
HAL Id: hal-03855508
https://cnrs.hal.science/hal-03855508v1

Preprint submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neurocomputational mechanisms engaged in detecting
cooperative and competitive intentions of others

Rémi Philippe, Rémi Janet, Koosha Khalvati, Rajesh P N Rao, Daeyeol Lee,
Jean-Claude C Dreher

To cite this version:
Rémi Philippe, Rémi Janet, Koosha Khalvati, Rajesh P N Rao, Daeyeol Lee, et al.. Neurocompu-
tational mechanisms engaged in detecting cooperative and competitive intentions of others. 2022.
�hal-03855508�

https://cnrs.hal.science/hal-03855508v1
https://hal.archives-ouvertes.fr


Neurocomputational mechanisms engaged in
detecting cooperative and competitive intentions of
others
Rémi Philippe 

CNRS - Institut des Sciences Cognitives Marc Jeannerod https://orcid.org/0000-0003-2894-7688
Rémi Janet 

CNRS, Institut des Sciences Cognitives Marc Jeannerod
Koosha Khalvati 

Paul G. Allen School of Computer Science and Engineering, University of Washington
Rajesh Rao 

University of Washington
Daeyeol Lee 

Johns Hopkins University https://orcid.org/0000-0003-3474-019X
Jean-Claude Dreher  (  dreher@isc.cnrs.fr )

CNRS, Institut des Sciences Cognitives Marc Jeannerod https://orcid.org/0000-0002-2157-1529

Article

Keywords:

Posted Date: January 18th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1160167/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1160167/v1
https://orcid.org/0000-0003-2894-7688
https://orcid.org/0000-0003-3474-019X
mailto:dreher@isc.cnrs.fr
https://orcid.org/0000-0002-2157-1529
https://doi.org/10.21203/rs.3.rs-1160167/v1
https://creativecommons.org/licenses/by/4.0/


 
 

1 

 1 

Neurocomputational mechanisms engaged in 2 

detecting cooperative and competitive intentions of 3 

others  4 

 5 

 6 

 7 

R. Philippe 1, R. Janet 1, K Khalvati 2, R.P.N. Rao 2,3, D Lee4, JC. Dreher 1* 8 
 9 
 10 

 11 

1 CNRS-Institut des Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and 12 

decision making laboratory.  67 Bd Pinel, 69675 Lyon, FRANCE 13 

2 Paul G. Allen School of Computer Science and Engineering, University of Washington, 185 Stevens 14 

Way, Seattle, WA 98195 15 

3 Center for Neurotechnology, University of Washington, Seattle, WA 98195  16 

4 The Zanvyl Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Department of 17 

Neuroscience, Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. 18 

Charles St, Baltimore, MD 21218, USA 19 

  20 

* Corresponding author 21 

 22 

 23 

 24 

 25 

 26 

 27 

  28 



 
 

2 

Abstract  29 

Humans frequently interact with other agents whose intentions can fluctuate over time between 30 
competitive and cooperative strategies. How does the brain decide whether the others’ intentions are 31 
to cooperate or compete when the nature of the interactions is not explicitly signaled? We used model-32 
based fMRI and a task in which participants thought they were playing with another player. In fact, this 33 
agent was an algorithm alternating without signaling between cooperative and competitive strategies. 34 
A neurocomputational mechanism underlying arbitration between competitive and cooperative experts 35 
outperforms other learning models in predicting choice behavior. The ventral striatum and ventromedial 36 
prefrontal cortex tracked the reliability of this arbitration process. When attributing competitive 37 
intentions, these regions increased their coupling with a network that distinguish prediction error related 38 
to competition versus cooperation. These findings provide a neurocomputational account of how the 39 
brain dynamically arbitrates between cooperative and competitive intentions when making adaptive 40 
social decisions. 41 

42 
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Introduction  43 

During social interactions, humans are often uncertain whether others intend to compete or 44 

cooperate. The intentions of other agents can fluctuate over time, making it challenging to develop 45 

behavioral strategies. A key question is to understand how the brain decides whether the other is 46 

cooperating or competing during volatile situations in which the nature of the social interactions is not 47 

explicitly determined, as when others interact to achieve a common goal while maximizing their own 48 

benefits. This question is of importance since it lies at the heart of strategic social decision making 1–9. 49 

In these types of situations, other agents can change behavior according to cooperative or competitive 50 

intentions. Cooperation is generally defined as involving a group of individuals working together to attain 51 

a common goal 10,11. In contrast, competition involves one person attempting to outperform another in 52 

a zero-sum situation 12. A number of theoretical accounts and experimental results demonstrate that 53 

the ability to mentalize, i.e. to simulate the other’s belief about one’s next course of action, is crucial for 54 

strategically sophisticated agents 6,7,13,14. The neurocomputational mechanisms engaged in attributing 55 

intentions to others has been studied in situations in which participants are explicitly informed about the 56 

nature of the interactions, either in a collaborative context alone 15–17 or in a competitive context alone 57 

8,18–25. For example, during a cooperative game such as the coordination game, one of the best 58 

strategies is to try to choose one of two presented targets consistently. In contrast, in a competitive 59 

game such as the matching pennies game 19,25, the optimal strategy is to choose between two targets 60 

equally often and randomly across trials. If the identity of the game played is not known, the agent has 61 

to adjust his/her strategy based on repeated interactions with others and to infer 62 

cooperation/competition on the basis of observations. How the brain achieves such inference poses a 63 

unique computational problem because it not only requires the recursive representation of reciprocal 64 

beliefs about other’s intentions, as in cooperative or competitive contexts alone, but it also requires one 65 

to decide whether the other is competing or cooperating to deploy an appropriate behavioral strategy.  66 

Here, we sought to determine the neurocomputational mechanisms that underlie the inferences 67 

of whether a person is competing or cooperating during volatile situations in which the nature of the 68 

interactions is not explicitly signaled. A recent computational account proposed that arbitration between 69 

strategies is determined by their predictive reliability, such that control over behavior is adaptively 70 

weighted toward the strategy with the most reliable prediction 26. This approach has been tested 71 

successfully in the domains of instrumental or Pavlovian action selection 27, model-based and model-72 

free learning 28 and learning by imitation or emulation 29. Extending this concept of a mixture of experts 73 

to social interactions, we investigated whether the brain relies on distinct experts to compute the best 74 

choice between two possible intentions attributed to others (cooperation or competition) and then 75 

weights them by their relative reliability. We tested and compared these mixtures of models, that 76 

attribute intentions to others dynamically, with different classes of learning models: non-Bayesian vs 77 

Bayesian and non-mentalizing vs mentalizing (see table 1). This allowed us to identify the algorithms 78 
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and brain mechanisms engaged with a key component of the estimation of other’s intentions, i.e. 79 

whether the social partner was cooperating or competing. 80 

The majority of theoretical frameworks used to model feedback-dependent changes in decision 81 

making strategies, such as choice reinforcement and related Markov Decision Process (MDP) models, 82 

assume that optimal decisions can be determined from the observable events and variables by the 83 

decision makers. Clearly, these assumptions do not capture the reality and complexity of human social 84 

interactions because observable behaviors of other individuals provide only very partial information 85 

about their likely future behaviors. Moreover, model-free RL algorithms assume that values (utility or 86 

desirability of states and actions), change incrementally across trials. This assumption is incorrect when 87 

option values change abruptly, such as when the intention of the other shifts between cooperation and 88 

competition. These limitations explain why agents basing their behavior only on standard RL models 89 

can be exploited by opponents using more sophisticated algorithms 6,30. 90 

A more accurate account of strategic learning is based on a family of RL models which adds a 91 

mathematical term to the classical Temporal Difference (TD) algorithm to consider the other as an agent 92 

having their own policy, which can be influenced by oneself 6,30,31. For example, fictitious play learning 93 

proposes a basic form of mentalizing by having a representation of the other’s strategy. Influence 94 

models also consider that RL can be supplemented by a mentalizing term that represents how our 95 

actions influence those of others, updated through a belief prediction error 2,6,19,21,30,32–34. Such influence 96 

models formalize not only how players react to others’ past choices, (first-order beliefs in Theory of 97 

