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ARTICLE

Polyply; a python suite for facilitating simulations
of macromolecules and nanomaterials
Fabian Grünewald 1, Riccardo Alessandri 1,2, Peter C. Kroon 1, Luca Monticelli 3, Paulo C. T. Souza 3 &

Siewert J. Marrink 1✉

Molecular dynamics simulations play an increasingly important role in the rational design of

(nano)-materials and in the study of biomacromolecules. However, generating input files and

realistic starting coordinates for these simulations is a major bottleneck, especially for high

throughput protocols and for complex multi-component systems. To eliminate this bottle-

neck, we present the polyply software suite that provides 1) a multi-scale graph matching

algorithm designed to generate parameters quickly and for arbitrarily complex polymeric

topologies, and 2) a generic multi-scale random walk protocol capable of setting up complex

systems efficiently and independent of the target force-field or model resolution. We

benchmark quality and performance of the approach by creating realistic coordinates for

polymer melt simulations, single-stranded as well as circular single-stranded DNA. We fur-

ther demonstrate the power of our approach by setting up a microphase-separated block

copolymer system, and by generating a liquid-liquid phase separated system inside a lipid

vesicle.
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Molecular dynamics (MD) simulations of (bio-)macro-
molecules have become a powerful tool for researchers
to complement experimental assays. Whereas simula-

tions of single polymer melts or mixtures have been used since the
advent of modern MD1,2, recently the trend goes towards studying
more complex multicomponent systems either of purely synthetic
materials or biologically synthetic hybrid macromolecules3–9.
Examples of such systems range from polyelectrolyte complex
coacervates10 to next-generation polymer batteries11,12. Whereas
simulations of these complex systems are typically focused on
studying the self-assembly or understanding structure–function
relationships, much effort is now being directed towards developing
MD-based protocols for virtual high throughput (HT) screening of
polymers as exemplified by the material genome initiative13–16. HT
screening of polymers by MD is expected to complement experi-
mental HT approaches because it is typically less costly than syn-
thetic exploration and gives access to properties not easily accessible
by purely experimental HT approaches. Such combined approaches
will enable researchers to survey a larger combinatorial space and
filter possible candidates more efficiently14,16. Applications of such
procedures range from the design of novel antimicrobial polymers to
biodegradable polymers14.

Though the avenue of HT simulations is promising, it requires
programs to build topologies and simulation boxes in a quick,
reliable, and consistent manner. Moreover, given the hierarchy of
spatiotemporal scales underlying the behavior of polymer-based
systems, models with both all-atom and coarse-grained (CG)
resolution are required. While a wide range of programs17–26 is
available for MD simulations of biologically relevant systems such
as proteins, lipid membranes, and DNA, the support for simulation
of synthetic and biosynthetic hybrid macromolecules is largely
lacking. To our knowledge, there are no programs that can generate
both input parameters and coordinates for arbitrarily complex
polymeric systems independent of the force-field and compatible
with HT approaches. Depending on the molecule or system there
are a number of specific solutions20,27–30. Some of those are in
principle capable of generating parameters and coordinates29,30.
However, available programs typically support only one force field
and are limited to specific (mostly linear) polymers implemented
by the developers. Website implementations28,30 have the added
problem that performance relies on server-load and it involves
human-time having to interface with the website. In addition,
coordinates for more complex systems such as micro phase-
separated polymers and hybrid nanoparticle blends are frequently
generated by (multi-scale) self-assembly31–33 or custom in-house
building scripts34,35.

The general lack of programs supporting all-atom and CG
polymer simulations limits the use of MD simulations for both
large versatile systems and HT research of (bio-) macromolecular
systems. This is especially true for non-experts in the field. To this
end, we identify five major challenges that need to be overcome.
(1) The program needs to be able to generate both coordinates
and parameters, resolution and force-field independent. Accurate
CG models are often based on atomistic polymers, thus modeling
both of those is an integral part of HT model development. In
addition, the program needs to be force-field agnostic, as some
force-fields work better for specific polymers than others. (2)
There needs to be an easy-to-use pipeline for generating input
files and coordinates based on the system composition. Input files
should be generated from sequences of arbitrarily complex
polymers, including different degrees of branching and statistical
distribution of residues along the chain. (3) The program needs to
be able to combine input parameters and coordinates of poly-
meric systems with a variety of biomolecular structures, like
proteins, lipid bilayers, and nucleotides. For example, manipula-
tion of proteins and other biomolecules by polymer grafting is an

integral part of enhancement strategies36. (4) It needs to be
capable of setting up complex systems without the need for
extensive relaxation. Polymer melts, blends with nano-particles,
and phase-separated systems are highly important in material
science, and when studying bio-synthetic hybrid molecules, and
closely capturing their heterogeneity in the starting structures
saves valuable computer resources. (5) Generation of both the
coordinate and parameter files needs to be fast enough to enable
HT research.

