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Abstract: Single-cell transcriptomic technologies enable the uncovering and characterization of cellu-
lar heterogeneity and pave the way for studies aiming at understanding the origin and consequences
of it. The hematopoietic system is in essence a very well adapted model system to benefit from this
technological advance because it is characterized by different cellular states. Each cellular state, and
its interconnection, may be defined by a specific location in the global transcriptional landscape
sustained by a complex regulatory network. This transcriptomic signature is not fixed and evolved
over time to give rise to less efficient hematopoietic stem cells (HSC), leading to a well-documented
hematopoietic aging. Here, we review the advance of single-cell transcriptomic approaches for the
understanding of HSC heterogeneity to grasp HSC deregulations upon aging. We also discuss the
new bioinformatics tools developed for the analysis of the resulting large and complex datasets. Fi-
nally, since hematopoiesis is driven by fine-tuned and complex networks that must be interconnected
to each other, we highlight how mathematical modeling is beneficial for doing such interconnection
between multilayered information and to predict how HSC behave while aging.

Keywords: HSC aging; single cell transcriptomic; bioinformatics; Boolean modeling

1. Introduction: Problematic of HSC Aging

Aging leads to a decline in the functions of the hematopoietic and immune system,
which in the elderly results in an increased risk of infection, poor vaccination efficacy,
anemia and blood cancers [1]. It is now well established that age-related dysfunction of the
entire hematopoietic system originates from hematopoietic stem cells (HSCs), which lose
their fitness over time. HSCs at the top of the hematopoietic hierarchy reside in the bone
marrow (BM) and are able to maintain the system thanks to their capacity of self-renewal
and multipotent differentiation, which allows them to produce all blood cells throughout
the lifetime of an individual. Over time, HSCs progressively lose their regenerative capacity
and show an attenuated lymphoid potential, counterbalanced by an increased myeloid
potential [2–4], which may contribute to the reduction in adaptive immune cells and
immunosenescence in older individuals. Throughout the years, it has become clear that the
HSC compartment is highly heterogeneous, with phenotypically identical but genetically
different cells and that clonal evolution of HSC with different potential is intimately linked
to aging [5]. This is supported by age-related clonal hematopoiesis (ARCH); the clonal
expansion of HSCs carrying specific, disruptive, and recurrent genetic variants, which
disproportionally contribute to blood cell production [6]. This clonal hematopoiesis is
associated with hematological pathologies, such as myelodysplastic syndromes, acute
myeloid leukemia and chronic lymphocytic leukemia [7–9] as well as with cardiovascular
diseases [10].
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It is, therefore, legitimate that experimental efforts in recent years have focused on
understanding the intrinsic deregulations of aged HSCs. At present, much of our knowl-
edge comes from genetically modified mouse models and comparative transcriptomic
studies of young and old mouse HSCs. Although the data obtained are often divergent
between different laboratories, a large number of distinct intrinsic molecular alterations
associated with aging have been identified. A consensual picture indicates that aged HSCs
have aberrant regulation of genes involved in myeloid and lymphoid differentiation [11],
an increase in megakaryocyte–platelet markers [12,13], a pro-inflammatory signature [14]
and cell cycle gene deregulation [15]. These aged signatures are associated with an increase
in DNA damage, and with changes in metabolism and mitochondrial homeostasis, in
chromatin remodeling (epigenetics), in cell polarity and in cell cycle [4,16,17] (summarized
in Figure 1).
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Figure 1. Cellular and molecular changes of aged HSCs. On the left, the zoom into young (top) and
old (bottom) HSCs summarizes four biological processes that have been proposed to be involved in
HSC aging: metabolism (ROS, proteostasis), DNA damage, epigenetics (green and red circles: active
and repressive histone marks) and signaling. Interconnections between these processes lead to an
altered function revealed by changes in transcriptome signatures. On the right, hematopoiesis is
schematized. Young hematopoiesis is characterized by a balanced differentiation, leading to accurate
levels of myeloid and lymphoid cells. With aging, intrinsic changes in HSCs occur, resulting in a
myeloid bias and immunosenescence.

All these changes probably play a role in age-related HSC deterioration, being inter-
connected and regulated in response to microenvironment signals, such as Tgf-B, Notch,
NF-κB and Wnt [18]. Yet, the direct causal relationship of these changes in HSC aging is
still poorly documented. One example that illustrates our lack of understanding is the
changes in epigenetic and chromatin organization associated with HSC aging [8,19–21].
This epigenetic drift has been observed in different models of aging and at different levels
of the chromatin landscape [22] and result in a more open state of the chromatin [23],
however, its role in age-related functional alterations of HSCs, including clonal selection,
is still not entirely clear. Attempts to link this phenomenon to somatic mutations in the
epigenetic machinery found during clonal hematopoiesis [24,25] have not been successful
due to the lack of explicit mechanisms, linking genotype to observed phenotype [26–28].