Mind: ToM), but also how they anticipate the influence of their own choices on the others’ behavior (i.e., 98 

mentalizing-related second-order beliefs). Another modeling approach of theory of mind used Bayesian 99 

algorithms to model inferences about the future actions of another, attempting to take their point of view 100 

and to simulate their decision 13,17,35. This strategy can be performed recursively so that participants 101 

make inferences concerning the others’ inferences and so on. Such a sophisticated approach could be 102 

grounded in the theoretical framework of Partially Observable Markov Decision Processes (POMDPs) 103 

36. POMDPs provide a probabilistic framework for solving tasks involving action selection and decision 104 

making under uncertainty 37,38. Notably, this approach has recently been applied to strategic cooperation 105 

in groups 36,39,40. These models, however, have mainly been limited to signaled cooperative or 106 

competitive tasks where the intentions of players do not change over a given period13,35,41,42. 107 

Here, we tested the predictions of these different families of learning models against one 108 

another, investigating not only non-Bayesian vs Bayesian models and non-mentalizing vs mentalizing 109 

models, but also a mixture of models deploying an arbitration process whereby the influence of 110 

attributing intentions to others is dynamically modulated depending on which type of intention (i.e. 111 

cooperative vs competitive) is most suitable to guide behavior at a given time. We did so by using a 112 

novel model-based fMRI design (Fig. 1) consisting of an iterative dyadic game in which participants 113 

were told that they would interact with another person via a computer. Unbeknownst to them, the other 114 
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player was an artificial agent that switched between blocks of cooperative trials and blocks of 115 

competitive trials when playing a card matching game. Thus, the algorithm’s goals were the same as 116 

those of participants in the Cooperative blocks but were orthogonal in Competitive blocks. Participants 117 

remained uncertain with respect to the goals of their “partner” or “opponent”, which alternated, without 118 

being signaled. This task allowed us to investigate the algorithms used by the brain to recognize the 119 

“intentions” of others and to adopt appropriate strategies when the modes of interaction (cooperation 120 

vs competition) are not indicated. 121 

We found that the model accounting best for behavior was a mixture of influence models, 122 

referred to as Mixed-Intention Influence Model. Two expert systems work together to make strategic 123 

decisions, one assessing competitive intentions and the other assessing cooperative intentions, a 124 

controller weighting between these experts according to their relative reliabilities. Each expert system 125 

uses a classic RL algorithm complemented with a mentalizing term to infer the other’s actions. This 126 

Mixed-Intention Influence model accounts for behavior observed in naturalistic environments in which 127 

the other’s goal is often only partially congruent with one’s own, allowing for a continuous range of 128 

behavior between pure cooperation and pure competition. A brain network including the ventromedial 129 

prefrontal cortex (vmPFC) and the ventral striatum tracked the reliability signal from the controller. This 130 

finding indicates that the Mixed-Intention Influence model captures the higher-order structure of the 131 

mixed-intentions task (i.e., alternation between cooperation and competition). When comparing trials 132 

classified as competitive versus cooperative by the controller, we also identified a brain system engaged 133 

with an updating signal used for learning. Finally, when participants expected higher utility for choosing 134 

according to a competitive rather than cooperative strategies, the vmPFC and the ventral striatum, 135 

tracked the intentions of others and showed changes in functional connectivity with a brain system 136 

including the right temporo-parietal junction (rTPJ), dorsolateral prefrontal cortex (dlPFC) and the intra-137 

parietal sulcus (IPS), which discriminates reward prediction error (PE) between believed modes of 138 

interaction. Together, these results provide a model-based account of the neurocomputational 139 

mechanisms guiding human strategic decisions during games in which the intentions of others fluctuate 140 

between cooperation and competition. 141 

  142 
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Results 143 

Behavioral signature of tracking intentions 144 

We assessed how participants used the history of previous interactions to make their choices. 145 

We used logistic regression to examine whether participants selected the same target as that from the 146 

previous trial (“Stay”) or chose the other target (“Switch”), depending on whether the previous three 147 

trials (at t-1, t-2 and t-3) had been won or lost, whether the previous decisions had been to Stay or 148 

Switch, and whether the previous interactions from those trials indicated cooperation (see below). We 149 

also added sex, age and the number of trials as control variables. All trials except the 5 initialization 150 

trials were included in this analysis. Cooperation was defined by a binomial variable, representing the 151 

interaction between the last action of the Artificial Agent (AA) and the participant’s own previous 152 

outcome (”Cooperativity signature”). This variable was set to 1 if either the participant had won on the 153 

previous trial and the AA stayed on the same target for the next trial, or if the participant lost on the 154 

previous trial and the AA switched to the other target the trial just after. Otherwise, the variable was set 155 

to 0. Indeed, from the perspective of the participant, if the AA is a cooperative partner, both players win 156 

at the same time and should then choose to keep the same target to be more predictable.  157 

We found that the “Cooperativity signature” predicted an increase in the “stay” probability of 158 

participants at t-1 and t-2 (Cooperativity signature 𝑡−1: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.05, p=0.021; 159 Cooperativity signature 𝑡−2: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.05, p=0.002, 𝜒² test Fig. 2a). This suggests the participants 160 

tracked whether the other agent was cooperating during the two previous trials (but not before). 161 

Participants used the outcome of the latest trial to make the next decision (staying or switching target) 162 

according to a win/stay, lose/switch strategy (winningt−1: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.16, p<0.0005, 𝜒² test Fig. 2a). 163 

 164 

Computational models tracking intentions of the other agent 165 

To elucidate the computations underlying strategic decision making, we compared the results 166 

of different computational models. These models were split into five classes (see SI). The first class of 167 

models, based on heuristics, included Win-Stay/Lose-Switch and Random Bias models. The other four 168 

classes of algorithms can be classified into non-Bayesian versus Bayesian model families along one 169 

dimension and mentalizing versus non-mentalizing model families along the other dimension. Thus, the 170 

second class of models includes non-Bayesian, non-mentalizing models represented by reinforcement 171 

learning (RL) models. The third class represents non-Bayesian mentalizing models, namely the 172 

“influence models” which are RL models with an additional term representing how the actions of one 173 

player influence those of the other player. The fourth class corresponds to Bayesian non-mentalizing 174 

models, including (1) a Hierarchical Gaussian Filter (HGF) which tracks the volatility of outcome 43, (2) 175 

the k-Bayesian Sequence Learner which tracks the probability that one target will be selected by the 176 

AA after a history of specific length k and (3) the active inference model which minimizes the expected 177 
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free energy 44. The fifth class of models contains Bayesian mentalizing models, which are the k-ToM 178 

models using recursive Bayesian inferences of depth k to predict the future choice of the AA. Each 179 

mentalizing model was tested using 3 versions: a competitive, a cooperative and a ‘mixed intentions’ 180 

version. The ‘mixed intentions’ version computes one decision value according to a competitive expert 181 

and another according to a cooperative expert and arbitrates between the two, based on the difference 182 

in their respective reliability (see SI, Fig. 3a). We defined reliability as the difference in unsigned value 183 

functions for two choices given by particular learning algorithms. 184 

Next, we performed a group-level random-effect Bayesian model selection on the models’ 185 

computed free energy, taking into account potential outliers and the number of free parameters 45,46. 186 

We found that the ‘Mixed Intentions Influence Learning’ Model was the most frequent best fit across the 187 

population (Fig. 2b), demonstrating that subjects employed mentalizing-related computations in our 188 

mixed intentions task. This finding also indicates that arbitration between a cooperative and a 189 

competitive expert best explains most participants’ behavior, rather than either expert taken individually. 190 