Here, we present the open-source polyply software suite
which addresses the five major challenges presented above. It
facilitates the generation of input parameters and coordinates for
MD simulations of (bio-)macromolecules and nanomaterials.
Using a graph-based algorithm, polyply allows users to generate
parameter files of arbitrarily composed and branched polymers
for any force-field from simple library files and the residue
graph. A residue graph contains the sequence of residues of the
polymer, but in addition, it also records which residues are
connected. Using a multiscale random walk, polyply can also
be utilized to generate starting coordinates for any force field
and at any target resolution. This includes complex arrange-
ments like microphase-separated polymeric systems or multi-
component polymer solutions enclosed in lipid vesicles. To
maximize the accessibility of the models and code, polyply is
distributed via the python package index. Furthermore, polyply
is developed using modern software development practices (such
as code review, continuous integration testing, and semantic
versioning) as outlined in the recent whitepaper by the BioExcel
consortium37. These practices ensure both the integrity of the
code and the library data files.

The remainder of this paper is organized as follows. First, we
present the algorithms behind the input parameter generation
and the coordinate generation. Subsequently, we show the cap-
abilities of our program based on three examples from pure
materials science to bio-molecular science, some at the atomistic
level based on the Amber38,39 and GROMOS40 force fields, others
at the CG level using the Martini41,42 force-field. They exemplify
the capabilities of polyply to be compatible with HT approaches,
generate parameters force-field independently and set up complex
systems. Finally, we discuss the limitations of our approach and
sketch possible future directions for its further development.

Results
The general code design accounts for the fact that generation of
input parameter files and coordinate generation are in principle
separate problems. However, both problems can make use of the
same infrastructure, which is centered around exploiting graph
representations of molecules. Thus, the polyply software suite
consists of separate lone-standing programs, which utilize the
same libraries. At the moment two programs, “gen_params” and
“gen_coords”, are available for input parameter generation and
coordinate generation, respectively. In addition, an auxiliary
program for sequence generation is provided, which is further
discussed in the Supplementary Information. In the following two
sections we explain the algorithm and ideas behind parameter file
generation and system coordinate generation.

Parameter file generation. The problem of generating parameter
files is treated as a graph transformation within polyply. Graph
transformations are commonly used in other tools for generation
input parameters as well19,29. The graph transformation in
polyply takes a residue graph and maps it into a higher resolution
graph, which is agnostic to the target resolution. A graph consists
of nodes and edges. Edges describe which nodes are connected
and nodes can have attributes that store specific information. In
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this context a graph representation of a molecule translates the
connectivity of bonds to the edges of the graph. Molecular
characteristics of the atoms (e.g., their name or residue name) are
stored as node attributes. Before we detail the algorithm, it is
handy to define a few more terms: We define a block to be a
graph, which corresponds to all interactions and atoms of a single
residue; Complementarily, a link describes the interactions (e.g.,
bonds or angles) introduced when two residues are connected. To
this end, polyply internally uses the Networkx43 and vermouth44

python libraries for handling graph-related computations.
The general input to polyply for parameter file generation is a

residue graph of the target molecule. In addition, the blocks and
links corresponding to the residues in the target molecule are
needed (cf. Fig. 1, dashed boxes). Currently, polyply is shipped
with libraries containing these parameters for some force fields
and polymers, a database that will be expanded over time. From
the definition of the residue graph, blocks, and links, polyply
generates a parameter file in three steps (cf. Fig. 1):

Step 1: Generate a disconnected graph of residues
After reading the input files, polyply iterate over all residues of

the input residue graph. For each residue, the matching block is
added to an empty graph thereby generating a disconnected
graph of residues at the target resolution. This graph already
contains all atoms of the target molecule and interactions within
the residues. Thus, the problem to assign the proper interactions
linking the two or more residues remains.

