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Abstract 
 
 
The role of the vascular microenvironment is increasingly studied in acute myeloid 

leukaemia (AML). Complex interactions between endothelial cells (ECs) and pre-leukaemic 

cells may contribute to the clonal evolution of pre-leukaemic stem cells in the bone marrow 

niche and to the proliferation, survival and chemoresistance of leukaemic cells. Through the 

expression of different adhesion molecules, ECs play a key role in the development of 

specific acute complications of AML, including leukostasis, acute respiratory failure, acute 

kidney injury or neurological complications. Moreover, in newly diagnosed patients, 

leukaemic cells promote endothelial activation and subsequent disseminated intravascular 

coagulation. Mechanisms of this bi-directional dialogue between leukaemic cells and ECs will 

reveal possible therapeutic targets to be explored to improve the survival of AML patients. 
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1. Introduction  
 
Acute myeloid leukaemias (AML) are oligoclonal neoplasms resulting from the multistep 

acquisition of somatic genetic and epigenetic alterations in a hematopoietic stem (or 

sometimes committed myeloid progenitor) cell, resulting in the proliferation of immature 

myeloid cells with a differentiation blockade. Only a subset of leukaemic cells are endowed 

with self-renewal capacity (so-called leukaemic stem cells, LSCs), a cellular hierarchy that can 

be fixed or plastic depending on the patient.  

AML may occur de novo, or may result from the progression of an antecedent myeloid 

neoplasm, especially myelodysplasia, that is often not diagnosed before the AML phase (so 

called secondary-type AML) [1]. Clonal expansion may be favoured by exposure to 

chemotherapy or ionising radiation for the treatment of a previous, unrelated neoplasm [2]. 

The incidence of AML in adults is five to eight per hundred thousand per year in Europe; it 

increases with age, especially after the age of 50 [3]. An increasing number of studies have 

shown the important role of the tumour microenvironment within the haematopoietic niche 

on the development, progression and resistance to treatment of AML [4]. In this review, we 

will focus on one of the many players present in the bone marrow, endothelial cells (ECs). 

The role of the endothelium has been suspected and studied for more than 20 years in the 

process of leukaemogenesis [5,6], in resistance to chemotherapy and in the initial 

complications of AML [7]. 

The endothelium consists of a thin monocellular layer that covers the inner surface of all 

vessels of the body. ECs form an interface between the elements of the circulating blood and 

the vascular wall [8]. ECs are involved in multiple physiological functions, including the 

control of vasomotor tone [9–11], the maintenance of blood fluidity [12–15], the growth of 

new blood vessels [16–18] and cell trafficking. ECs show remarkable heterogeneity in terms 

of gene expression, antigen composition and function. Indeed, EC phenotypes vary between 

different organs and sometimes between different parts of the vascular loop within the 

same organ [19,20]. Endothelial heterogeneity may then explain the symptomatology 

observed in AML patients, with preferential organ involvement. Bone marrow ECs 

constitutively express E-selectin, Vascular Cell Adhesion Molecule (VCAM-1) and von 

Willebrand Factor [21,22]. They also express CD34, which is a ligand of L-Selectin implicated 

in the homing of haematopoietic stem cells (HSC) [23,24]. 
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The recruitment of leukocytes into the tissues, also known as diapedesis, is a multistep 

process [25,26] involving the adhesion of leukocytes to the EC surface through adhesion 

molecules on the surface of the cells, the rolling of leukocytes on ECs [26–29], and the 

stimulation of leukocytes by chemokines secreted by ECs that activate leukocyte integrins, 

enabling firm adhesion and the arrest of leukocytes on the endothelial surface. Once firmly 

attached, leukocytes can cross the endothelium via a transcellular or paracellular pathway 

[25–27,30,31]. 

In this review, we will detail current knowledge of the role of the endothelium in AML, 

including endothelial involvement in the development, resistance and relapse of AML and its 

role in the different clinical manifestations of AML acute complications. Finally, we will 

discuss therapies that may target the interactions between leukaemic and endothelial cells. 

 
 

2. Endothelial cells in acute myeloid leukaemia’s microenvironment 
 
HSCs are located in the bone marrow (BM) where they generate the cells needed to renew 

the blood and immune cell pool. This process requires strict regulation, with instructions 

provided by interactions with different actors within specific local microenvironments called 

niches. Multiple cells are present within the niche, including fibroblasts, 

osteoblasts/osteoclasts, adipocytes, neurons of the sympathetic nervous system, T 

lymphocytes, mesenchymal cells and ECs. All components of the BM microenvironment 

affect normal HSCs and leukaemic cells in various ways, impacting their cellular functions, 

including proliferation, differentiation, adhesion, quiescence, trafficking and clonal 

expansion [4,32–36]. HSCs are supposed to be distributed in 2 distinct locations: the vascular 

niche, located deep in the BM and rich in sinusoidal capillaries, and the endosteal niche, in 

close proximity to the inner surface of the bone. In both niches, HSCs specifically reside in 

perivascular areas [37]. Other works suggest that HSCs are mainly adjacent to sinusoidal 

blood vessels in the BM and spleen with a small percentage of HSCs localized near the 

endosteum[38,39]. 