Additionally, only the Mixed-Intention Influence model (and not the cooperative or the competitive one) 191 

succeeded in producing behavior, similar to participants, with respect to the effect of the Cooperativity 192 

signature on the probability to stay (Fig. 3b and Extended Fig.1, see SI). We conducted a logistic 193 

regression to understand how the Mixed-Intention Influence model explained differences in behavioral 194 

strategy to stay or switch target. This analysis included the reward prediction error at t-1, the valence 195 

of the arbitration between cooperative and competitive intention at time t (sign(Δ); 1 for cooperative and 196 

-1 for competitive), and the interaction between these two variables. This analysis revealed a main 197 

effect of the valence of the arbitration (𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑡 ∶ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.24, 𝑝 < 0.0005,  𝜒² 198 

test Fig. 3c) indicating that participant tend to stay more on the same target when they attributed 199 

cooperative intention to the other. Moreover, we found an interaction effect, i.e. participants did not 200 

integrate the prediction error in their strategy in the same way given the attributed intention 201 

(𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑡 ∗ 𝑟𝑃𝐸𝑡−1: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.20, 𝑝 = 0.0227, 𝜒² test Fig. 3c). That is, higher 202 

negative prediction errors increased the probability that the participant would stay on the same target 203 

when the controller attributed cooperative intentions compared to when it attributed competitive 204 

intentions. In addition, we also performed another logistic regression analysis using the same variables 205 

and the actual mode of interaction (i.e. competitive block trials versus cooperative block trials), rather 206 

than the classified mode of interaction made by the controller. We did not find the same interaction 207 

effect when we compared actual competitive and cooperative block trials (𝐵𝑙𝑜𝑐𝑘 𝑡𝑦𝑝𝑒t ∗208 𝑟𝑃𝐸𝑡−1: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.003, 𝑝 = 0.56, 𝐵𝑙𝑜𝑐𝑘 𝑡𝑦𝑝𝑒𝑡: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0.03, 𝑝 = 0.229, 𝑎𝑛𝑑 𝑃𝐸𝑡−1: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =209  0.14, 𝑝 < 0.0005, 𝜒² test; Extended Fig.2, see SI), showing that the classified intentions, but not 210 

competitive or cooperative blocks, affected the use of prediction error. 211 

We reasoned that when facing an individual who can change his/her intentions to compete or 212 

cooperate over time, the brain may rely on distinct experts to compute the best choice based on these 213 
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two possible intentions (i.e. cooperative or competitive), weighted by their relative reliabilities. We 214 

therefore built such an ‘arbitrator’ computation as a sigmoid function of the difference in reliability 215 

between the Cooperative and Competitive interactions (Δ), added to a bias (δ) that characterized each 216 

individual’s tendency to attribute competitive (δ>0) or cooperative (δ<0) intentions to others. To assess 217 

intentions of the other, participants only have access to the outcomes of previous interactions, the 218 

choice (to stay or switch) of the artificial agent on previous trials, and the interaction between these two 219 

types of information. 220 

We hypothesized that repeated social victories should favor the attribution of cooperative 221 

intentions because a series of victories suggests that both players are satisfied with the outcome. In 222 

such situations the other player (i.e. AA) has become more predictable, which is an important feature 223 

to build cooperation 47. Moreover, the interaction between outcome and AA’s choice (i.e. the tendency 224 

of the AA to “stay” after a participant wins or “switch” after a participant loses) should drive the arbitrator 225 

to favor the cooperative mode, because playing the same winning target for both players corresponds 226 

to the optimal Nash equilibrium of the cooperative game. To test this hypothesis, we regressed the 227 

signed difference in reliability on (1) the participant’s last outcome, (2) AA’s choice to “stay” or to “switch” 228 

and (3) the interaction between the participant’s outcome and the AA’s choice to stay or switch 229 

(Cooperativity signature) over up to three retrospective trials. We found that the past two interactions 230 

between participant’s outcome and AA’s action (Cooperativity signature), the last outcome and switches 231 

by the AA at trial t-2 and t-3 explained the difference in reliability 232 

(𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑡−1: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =0.59, p<0.0005; 233 𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑡−2: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =0.06, p=0.037; 𝑉𝑖𝑐𝑡𝑜𝑟𝑦: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =1.98, 234 

p<0.0005; 𝑠𝑤𝑖𝑡𝑐ℎ 𝑡−2: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =-0.18, p<0.0005; 𝑠𝑤𝑖𝑡𝑐ℎ 𝑡−3 ∶  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =-0.07, p<0.0005), 𝜒² test, 235 

Fig. 4a). 236 

Together, these analyses show that participants’ behavior, when alternating between 237 

unsignaled cooperative and competitive blocks, is best explained by the Mixed-Intention Influence 238 

model. According to these findings, people use mentalization to update their beliefs about future chosen 239 

targets, and dynamically arbitrate between the predicted intentions of the other agent to compete or 240 

cooperate (Fig. 3a). 241 

 242 

Model-based fMRI analyses 243 

First, we constructed a GLM (GLM1) to identify brain regions tracking the arbitration process 244 

(i.e. Δ: signed reliability difference, reliability for cooperation minus that of competition) between the two 245 

experts (one for cooperation, the other for competition). We added the reliability difference Δ as 246 

parametric regressor at the decision stage, and the expected reward for staying on the same target, as 247 

non-orthogonalized parametric regressors to allow them to compete for the variance. We added the 248 
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reward prediction error as a parametric regressor at the outcome time and we controlled for the other’s 249 

intention effect by adding Δ as a non-orthogonalized regressor. The bilateral ventral striatum 250 

(x,y,z=9,12,0 and x,y,z=-12,9,-6, ), vmPFC (x,y,z=6,45,-8), postcentral gyrus (x,y,z=-20,-44,48), and 251 

middle cingulate cortex (MCC; x,y,z=11,-15,57, p<0.05 whole-brain family-wise error (FWE), Fig. 4b 252 

and 4c) tracked the difference in reliability between experts (Δ) at the decision time. Bilateral dorsal 253 

striatum (DS; x,y,z=17,6,-12 and -14,3,-11), bilateral orbitofrontal cortex (OFC; x,y,z=44,36,-14 and -44 254 

52 8), posterior cingulate cortex (PCC; x,y,z=2,-34,38), and bilateral angular gyrus (x,y,z=45,-30,46 and 255 

-54,-62,39) (p<0.05 FWE, Fig. 5a) encoded the reward prediction error at the outcome time. 256 

To investigate brain areas encoding the reward prediction error that were more engaged when 257 

the controller classified a trial as competitive vs cooperative, we tested another GLM (GLM2). Trial 258 

onsets were separated according to whether the value of the signed reliability difference Δ added to the 259 

bias was positive or negative. If this value was ≥0, the trial was classified as Cooperative, and 260 

Competitive otherwise. The computed expected reward for staying on the same target was used as a 261 

parametric regressor at the time of choice. We found that the right dlPFC (x,y,z=35,11,36), the IPS 262 

region (x,y,z=50,-50,32) and the right temporoparietal junction (rTPJ; x,y,z = 51,-50,33, p<0.05 FWE) 263 

were more engaged in encoding reward prediction error in trials classified as Competitive versus 264 

Cooperative (p<0.05, FWE Fig. 5b and 5c). This effect could not be explained by less variance in the 265 

PE regressor in trials classified as Competitive trials compared to those classified as Cooperative, 266 

because we observed no difference in regressor variance on these two types of trials (p=0.57, Levene’s 267 

test). No region was more engaged in trials classified as Cooperative compared to those classified as 268 

Competitive.  269 

To further investigate the relationship between the behavior to stay after a trial classified as 270 

Competitive versus classified as Cooperative and the BOLD signal, we conducted a logistic regression. 271 

