectors. This is for the off-diagonal scatterplots in 

Figure 3. For the scatterplots on the main diagonal—the ones with the gray background—we represent 

the same thing, but for the correlation between the two independent estimates for each bias, arising 

from the two repetitions for each stimulus type.7 

 

We calculated vector correlations between each pair of biases. The values are given above each 

scatterplot in Figure 3. We tested whether the correlations were significantly different from zero using 

a bootstrap over participants, corrected by the Benjamini-Hochberg procedure (10� bootstrap samples, 

false discovery rate 5%). The correlation coefficients significantly different from zero are shown in red 

in Figure 3. Thus, the only significant correlations between different stimuli were between AM1 and 

AM2, between AM2 and GLA, and between AM1 and GLA (all � � 10��). Additionally, the correlations 

between the repetitions of each of the five stimuli, which we will call “self-correlations,” were all 

significantly different from zero (all � � 10��, 10� bootstrap samples).8 Further bootstrap tests on 

differences between correlation coefficients revealed that the AM1-AM2 coefficient is significantly 

                                                             
7 To make the comparison of between-stimulus and within-stimulus correlation fair, for every pair of different 

stimuli we actually calculated 4 correlation coefficients, between each of the two repetitions of the first stimulus 

and each of the two repetitions of the second. We then took the mean of the four correlations using the z-

transformation. 
8 We used different numbers of bootstrap samples in different analyses because some of the underlying measures 

were more time-consuming to compute. 
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greater than the AM1-GLA and AM2-GLA coefficients, and that the AM2-GLA coefficient is significantly 

greater than the AM1-GLA one (all � � 10��, 104 bootstrap samples). Furthermore, similar tests 

revealed that each of the AM1-AM2, AM1-GLA, and AM2-GLA correlations was weaker (quantitatively 

by about 20-40%) than the self-correlations between the repetitions of two underlying biases (all � �

10��, 104 bootstrap samples). In other words, for each pair of different biases X and Y that had a 

significant correlation, this correlation was weaker than the self-correlations of X and Y with 

themselves. Thus, the temporal variations of the differences between stimulus types were stronger than 

the temporal variations of the biases themselves. 

Since biases are two-dimensional vectors, we wondered whether the correlations that we have found 

apply to the bias strengths (the vectors’ lengths), bias directions (the vectors’ orientations), or both. We 

therefore calculated separate correlations between the strengths (using ordinary Pearson correlations) 

and the directions (using Fisher-Lee correlations of circular variables; see, e.g., Mardia & Jupp, 2000). 

The results, shown in Table 1, are in partial agreement with the ones obtained through vector 

correlation. The structure of direction correlations (left side of Table 1) mirrors the vector correlations: 

the largest correlation is between AM1 and AM2, second-largest AM1-GLA and AM2-GLA, and all other 

correlations not significant (tested using the bootstrap with 10	 samples). The bias strength 

correlations, however, yield a surprise: all pairs of biases have significantly positive correlations—even 

though, as for the other correlation measures, the AM1-AM2 correlation is the highest, and AM1-GLA 

and AM2-GLA second-highest (bootstrap with 10� samples). Given our large sample size, the absence 

of correlations between bias directions is most likely not an issue of power but indeed reflects 

differences between bias direction and strength. Thus, some biases are unrelated in direction, but 

nonetheless correlated in their strengths, with correlation coefficient around 
 ≈ 0.25.9 

9 The reader may have noticed that the separate correlations of directions and bias strengths (Table 1) are 

generally smaller than the vector correlations (Fig. 3). For the case of bias directions, this is due to the fact that 

the Fisher-Lee Π correlations are less robust under noise than vector correlations, which we have verified using 

simulations. In the case of bias strengths, the smaller correlation coefficients are due to ceiling effects, because 

most bias strengths are close to the maximum, 1 (see Fig. 2, second line). 