2. Evolution of Single Cell Transcriptomic Studies: From Quantitative PCR (qPCR) to
Single-Cell (scRNA-Seq)

Historically, the advance in our knowledge of HSCs has been driven by fluorescence-
activated cell sorting (FACS) approaches that allow the purification of a cell population
based on the expression of a panel of cell surface markers, whose differentiation potential
can be assessed by a functional colony assay in vitro or after transplantation into irradiated
mice [1]. This cell-surface marker-based HSC characterization has shaped the classical but
largely revisited hematopoietic model, in which the long-term HSC (LTHSC), at the top of
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the hierarchy, undergoes a lineage commitment through a series of discrete intermediate
progenitor stages in a stepwise manner. This approach has helped to categorize short-term
HSC (STHSC) and multipotent progenitor populations (MPP2, MPP3 and MPP4) [29–31].
However, the differentiation hierarchy has become increasingly complex with a growing
number of characterized progenitor subtypes that went hand in hand with the techno-
logical evolution of FACS, allowing the simultaneous study of a large number of surface
markers. This escalation in the amount of surface markers used led to environmental stress
during capture and subsequent functional testing that introduced a laboratory-dependent
bias in the way HSCs properties were understood [32]. In the hope of obtaining a com-
plete and unbiased view of the HSC and progenitor compartment, new approaches using
transcriptomics at the single-cell level have emerged. The first transcriptomic studies of
hematopoiesis at the single cell level were conducted using real-time PCR on hundreds of
murine hematopoietic precursors to measure the expression of several dozen intracellular
markers, including transcription factors (TFs), known to regulate hematopoiesis [33,34].
These early studies not only provided essential information about the HSC heterogeneity
and commitment, but also importantly evidenced the power of single-cell transcriptomics,
paving the way for fully unbiased analyses of single cell whole transcriptomes. Con-
currently, scRNA-seq technologies evolved to make the sequencing of several thousand
cells accessible with integrated fluidic circuits and liquid handling robotics [35]. This has
enabled a pioneering study of 2700 murine progenitors, demonstrating their early com-
mitment to distinct lineages well before the common myeloid progenitor (CMP) state [36],
as well as a scRNA-seq analysis of early hematopoietic aging characterizing 1100 HSCs
and progenitors from young and aged mice [37]. Progressively, scRNA-seq shifted from
plate-based technologies, targeting a high sequencing coverage of few cells such as Smart-
seq2 platform [38], to droplet-based technologies, such as Drop-seq [39], Indrop [40] or 10X
Genomics [41], scaling up the number of characterized cells to tens of thousands, enabling
the discovery of new rare cell types. These approaches, although limiting sequencing to the
3′ (or 5′) end of genes and detecting only about 2000–3000 genes per cell, have generated
great interest in the HSC community in search of rare cell populations (see below). Figure 2
is summarizing the principal steps. The rapid development of bioinformatics tools and
their open access has helped move single-cell transcriptomics from an application in highly
specialized laboratories to a widely used technology to apply to HSC-related questions.

Figure 2. Evolution of single-cell transcriptomic technologies and their application.

3. Workflow for Studying Hematopoiesis in Mice

The spread of scRNA-seq technologies, which generates high-dimensional sparse
matrixes (tens of thousands of expressed genes measured in tens of thousands of cells), has
been facilitated by the concomitant development of bioinformatic tools (for review see [42].
Indeed, in order to conduct the analysis of the increasing amount of data, hundreds of
bioinformatic tools have been developed and benchmarked, addressing each step of the
analysis [43], such as Seurat [44–46] or Scanpy, more suitable for very large datasets [47].
These central methodological developments have led to an analysis strategy that is widely
used today and whose steps are described in Figure 3. Nonetheless, some biases in the
scRNA-seq analysis blur our perception of the heterogeneity of the cell population studied.
Such biases are inherent to the sparsity of the data with many so-called dropout events (i.e.,
when an expressed gene is not detected due to low sequencing coverage) and due to the
complexity and number of steps implemented for the scRNA-seq analysis.
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Figure 3. scRNA-seq workflow for studying hematopoiesis in mice. (a) Isolation, sorting, capture of
cells of interest and preparation of libraries for a pool of mice. Example of a droplet-based technology,
R1: Read 1 biological, BC: cell barcode, BE: sample barcode. Primary data processing after sequencing:
Demultiplexing of binary base call (BCL) files in FASTQ files that are aligned to the reference genome,
then transcript counts per cell are quantified using the unique molecular identifiers (UMIs). In this
example, the expression of 30,000 genes is detected for 8000 cells. (b) Quality control (QC) of the
cells and filtering of lowly expressed genes. In this example 10,000 genes expressed in 7800 cells
are conserved. Normalization of counts and some supervised analyses (cell cycle scoring/phase
assignment, supervised cell type annotation) can be performed. (c) Highly variable genes (HVGs) are
selected for dimension reduction and cell clustering. Confounding factors (cell cycle, percentage of
mitochondrial transcripts, etc.) can be regressed out during the scaling of the HVG expression. (d) A
first linear dimension reduction with a PCA to summarize the information. The most informative
principal components (PCs) are kept regarding the drop in the percentage of explained variance.
(e) A clustering and a visualization with UMAP (or tSNE) are conducted on these PCs. In addition, a
pseudo-trajectory can be inferred with the selected top PCs. Finally, differentially expressed gene
(DEG) analyses between clusters/conditions or along pseudotime (pseudoT) are usually performed
on normalized expression data.