Step 2: Find all links at the residue level
To generate all interactions spanning more than one residue,

links are applied between two or more residues. To solve this in a
general manner we treat it as a subgraph isomorphism problem at
residue graph level: we find all the ways a link can fit onto the
residue graph subject to constraints such as matching node

attributes. Performing this on the residue graph drastically
reduces the problem size compared to solving the subgraph
isomorphism problem at the target resolution. This establishes at
residue level which links apply between which residues.

Step 3: Matching generic links to specific residues
Taking the matches between links and residues, the program

establishes a correspondence between the atoms of the link and
the atoms in the disconnected graph at the target resolution. To
do so the atom names and relative residue indices given in the
link are simply matched to the atoms of the residues in the
disconnected graph generated in step 1. However, this matching
step is not limited to the atom name and residue index. It can also
be extended to take other atom characteristics into account. This
allows accounting for information that is not encoded in the
connectivity of the residue graph, such as chirality or anomers of
the same residue. When a link is added, also the edges of the link
are added to the disconnected residue graph. In this way, the
disconnected graph gradually becomes a connected graph at the
target resolution level. This completes the graph transformation
and the molecule including all interactions only needs to be
written to a file.

System building. Starting coordinates for systems are built using
a generic multiscale approach, in which first a super CG resolu-
tion representation of the system is generated, followed by a back
transformation to the target level. This multiscale approach is
similar to the procedure underlying the Charmm-GUI polymer
builder30, but our approach is generic meaning parameters of
the super CG model are derived on the fly based on the target
force-field, employs a self-excluding random-walk in contrast to a
full-scale dynamics simulation, and uses an automated back

Fig. 1 Schematic illustration of the workflow for parameter file generation. Polyethylene oxide (PEO) grafted methyl acrylate (MA) is used as an
illustrative example. The user input is the residue graph, while the building blocks are taken from the library (presented in dashed boxes). However, users
can modify the library as they need. In step one, the parameters for the blocks are applied based on the residue graph to form a disconnected graph at the
target resolution. In step two the links are matched at residue graph level to the input residue graph. Subsequently, links are applied to the disconnected
graph at target resolution in the third step producing the complete parameter file.
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transformation, which does not rely on a library of coordinate
fragments. The system-building proceeds in five steps (cf. Fig. 2):

Step1: Mapping all molecules to one bead per residue
In the first step, the topology file is analyzed and all molecule

types in the system are detected. For each molecule, all unique
residues are identified and converted to blocks. A generic one
bead per residue super CG model is created and stored in the
form of a graph. The underlying connectivity of the residue graph
is extracted from the bonded graph of the molecules.

Step 2: Generate coordinates for residues
Each block is a graph of a single residue and graph

embedding is used to generate coordinates for this residue.
Due to the specific requirements of molecular geometry, we
utilize a two-step graph embedding. First, initial coordinates are
generated using the Kamada-Kawai45 embedding as implemen-
ted in the NetworkX library43. Subsequently, we perform a
geometry optimization based on the bonded interactions within
the residue using the scipy46 implementation of the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno minimizer47 (see
Supplementary Fig. 1A for a detailed workflow). As presented in
Supplementary Note 3 benchmarking on the residues in the
library shows that this procedure yields reliable coordinates for
residues.

Step 3: Derive parameters for the generic CG model
In the self-excluding random walk, a one bead per residue

approximate CG model is used. It is based upon a Lennard–Jones
(LJ) potential as the interaction function. The epsilon parameter

of the model (LJ well depth) is always set to 1 kJ/mol. Since we do
not perform dynamics the attractive part of the potential is less
important. The sigma parameter, however, determines the overall
packing density and is computed from the residue template
coordinates, reflecting the volume of the residue. It is derived
from the radius of gyration as detailed in the Supplementary
Information. In general, the radius of gyration is often used in
polymer physics to estimate the spherical volume occupied by a
single chain. Here, we port this concept to the molecular
geometry of a single residue. However, in addition to the
geometry of the residue, we also account for the fact that the
single atoms have a certain volume. Although it is an
approximate radius and probably not useful in an actual
simulation, we find it to be good enough in the context of the
random walk.

Step 4: Constrained random walk
To generate coordinates for the one bead per residue molecules

in our target system, we perform a self-excluding random walk.
An attempt to place a bead (step) in the random walk is rejected,
if a maximum force on the placed bead is exceeded. The self-
excluding random walk is by default performed along a breadth-
first traversal of the molecular graph. This means nodes (i.e.,
residues) that are close to each other are placed first and then the
algorithm proceeds further along the chain. Molecules are placed
separately after each other, where the starting point is randomly
chosen from a grid.