Explanatory variables were the average of the weighted time series in the dlPFC and rTPJ/IPS region 272 

observed in GLM2, the valence of the controller (Δ) and their interactions. This signal was extracted at 273 

the time of the outcome and convolved with the hemodynamic function. Because there was an average 274 

of 6.6 scans per trial, we took as a predictor variable the mean of this weighted signal through the 7 275 

scans following the outcome presentation. We found an interaction between the weighted time series 276 

and the valence of the arbitration (𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑡 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1 ∶  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =277 −14.4, 𝑝 = 0.0312, 𝜒² test). Post hoc tests further revealed that this effect was driven by trials classified 278 

as Competitive (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠𝑡−1 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒𝑡−1 ∶ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =279 −37.3, 𝑝 = 0.040, 𝜒² test). This result indicates that activation of rdlPFC and rTPJ/IPS increases the 280 

probability of switching following a trial classified as Competitive. 281 𝑙𝑜𝑔𝑖𝑡(𝑃(𝑠𝑡𝑎𝑦)) =  𝛽0 +  𝛽1 ∗ 𝑠𝑖𝑔𝑛(Δ) + 𝛽2 ∗ 𝑇𝑖𝑚𝑒 𝑆𝑒𝑟𝑖𝑒𝑠 + 𝛽3 ∗ 𝑠𝑖𝑔𝑛(Δ) ∗ 𝑇𝑖𝑚𝑒 𝑆𝑒𝑟𝑖𝑒𝑠 282 

 283 
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Connectivity analysis 284 

Finally, we performed a generalized psycho-physiological interaction (gPPI) seed to voxels 285 

connectivity analysis to understand the interactions between brain regions tracking the arbitration 286 

process (i.e. Δ: reliability difference) for the cooperative and competitive experts and those more 287 

engaged with the PE when the controller attributes more competitive than cooperative intentions to the 288 

other (see Online Methods). We used the ventral striatum and vmPFC, which encoded the controller, 289 

as seed regions (ROI extracted from the GLM1 striatal and vmPFC activity) for trials classified as 290 

competitive compared to those classified as cooperative (i.e. trials for Δ<0 or Δ>0) at the decision time. 291 

We found stronger functional connectivity between regions encoding the difference in reliability and the 292 

right dlPFC (x,y,z=38,34,34), the left IPS region (x,y,z=-48;-44;58) and the left TPJ (x,y,z=-42,-40,50, 293 

p<0.05 FWE; Fig. 6a) at the decision time for trials classified as Competitive compared to those 294 

classified as Cooperative. This result indicates that the dlPFC, IPS and left TPJ receive an input signal 295 

at the time of choice according to the difference in reliability with respect to the Competitive versus 296 

Cooperative believed intention of others. This brain network largely overlaps with the brain network 297 

observed with the PE differentiating between trials classified as Competitive versus Cooperative at the 298 

outcome (Fig. 5b and  Extended Fig. 4).   299 

  300 
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Discussion  301 

To make a strategic decision when facing an individual with unknown and fluctuating intentions, 302 

it is necessary to make inferences as to whether we are in a competitive or cooperative situation. In the 303 

context of minimal information, for example when only the choices of the other, but not their outcomes, 304 

are available, such inferences are much more difficult than when one is in a specific known setting (e.g., 305 

in a competitive game) 19. Here, we provide evidence that the brain engages in dynamic tracking of 306 

another individual’s cooperative/competitive intentions, despite having no explicit information regarding 307 

whether the situation is cooperative or competitive. We found that strategies of participants were mostly 308 

affected by the outcomes of previous interactions and by a “signature” of the other’s cooperativity, i.e. 309 

the tendency of the other (here the Artificial Agent or AA) to stay on the same target after the 310 

participant’s winning. Comparison between computational models demonstrated that such behavior is 311 

best explained by a model in which choice is driven by a controller tracking the reliability difference 312 

between cooperative and competitive intentions. The fMRI results show that the neural computations 313 

of this controller are implemented in the ventral striatum and in the vmPFC. Thus, both behavior and 314 

brain imaging results can be accounted for by a model that includes a controller that allocates resources 315 

according to different experts’ predictions. At the time of outcome, a common brain network, including 316 

the rostral anterior cingulate cortex (rACC), ventral striatum and lateral OFC encoded prediction error 317 

in trials classified as Competitive or as Cooperative. However, prediction error signals in some brain 318 

areas also depended on the classification of the current trial as Cooperative or Competitive as classified 319 

by the controller. That is, a distinct brain network, composed of the bilateral dlPFC, bilateral IPS regions 320 

and the rTPJ was more engaged for trials classified as Competitive compared to those classified as 321 

Cooperative. This latter brain network reflects a differential use of the outcome of the social interaction 322 

as a function of whether it is classified as Competitive or Cooperative (Fig. 2d). 323 

Mentalizing processes are essential to correctly infer the strategy of others. This is true in the 324 

cooperative context, in which participants performed above chance, reflecting their ability to effectively 325 

infer the other’s (i.e. AA’s) behavior. In the competitive context, participants performed below chance 326 

level, showing that the AA was able to predict their behavior and to exploit their previous 327 

choices/outcomes. The Mixed-Intention Influence model had the best ability to predict data and to 328 

generate very similar behavior to the participants. Each expert model is an expanded RL model, with a 329 

term accounting for one’s previous choice influencing the choice of the other. Although only the 330 

influence term differed between the Competitive and Cooperative models, the Mixed-Intention Influence 331 

model tracked intentions based on this second order mentalizing term by weighting the contribution of 332 

a cooperative and of a competitive expert. One key aspect of this Mixed-Intention Influence model is 333 

that it captures higher order structures (fluctuations between cooperation and competition) during social 334 

interactions. In contrast, one important limitation of the classical RL model is that it does not exploit 335 

higher-order structures such as interdependencies between different stimuli, actions, and subsequent 336 
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rewards. Previous studies demonstrated that models incorporating such structures can account for 337 

individual decision making in different situations 48–51. Here, we demonstrate that the representation of 338 

abstract states, such as whether the other is cooperating or competing, can be extended to social 339 

decisions and underlies the ability to build strategies. To confirm that the Mixed-Intention Influence 340 

model accounted more for neural activity in brain areas involved in social interactions, we formally 341 

compared the brain regions covarying more with the expected reward for staying on the same target, 342 

as computed by the winning model, compared to the expected reward for staying on the same target, 343 

computed by a simple RL model (Extended Fig. 3 ). One crucial difference between a simple RL model 344 

and the Mixed-Intention Influence model is that in the former, only the value of the chosen option is 345 

updated and the valuation of the option that was not chosen does not change. In the latter, both the 346 

values of the chosen and unchosen options are updated to incorporate the knowledge that the current 347 

state has a given reliability to be cooperative or competitive. The controller weights the valuation 348 

produced according to the competitive or cooperative hypothesis which is computed as a sigmoid of 349 

the difference in reliability between the two experts. 350 

Activity in the ventral striatum and vmPFC increased as the cooperative prediction from the 351 

controller became more reliable than the competitive prediction, as a result of the outcomes of the 352 

previous interactions (reliability difference modulated by last outcome) and the other’s “Cooperativity 353 

signature” over the last trials. Thus, these brain regions dynamically track the reliability difference 354 

between intentions classified as cooperative and competitive in a situation where the nature of the social 355 

interactions is implicit. Previous reports demonstrated a role of the ventral striatum when making 356 

cooperative choices alone, in response to a partner’s cooperative choice in an explicit cooperation task 357 

52 and also in the attribution of intentions in a competitive context 30. Our findings show that strategic 358 

social behavior can be explained by a Controller Theory according to which cooperative/competitive 359 

social behavior results from the interaction of multiple systems, each proposing possible strategies for 360 

action 26,28,29.  361 

One strength of our computational approach was to assess and compare a large variety of 362 

competing models, (active inference, recursive learning models k-TOM and a mixture of experts using 363 

k-TOM, influence models for only cooperative strategies or competitive strategies, a mixture of experts 364 

using influence models, fictitious learner, Bayesian Sequence learner, Hierarchical Gaussian Filter, 365 

Reinforcement Learning and Heuristic models). Many have never previously been directly tested 366 

against each other. Our results agree with studies concluding thatsocial learning may be driven by non-367 

specific reinforcement processes that include a mentalizing term 3,6,8,30,53. We demonstrate that when a 368 

task is not explicitly signaled as cooperative or competitive, this evokes the arbitration between 369 

strategies determined by predictive reliability. Behavior is hence controlled by giving a higher weight to 370 

the strategy with the most reliable prediction 29. At first glance, it may be surprising to observe that the 371 

mixture of expert influence models performs better than mathematically more sophisticated models, 372 