3.1. Handling High Dimensionality of Raw scRNA-Seq Data

Raw count matrix of scRNA-seq can contain dozens of poor-quality cells and thou-
sands of genes expressed in very few cells or not detected at all that are filtered out in a
first preprocessing step (Figure 3b). Then, normalization is applied on the resulting matrix
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to correct for the varying sequencing depth between the cells. After this step, it can be
interesting to conduct supervised cell classification using labelled scRNA-seq dataset previ-
ously published to annotate or score cells for confounding factors, such as cell cycle or cell
subtypes of interest. Typically, the majority of scRNA-seq studies consists of unsupervised
analyses (dimension reduction and cell clustering) that is performed on the normalized and
scaled expression of highly variable genes (HVGs) [44,46]. It is worth noting that technical
(sequencing depth) or biological (cell cycle score, percentage of mitochondrial transcripts
expressed) confounding factors can be corrected when scaling HVG expression (Figure 3c).

Unlike the analysis of bulk RNA-seq data, classically used to characterize transcrip-
tomic differences between two biological conditions (differential gene expression, splicing),
the analysis of scRNA-seq data is mainly oriented towards the characterization of cell pop-
ulation heterogeneity (Figure 3d). This heterogeneity is captured by visualizing the cells in
a reduced two- or three-dimensional space with dimension reduction techniques, such as
tSNE or UMAP, which are often used after an initial linear reduction in dimensions with
principal component analysis to summarize the data [48]. Although significant progress
has been made with these two-step dimension reduction techniques, a loss of information
persists, making biological interpretations conducted in the reduced final spaces difficult.
The choice of the dimensionality of the data remains one of the main sources of bias because
it is often done heuristically by seeking a decrease in the percentage of variance explained
by the principal components (Figure 3d).

3.2. Discrete and Continuous Analyses of the Cell Heterogeneity and Gene Marker Identification

Concomitant to UMAP visualization, cell-to-cell transcriptomic variations are typically
assessed by detecting clusters of cells in the principal component analysis (PCA) space,
which assumes biologically disconnected groups of cells. For continuous processes, such
as hematopoiesis, another approach is to consider each cell as a snapshot at a given time
point of the process under study, which must be reorganized in a pseudotime along a
trajectory from an initial state to one or more terminal or differentiated states. Numerous
pseudo-trajectory inference methods have been developed for this purpose [49–52] whose
benchmark highlighted substantial variability in the results. This led to great caution in
considering the calculated pseudotime values and the identified branching points [53]. In
practice, scRNA-seq data studies of differentiation processes, such as hematopoiesis, now
often conduct both discrete and continuous representations of the cells and combine the
results to interpret the data [54–56].

The identification of markers is the last crucial step of a scRNA-seq analysis, it allows
one to draw biological conclusions from the studied model but paradoxically requires a
biological expertise of the latter. Marker genes are determined on the basis of their differen-
tial expression between different clusters or branches of the pseudo-trajectory (Figure 3e)
and will allow the biological characterization of different subsets of cells or states (e.g.,
proliferation, quiescence for example). Unfortunately, this step is intrinsically impacted by
the dropout noise. To overcome this bias, several solutions have been developed, including
the use of missing count imputation methods [57,58] and the use of TF activity signatures
issued from bulk transcriptomic and epigenomic analyses [59,60]. Both methods have their
advantages and disadvantages. The imputation strategy provides a more accurate and un-
supervised correction for marker identification but can sometimes overcorrect the data [61],
while the use of TF activity signatures effectively mitigates dropout noise, as they typically
contain dozens of genes but only allow for analysis of already characterized biological
processes. Merging highly similar and possibly redundant cells into metacells [62,63] is an
emerging alternative that has the advantage of reducing not only the background noise but
also the data size, which is becoming increasingly problematic as the number and size of
single-cell datasets increase [64].
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3.3. Addressing Batch Effect