Table 1. Separate correlations between the directions and strengths of the biases. Left: Fisher-Lee Π
circular correlations between bias directions (orientations of the bias vectors). Right: Spearman R
correlations between bias strengths (Euclidean lengths of the bias vectors). The two smaller numbers 

below each correlation give the 95% confidence interval (derived from the bootstrap, 10	 resamples 

for directions, 10� for strengths). Gray background: correlations between the biases from the two 

blocks of each stimulus. Pink and gray backgrounds: correlations significantly different from zero. 
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Correlations between changes in biases 

In most of our participants (N = 895) we first measured each of the five biases once in the first half of 

the experiment, and then we measured them again in the same order in the second half. A typical order 

of conditions could have been, for example, AM2(1), GLA(1), AM1(1), TFM(1), SFM(1), AM2(2), GLA(2), AM1(2), 

TFM(2), SFM(2). Thus, for any two conditions—say AM2 and AM1—there was an overlap of the period 

between the two measures of the first bias—AM2(1) and AM2(2) in our example—and the two measures 

of the second—AM1(1) and AM1(2). If the internal representations of two biases are wholly or partly 

shared, then the change in one of the biases across its two measurements may be correlated with the 

change in the other. (In the other 105 participants, the second measurement of each bias immediately 

succeeded the first, so there was no such overlap—which is why we exclude them from the following 

analysis.) The vector correlations of bias changes across the two repetitions of each bias measurement 

are shown in Table 2. A bootstrap test with Benjamini-Hochberg correction revealed that only one 

correlation, between AM1 and AM2, was significantly different from zero, with a vector correlation 

coefficient of 0.165 (� = 0.004, 10� bootstrap samples, false discovery rate 5%). 

Effects of demographic variables 

We wondered whether the population distributions of biases are fixed, or whether they vary across 

populations. From our crowdsourcing platform, we were able to obtain the values of four parameters 

that participants had previously reported in the platform’s surveys: 

• Age: ranging from 18 to 84, when reported 

• Gender: the platform does not have a non-binary option, but we removed from the demographic 

analysis the small number of participants who did not report their gender. We wound up with 

58% men and 42% women. 

• Manual preference: we removed a small number of participants who reported that they were 

ambidextrous, leaving 88% right-handers and 12% left-handers. 

• Country of residence: by far the two largest countries were the UK and USA, representing 

together 94% of our participants. We removed the other countries from the demographic 

 

Table 2. Vector correlations between changes in different biases across the two repetitions of each 

stimulus type. The small numbers below each correlation coefficient show the 95% confidence interval 

(bootstrap with 10� samples). The only significant correlation is shown with a pink background 

(corrected for false discovery at 5%). 
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analysis, leaving 53% UK and 47% USA. 

Keeping only participants for whom we had a value for each of the four parameters left us with 879 

participants out of 1000 for the demographic analysis. 

 

An example of a demographic effect is shown in Figure 4. Here, age seems to have an effect on the shape 

of the TFM bias distribution. To visualize the effect of age on the bias distribution, we categorized age 

into 3 groups, dividing at approximate 1/3 and 2/3 quantiles. The downward peak appears to grow 

with age, while the other peaks appear to shrink. In the youngest group the rightward peak is larger 

than the downward one, while for the oldest participants the reverse is true. In the statistical tests that 

we describe in the next paragraph, we found that the effect of age on the vertical component of bias 

attained significance, among several other such effects. 

 

In order to statistically test for the effects of demographic variables on biases, we performed linear 

regressions of the horizontal and vertical components of the biases on the four variables listed above.  

A difficulty with our analysis is that the groups are unbalanced: for example, the gender ratio in older 

participants is not the same as in younger ones. An advantage of the linear regression is that it corrects 

for lack of balance. In order to test the significance of the regression coefficients, we performed a 

bootstrap analysis (104 repetitions), and  corrected for false discoveries using the Benjamini-Hochberg 

correction. Because we had not planned to perform this analysis, we felt that a particularly stringent 

correction was in order, and therefore put the false discovery rate to 1%. 