This grid can either be user-specified or is considered to be
rectangular across the box. When the random-walk algorithm
exceeds a certain number of steps, it goes backward in the
breadth-first path by default by ten residues and tries to replace
these ten residues. In addition to the force-acceptance criterion,
the random-walk can also be supplemented with three additional
conditions which help steer overall conformations: (1) geome-
trical constraints can be set to define regions of space that are
excluded from sampling; (2) dimension constraints can be
specified to limit the random walk dimension along specific
vectors to for example create brushes on surfaces; (3) distance
restraints can be set to define target distances between specific
nodes within a molecule. To meet the distance restraints, polyply
implements a graph-based algorithm that puts upper and lower
bounds on each step taken. Details and benchmarking are
provided in Supplementary Fig. 2 and Supplementary Note 4,
subsection 2. All additional conditions have to be specified in a
build file. The file syntax for the build file is available online
(https://github.com/marrink-lab/polyply_1.0/wiki/Syntax:-build-
file). Furthermore, to generate starting structures for polymers
with high persistence lengths, polyply implements a feature that
lets the user set a persistence length. Subsequently, the program
samples from the end-to-end distance distribution of the worm-
like chain model and use the distance restraint algorithm to set
the end-to-end distance (see Supplementary Note 3 for more
details). All interactions are computed considering rectangular
periodic boundary conditions using the scipy c-implementation
of the KD-tree46. Using a KD-tree makes it possible to compute a
large number of distances within a cut-off efficiently within
python.

Step 5: Backmapping
Low-resolution coordinates are transformed to the higher

resolution target coordinates by a residue template-based back-
mapping procedure (Supplementary Fig. 3A) similar to those
used for biomolecules48. First, the center of geometry of the
residue template is moved to the CG position. Subsequently, we
optimize the rotation of the template around the center of
geometry such that atoms that have a bond to other residues are
placed close to those residues. To do this we first perform a
connection analysis finding which atoms connect to atoms of the

Fig. 2 Principle of the multiscale algorithm for building systems. The
algorithm works in five steps: first residues are identified, followed by
generating coordinates for the residues through two-step graph embedding.
Based on the residue volumes the generic CG model is generated, which is
then used in a self-excluding random-walk. Finally using the template
residue coordinates the CG model is back mapped to the target
coordinates.
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neighboring residues. If the target resolution coordinates are
available, they are used over CG coordinates. Overall, this aligns
the residue template with the chain backbone in a generic fashion.
This procedure is also applicable to branched residues and
optimizing the rotation is efficiently done in python. Similar to
the idea in the backward program49 the template residue
coordinates are scaled by a fudge factor of 0.45 from the center
of geometry. In the final step, the user has to run a regular
geometry optimization. This causes the coordinates to relax to a
final state that can be used as input to run an equilibration
simulation. As discussed in Supplementary Note 3, subsection 3
this procedure is efficient in avoiding high energy states as well as
artifacts such as interlocking rings.

To implement chirality, we currently use a specific improper
dihedral that forces chirality during the energy minimization step
and/or during the template generation.

In the following sections, we will demonstrate the capability of
the program with some examples for realistic systems. In general,
we will briefly present the steps required to generate both input
parameter files and coordinates. For each system, we ran a small
simulation to confirm the parameters are correct and the system
is stable.

Polymer melts at atomistic and CG level. Simulation of amor-
phous polymers or melts is the backbone of much research in
material science and polymer science in general. Depending on
the length and time scales that are needed atomistic resolution or
CG models are utilized. Here, we demonstrate that polyply is
capable of generating realistic melt conformations independent of
the target force-field, and we analyze its performance. In parti-
cular, we have generated melt systems of varying sizes for poly
methyl acrylate (PMA), polystyrene (PS), poly methyl metha-
crylate (PMMA), poly vinyl alcohol (PVA), polyethylene (PE),
and PEO. For each system, we generated the required parameter
files and initial coordinates for 100 chains of length 50, 100, 250,
and 500. Each of these systems was generated at an atomistic level
using GROMOS and CG level using the Martini3 force-field.
Figure 3a shows the atomistic structures of the six polymer spe-
cies surveyed and overlaid as circles those atoms treated as one
particle in the Martini CG models. After system generation with
polyply, we ran an energy minimization and computed the
average end-to-end distance of the polymers from the minimized
configuration. To improve statistics, ten replicas of each system
were generated leading to a total of 480 systems. The initial target
densities are reported in Supplementary Table 3.