A particular feature of scRNA-seq studies is their sensitivity to batch effects, often
observed in mouse HSC studies due to the need for multiple pools of mice in order to collect
enough cells of interest. They are manifested by different sequencing depths between each
batch but also by more or less strong activations of genes linked to cellular stress, such
as ribosomal or mitochondrial genes. These biases can be avoided or at least strongly
mitigated by using cellular indexing of transcriptomes and epitopes by sequencing (CITE-
seq) that allows cells from distinct samples to be uniquely labeled. Sequencing of these
labels allows each cell to be associated with its original sample [65]. If this is not sufficient,
there are effective methods to correct gene expression on a batch basis with linear [66]
or more complex [67] models. Batch effect corrections may become problematic when
comparison of different experimental conditions (gene disruption, treatment, kinetics) is
part of the experimental design. It will then be necessary to juggle with the differences due
to experimental conditions and batch effects by integrating the different datasets together
in a common space. For this purpose, several methods have been proposed based on the
identification of cell state subsets shared between the different datasets, benchmarked
in [68]. Data integration is becoming increasingly important, as it is essential for joint
analysis of different omics datasets at the single cell scale [46,69,70].

4. Understanding HSC Heterogeneity to Grasp Aged HSC Deregulations

The very large number of scRNA-seq studies carried out over the last ten years has
greatly increased our knowledge of different biological processes, particularly in the context
of hematopoiesis. The interest of laboratories working on HSCs for scRNA-seq approaches
is explained by the need to understand, at the molecular level, the heterogeneity of HSCs
and its impact on their progeny. It is now admitted that each individual HSC, although
sharing the same cell surface marker combination, differs in terms of functional outputs
and molecular signatures [71,72]. The numerous recent scRNA-seq studies, which have
been enriched with the increase in the number of cells sequenced, have challenged the
traditional, hierarchical view of hematopoiesis and have led to the reconsideration of blood
cell relationships and the routes by which lineage differentiation occurs [73]. It became
evident that hematopoiesis is a continuous differentiation model with a lack of clear delin-
eation between the different subtypes of murine HSCs [54,74] and with the identification of
an early lineage priming in subsets of HSCs [55,75]. The continuum of differentiation in
the HSC population has also been demonstrated in humans, where the transcriptomes of
the HSC and MPP (CD34+ cells) compartment were found to be very similar, suggesting a
cloud of HSCs differentiating directly into unipotent progenitors [76,77]. This model has
been related to Waddington’s landscapes of cell differentiation in which the differentiation
of a cell is represented by a bead going down a hill into diverging valleys, each of which
ultimately leads to a different cell type [78,79].

The value of using scRNA-seq to identify and characterize rare populations has been
demonstrated in studies seeking to understand the cellular and mechanistic evolution of
HSC during aging. The transcriptomic analyses at the single cell level have particularly been
useful to clarify the origin of the myeloid bias found in aged HSCs. Although a first study
demonstrated a cell autonomous impaired lymphoid differentiation potential of aged MPP4
pinpointing the cellular compartment responsible for lymphoid cell loss with aging [80],
most of the following studies suggested a gain in myeloid differentiation potential of
aged HSCs. This gain was mainly due to an expansion of identified platelet-primed
or megakaryocyte-primed HSCs [55,81]. In line with the increase in myeloid potential
observed in old HSCs, several studies demonstrated an expansion with age of HSCs primed
to respond to an inflammatory stimulus. Three studies highlighted a clear subpopulation
of HSCs primed for interferon stimulus that were prepared to strongly respond to future
stress or injuries that are expanded with aging [55,82,83]. In addition, a new group of
MPPs have been described [84], which ultimately resemble from a transcriptomic point
of view the group of interferon-primed progenitors described in [55,83]. This specific
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age-related amplification of LTHSCs with mis-regulated interferon signaling is consistent
with the concept of inflammaging [85]. Another interesting HSC group, amplified during
aging, is the cluster of LTHSCs presenting a TGF signature [55] that may correspond to
the accumulation of the HSC subtypes with differential responses to the TGF that was
previously identified [86].