 
 

13 

such as POMDP models (HGF, active inference, k-ToMs) and models mimicking different levels of 373 

mentalizing (k-TOM). However, this is likely because in our setting the only information that can be 374 

integrated by participants is their own choices, rewards and the history of the choices made by the other 375 

(i.e. AA). The nature of the social interaction is never explicitly signaled (participants are not told whether 376 

the other is cooperative or competitive), and the rewards of the other are not observed. This uncertainty 377 

could therefore result in the failure of POMDP models to reproduce human behavior, particularly when 378 

sudden flips occur between the AA strategies. This contrasts with previous neuroimaging studies that 379 

investigated learning of social interactions in either competitive or cooperative situations alone 380 

(matching-pennies or rock-paper-scissors games against computerized opponents) 25,54. Our findings 381 

also broadly agree with a cognitive hierarchy of strategic learning mechanisms, proposing that distinct 382 

levels of strategic thinking correspond to different levels of sophistication of learning mechanisms (in 383 

increasing order of complexity: reinforcement learning, fictitious play learning and influence learning) 384 

55. However, we propose a more general model based on a mixture of influence learning experts that 385 

function in parallel and are then compared with respect to their relative reliability. 386 

Competitive social interactions often emerge in situations where an agent’s outcome depends 387 

on the choices of others, which requires the ability to infer the intentions of others 6. In the context of 388 

our mixed intentions task, when participants attributed competitive, as opposed to cooperative 389 

intentions to others, the dlPFC and rTPJ/IPS specifically encoded a relative PE. Although this network 390 

has previously been reported when inferring the intentions of others 8,39,56, the strength of our 391 

computational account of theory of mind processes is to specify that this brain network computes a PE 392 

difference between trials that the controller classified as competitive versus cooperative. This PE 393 

difference reflects a differentiation in the implementation and use of the outcome of the social interaction 394 

as a function of the classified interaction (Fig. 3c). Note that PE was not more volatile in trials when the 395 

competitive expert is more reliable than the cooperative expert. This rules out the possibility that the 396 

observed PE difference reflects higher PE volatility in competitive contexts. When comparing intentions 397 

classified as cooperative compared to competitive, participants tended to be more predictable, staying 398 

more on the same target after experiencing an unexpected social defeat (i.e. after higher negative PE) 399 

(Fig. 3c). This behavior likely reflects a signal sent to the other to indicate one’s willingness to stay on 400 

the same target, despite bearing the cost of staying on this target 6,8,57. This is a key feature of successful 401 

coordination 47 in which agents who want to trigger reciprocity 52 are willing to incur a cost to promote 402 

cooperation from the other. 403 

Finally, we found higher functional connectivity between seed regions that encode the reliability 404 

difference of the controller (vmPFC and striatum) and brain regions more engaged in PE for trials 405 

classified as Competitive versus Cooperative (dlPFC, TPJ) (Fig. 6). This indicates that brain regions 406 

engaged in the input of the arbitration process at the time of choice are more strongly coupled (resp. 407 

decoupled) with brain regions encoding PE for intentions classified as Competitive (vs Cooperative). 408 
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This reflects a differential use of the outcome of the social interaction as a function of whether it is 409 

classified as Competitive or Cooperative. Thus, according to the attributed intention of other by the 410 

controller, PE signals differed and the strength of functional coupling increased between regions 411 

encoding the reliability difference of the controller and the dlPFC-TPJ network. When one expert is 412 

more reliable than the other, the Mixed-Intention Influence model predicts that the reward PE is driven 413 

by the valuation of the more reliable expert. Since the only difference between experts is the sign of the 414 

second-order mentalizing term, this suggests that the implication of the dlPFC-TPJ network at the 415 

outcome is engaged when there is a need to mentalize intentions of other agents with opposing goals 416 

(i.e. intentions classified as Competitive). Moreover, engagement of the dlPFC-TPJ network increases 417 

the probability of switching following a trial classified as competitive by the controller, allowing 418 

behavioral adaptation by virtue of the reliability difference signal.  419 

Together, our work provides evidence that the mixture of experts model explains behavior in 420 

socially volatile situations differing only by the reward function of other agents. These two experts only 421 

differ by their priors on how their reward function takes into account another agent’s reward (i.e. the 422 

second order mentalizing term), and were sufficient to discriminate the others’ intentions. These findings 423 

provide a mechanistic framework explaining the neurocomputations underlying learning in strategic 424 

social interactions. We extend to theory of mind processes (i.e inferring cooperative vs competitive 425 

intentions) a computational account similar to mixture of experts proposed to arbitrate between 426 

strategies in other domains, such as exploitation vs exploration 58,59, ‘‘model-based’’ vs ‘‘model-free’’ 427 

systems 26,28,60 and learning by imitation vs emulation 29. Finally, our Mixed-Intention Influence model 428 

may be useful in the field of computational neuropsychiatry to identify the specific computational 429 

components that are modified in theory of mind alterations, a key feature of autism spectrum disorder 430 

61. 431 

  432 
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Method 463 

Participants 464 

32 participants (aged 20-40, M = 27, SD = 5.1 - 17 women) were recruited via a daily local 465 

newspaper and the University of Lyon 1 mailing list. All participants were screened to exclude those 466 

with medical conditions including psychological or physical illnesses or a history of head injury to 467 

prevent having confounding variables. They all provided informed consent and were paid a fixed 468 

amount. However, they were financially motivated in being told that they would be paid as a function of 469 

their decisions. 470 

Mixed intentions task 471 

Participants performed a novel task comprising 163 trials in an MRI scanner. They were led to 472 

believe that they were interacting with another person via a computer interface, while in fact they were 473 

playing against an artificial agent (AA) managed by a computer program. Such simulated social 474 

interactions allowed us to investigate the dynamics and neural mechanisms arbitrating between multiple 475 

learning algorithms. Participants were faced with a screen containing four cards, two face down (the 476 

other player's cards) and two face up (their own cards). Participants were informed that to win, they had 477 

to choose the card of the same color as the one the other person was going to choose. Experimenters 478 

were careful not to specify whether the other was an adversary or a partner. Participants were told that 479 

they and the other player had to make their choices in four seconds (Fig. 1a). If the Artificial Agent (AA) 480 

played before the participant, one of the two face down cards was removed from the playing field. If the 481 

participant chose first, only the selected card remained on the playing field. Then, when both had 482 

chosen, the chosen cards were revealed and the participant received a reward if the card colors 483 

matched, otherwise they received nothing. Participants were led to believe that their final payoff would 484 

be increased by 10 ct (euro) for each winning interaction. No information about the other's payoff was 485 

given to the participants, they only knew that after an interaction, the other ‘participant’ would see the 486 

same screen but with their outcomes which could be different from the participant.  487 