Bone marrow ECs play a direct role in the support and regulation of HSC quiescence, self-

renewal, activation, and homing [40]. In contrast to the majority of ECs in other 

vasculatures, they constitutively express P- and E-selectin, and loss of function studies have 

revealed that homing to the marrow niche is greatly impaired upon E- and/or P-selectin 
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deficiency [41,42]. Several selectin ligands are expressed on HSCs, including P Selectin 

Glycoprotein (PSGL)-1 and CD44, which regulates the rolling of HSCs [43–45]. The arrest of 

HSCs on the endothelium is established through interactions between Very Late Antigen 

(VLA)-4 and Lymphocyte Function-associated Antigen (LFA)-1 integrins, and their cognate 

receptors expressed on the microvasculature, VCAM-1 and Intercellular Adhesion Molecule 

(ICAM)-1, respectively [42,46,47].  

Within the niche, interactions between HSCs and ECs may also increase the risk of clonal 

evolution of pre-leukaemic stem cells (pre-LSC) to leukaemic stem cells (LSC) [48–55]. Under 

inflammatory conditions, ECs produce Granulocyte Stimulating Factor (G-CSF) [56], 

potentially promoting the expansion of pre-malignant clones. The current main hypothesis is 

that leukaemia does not arise from a single LSC, but from several subclones in linear or 

branched architecture with different mutations, with each clone being supported by a pool 

of LSCs [57,58].  

Glycoprotein CD44 has been reported as a marker of LSCs. CD44 binds to its major ligand 

hyaluronic acid, which is expressed by ECs. CD44 binding to hyaluronic acid increases VLA-4 

expression and its affinity for its ligand VCAM-1 via the PI3k signalling pathway [59]. VLA-4, 

upon interaction with VCAM-1, promotes the survival and proliferation of AML cells through 

Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling, resulting in 

chemoresistance. The VLA-4-VCAM-1 interaction allows full integration of AML cells into the 

vascular niche and induces a quiescent phenotype in AML cells [60–62] (Figure 1). The 

inhibition of CD44 may also induce the differentiation of human AML cells with a need of 

further studies to confirm this effect [63,64]. 

Winckler et al. demonstrated that adhesion of HSCs to E-selectin promotes their 

proliferation, directly triggers their activation and induces lineage commitment. Conversely, 

the absence or therapeutic inhibition of E-selectin promotes HSC quiescence, HSC self-

renewal potential and chemoresistance [65]. Barbier et al. highlighted the differences 

between leukaemic cells and HSCs. Indeed, in AML, E-selectin interactions favour malignant 

cell survival and chemoresistance in vitro and in vivo in a MLL-AF9 AML murine model. The 

genetic or therapeutic inhibition of E-selectin induces the cell cycling of leukaemic cells 

[66,67]. In this model, leukaemic cells secrete pro-inflammatory cytokines such as Tumour 

Necrosis Factor (TNF)-α that induce E-selectin surface expression on bone marrow ECs. 

Moreover, the binding of leukaemic cells to E-selectin leads to chemoresistance through the 
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establishment of efflux mechanisms into AML cells. It may also induce pro-survival signalling 

in AML cells via AKT/mTOR and NF-κB pathways. Several adhesion molecules expressed by 

leukaemic cells bind E-Selectin, such as Cutaneous Lymphocyte Antigen-1 (CLA-1), PSGL-1, or 

CD44 [59,68–70].  

Another key actor in AML cells-ECs interactions is the C-X-C Motif Chemokine Ligand 12 

(CXCL12)/ C-X-C Motif Chemokine Receptor 4 (CXCR4) axis. CXCL12 binds to CXCR4, a G-

protein-coupled chemokine receptor, which is functionally expressed in several cell types, 

including HSCs [71]. Similar to normal HSCs, the majority of AML blast cells also express 

CXCR4 [71–73]. The major sources of CXCL12 in AML BM are stromal cells and CXCL12-

abundant reticular (CAR) cells, which are progenitors of mesenchymal stem cells [33]. ECs 

also secrete CXCL12 at lower levels [74]. The CXCL12/CXCR4 interaction activates several 

signalling pathways, including MEK/ERK, JAK/STAT, and PI3K/AKT axes,  promoting cell 

survival [75]. Using an in-vitro model of AML cells culture, Schelker et al. have shown that 

CXCR4 is crucial for AML cell proliferation [76]. The ligation of CXCL12 to CXCR4 increases the 

activity of integrins such as VLA-4 and LFA-1[46] and subsequent adhesion of AML cells 

adhesion to bone marrow ECs [77]. Patients with higher expression of CXCR4 in AML cells 

have indeed decreased disease-free survival and lower response rates [78–80]. 