The accumulation of non-functional HSCs during aging has also been extensively
studied and is thought to be related to the history of HSC cycling activity and an imbal-
ance between self-renewal and the initiation of HSC differentiation [87]. Concerning the
regulation of the balance between population maintenance and differentiation, a study
based on scRNA-seq suggested an increase in self-renewal, which would be linked to a
shortening of the G1 phase of the cell cycle [37]. However, another study showed that the
accumulation of non-functional aged HSCs, seemed to originate rather from a blockage of
the differentiation of quiescent-aged HSCs biased towards the myeloid lineage [55]. The
latter study also showed an increase in the TGF signature in these cells, suggesting a role
for TGF signaling in the accumulation of aged HSCs. In parallel, another study explained
the accumulation of the aged HSC population by the activation of the JAK-STAT pathway
and p53 [88]. Interestingly, these two studies agreed on the markers of this aged HSC
population that shared the same key genes (Hes1, KLF factors, JunB, Nr4a1, Cdkn1a). EGR1
was found to be upregulated in aged human hematopoietic stem cells, independent of
cell cycle phase progression, but was associated with loss of CDK6 and CCND2 during
S phase, which would disrupt HSC cell cycle [89]. These studies converge to show an
accumulation of cells with several quiescent markers, such as Nr4a1, Junb, and Cdkn1a,
which are compatible with observations on the quiescent state of HSCs [90,91]. They are
also consistent with the distinction between quiescent and active HSCs and with the role
of retinoic acid signaling in maintaining the hypoxic dormant state [92,93]. In addition,
a study that implies an important role for Cdc42 activity/polarity in HSCs for driving
the symmetric/asymmetric mode of division revealed that the frequency of polar HSCs
decreases upon aging, which results in more symmetric divisions with daughter stem cells,
with impaired potential [94].

It is important to note that all of the studies discussed above only partially overlap,
with some features of aging not replicated across studies. One source of discrepancy may
lie in how and when they handle cell cycle bias in their analysis. Indeed, the cell cycle
induces variations in the whole transcriptome, confounding signals of interest, such as cell
differentiation [95]. Thus, young and aged HSC/MPP heterogeneity in term of priming
for specific lineage seems to be better resolved with a regression of cell-cycle effect before
dimension reduction [55] than without [37,82]. The partial overlap between studies could
also very well be a consequence of heterogeneous aging capture, consistent with the theory
of clonal hematopoiesis, which shows that competitive clones emerge and amplify at the
expense of others during an individual’s lifetime [96]. One way forward would be the
construction of a large single-cell atlas collecting hundreds or even millions of thousands
or even millions of cells to provide an in-depth phenotypic description of biological tissues
across a wide range of pathological conditions, similar to the human cell atlas [97] or the
tumor infiltrating lymphocytes atlas using samples from hundreds of donors [98].

5. Coupling the Transcriptome to the Cell Fate

An important issue is to capture the temporal dynamics of the cell population by
evaluating the future state of an individual cell. One strategy is to use RNA velocity
analysis, which is based on calculating the time derivative of the gene expression state by
distinguishing newly transcribed (spliced) mRNAs from mature (unspliced) mRNAs by the
presence of introns. The combination of velocities between genes is then extrapolated to es-
timate the future state of each cell in transcriptome space [99,100]. Although promising, this
bioinformatics approach seems poorly suited to the study of hematopoietic cells in which
changes in mRNA processing and stability may be key factors in HSC activation [101]. This
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is observed experimentally by a boost in RNA transcription that induces unexpected and
probably erroneous projections of future cell states due to biased velocity estimates [102].

To address the challenge of correctly inferring the cell differentiation trajectory, the
best strategy seems to combine scRNA-seq with other single-cell omics technologies and/or
lineage tracing approaches [103].

Lineage tracing methods have proven effective in understanding the heterogeneity of
the initial HSC population, as well as the clonal relationships between individual HSCs
and their progeny [103]. These methods are based on a library of DNA barcodes expressed
within a transgene that are stably integrated into the genomes of the HSCs under study.
The offspring after multiple divisions of a particular HSC, thus, inherits its own barcode,
allowing the assessment of transcriptional changes and functional potential of each cell
in the same experiment. In this way, it is possible to trace the progeny of a HSC in an
inferred pseudo differentiation trajectory and present an unbiased view of differentiation.
Altogether, lineage tracing studies interestingly showed that rather few mature cells had
integrated barcodes at the HSC level (apart from the megakaryocytic lineage), suggesting
that MPPs rather than HSCs were the main contributors to undisturbed hematopoiesis
(reviewed in [104]). When coupled with scRNA-seq, they appeared to be the right way to
follow the fate of a given HSC in relation to its transcriptomic signature and have deepened
our understanding of HSC differentiation potential. They confirmed the early priming
of HSCs to different lineages under physiological conditions [75,105]. They additionally
showed, using computational methods of dynamic inference that fate choice occurs earlier
than detected by the algorithms and that cells progress smoothly in the differentiation
with precise and consistent dynamics [105]. These results were later strengthened by the
addition of CRISPR-seq to lineage tracing and scRNA-seq, which clarified that the HSC sub-
population with high self-renewal potential contributed very little to hematopoiesis [106].
Single-cell epigenomic approaches could also be useful in determining the fate of an HSC.
This hypothesis is supported by a HSC lineage tracing study, combined with extensive
transcriptomic and epigenomic analyses, which demonstrated that epigenetic features, in
contrast to the transcriptome, are consistently correlated with the cell fate [107]. Altogether,
these approaches reveal the limits of using scRNA-seq alone to distinguish functionally
heterogeneous HSC states and emphasized that transcriptionally similar cells can have
cell-autonomous bias toward different fate choices [104].