In a melt, polymer conformations can be described by ideal
chain statistics. Some properties like the end-to-end distance can
be computed from theory utilizing experimental input quantities
such as the characteristic ratio. To show that the initial polyply
conformations are realistic for melts, we computed the expected
end-to-end distance using two models—the hindered rotation
model (HRM) and the worm-like-chain model (WCM)—and
compare those distances to the end-to-end distance generated by
polyply. Figure 3b shows the comparison. Overall, the polyply
structures clearly follow the trends of both models, but also the
quantitative agreement is good with mean absolute errors of
about 5.8 Å compared to the HRM and 9.5 Å compared to the
WCM. For the WCM we also compared the distributions
obtained from polyply and the model as shown in Supplementary
Fig. 4. We find a good qualitative agreement.

It should be noted that of course the density and end-to-end
distance of the force field can be different from experiment or
theory. The end-to-end distance can be further fine-tuned by
optimizing the step length of the random walk. However, even if

not optimized, relaxation to target density and end-to-end
distance is typically observed within 50 ns or less, as shown in
Supplementary Fig. 5 for a subset of systems. Figure 3c shows a
single chain of PS 100 in a melt after 5 ns of simulation. Other
chains are removed within a 1 nm radius around that chain to
illustrate the coil-like conformation of the chain in the melt.
Figure 3d shows the typical time it takes to generate coordinates
for different numbers of total residues using polyply. Generating
CG residues is slightly faster than generating atomistic residues.
Overall melts of up to 50,000 residues are typically generated in
less than 5 min. Larger systems in the order of 1 million residues
are generated within less than 70 min.

Single-stranded DNA and circular single-stranded DNA. DNA
is an important bio-macromolecule that expresses and regulates
genetic information in cells. Whereas most of the genetic infor-
mation is encoded in double-stranded DNA (dsDNA), single-
stranded DNA (ssDNA) is frequently important in replication
and repair processes. Beyond this, there are also a number of
DNA viruses that encode their genetic information in ssDNA,
and ssDNA patches are for instance found in telomers50. Gen-
erating realistic structures for ssDNA provides another level of
challenge to the multiscale random-walk protocol. On the one
hand, DNA nucleobases are large residues with about 30 atoms at
the all-atom level. On the other hand, the persistence length of
ssDNA is about 3-10 times higher than that of most flexible
polymers50. Finally, ssDNA is highly charged and known to
coordinate ions around the chain increasing the persistence
length50. To verify that polyply is able to generate configurations
for these macromolecules, we implemented the Parmbsc1 force-
field38 into polyply and built a distribution of poly-T ssDNA with
different lengths (8, 16, 50, 65, 100 bases). For each length, 100
replicas were generated. The persistence length of DNA is known
to change as a function of the salt concentration50. For each chain
length, we, therefore, set two experimentally determined persis-
tence lengths (3.2 nm, 1.4 nm) corresponding to low (12.4 mM/L)
and high (1M/L) salt concentrations. This resulted in 1000 DNA
structures generated by polyply. Figure 4a shows the radius of
gyration as a function of chain length for the two sets of persis-
tence lengths compared to SAXS values. Note that the random-
walk protocol is not biased against the radius of gyration.
Agreement between the generated structures and the experi-
mentally measured values is good. A further characteristic of
polymer conformations frequently applied in polymer physics is
the scaling of the radius of gyration with the number of mono-
mers following the equation (RG= A ×Nv). The scaling measured
with polyply at low salt concentration (v= 0.71 ± 0.01) matches
the scaling found in experiment (v= 0.72 ± 0.01) whereas the
scaling at high salt concentrations (v= 0.55 ± 0.01) is somewhat
lower but still close to experiment (v= 0.57 ± 0.02). Figure 4b
shows two DNA chains with (100 bases) corresponding to the
average radius of gyration seen in Fig. 4a. The principle com-
ponents of the chains were aligned showing that both are
extended but the chain with higher persistence length clearly is
more elongated. To further investigate how good polyply DNA
structures are a starting point for AA simulations, we ran a
simulation of poly-T at the all-atom level and low salt con-
centration. As shown in the Supplementary Note 5, subsection 2
the end-to-end distance and radius of gyration distribution
obtained in an unbiased simulation overlap with those generated
by polyply. Finally, we generated coordinates for the full genome
(1767 bases) of the porcine virus within the virus capsid at the all-
atom Amber level. First the known genome sequence51 was
converted to a circular graph and then used as input to polyply
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gen_params to generate the input parameters. Subsequently
coordinates were generated for the entire system using polyply
gen_coords. A detailed protocol can be found in Supplementary
Note 5, subsection 5 and Supplementary Fig. 7. Important to note
is that the coordinates of the capsid52 have to be supplied as input
to polyply together with the constraint that the ends of the DNA
chain must be in contact (i.e., circular) and that one sodium must
be placed near each DNA residue to ensure the neutrality of the
DNA within the capsid. Afterwards the system was relaxed and
we ran 60 ns of equilibration of the entire system with no
restraints on the DNA to ascertain that the system is stable.