Finally, apoptosis or drug-induced leukaemic cell death leads to the release of leukaemic 

cytokines or extracellular histones that enhance the endothelial expression of adhesion 

molecules [7,81,82]. 

Collectively, these findings suggest that the cross-talk between leukaemic and endothelial 

cells could promote the adhesion of leukaemic cells to their niche, resulting in LSC 

quiescence, and chemoresistance [83–87]. 

Angiogenesis is increased in the BM of AML patients. Microvessel density is significantly 

higher in BM biopsies of AML patients at diagnosis compared with control patients. 

Microvessel counts were not related to age or sex of the patients in the AML group and in 

the control group [88,89]. After the induction of chemotherapy, microvessel density was 

significantly lower in patients achieving complete remission compared to those with 

persistent disease [88–90]. Immunohistochemical analysis of Vascular Endothelium Growth 

Factor (VEGF)-A protein in BM biopsies showed that AML patient BMs have a higher level of 

expression of VEGF-A compared with normal BMs. Moreover, higher circulating VEGF levels 

have an adverse impact on prognosis [91–95]. It has been suggested that AML cells activate 
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VEGF receptors through autocrine signalling to initiate self-renewal, proliferation, survival 

and resistance to chemotherapy. In parallel, paracrine VEGF signalling promotes 

angiogenesis.  

Although highly vascularized, the hematopoietic niche is characterized by extremely low 

oxygen partial pressure. Hypoxia has been shown to be necessary for long-term 

maintenance of HSCs.  Oxygen levels in BM range from 1% to 4%, decreasing from vessels to 

the endosteum [96,97]. Hypoxia-inducible factor (HIF) proteins are the main mediators 

involved in the adaptive response to hypoxia. Several genes activated by HIF have been 

involved in multiple cellular functions, including angiogenesis, energy metabolism, 

proliferation and survival [98,99]. In patients with AML, HIF-1α expression is associated with 

a worse prognosis [100,101]. Severe hypoxia decreases leukemic cell-cycle activity, inducing 

a quiescent state that mediates resistance to chemotherapy [102].  

Nitric oxide (NO) supports vascular homeostasis, including the regulation of vasodilative 

tone, the control of local cell growth and the defence of the vessel from the adverse effects 

of platelets and cells circulating in the blood, thus playing a crucial role in normal endothelial 

function [103]. Using intra-vital microscopy in a murine model of AML and patient-derived 

xenografts (PDX) of AML, Passaro et al. found increased vascular leakage compared to 

controls. Via transcriptomic analysis in the ECs of PDX and patient biopsies, they found that 

NO release by ECs was involved in capillary leakage. NO is also involved in the mobilisation of 

normal HSCs by decreasing their adhesion within the hematopoietic vascular niche. The 

inhibition of NO production in murine models of AML improves the response to treatment 

by reinstating the normal vascular niche, enhancing the drug response and maintaining 

residual bone marrow HSCs in the niche [104–106]. Through these signalling pathways, 

leukaemic cells can enhance vessel formation and maintain their own stem cells [107,108]. 

Cogle et al. demonstrated that leukaemic cells localise within the vascular endothelium in 

AML patients and in xenografted mice, where they adopt a quiescent phenotype [60]. ECs 

may therefore protect AML cells from cell cycle-targeting chemotherapies [60] (Figure 1). 
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3. Endothelial dysfunction is involved in AML-related organ failure 
 

 

Five to 20% of patients with AML initially present with a high level of circulating leukocytes, 

exceeding 50-100 x109/L [109–112]. These patients are exposed to life threatening 

complications with multiple organ failure, which may be aggravated by treatment. 

Hyperleukocytic patients therefore have a higher risk of early mortality in the initial phase of 

the disease, varying between 6% and 20% [113–118]. Hyperleukocytosis is more frequently 

observed in monocytic AML (known as M4/M5 AML in the FAB classification) [119], in AML 

with MLL rearrangements [120] and in FLT3-mutated AML [121–123]. 

A Canadian study found an early excess mortality (death during induction chemotherapy) at 

a threshold of 30 x109/L of leukocytes, with an increased risk of mortality correlated with 

WBC (white blood cell) counts, but without any impact of WBC count on complete remission, 

highlighting the fact that hyperleukocytosis is a risk factor for early death but not for 

response to chemotherapy. The main cause of death was bleeding [116]. In a French study of 

189 newly diagnosed AML patients admitted to the ICU over a 10-year period, 43% had 

respiratory failure and most of them (61%) had lung infiltration of blast cells based on 

clinical and radiological examinations [118]. Patients with AML at diagnosis may also 

experience acute kidney injury (40% of the cases) requiring extra renal replacement therapy 

[124–126].  