6. Network-Based Dynamic Modeling: A Successful Approach to Decipher Hematopoiesis

As discussed above, the HSC fate is driven by complex interaction networks involving
signaling, transcriptional and also epigenetic regulations. To decipher such large and
complex biological networks and to cope with and take advantage of multiple layers of
information, explanatory and predictive mathematical models are beneficial.

Because of the ease of collecting blood or bone marrow samples, which facilitated data
generation, the hematopoietic system was early on the subject of mathematical modeling
studies [108]. Initially, studies at the level of the production of the different blood cell
populations and their interactions were modeled using differential equations [109–111].
However, this mathematical formalism requires precise parameters, such as reaction con-
stants or other initial conditions that are important because the behavior of the system can
be very sensitive to them, but their knowledge is often limited or incomplete.

Qualitative approaches are more suitable to model gene regulatory networks and
decipher their biological complexity [112]. More economical in parameters, they gain in
flexibility by allowing the variables to represent different biological realities (activation
of a gene or phosphorylation of a protein for example). Logical models are therefore
much more abstract and qualitative representations of biological systems than models
based on systems of differential equations [113]. See Appendix A for a presentation of
logical modeling. They have demonstrated their effectiveness in a variety of biological
systems [114], such as the regulation of the cellular response to DNA damage [115] or the
combinatorial effect of mutations in tumorigenesis [116]. The emergence of next generation
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sequencing and the amount of data generated have facilitated the study of molecular
regulatory networks helping the construction of numerous logical models, among others
related to hematopoiesis. These models have been useful in understanding regulatory
events in hematopoiesis, such as those focused on T cell differentiation [117,118] and
their activation [119], which have contributed to the understanding of cancer resistance to
immunotherapies [120].

Logical models have been particularly helpful to describe the dynamical behavior
and differentiation of the progenitor and stem cell compartment. A logical model of dif-
ferentiation starting from the CMP toward erythrocytic, megakaryocytic, granulocytic
and monocytic lineages recapitulated the differentiation hierarchy characterized by the
presence of an initial branching between granulocyte-monocyte progenitor (GMP) and
megakaryocytes-erythrocyte progenitor (MEP) [121]. Further upstream in hematopoiesis, a
logical model of HSPC regulation was established, presenting a stability in the dynamics
that reflects the heterogeneity of the hematopoietic stem and progenitor cell (HSPC) popu-
lation at different stages of activation, observed in single cell expression data [122]. The
analysis of the model showed that some transient external activations allow the modelled
system to escape from this stability zone and reach a differentiated state (for example, the
activation of GATA1 allowed system to reach an erythroid state). Another model described
a differentiation pathway starting from MPP states and reaching two stable states, corre-
sponding to lymphoid and myeloid progenitors [123]. Interestingly, stimulations of the
model with cytokines suggested a possible reprogramming of pre-B cells into macrophages
by transient activation of CEBPA [123]. These studies demonstrated that in addition to
providing a global mechanistic vision of the observed phenomena (progenitor differentia-
tion), the construction and analysis of logic models also allow the prediction of new local
regulations and additional mechanisms.

Logical modeling has also been very useful to understand the effect of extrinsic signals
on HSC behavior. This can involve modeling the interaction between two types of cells.
For example, a logical model of the dialogue between HSCs and mesenchymal stromal
cells (MSCs) revealed attractors representing states of the system where HSC and MSC
are attached and detached, respectively. The model highlighted the role of aberrant NF-
kB expression in the creation of a tumor microenvironment [124]. Another recent model
of a molecular regulatory network governing HSC quiescence and activation has been
elaborated [125]. In the model, synchronous simulations provided stable LTHSC, STHSC,
and proliferating HSC states, depending on a combination of niche signals that promoted
quiescence or cell cycle activation. This model uncovered a novel regulatory mechanism of
p53 in homeostasis, involving ROS- and RAS-activated TF regulators [125]. Such qualitative
analysis of the dynamics opens up interesting avenues for studying age-related extrinsic
deregulations of HSCs and the key players that control the resulting changes.