Importantly, unbeknownst to the participants, the artificial agent alternated between Competitive 488 

and Cooperative trial blocks. During this mixed intentions task, the AA’s strategy was determined by 489 

alternating 13 trials of a hide and seek (HS) task (Competitive blocks), and 10 trials of a coordination 490 

game (Cooperative blocks). The artificial agent algorithm was designed to predict the color that would 491 

be chosen by the participant on the basis of a probabilistic analysis of the two previous choices and 492 

outcomes (see SI for the algorithm). Here we defined a competitive choice, made by the AA, as 493 

choosing the card of the color the participant was expected not to play and a cooperative choice as 494 

choosing the card with the same color. Thus, the artificial agent exploited the bias of the participants in 495 

a stochastic way, i.e. the more predictable the participant was, the more the algorithm made correct 496 

competitive or cooperative choices (see SI). Participants were not informed of the switches between 497 
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the two blocks (Cooperative vs Competitive), however their goal was always to choose the same color 498 

as that chosen by the other player (i.e. the AA).  499 

The HS task is competitive, and the computer uses the record of the participant’s choice and 500 

reward history to minimize the participant’s payoff. Therefore, in this case the subject’s optimal strategy 501 

during the HS task is to choose the two targets equally often and randomly across trials. During the 502 

coordination game, the AA tried to maximize the subject’s payoff and in this case the subjects should 503 

try to choose one of the two targets consistently so that the computer can choose the same target as 504 

them. Since the participant is not informed of either the goals of the AA or the switches between blocks, 505 

they must adjust their strategy based on recent experience and infer cooperation/competition on the 506 

basis of their observations.  507 

This task was to designed to identify key components of the estimation of intentions regarding 508 

whether others are cooperating or competing. We took advantage of the fact that an individual’s 509 

estimates as to whether they are engaged in a cooperative or competitive interaction can be assessed 510 

even when the individual is interacting with a computer program rather than another person. Transitions 511 

between the competitive and cooperative blocks were unsignaled, therefore subjects had to discover 512 

by trial and error the most successful strategy over consecutive blocks. This alternation between the 513 

two interaction modes functioned well because the participant’s winning rate was significantly higher in 514 

cooperative (mean 60% std 1%) than in competitive (mean 44% std 1%) trials (paired t-test p<10-4). 515 

 516 

Artificial agent 517 

The AA calculated the probability p for the participant to select a particular target color based on 518 

the history of the two previous choices and their outcomes. Then to make the artificial agent behave 519 

more like a real person, this prediction was exploited in a probabilistic fashion (see SI). In the 520 

cooperative mode the AA chose the color card it predicted with probability p. In the competitive mode 521 

this color was chosen with probability 1-p.   522 

 523 

Behavioral analysis 524 

For the logistic regressions, we reported significant marginal effect of a given variable under the 525 

name “estimate” (for example: 𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑡−1: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒).  526 

Logistic regression : ln ( 𝑃1−𝑃)  = 𝑥0 + 𝑥1𝑋1 + 𝑥2𝑋2 + ⋯ 527 𝑋𝑖 represents independent variables and 𝑥𝑖 represents the associated weights in the logistic 528 

regression. 𝑃 represent the probability of a given event. The marginal effect of the variable 𝑋1 is defined 529 

as: 530 
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𝑦1̂ =  𝑚𝑒𝑎𝑛(𝑙𝑜𝑔𝑖𝑡−1(𝑥1)) 531 

The mean is computed across all observed data. Thus, the marginal effect called “estimate” can 532 

easily be interpreted as the discreet change of the dependent variable given a unitary change of an 533 

independent variable. 534 

For the linear regressions, reported “estimate” represents 𝑥𝑖 i.e. the regression coefficient. 535 

Indeed, in a linear regression, marginal effect of a variable is equal to the estimated coefficient. 536 

Models 537 

To test for a dynamic tracking of implicit intention we compared 14 models, 9 involved theory of 538 

mind (Inf,k-ToM), the others were to control for other possible strategies. The influence models (Inf) rely 539 

on aylor expanded reinforcement learning 62 to take into account the influence of one’s own strategy on 540 

the strategy of the other. k-ToM models also take into account the influence of one’s own strategy on 541 

the other but in a Bayesian fashion 13,35. These two models were adapted in their cooperative and 542 

competitive versions. Moreover, we constructed an adaptation of these two models (Inf,k-ToM) in which 543 

an arbitrator weights the cooperative and competitive versions according to their reliability before 544 

making the decision. Finally, because k-ToM is a recursive model (“I think that you think that…), we 545 

included k-ToM of depth one and two for each version.  546 

To control for strategies that did not include theory of mind we added 5 other models including 547 

two Bayesian inference types (HGF and BSL). The Hierarchical Gaussian Filter (HGF) 43,63 basically 548 

tracks the external volatility of the artificial agent choices in a Bayesian hierarchical way. The Bayesian 549 

Sequences Learner (BSL) strategy relies on Bayesian inference given past sequences of choices. In a 550 

model free analysis, we found that participants tended to use the past 2 choices to make their next 551 

choice, so we used sequences of depths 2 and 3. Finally, we added two non-Mentalizing non Bayesian 552 

models, a reinforcement learning model (RL) and a model based on the heuristic Win/stay – 553 

Lose/Switch that we observed in the model free analysis. 554 

The Bayesian Model Selection (BMS) was performed using the VBA toolbox (Variational 555 

Bayesian Analysis) in a random effect analysis relying on the free energy as the lower bound of model 556 

evidence. We use protected Exceedance Probability measurements (pEP) 45 to select the model which 557 

is used most frequently in our population. 558 

 559 

  560 



 
 

19 

 561 

Table 1. Classification of models according to 3 categories. The first depends on the ability of the model 562 

to mentalize, the second depends on whether the model is a Bayesian model, and the third concerns 563 

models that could be used with a mixture of experts. 564 

 565 

fMRI data acquisition 566 

MRI acquisitions were performed on a 3 Tesla scanner using EPI BOLD sequences and T1 567 

sequences at high resolution. Scans were performed in a Siemens Magnetom Prisma scanner 568 

HealthCare at CERMEP Bron (single-shot EPI, TR / TE = 1600/30, flip angle 75°, multiband acquisition 569 

(accelerator factor of 2), in an ascending interleaved manner with slices interlaced 2.40 mm thickness, 570 

Model Mentalizing Bayesian Mixed intentions 

Influence + 

(coop and comp) 
- - 

Fictitious + - - 

Influence mixed 

intentions 
+ - + 

k-ToM + 

(coop and comp) 

+ 

(depth 1 and 2) 
- 

k-ToM mixed 

intentions 
+ + + 

Active Inferences - + - 

HGF - + - 

BSL 
- 

+ 

(depth 2 and 3) 
- 

RL - - - 

Wst/Lsw - - - 
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FOV = 210 mm. We also use the iPAT mode with an accelerator factor of 2 and the GRAPPA method 571 

reconstruction. The number of volumes acquired varied given the time the participant took to make their 572 

decisions. The first acquisition was made after stabilization of the signal (3 TR). Whole-brain high-573 

resolution T1-weighted structural scans (0.8 x 0.8 x 0.8 mm) were acquired for each subject, co-574 

registered with their mean EPI images and averaged across subjects to permit anatomical localization 575 

of functional activations at the group level. Field map scans were acquired to obtain magnetization 576 

values that were used to correct for field inhomogeneity. 577 

 578 

fMRI data analysis 579 

Image analysis was performed using SPM12 (Wellcome Department of Imaging Neuroscience, 580 

Institute of Neurology, London, UK, fil.ion.ucl.ac.uk/spm/software/spm12/). Time-series images were 581 

registered in a 3D space to minimize any effect that could result from participant head-motion. Once 582 

DICOMs were imported, functional scans were realigned to the first volume, corrected for slice timing 583 

and unwarped to correct for geometric distortions. Inhomogeneous distortions-related correction maps 584 

were created using the phase of non-EPI gradient echo images measured at two echo times (5.20 ms 585 

for the first echo and 7.66 ms for the second). Finally, in order to perform group and individual 586 

comparisons, they were co-registered with structural maps and spatially normalized into the standard 587 

Montreal Neurological Institute (MNI) atlas space using the DARTEL method. Then we ran ARTrepair 588 

to deweight scans that could include movement artefacts 64. 589 

We ran general linear models (GLMs) analyses to identify which brain regions encoded: (a) 590 

one’s belief that one is interacting in a cooperative or in a competitive situation (Δ); (b) the reward 591 

prediction error (PE) after interactions classified as cooperative or competitive; (c) the PE difference 592 

between the trials classified as cooperative vs competitive. In every GLM, an event was defined as a 593 

stick function. The participant’s button press and the AA’s selection of target were defined as onset of 594 

no interest in all GLMs. For all GLMs, missing trials were modeled with four events (cue, participant’s 595 

button press, AA’s choice and outcome) as separate onsets without additional parametric regressors. 596 