Polymeric lithium-ion battery. Ion conducting polymers for the
application in lithium-ion batteries has been a very active field of
research for many years11,35,53. Block-copolymer systems, con-
sisting of one conducting polymer and one polymer improving
the mechanical stability, are a very promising route to new and
enhanced batteries. Simulation of ion conduction in these sys-
tems, however, are less common as creating the initial coordinates

poses several technical challenges: (1) The system has to be
obtained in the phase-separated state. Modeling salts in common
bead-spring models or mean-field theories is difficult when the
effect on phase separation is unknown. (2) The salt has to be
distributed within the PEO layer but without generating overlaps.
Especially, for the commonly used large anions this becomes
problematic. (3) In principle, the material is best represented by a
multilamellar system, in which for example cross conduction can
also be observed even though for PS-b-PEO this is known to be
less problematic. In this example, we will show how to create a
multi-lamellar system of PS-b-PEO doped with lithium bistri-
flimide (LiTFSI) using realistic polymer length as well as repre-
senting the ions explicitly. Our target system comes from the
experimental work of the group of Balsara, who has exhaustively
studied PS-b-PEO doped with LiTFSI54.

The block-copolymer in this example consists of PS with a
molecular weight of 6.4 kg/mol (~63 monomers) and PEO with a
molecular weight of 7.3 kg/mol PEO (~163 monomers). LiTFSI is
mixed in using a ratio of Li to PEO monomers of 0.085.

Fig. 3 Characteristics of melt systems generated by polyply and performance. a Atomistic structure (orange) and mappings to Martini level (blue) for all
six polymer species surveyed. b End-to-end distance of the melt structures generated with polyply compared to those obtained by theory using the HRM
(left) and WCM (right). Blue squares indicate Martini structures, and orange diamonds GROMOS. For each of the polymers 10 systems with four different
chain lengths (50, 100, 250, 500) were built. c Single chain of atomistic Polystyrene with 100 residues shown in the melt, other chains are shown in gray
and residues within 1 nm are omitted for clarity The backbone of the chain is highlighted in orange and the side chains in yellow. d Typical time for
generating coordinates with polyply for different total numbers of residues. The performance is shown per force-field (blue: Martini3, orange: GROMOS),
averaged over all systems in panel b leading to a total sample size of n= 60 for all systems with less than 1 million residues. In addition, systems with 1
million residues have also been set up as a further benchmark, however, considering only five replicas (i.e. n= 5). The boxplots are shown as the median
within the bounding box corresponding to Interquartile-range (IQR) (Q3–Q1) and Tukey-style whiskers extending to 1.5 IQR. Open circles are outliers and
in the case of atomistic melt systems, the outliers are all from melt systems of Polyethylene. Source data are provided as a source data file.
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From the experimental work it is known that this composition
forms a lamellar phase with a domain spacing of 20 nm. The
Martini input files for the polymers are simply generated using
polyply gen_params and our Martini library of polymers. To
generate the starting structure in the phase-separated state, we
specify rectangular geometric restrictions on where each part of
the block-copolymer is allowed in the box. To that end, we define
six alternating domains of 12 and 6 nm sizes in which PEO and
LiTFSI or PS are allowed, respectively. The domains are unequal
because the volume fractions of PS and PEO are not the same. To
provide the Martini consistent domain spacing, we generated a
system with a single lamella and equilibrated the volume. The
thin film is generated in two steps, aiming at a uniform salt
distribution in the PEO part. In a first step, the salt is dispersed
throughout the box placing it inside the domains where PEO is
allowed. Figure 5a shows the salt as well as the domain
boundaries as obtained after this step. Subsequently, we generate
a grid of starting points on the boundary of these domains.
Starting on these grid points the chains are grown into the
domains by our random walk using the generic super CG model.
This approach has previously been shown to be adequate for
simple bead spring models as well34,55. Finally, the program
backmaps the structure to Martini’s target resolution. Once the
starting structure is generated, which typically for this size of
system takes 30 min, energy minimization is performed. Subse-
quently a short equilibration of 5 ns keeping the z-dimension
fixed and only applying pressure coupling in xy is performed to
allow for chain packing to increase orthogonal to the stack
direction. Subsequently we ran a 50 ns equilibration under
constant area only coupling the z-direction to equilibrate the
salt distribution. Figure 5b shows the morphology of the system
after this short equilibration phase. The thin film has a size of
about 60 nm × 60 nm × 10 nm and comprises roughly 600,000
particles. As shown by the zoomed view as well as the density