7. Single Cell Data and Boolean Networks Inference to Understand HSC Aging

One of the current challenges is to adapt mathematical methods to single cell data in
order to integrate as much information as possible extracted from the data into the Boolean
model. This relies on inference methods, which have a two-fold purpose: the construction
of the influence graph and the characterization of the Boolean parameters (Figure 4). This
involves reverse engineering approaches.
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Figure 4. Boolean Network inference. Workflow of Boolean network inference from scRNA-seq data.
(a) scRNA-seq data can be used to infer transcriptional interactions between TFs and complement
influence graph constructed from prior knowledge of the searched BN. (b) The pseudo trajectories
issued from the scRNA-seq data, can be discretized and translated in discrete observations of the
searched BN. (c) Given these inputs, constraint programming can be used to infer the logical rules of
the BN.

7.1. Gene Regulatory Network Inference

The issue of inferring the molecular interaction network underlying the biological
process has been addressed in the past from bulk expression data [126]. Nowadays, the
amount of information provided by single-cell data has greatly improved the quality of
inferring interactions between biological components of these networks, most notably
for regulations between TFs and their target genes based on expression dependencies
observed in the data. Numerous mathematical methods have been proposed for this
purpose [127] and evaluated [128], relying on regression approaches [129,130], expression
correlations [131] and information theory [132,133]. These approaches can be used to
infer TF influence graph from single cell data and complement prior knowledge of gene
regulatory network of the modelled biological system (Figure 4a). Inference of influence
graphs from scRNA-seq data is clearly improved by adding additional levels of information,
such as epigenetics and genomics. Epigenetic data from ChIP-seq experiments of TFs and
histone marks, as well as ATAC-seq, have identified regulatory regions with DNA binding
motifs for hundreds of TFs. These motifs were used to identify sets of genes coregulated
by the same TF [134]. This strategy has been developed by an application, SCENIC,
which searches for motif enrichments in the regulatory regions of a TF’s target genes
by regression trees [60]. The combination of chromatin landscape, transcriptome, and
other omics analyses at the single-cell level promises new developments in methods for
inferring contextualized and accurate influence graphs of transcriptional interactions [127].
For example, scATAC-seq data have been used to link DNA regulatory elements to their
potential target genes to reconstruct TF networks [135].

7.2. Boolean Network Inference

Mathematical models present the specificity of integrating the dynamics with the
influence networks, thus enabling a better understanding of how the network of regula-
tions gives rise to the global observed behavior. Model inference, therefore, requires the
determination of the dynamical parameters, consistent with the influence graph. In the case
of Boolean networks (BNs), this consists in inferring, for each node of the influence graph,
a logical rule describing the changes of its state according to the state of its regulators. The
trajectories of the global system will be defined from this set of logical rules. The pseudo-
trajectories constructed from the scRNA-seq data can be interpreted as observations of
some trajectories generated by a BN (Figure 4b). The challenge is then to find the logical
rules from these “partial dynamics” that are sets of transitions between states observed in
the data (Figure 4c). Several methods have been proposed to address this inference problem
thanks to constraint programming, model checking and the introduction of novel seman-
tics [34,136–138]. In practice, BN inference from scRNA-seq data have been successfully
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implemented to define a BN of embryonic hematopoietic development in humans [34], as
well as a BN of HSC differentiation into MPP and MEP configurations [138].

Incorporation of new information from scRNA-seq into BN inference has necessitated,
and thus enabled, the emergence of new analysis methods that are proving interesting and
effective in capturing physiological changes, such as aging. Hence, Boolean models of aging
have started to emerge. Schwab et al. [139] proposed an original analysis of single cell data
exploiting population heterogeneity to sample time series data, from which sets of Boolean
models were inferred. Then, by studying some topological properties, their analysis
captured the dynamical heterogeneity, occurring with HSCs aging. Hérault et al. [140]
presented an original inference methodology to construct a Boolean model allowing a better
understanding of the mechanisms and factors controlling the effects of aging on HSCs.
They developed an inference strategy that consists in a specific combination of different
methods ranging from transcriptional regulation analysis for influence graph inference to
constraint programming [136] and model checking techniques for logical rule inference.
They succeeded in obtaining a Boolean model which agrees with most prior experimental
observations of HSC biology. They provided expected and new predictions that could
explain the myeloid bias in aged HSC differentiation, including the overactivation of Egr1
and Junb or/and the loss of Cebpa activation by Gata2 [140].