 

We found five significant effects of demographic variables on the biases, all of them on the vertical 

component (maximum � = 0.0008). There were three significant effects of age: older age was 

associated with lower (i.e., more negative) vertical components of GLA and TFM biases, and higher 

(more positive) vertical components of SFM biases. There were also two significant effects of gender: 

women had more negative vertical components of AM1 and GLA biases than men. The TFM effect is 

 

Figure 4. An example of a demographic effect on a population distribution of biases. Here, the effect of 

age on the distribution of TFM biases. The upper graphs show the distributions of the 2d bias vectors; 

the lower graphs are polar histograms representing distributions of bias directions. With age, the 

downward peak seems to grow, while the other peaks seem to shrink. Only the growth in the downward 

peak attains statistical significance. 
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illustrated in Figure 4, while the other effects are shown in Fig. S1 in the Supplementary Materials. (As 

cross-validation, the same five effects were the only ones found to have non-zero coefficients using a 

lasso regression with lasso parameter set to 0.1 (James et al., 2021).) However, it should be noted that 

these demographic effects, although significant because of our large sample size, are tiny in magnitude 

as compared to between-individual variations: on the average the 10 linear models only explain 1.7% 

of the variance of the bias components, with the most ‘successful’ model—the one for vertical 

component of the GLA bias—accounting for 3.4% of the variance. The details of the fits, including the 

coefficients and 
� values, are shown in Table S1 in the Supplementary Materials. 

Discussion 

We found that each of the five stimuli that we studied admitted significant idiosyncratic differences, 

which we quantified as biases. The population distributions of the biases were non-uniform: they had 

peaks in the cardinal directions, and these peaks have left-right and up-down asymmetries (as we have 

previously shown for SFM and TFM stimuli: Wexler et al., 2015). The five biases were not independent: 

using vector correlations, we found that AM1 and AM2 were most closely related, and both were 

correlated with the GLA bias, though slightly less strongly. The SFM and TFM biases were independent 

of one another (as we had shown previously: Wexler et al., 2015), and uncorrelated with the other three 

biases. Additionally, changes in the AM1 and AM2 biases across the two measurements were 

significantly correlated. 

 

We also separately calculated the correlations between the directions of the five biases, and between 

their strengths (the polar and radial components of the bias vectors). We found that the bias directions 

mirrored the vector correlations: AM1 and AM2 were most strongly correlated, both had weaker but 

significant correlations with GLA, and none of the other pairs were correlated. In contrast, we found 

that all five bias strengths had significant positive correlations (albeit with the AM1-AM2, AM1-GLA and 

AM2-GLA more strongly correlated than others). Therefore, we have found several pairs of biases 

whose strengths are correlated (with a Spearman 
 ≈ 0.25, highly significant given our sample size) 

but whose directions seem to be entirely unrelated. Two scenarios seem possible. First, we may have 

discovered a non-specific tendency in certain people than in others to have stronger biases, across a 

variety of visual stimuli. However, we cannot exclude another scenario: some participants may have 

paid less attention than others across all tasks; less attention would have led to greater noise, which in 

turn would have lowered all biases. Although there is some indirect evidence against this second 

scenario—there were very few participants with weak biases across all stimuli (for example, only 

30/1000 had all five biases with strength below 0.75), we think that it is not decisive. Another possible 

cause of spurious correlations could have been the large differences in apparatus between participants 

(lighting, quality of the display, distance to the monitor) but not between blocks within each participant. 

A lower-quality display, for instance, by also effectively injecting noise into the stimuli, could have 

lowered bias strengths across the board. In spite of the significant positive correlations between all bias 

strengths, therefore, we cannot be certain of the existence of a common factor across all five biases 

without further studies. 

 

The observed differences between age and gender groups are difficult to interpret. The effect of age 

might be mediated by many other variables. There are many heterogeneous results about the effects of 

age on motion perception (reviewed by Billino & Pilz, 2019) highlighting the complexity of the involved 

processing stages and the differential effects of ageing. A specific issue of our internet-based study 

might be that participants were not tested under standardized conditions and that there might have 

been systematic differences in the testing conditions or equipment between different age groups. In 
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addition, despite the large sample size, our sample is not representative for any specific age group. 

Gender differences in perception have been reported for instance in color preferences (Bonnardel et al., 

2018; Hurlbert & Ling, 2007; Sorokowski et al., 2014) and the weighting of different cues for 

establishing correspondence in apparent motion stimuli (Shechter et al., 1991), as well as in the 

performance of some visual tasks (Shaqiri, 2018). To our knowledge there are no reports of gender 

differences that might explain the observed difference in the vertical bias. In any case, the observed 

effects of age and gender in our study should not be overinterpreted because they explained only a small 

amount of variance. 