 Beyond infections, hyperleukocytic AMLs at diagnosis are complicated by leukostasis, solid 

organ infiltration, tumour lysis syndrome and disseminated intravascular coagulation (DIC) 

and we will develop the putative role of ECs in these different entities (Figure 2).  

 

3.1 Leukostasis 

 

Leukostasis consists of the aggregation of leukaemic cells circulating in the capillaries of 

different tissues such as the lung or central nervous system, and is responsible for 

alterations of gas exchanges with distension of the capillaries and tissue hypoxia by 

obliteration of the arterioles [127]. Increased blood viscosity appears to contribute to 

microcirculation abnormalities, with a correlation between the rate of circulating blasts and 

the risk of hyperviscosity [128]. Currently, the diagnosis of leukostasis is based on a clinical 
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presumption and the presence of circulating blasts [114]. However, additional factors may 

be involved, as indicated by the development of leukostasis in the absence of 

hyperleukocytosis or the failure of therapeutic trials with leukapheresis to control 

leukostasis [129,130].  

Although there are few studies on the molecular mechanisms of leukostasis, the interaction 

between the blast and the EC seems to play an important role in this process.  

Cell adhesion molecules such as L-selectin, E-selectin, VCAM-1, LFA-1 (CD11a/CD18) and 

integrin CD11b expressed on the surface of endothelial or leukaemic cells have been shown 

to be involved in the adhesion of leukaemic cells to TNF-α activated endothelium [7]. 

Leukaemic cells secrete several cytokines that will activate ECs and lead to the expression of 

adhesion molecules on their surfaces. On non-activated ECs, the presence of blasts induces 

the expression of ICAM-1, VCAM-1, and E-selectin. This activation is related to leukaemic cell 

secretion of TNF-α, Interleukin (IL)1-β, and direct contact between adhesion receptors 

expressed by blast cells and ECs. Thus, leukaemic cells have the ability to promote their own 

adhesion to the endothelium [7].  

Patients with monocytic differentiated leukaemia (M4/5) have a higher risk of leukostasis 

[118,131]. The high level of CD11b expression on M4/M5 leukaemic cells (and its ability to 

bind ICAM-1 on ECs) may explain these results [7,132] (Figure 3). 

 

3.2 Organ infiltration 

 

Regardless of the level of circulating leukocytes, some patients appear to have blast-specific 

infiltration into solid organs such as the lungs, kidneys, skin or central nervous system 

[130,133,134]. Solid organ infiltration is also known as extramedullary AML and can now be 

evaluated by positron emission tomography/computed tomography (PET-CT) [135,136]. 

Although a disruption of the endothelium layer has been suspected to be crucial for 

leukemic extra-medullary infiltration, the mechanisms of organ failures are poorly studied. 

Stefanidakis et al. showed that co-culture of AML cells with ECs increases surface expression 

and colocalization of leukocyte integrins with pro-Matrix Metallo proteinase-9 (proMMP-9) 

on AML cells forming the “leukaemia cell invadosome”. Using in vitro analysis, they 

demonstrated that the specific binding of MMP-9 to leukocyte surface β2 integrin is 

required for pericellular proteolysis and migration of AML-derived cells. In a mouse model of 
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human AML xenograft, they found that blocking the binding of MMP9 to leukocyte integrins 

had a specific anti-leukemic activity[137]. 

 

Specific pulmonary infiltration is described in the literature as an extravascular pulmonary 

blast location. It is most often described in AML with partial or complete monocytic 

differentiation (AML4 and AML5) [131]. Specific pulmonary infiltration occupies the 

lymphatic vessels in the peribronchovascular spaces, the interlobular septum and the 

subpleural interstitial tissue [138]. In an autopsy study of patients with AML or non-hodgkin 

lymphoma who experienced acute respiratory failure, Van de Louw et al. found that more 

than 50% of patients had missed major clinical diagnoses. Among AML patients who 

presented with acute respiratory failure of unknown etiology, malignant lung infiltration was 

the main cause of death [139]. 

Renal infiltration has also been described in the literature with leukaemic cells within the 

interstitium and in the lumina of small vessels [140,141]. Enlarged kidneys may be observed 

in CT-scan or renal ultrasound but patients may also have only microscopic infiltration. 

Diffuse leukaemic infiltration may not systematically translate into acute kidney injury, as 

renal leukaemic infiltration has been reported as an incidental post-mortem finding [142]. 

However, in some cases, acute kidney injury results directly from AML cells infiltration of 

renal parenchyma [140]. Interactions between renal ECs and AML cells have never been 

specifically studied in this context of massive infiltration of leukaemic cells.  

Leukaemia cutis is defined as the migration of leukaemic cells into the skin and has been 

described in AML patients with an estimated incidence from 10% to 50% in M4 and M5 

subtypes [143–145]. The distribution of leukaemic cells in the skin is often perivascular, with 

a possible role for an interaction between adhesion molecules on the surface of blasts and 

adhesion molecules of ECs in dermal post-capillary venules [146]. 