8. Conclusions

One of the limitations in understanding the mechanisms responsible for HSC aging
is the heterogeneity of the cells, whose evolution plays a crucial role in age-related clonal
changes. Single cell technologies are powerful tools to grasp the molecular features of
a cell population and to follow how these features evolve upon aging. Since aging is
associated with increased risks to develop blood malignant disorders, deciphering the
transcriptional networks involved in HSC aging at the single cell level is crucial to prevent
disease development. Beyond physiological aging, the knowledge of these molecular mech-
anisms will also be beneficial for a more accurate patient stratification and for the design of
innovative treatments targeting specific pathways/mutations (“precision medicine”). One
of the current challenges is to adapt mathematical based methods to single cell data and
develop the corresponding tools to be able to understand the biological process under the
study. In this line, computational models anchored in biology are ushering in a new era of
HSC biology and provide a better understanding of the interconnected perturbations that
drive stem cell diseases.
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ARCH Age-related clonal hematopoiesis
ATAC-seq Assay for transposase-accessible chromatin with high throughput sequencing
BM Bone marrow
BN Boolean network
CCND2 Cyclin D2
CDC42 Cell division cycle 42
CDK6 Cyclin-dependent kinase 6
CDKN1A Cyclin dependent kinase inhibitor 1A
CEBPA CCAAT/enhancer-binding protein alpha
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ChIP-seq Chromatin immunoprecipitation followed by sequencing
CITE-seq Cellular indexing of transcriptomes and epitopes by sequencing
CMP Common myeloid progenitor
CRISPR-seq Clustered regularly interspaced short palindromic repeats sequencing
DEG Differentially expressed genes
DNA Deoxyribonucleic acid
Drop-seq Droplet-sequencing
EGR1 Early growth response protein 1
FACS Fluorescence-activated cell sorting
GMP Granulocyte-monocyte progenitor
HES1 Hairy and enhancer of split-1
HSC Hematopoietic stem cell
HSPC Hematopoietic stem and progenitor cell
HVG Highly variable genes
JAK Janus kinase
KLF Krüppel-like factor
LTHSC Long-term hematopoietic stem cell
MEP Megakaryocytes-erythrocyte progenitor
MPP Multipotent progenitor
MSC Mesenchymal stromal cells
NF-kB Nuclear factor kappa B
PCA Principal component analysis
ROS Reactive oxyygen species
RNA Ribonucleic acid
scRNA-seq single-cell RNA sequencing
STAT Signal transducers and activators of transcription
STHSC Short-term hematopoietic stem cell
TF Transcription factor
TGF-β Transforming Growth Factor Beta
t-SNE t-distributed stochastic neighbor embedding
UMAP Uniform Manifold Approximation and Projection
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Figure A1. Example of Boolean network modeling for the three transcription factors Gata1, Gata2 and
Zfpm1 in HSC erythroid-priming context. The influence graph represents the gene regulatory network
whose dynamics is encoded with logical rules. Transitions between Boolean states (representative of
cells at different times of differentiation) can be analyzed by asynchronously updating the components
according to logical rules.

An influence graph represents the regulations (activations or inhibitions) between
selected biological components. Each component of the model is associated with a discrete
variable standing for its activity level and logical parameters (using AND, OR and NOT
operators) expressing the combined impact of its regulators. The global state of the system
is represented by a discrete vector containing the activity values for all components.

For instance, in the example, we know that Gata2 is synergistically inhibited by Gata1
and Zfpm1 and that it activates its own promoter. Its logical rule is, therefore, Gata2 & (!
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Gata1|! Zfpm1). This rule indicates that Gata2 is ON if it is already present (self-activation)
and at least one of the inhibitors is absent.

While the logical rules dictate the dynamics, the transitions between states are de-
fined by the chosen semantic (updating rules) and determine the trajectories. With the
asynchronous dynamics, whenever multiple components are called for a change, all single
value changes are considered, leading to different possible trajectories from a same state.
This dynamic is widely used in applications because it allows a state to have several succes-
sors, as can be observed in biology. Attractors in models are particularly studied because
they represent the long-term behavior of systems. We distinguish two types of attractors,
steady states (fixed points) or complex attractors (i.e., a set of nodes with oscillations). The
biological analysis of the attractors from the levels of the states that constitute it allows to
interpret and validate the model. In our example, if the system is in state 010 where only
Gata2 is active (representing an uncommitted progenitor phenotype), it will go to the stable
state 101 with Gata1 activated (primed erythrocyte phenotype).

The Boolean formalism enables the delineation of testable predictions by the simula-
tions of mutants (KO or over expressed). These in silico perturbations allow us to simulate
alterations in the system and then validate the model with genetic perturbation experi-
ments and make predictions, all with minimal computational effort. Mutant simulations
are performed by constraining the variables associated with the nodes, held at 0 for loss of
function (KO mutant) or 1 for overexpression (KI mutants).
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