Head movement parameters were added as parametric regressors of no interest to account for motion-597 

related noise. Because the behavioral analysis showed that the bias towards competitive interaction 598 

affects the strategy of participants, we added the competitive bias (δ) as a covariate at the second level 599 

analysis in all GLMs.  600 

Specifically, in GLM1, there were 4 onsets, including the time of the cue presentation (cards on 601 

screen), participant’s button press, AA’s choice and the feedback time. Parametric regressors were the 602 

difference in reliability Δ, the expected reward for staying at the time of the cue onset and the reward 603 

prediction error (PE) at the feedback time, as well as Δ, to control for the effect of the believed intention 604 

https://l.facebook.com/l.php?u=http%3A%2F%2Ffil.ion.ucl.ac.uk%2Fspm%2Fsoftware%2Fspm12%2F%3Ffbclid%3DIwAR0S4Sip8z-kBl66Yam93UqrZFSrJT4izKUZvNeHGqXhLeg5ao69a0NBWFs&h=AT3t7d0dwWoUswdn3aG4fPCOCHfQNBaGoh-kRORGeDobmApAD8PQXsb5kqYaJ31DRjGXjP1_P5EozCmRu3A-tUG7Cd-THuvKVxH4R2Yv-SFWcBhavyXba0JI56obVXfZng
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of the other on the PE brain encoding. For each GLM, we turned off the serial orthogonalization function 605 

of regressors to allow it to compete for the variance. 606 

In a second GLM (GLM2), we separated trials given the sign of Δ - δ (positive or negative) to 607 

identify brain regions specifically engaged in cooperative or competitive mental states (δ is a free 608 

parameter capturing the participant's bias toward competitive intent). Δ refers to the difference in 609 

reliability of cooperative and competitive prediction and δ is the competitive bias. For this GLM, there 610 

were 6 onsets, including the cue for trials classified as cooperative or competitive, participant’s button 611 

press, AA’s choice and the feedback time for trials classified as cooperative or competitive. Trials were 612 

classified as either cooperative or competitive and parametric modulators were: the difference in 613 

reliability Δ and the expected reward for staying on the same target at the time of the cue and the PE 614 

and Δ at the time of feedback. Three participants who always attributed the same intention to the AA 615 

were not included in GLM2. 616 

To test the additional hypothesis that brain activation observed for believed other’s intentions (in 617 

Fig. 4b) is also present in competitive vs cooperative blocks, we conducted two more GLMs. The first, 618 

GLM3 is similar to GLM2, i.e., we separated trials into two categories (cooperative and competitive), 619 

but the differentiation was made using the real mode of interaction of the AA rather than the 620 

classification made by the controller. Other onsets and parametric regressors were left unchanged.  621 

Finally, a last GLM was applied to check that the results observed in GLM2 were not simply due 622 

to the effect of volatility of the rewarded target. This GLM (GLM4) is similar to GLM2, i.e. trials were 623 

classified according to the sign of Δ - δ. The only difference was that we added the actual probability 624 

that the AA would choose the same target as the previous trial as a parametric regressor at both the 625 

time of the cue and at the outcome. 626 

We computed one sample t-tests with contrasts for main effect of Δ in GLM1 and effect of PE at 627 

the outcome time. Then we computed the contrast between competitive and cooperative PE regressors 628 

in GLM2, GLM3 and GLM4. Finally, we computed a paired t-test between this contrast, derived from 629 

GLM2 and GLM3, to formally show that activation coming from the difference between classified trials 630 

was significantly higher than those coming from the difference between the actual modes of interaction 631 

as determined by the trial block.  632 

Reported brain areas show a significant activity at the threshold of p<0.05, whole brain family-633 

wise error (FWE), corrected for multiple comparisons at the cluster level (threshold at P<0.001 634 

uncorrected). 635 

 636 
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Psychophysiological interaction (PPI) analysis 637 

We defined the attribution of cooperative or competitive intentions at the time of decision making 638 

as the psychological factor. Thus, we were able to investigate the difference in functional connectivity 639 

when making a decision under cooperative or competitive intent. For this PPI analysis, we focused on 640 

decision time and on functional connectivity between regions encoding the others’ intentions and all 641 

other voxels. Thus, for the physiological factor we took the BOLD signal of the striatal region elicited in 642 

GLM1 as encoding the intention of others. Otherwise, we used same regressor parameters and onsets 643 

as GLM2. 644 

Reported brain areas show a significant activity at the threshold of p<0.05, whole brain family-645 

wise error (FWE) corrected for multiple comparisons at the cluster level (threshold at P<0.001 646 

uncorrected). 647 

648 
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Figures 649 

 650 

 651 

Figure 1. fMRI experiment. a. After a fixation cross, four cards were presented on the screen. The two 652 

cards shown on top of the screen represent the cards presented to the opponent/partner (i.e. Artificial 653 

agent), and not seen by the participant while the two kings (one black and one red) are the cards 654 

presented to the participant (shown in the bottom of the screen). The participants had to choose 655 

between these two cards. At the time of decision, the upper screen represents the display if the AA 656 

makes it choice first, while the lower screen shows how one card is highlighted with yellow border if the 657 

participant makes his choice first. Then a screen presents the participant’s and Artificial Agent’s choices 658 

together. Finally, at the time of outcome the participant wins if both he/she chooses the same card as 659 

the AA (here red king). b. Payoff matrix of the two types of block. c. Frequency of winning (black line) 660 

during competitive (red background) and cooperative (green background) blocks. The grey area 661 

represents the 95% confidence interval. The orange background represents 5 initial trials in which the 662 

AA played randomly for initialization purpose. 663 
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 665 

 666 

Figure 2. a. Model-free analysis. Random-effect logistic regression of the decision to stay after 667 

selecting a specific target with respect to the action of the artificial agent “Cooperativity signature” (i.e. 668 

participant wins then AA stays or participant loses then AA switches), the previous winning interaction 669 

(i.e. success or failure of past trials) and the choice to switch or stay, over the previous three trials. Error 670 

bars are the 95% confidence interval. b. Model comparisons based on Bayesian model selection. The 671 

protected exceedance probabilities indicate that the Mixed-Intention Influence model (Inf 2 expert) 672 

explains decisions in the mixed intention task better than others: Active inference; k-ToM; Bayesian 673 

Sequence Learner (BSL); Hierarchical Gaussian Filter (HGF); Reinforcement Learning (RL); Heuristic 674 

models: Random Bias (RB); Win/Stay-Lose/Switch (WSLS).  675 

  676 
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 677 

 678 

Figure 3. a. Scheme of the Mixed-Intention Influence model. Two influence models (one cooperative 679 

and the other competitive) compute a value for choosing one specific target (the black one). A controller 680 

uses the difference between the absolute value of the value of each expert (called reliability) to compute 681 

a probability that the other is cooperating. Then, the model weights the value of each expert according 682 

to the probability of being in cooperative and in competitive modes to produce a final decision value. 683 

Then it compares its predictions to the actual reward and compute again a new value for each expert.  684 

b. Model-free generative analysis. We generated one hundred sets of data using a free parameter from 685 

a normal distribution with mean and standard deviation calculated from the models fitted to the 686 

population, against the same artificial agent that participants played. We regressed the behavioral 687 

decision to stay after selection of a specific target on the previous trial depending on the interaction of 688 

the previous outcome and the action of the artificial agent (“Cooperativity signature”), the success or 689 

failure of up to three previous trials, and the action to switch or stay of the participant. Error bars are 690 

the 95% confidence interval (random-effect logistic regression). c. Marginal effect of the prediction error 691 

on the probability to stay on the same target in trials classified as Cooperative (green) and trials 692 

classified as Competitive (red). Error bars are the 95% confidence interval. *p < 0.05, **p < 0.01, ***p < 693 

0.001 (random-effect logistic regression). 694 
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 696 

Figure 4. a. Difference in reliability is influenced by the Cooperativity signature of the Artificial Agent 697 