Central Nervous System (CNS) involvement is less frequent in AML and occurs in 2–5% of 

patients [133,147–149]. The incidence of CNS leukaemia at relapse has decreased since the 

incorporation of high dose cytarabine in chemotherapeutic regimens. Indeed, until high-

dose cytarabine was used, up to 20% of children and 16% of adults with AML had meningeal 

disease [150]. In order to infiltrate the CNS, leukaemic cells must cross the vascular 

endothelium of the blood brain barrier into the arachnoid, migrate and proliferate in 

cerebral spinal fluid and consequently infiltrate perivascular spaces and the brain 
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parenchyma. The role of the Neural Cell Adhesion Molecule (CD56) expressed by ECs is 

crucial for the entry of blasts through the blood-brain barrier [151–158]. 

 

3.3 Disseminated intravascular coagulopathy 

 

AML associated coagulation disorders are also markers of endothelial dysfunction. 

Disseminated intravascular coagulopathy (DIC) is characterized by systemic intravascular 

activation of the coagulation system from various causes that can result in multiorgan 

failure, thrombosis, and/or excessive bleeding. The diagnosis of DIC is challenging due to the 

complex underlying medical conditions of leukaemia that can lead to variable presentations 

[159]. Indeed, diagnosis of DIC relies on decreased fibrinogen, increased prothrombin time 

and activated partial thromboplastin time, elevated D-Dimer, and thrombocytopenia. 

However, thrombocytopenia in these patients is rather related to BM infiltration than 

consumption of platelets. The incidence of DIC in AML, excluding acute promyelocytic 

leukaemia (APL), varies between 10% and 30%, with an increased risk (60%-70%) after the 

initiation of induction chemotherapy [160–163]. In non-APL AML, the main risk factor for 

developing DIC is an elevated WBC count [159,162,164]. This could be explained by Tissue 

Factor (TF) secretion by ECs secondary to the release of pro-inflammatory cytokines such as 

IL-1 from apoptotic leukaemic blasts [7,165]. Moreover, IL-1 blocks the anticoagulant protein 

C, shifting the balance on the endothelium from an anticoagulant state to a procoagulant 

state [165]. Chemotherapy-induced endothelial injury may also worsen the procoagulant 

state of patients with non-APL AML [166]. Indeed, anthracyclines may participate to 

endothelial damages [167–170]. Anthracyclines increase the production of mitochondrial 

reactive oxygen species (ROS), inducing ROS burst, leading to mitochondrial dysfunction and 

subsequent release of cytochrome c, activated caspases and apoptosis of ECs [171]. 

Moroever, in non-APL AML, the presence of microparticles that express TF has been shown 

to contribute to coagulation disorders [172–174]. Despite the bleeding risk associated with 

DIC, Libourel, EJ et al. have shown that DIC is also an independent risk factor for venous and 

arterial thrombosis [163].  

In APL, coagulation disorders are present in more than 75% of patients at diagnosis. TF is 

present at the surface of leukaemic cells or at the surface of microparticles and is able to 

stimulate factor VII (FVII), which binds to FVIIa, thus activating FIX and FX. The latter leads to 
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thrombin generation, which itself catalyzes fibrinogen into fibrin. In parallel, Annexin II 

expressed at the surface of malignant leukocytes binds to tissue-Plasminogen Activator and 

plasminogen, resulting in the formation of plasmin, which cleaves fibrin and fibrinogen, in a 

process called fibrinolysis [175–179].  

 

3.4 Chemotherapy-induced endothelial dysfunction 

 

Chemotherapy drugs, and especially anthracyclines, induce endothelial damage [167–170]. 

Anthracyclines produce excess reactive oxygen species in the mitochondria, leading to 

mitochondrial dysfunction with the release of cytochrome c and the activation of caspases 

responsible for ECs apoptosis [171]. The other main drug used in AML is cytarabine-

arabinoside [180] which can induce capillary leak syndrome with the increased extravasation 

of fluid and protein through the endothelium, resulting in non-cardiogenic pulmonary 

oedema or serous effusions (pleura and pericardium) [181–186]. 

 

3.5 Tumour Lysis Syndrome induced endothelial dysfunction 

 

Endothelial dysfunction may also contribute to tumour lysis syndrome (TLS) in AML. Indeed, 

recent data from our laboratory suggest that endothelial dysfunction has a major role in 

acute kidney injury during TLS. In a mouse model of AML driven by retroviral expression of a 

single mutational hit, the MLL-AF9 gene fusion, we found that endothelial dysfunction 

participates in TLS-induced acute kidney injury with a huge increase in plasma levels of 

extracellular histones that are released by dying cells. These histones induce profound renal 

endothelial dysfunction in vitro and in vivo [187].  
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4. The endothelium as a therapeutic target (Table 1) 
 

Current treatment of non APL-AML relies mainly on an intensive chemotherapy regimen 

including an anthracycline (daunorubicin or idarubicin) combined with cytosine arabinoside. 