 

The pattern of bias correlations that we have obtained has a certain logic to it. The AM1, AM2, and GLA 

biases govern the perception of two-dimensional motion: slow apparent motion for AM1 and AM2, fast 

streaming motion for GLA. The TFM bias, though also measured using reports of two-dimensional 

motion direction, involves perceiving motion in both the reported and the opposite directions, and has 

more to do with the way that motion directions are segmented in depth. It is therefore likely to be a 

three-dimensional motion bias, related to the preferred axis of depth rotation of the ambiguous sphere 

or cylinder rotation stimuli commonly used to study bistability (Andersen & Bradley, 1998; Leopold et 

al., 2002). Finally, the SFM bias is a preference for three-dimensional surface orientation. If this 

reasoning is correct, then our results indicate that all three of our biases for two-dimensional motion 

are correlated—with the two apparent-motion stimuli correlated to each other most strongly—while 

there are no significant correlations between two-dimensional motion, three-dimensional motion, and 

three-dimensional structure biases. Thus, our results seem to point to internal biases for broad features 

rather than specific stimuli. 

 

A possible objection to the correlations between the AM1, AM2 and GLA biases is that they were due 

not to perception, idiosyncratic or not, but rather to response biases. Indeed, for these stimuli, the 

response consisted in choosing one of two arrows. Perhaps certain participants simply preferred 

clicking on, say, downward arrows, while others preferred rightward arrows, and so on? Such response 

biases could conceivably lead to correlations such as we have found. However, we should note that a 

fourth stimulus, TFM, had the exact same probe as AM1, AM2, and GLA: an arrow. If the correlations 

were due to response bias, we would expect similar correlations with TFM. The fact that we find no 

correlations between the TFM and any of the others argues strongly against a response-bias 

explanation. 

 

A closely related debate has concerned common factors in switching between different interpretations 

of bistable stimuli. It has long been observed that subjects undergo perceptual switches at very different 

rates. For example, Carter and Pettigrew (2003) found that switching rates for both binocular rivalry 

and motion-induced blindness each varied by about a factor of 10 in their subject population. They also 

found that the two switching rates were significantly correlated to one another, concluding that this 

was evidence for a common oscillator governing both types of bistability. However, this and other 

results have been criticized on methodological grounds, namely that any correlations are actually due 

to decisional biases as to what constitutes a switch (Gallagher & Arnold, 2014). The correlations have 

sometimes been found difficult to replicate, and a meta-analysis has shown them to be quite weak 

(Brascamp et al., 2018). Nevertheless, there is evidence for some correlations (Brascamp et al., 2019; 

Cao et al., 2018; Pastukhov et al., 2019; Steinwurzel et al., 2020). Consistent with our results, 

correlations in the dynamics of ambiguous perception seem to be stronger for more similar stimuli. 

 

More generally, in the past decade there have been a number of studies that have leveraged individual 

differences to look for a putative ‘common factor’ in vision (see Tulver, 2019 for a review). For the most 

part, these studies have found correlations only between very similar stimuli and tasks, and little 
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evidence for a general common factor in vision. For instance Grzeczkowski et al. (2017) measured the 

susceptibility of a pool of participants to a set of illusions, and found that only the Ponzo and Ebbinghaus 

illusions—the only two size illusions tested—were significantly correlated. Follow-up studies showed 

that variations on the same illusion were correlated but different illusions were not, and that the 

individual susceptibilities were stable in participants across time (Cretenoud et al., 2019, 2021). Our 

present finding of correlations between biases related to two-dimensional motion, but not three-

dimensional motion or three-dimensional shape, echo this general tendency of multiple local, but no 

global, factors. 

 

Ultimately the usefulness of our results lies in the information that they provide about the neural 

mechanisms underlying visual perception. We have shown that the perception of the five types of visual 

stimuli in this study is mediated by five latent variables that can only be manifestations of underlying 

brain states. These variables are not independent, but present a non-trivial set of correlations. In the 

past decade neuroscientists have become more interested in individual differences in human brains, 

both for their own sake and for what they have to tell about general brain function (Dubois & Adolphs, 

2016). For instance, Charest el al. (2014) have shown that individual variations in infero-temporal 

activations predict individual variations in perceived similarities between objects. Psychophysical data 

about individual biases and their correlations may guide and broaden these techniques in neuroscience. 
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