(AA), specifically the interaction of the previous subject’s outcome followed by the action of the artificial 698 

agent (Participant wins then AA stays and Participant loses then AA switches), the latest outcome and 699 

the computer’s switch at trial t-2 and t-3. Error bars are the 95% confidence interval. b. Mean probability 700 

of the participant attempting to cooperate across all participants (black line) for the 163 trials. The initial 701 

orange area is the 5 random initializing trials, green areas are the Cooperative blocks and red areas 702 

the Competitive blocks. The grey area is the 95% confidence interval. c. BOLD signal in ventral striatum, 703 

mPFC and posterior cingulate cortex (PCC) (p < 0.05 whole-brain family-wise error) are correlated with 704 

the difference in reliability, Δ, of estimated competitive and cooperative intentions.  705 
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 707 

Figure 5. Correlations between BOLD activity and prediction error. a. Brain regions in which BOLD 708 

signal correlates with prediction errors for trials classified by the controller to be either competitive or 709 

cooperative. b. Brain regions in which BOLD activity correlates more with PE on trials estimated to be 710 

competitive compared to trials estimated to be cooperative. This network comprised dlPFC (x,y,z = 711 

30,9,42), IPS (x,y,z = 42,-47,42) and the rTPJ (x,y,z = 51,-50,33, p < 0.05 whole-brain family-wise error). 712 

c. Beta value extracted for trials estimated to be either competitive or cooperative. Left: regions in the 713 

ventral striatum (left x,y,z=-14,3,-11 + right x,y,z = 17,6,-12) and rACC (x,y,z = 6,42,-3) with increased 714 

activation in trials estimated to be either competitive or cooperative. Right: specific brain regions 715 

activated only when trials were classified as Competitive: dlPFC (x,y,z = 30,9,42), IPS (x,y,z = 42,-716 

47,42) and rTPJ (x,y,z = 51,-50,33) from 8 mm spheres centered on peak activation. 717 
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 719 

720 

Figure 6. Neural mechanisms of arbitration between the attributions of competitive and cooperative 721 

intentions to the AA. Connectivity analysis: the BOLD signal was extracted from seeds regions (mPFC 722 

and ventral striatum using GLM1) computing the reliability difference between cooperative and 723 

competitive intentions of others (in Blue). The psychophysiological interaction effect shows higher 724 

functional coupling (voxels in red) with the left TPJ (x,y,z = -42,-40,50), left IPS (x,y,z= -32, -48, 50) and 725 

right dlPFC (x,y,z = 38, 34, 34, p<0.05 FWE threshold at p<0.001) in trials classified as competitive as 726 

compared to those classified as cooperative. 727 
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Extended data 729 

Extended table 730 

 731 

Extended results table of GLM1, related to Figure 4c. 732 

Table 1. Brain region that covaries with difference in reliability of interaction mode 

 MNI peak cluster coordinates   

  x y z k Z score 

Difference in reliability 
(Δ=Rcoop -Rcomp) 

     

Ventral Striatum 14 9 -2 3375 4,99 

Left hippocampus -35 -53 3 660 4,3 

mPFC 6 45 -8 1580 4,24 

Right hippocampus 32 -36 12 3836 4,11 

Middle cingulate cortex 11 -15 57 1732 3,95 

Left Angular -32 -53 27 857 3,86 

Left postcentral gyrus -20 -44 48 661 3,85 
 

Rcomp – Rcoop 
 

 
    

No brain region      

** cluster reported at p<0.05 FWE whole brain cluster corrected (initial cluster-forming threshold of 
p<0.001 uncorrected) 

 733 

  734 
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Extended results table of GLM2, related to Figure 5a. 735 

 736 

Table 2. Brain region encoding both competitive and cooperative prediction error. 

 MNI peak cluster coordinates   

  x y z k Z score 

Positively      

Right Dorsal Striatum 17 6 -12 21895 8,79 

Left Dorsal Striatum -14 3 -11 3488 8,78 

Left Cerebellum -44 -74 -45 6381 5,49 

Right Cerebellum 29 -71 -29 5299 5,33 

PCC 2 -35 38 1285 5,3 

Right Angular/TPJ 45 -30 47 3581 4,71 

Left Angular/TPJ -54 -62 39 2044 4,34 

 
Negatively      

No brain region      

** cluster reported at p<0.05 FWE whole brain cluster corrected (initial cluster-forming threshold of 
p<0.001 uncorrected) 

 737 

  738 
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Extended results table of GLM2, related to Figure 5c. 739 

Table 3. Brain region that responded differently for the reward prediction error of a trial 
estimated to be competitive rather than cooperative  

 MNI peak cluster coordinates  

  x y z k Z score 

Competitive > Cooperative      

Right dlPFC 35 11 36 1732 4,41 

Right Angular/TPJ 50 
-

50 32 1758 4,32 

Medial superior frontal gyrus -2 30 47 505 3,82 

Cooperative > Competitive       

No brain region      

** cluster reported at p<0.05 FWE whole brain cluster corrected (initial cluster-forming 
threshold of p<0.001 uncorrected) 
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Extended results table of connectivity analysis, related to Figure 6. 741 

Table 4. Effect of the intention attribution at the decision time on the striatum/mPFC and 
dlPFC/TPJ connectivity strength. 

gPPI Analyse Seed Peak regions k 
p-val p-val 

Z score 
unc. FWE 

 Competitive > 
Cooperative 

mPFC + 
striatum 

-48 -44 58 363 <0.0005 <0.0005 4.52 

mPFC + 
striatum 

-2 -82 -36 153 <0.0005 0.037 4.34 

mPFC + 
striatum 

38 34 34 150 <0.0005 0.040 4.33 

mPFC + 
striatum 

-38 -78 -26 181 <0.0005 0.017 4.27 

Cooperative > 
Competitive 

mPFC + 
striatum 

4 -46 16 744 <0.0005 <0.0005 4.48 
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Extended figures 743 

 744 

 745 

Extended figure 1. Model-based generative analysis. We generated one hundred sets of data using 746 

free parameters from a normal distribution with mean and standard deviation calculated from the 747 

”Influence models” in competitive (a) and cooperative (b) mode, fitted to the population. We generated 748 

a data set against the same artificial agent that participants played. We regressed the interaction of the 749 

previous outcome and action of the artificial agent (I win – AA stay / I lose – AA switch), the behavioral 750 

decision to stay after selecting a specific target at the previous trial based on the success or failure of 751 

the previous trial (Win) and the action to switch or stay of the artificial agent (Switch) in previous trials 752 

up to three trials back. Error bars are the 95% confidence interval. *p < 0.05, **p < 0.01, ***p < 0.001 753 

(random-effect logistic regression). Related to Computational models tracking intentions of the other 754 

agent in the Result part. 755 
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 757 

Extended figure 2. Marginal effect of the prediction error on the probability to stay on the same target 758 

in Cooperative blocks (green) and in Competitive blocks (red). Error bars are the 95% confidence 759 

interval. *p < 0.05, **p < 0.01, ***p < 0.001 (random-effect logistic regression). Related to Computational 760 

models tracking intentions of the other agent in the Result part. 761 
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763 

Extended igure 3.a. Neural correlates of the expected reward for staying on the same target as the 764 

previous trial, computed by the Mixed-Intention Influence model. (Significant ventral striatum correlation 765 

x,y,z=14,11,-2, p<0.05 FWE corrected threshold at p<0.001) b. Ventral Striatum (x,y,z=6,12,0), bilateral 766 

dlPFC (x,y,z=-36, 33, 44 and x,y,z= 30,24,42) and MTG (x,y,z=65,-56,-8, p<0.05 FWE corrected 767 

threshold at p<0.001) are best explained by the expected reward for staying of the Mixed-Intention 768 

Influence model rather than the expected reward for staying of a reinforcement learning model. Related 769 

to Model-based analyses in the result part. 770 
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772 

Extended figure 4. Overlap (in yellow) of brain regions correlating more with PE when trials are 773 

classified as competitive compared to those classified as cooperative (GLM2, in red), and of brain 774 

regions more coupled with the controller region at the time of choice of trials classified as Competitive 775 

compared to those classified as Cooperative (in green) (p<0.005 for display purpose) 776 
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