The treatment landscape of AML is evolving, with a dozen new drug approvals since 2017. 

These new effective treatments are directed against specific molecular pathways, discovered 

through advances in molecular biology, such as anti-FLT3 therapy[180]. Despite these 

advances, there is still a significant risk of relapse and death, requiring further clinical trials 

to improve the prognosis of patients. In addition, there are currently no randomised trials 

proving the efficacy of a treatment to reduce the risk of early morbi-mortality. In this part, 

we will focus on drugs targeting the interaction between AML cells and ECs. 

 

4.1 Dexamethasone 

 

Glucocorticoids and mainly dexamethasone can be used to treat leukostasis in patients with 

hyperleukocytic AML. Glucocorticoids are thought to have a demarginating effect on blasts 

adherent to the capillary walls, analogous to the effect of glucocorticoids on granulocytes, 

where the expression of adhesion molecules is reduced by glucocorticoids [188,189]. 

Glucocorticoids would therefore improve the flow of cells in the capillaries, whether 

pulmonary or cerebral, and improve clinical symptoms. In one retrospective study, 

dexamethasone efficiently treated leukostasis and lung specific infiltration [190]. Another 

team studied the effect of dexamethasone in both the induction phase and in the long-term 

relapse and survival of patients with hyperleukocytic AML. They found that dexamethasone 

combined with induction chemotherapy did not improve survival nor the complete 

remission rate. Interestingly, the authors found a significant reduction of the relapse rate in 

patients who were treated with dexamethasone in association with induction 

chemotherapy. Authors suggest multiple mechanisms of dexamethasone that may explain 

this result, including an inhibitory effect of dexamethasone on cytokine production by 

leukaemic cells and activated ECs that may decrease leukaemic cells chemoresistance. 

However, the link between dexamethasone, ECs and chemoresistance remains to be 

established [191]. 
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4.2 Anti-angiogenesis 

 

As described before, angiogenesis plays an important role in the development of AML. 

Therefore, therapies directed against VEGF and angiogenesis can help to improve the 

prognosis of patients. So far, various drugs with antiangiogenic activity have been evaluated 

in clinical trials, but the results have been disappointing [192]. Bevacizumab, a humanised 

anti-VEGF antibody, had a significant effect on the decrease in cellular VEGF expression in 

the bone marrow after 1–3 cycles, without displaying any significant anti-leukaemic activity 

in patients with relapsed/refractory AML [193]. Bevacizumab was also used in combination 

with induction intensive chemotherapy and showed promising results in a single arm phase I 

clinical trial in relapse/refractory AML patients with median overall survival of 16.7 months 

and median relapse free survival of 7 months. Serum VEGF levels and bone marrow 

microvessel density were significantly reduced [194]. However, a randomised phase II trial in 

elderly first-line patients in combination with chemotherapy did not show any efficacy in 

terms of overall survival or relapse-free survival [195]. There are no phase III studies to 

confirm these results. Tissue-specificity of ECs may also have participated in the failure of 

VEGF-targeted therapies [196]. Tyrosine kinase inhibitors like midostaurin and sorafenib 

target a broad spectrum of receptor tyrosine kinases, including VEGFR. They have been 

clinically investigated for the treatment of AML. Sunitinib had only modest clinical activity in 

the treatment of AML, while sorafenib, as a single agent or in combination with conventional 

chemotherapy, led to a reduction in leukaemic development only in AML patients with FLT3 

mutations [197–200]. Although tyrosine kinase inhibitors such as sorafenib have an in vitro 

effect on VEFGR, the fact that they only have a clinical activity in patients with FLT3 mutated 

AML suggests that their effect on AML cells is rather due to FLT3 inhibition than due to their 

anti-angiogenic activity.  

Anti-angiogenic therapy,  such as bevacizumab or tyrosine kinase inhibitor such as sunitib 

have also been shown to improve oxygenation and tissue perfusion in solid tumours [201–

207]. In solid tumours, vascular damages such as capillary leakage and vessel compression 

may lead to focal hypoxia. As mentioned above, severe hypoxia participates to 

chemotherapy resistance in AML by decreasing leukemic cell-cycle activity. Anti-angiogenic 

therapies have shown promising results by correcting tissue hypoxia, inducing vascular 
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normalization and vessel decompression [208]. In AML,  new antiangiogenic therapies have 

shown decreased proliferation and increased apoptosis of AML cells [209,210]. Further 

clinical studies focusing on anti-angiogenic therapies in AML are warranted.  

 

4.3 Anti-adhesion therapies 

 

As described above, there is mounting evidence that ECs play a key role in the development, 

relapse or resistance to chemotherapy of AML. Based on this evidence, teams are 

developing treatments that may break the link between leukaemic cells and ECs. These 

efforts resulted in the development of an E-selectin inhibitor, GMI-1271 or uproleselan [66]. 

In a mouse model of AML, Barbier et al. demonstrated that targeting E-Selectin inhibits the 

niche-mediated pro-survival signalling, impairs the recovery of AML blasts and acts 

synergistically with chemotherapy, doubling the survival time of mice compared to 

chemotherapy alone [66]. In a phase I/II clinical trial (ClinicalTrials.gov Identifier: 

NCT02306291), uproleselan was tested in 66 patients with AML in combination with 

chemotherapy. Overall, the 60-day mortality rate of all AML patients in the study was 9%, 

the median overall survival was 9.2 months (95% CI, 3-12.6) and event-free survival was 12.6 

months (95% CI, 9.9-NA). Currently, uproleselan is being tested in AML patients in 

combination with chemotherapy and compared to chemotherapy alone in a randomised, 

double-blind, phase III trial in the USA, Australia and Europe (ClinicalTrials.gov identifier: 

NCT03616470)[211]. Another example of adhesion molecule targeted therapy is the 

development of anti-CD44 therapies. Anti-CD44 treatments induce the differentiation of 

AML blasts in vitro and increase sensitivity to chemotherapy [63,64,212,213]. Only one 

phase I dose escalation study has investigated anti-CD44 therapy using a recombinant anti-

CD44 immunoglobulin G1 humanised monoclonal antibody as a single agent, in 

relapse/refractory AMLs. This trial enrolled 44 patients, 10 of whom received therapeutic 

doses of the drug. Pharmacokinetics increased supraproportionally, suggesting a target-

mediated drug disposition at ≥1200 mg. Two patients achieved a complete response with 

partial response, and one patient had stable disease with haematological improvement. 

More clinical trials are needed to confirm the value of this treatment strategy [214]. 

Drugs targeting CXCL2/CXCR4 axis, such as plerixafor, a CXCR4 antagonist, or ulocuplumab, 

an anti –CXCR4 monoclonal antibody are also under current evaluation for the treatment of 
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AML. In vitro study showed that inhibition of CXCL2/CXCR4 pathway restored AML cells 

sensitivity to chemotherapy [75,76,215–218]. Anti-CXCL2/CXCR4 therapies have  also been 

used in murine model of AML and patient-derived xenografts and have demonstrated 

significant reduction of tumor burden[75,219,220]. Several phase I/II study in humans with 

plerixafor and other targeted therapy against CXCR4 found that it is a feasible treatment 

with significant anti leukemic activity but larger phase III studies are needed to confirm the 

clinical benefit for patients[221–224]. 
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5. Conclusion and future directions 

 

Emerging data suggest a crucial role for ECs in the pathophysiology of AML. By binding to ECs 

through different adhesion molecules, leukaemic cells can invade different organs, protect 

themselves from chemotherapy, and then participate in the relapse of disease. The use of 

drugs directed against these adhesion molecules appears to be an interesting strategy to 

treat patients with AML and to prevent specific complications. Future work should focus on 

the role of ECs according to their tissue of origin by separating ECs from the bone marrow, 

lung or kidney and according to the vessel, whether it is a capillary, a venule or an arteriole. 

The treatment of AML requires the clearance of LSCs, which may be achieved by combining 

standard chemotherapy with drugs targeting the binding between ECs and leukaemic cells; 

these should therefore be developed and evaluated in therapeutic trials. Finally, 

understanding the pathophysiology of acute complications in patients with newly diagnosed 

AML may lead to new therapeutic responses, probably focusing on the use of anti-adhesion 

drugs. 

 

 

6. Practice points 

 Through adhesion molecules, endothelial cells (ECs) bind to leukaemic cells in 

the bone marrow niche, protecting leukaemic cells from death 

 Leukaemic cells enhance their ability to bind to ECs, by secreting cytokines 

that increase the level of adhesion molecules on the surface of ECs 

 By secreting VEGF, leukaemic cells increase the density of capillaries within 

the niche, further modifying their microenvironment to their advantage 

 Leukaemic cells have the ability to bind to ECs of the pulmonary and cerebral 

capillaries via adhesion molecules resulting in a leukostasis syndrome 

 Leukaemia cells activate endothelial cells leading to activation of coagulation 

and eventually to DIC 
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7. Research agenda 

 Clinical outcome of anti-adhesion drugs on remission, overall survival and 

relapse-free survival 

 Decipher in vitro and in vivo interaction between bone marrow ECs and 

leukaemic cells to identify new therapeutic targets 

 Decipher in vitro and in vivo mechanism of leukostasis to identify therapeutics 

target 
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Figure legends 

 

Figure 1. EC and leukaemic cell interactions within bone marrow niches 

 

Leukaemic cells may promote their survival by remodelling endothelial cells (ECs) in the 

bone marrow. Leukaemic cells secrete Vascular Endothelium Growth Factor-A (VEGF-A), 

which increases angiogenesis and, via an autocrine signal, could enhance leukaemic cell 

renewal and resistance to chemotherapy. The cross-talk between leukaemic cells and ECs 

increases the adhesion of blast cells to ECs. Leukaemic cells secrete pro-inflammatory 

cytokines that activate ECs and increase the expression of adhesion molecules on their 

surface (E-selectin, VCAM-1). Once bound to the ECs, leukaemic cells also increase the 

expression of VLA-4 on their surface via Pi3 kinase signalling, thus reinforcing the link 

between the leukaemic cells and the ECs. The subsequent activation of intracellular 

signalling pathways involving AKT/mTOR and NF-B pathways in leukaemic cells induces a 

decrease of chemotherapy-induced apoptosis. Nitric Oxyde (NO) release by activated ECs is 

involved in capillary leakage. Severe hypoxia in the bone marrow through Hypoxia Induce 

Factor (HIF) pathway decreases leukemic cell-cycle activity, inducing a quiescent state that 

mediates resistance to chemotherapy and stimulate angiogenesis. 

 

Figure 2. Specific acute complications of AML 

Patients with acute myeloid leukaemia, especially patients with hyperleukocytosis >50G/L, 

are at risk of organ failure due to leukaemia-specific complications. Leukostasis consists of 

an aggregation of leukaemic cells circulating in the capillaries of different tissues and is 

responsible for alteration of gas exchanges with distension of the capillaries and tissue 

hypoxia by obliteration of the arterioles. Leukostasis can be responsible of respiratory or 

neurologic failure. Solid organ infiltration is described in the literature as an extravascular 

leukaemic cell location and can affect almost every organ. The tumor lysis syndrome, often 

secondary to the initiation of a specific treatment, but which may also be spontaneous, 

consists of the death of cancer cells which release toxic products (potassium, uric acid, etc.) 

into the circulation, as well as extra-cellular histones capable of activating the endothelium 

and causing microvascular lesions in different organ, mainly the kidney but also the lung or 

the nervous central system.  
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Figure 3. Endothelium involvement in acute complications of acute myeloid leukaemia 

 

Leukaemic cells promote their adhesion to endothelial cells (ECs) via the secretion of soluble 

factors such as the cytokines TNF- or Il-1 or extra-cellular histones. These induce the ECs 

activation and expression on surface of adhesion molecules, such as Intercellular Adhesion 

Molecule 1 (ICAM-1), Vascular Cell Adhesion Molecule 1 (VCAM-1) and E-selectin. Leukaemic 

cells bind to these adhesion molecules via their ligands such as Very Late Antigen-4 (VLA-4), 

P-Selectin Glycoprotein Ligand-1 (PSGL-1) or Lymphocyte function-associated antigen 1 (LFA-

1), aggravating leukostasis in the capillaries. Leukaemic cells attached to the microvessel wall 

also secrete Matrix Metalloproteinases (MMPs), favouring solid organ infiltration by 

leukaemic cells. Disseminated Intravascular Coagulation (DIC) may be a consequence of 

increased Tissue Factor (TF) expression by microparticles (MPs) released by leukaemic cells, 

and of increased TF expression by activated ECs. 
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Table 1. Potential therapeutics to target leukaemic cell-ECs interaction

Therapeutic target Drug Pharmacodynamic Desease status Study design On going/Finished References 

Ø Dexamethasone 
sensitizing 
leukaemic cell to 
chemotherapy 

Relapsed/Refractory 
AML 

Phase 3 On going 
[225] NCT03765541 
 

VEGF Bevacizumab 
recombinant 
humanized IgG, anti-
VEGFR 

Newly Diagnosed 
AML 

Randomized Phase 2 finished [195] 

VEGF Bevacizumab 
recombinant 
humanized IgG, anti-
VEGFR 

Relapsed/refractory 
AML 

Phase 1 finished [226] 

VEGF-R Sorafenib 
Tyrosine Kinase 
Inhibitor, anti-
VEGFR activity 

Newly diagnosed 
AML 

Phase 1/2 On going 
[227] NCT02728050 
 

E-Selectin 
Uproleselan (GMI-
1271) 

E-Selectin 
antagonist 

Newly diagnosed 
AML 

Phase 2/3 On going 
[228] NCT03701308 
 

E-Selectin 
Uproleselan (GMI-
1271) 

E-Selectin 
antagonist 

Relapsed/refractory 
AML 

Phase 3 On going 
[229] NCT03616470 
 

CD44 
MLM-CAR44.1 T-
cells 

CAR-T Cell targeting 
CD44 

Relapsed/refractory 
AML 

Phase 1/2 On going 
[230] NCT04097301 
 

CXCR4 Plerixafor CXCR4 antagonist 
AML in CR before 
alloHSCT 
transplantation 

Phase 2 
Terminated, results 
unpublished yet 

[231] NCT02605460 
 