profiles (Supplementary Figure 9), the space is completely filled
with polymer and salt.

Lipid vesicle with liquid–liquid phase separated interior.
Liquid-liquid phase separation (LLPS) is an important driving force
in both biotechnological applications and biological systems. Sys-
tems capable of undergoing LLPS are therefore of high interest to
many researchers and are not only studied experimentally but also
at various levels of theory10,56. Concerning cellular processes, LLPS
is speculated to have promoted the early stages of life by allowing to
form simple compartmentalization, which eventually lead to
the evolution of membrane-less organelles inside modern day
cells57,58. As such, studying LLPS in the context of cellular envir-
onments is of considerable interest. While the supporting programs
for bio-molecular simulations allow the generation of cell mem-
brane structures of entire mitochondria or virus envelopes, filling
those with anything else than water and ions is usually challenging,
especially when polymer phases are to be simulated. In this
example, we set up a system consisting of a multicomponent
lipid vesicle, composed of dioleoyl-phosphatidylcholine (DOPC),
dipalmitoyl-PC (DPPC), and cholesterol, and containing PEGylated
1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) lipids, fil-
led with a phase-separated aqueous solution consisting of PEO and
dextran in the interior. This system has been experimentally shown
to induce vesicle fission and therefore gives insight into the gen-
eration of early life59. Similar systems are also considered important
to the development of synthetic cells60.

This example not only demonstrates that polyply interfaces well
with the area of biomolecular simulations, but also demonstrates
several technical challenges: (1) PEGylated lipids require the addition
of PEG to the lipids of the vesicle and need to be placed without
penetrating the bilayer; (2) dextran is a branched sugar polymer,
which typically has a statistical distribution of molecular weights and

Fig. 4 Single-stranded DNA test case. a Average radius of gyration from an ensemble of polyT generated with polyply using two different persistence
lengths (1.4 nm; 3.2 nm) compared to the radius of gyration from SAXS. b polyT chains of 100 bases corresponding to the average radii of gyration in (a).
The principle components have been aligned. c Schematic of generating circular ssDNA for the full genome of the porcine virus. Final coordinates are
shown on the right with the DNA colored by nucleobases and the virus capsid in cyan. The image of the genome sequence was adopted from ViralZone SIB
Swiss Institute of Bioinformatics. Source data are provided as a source data file.
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branches; (3) the coacervate needs to be generated in the phase-
separated state. To overcome this challenge, first, parameter files for
PEGylated lipids and PEO are generated using the Martini library
and the gen_params tool. The molecular weights of PEO in the
vesicle and in the PEGylated lipids are 2000 g/mol (~45 monomers)
and 8000 g/mol (~180 monomers), respectively. Generating para-
meter files for dextran is more complicated, however. Dextran is a
polysaccharide composed of α-1,6 linked glucose residues with α-1,3
connected branches. In addition, it is in general polydisperse and the
branching depends on the molecular weight. For the target molecular
weight of 10,000 g/mol, dextran has on average 5% branches from
the main chain with a length of up to three residues61,62. To model
the diversity in dextran’s molecular structure we generated 500
residue graphs, with random number of branches and lengths as
outlined in the Supplementary Notes 5, subsection 4. The whole
workflow used to generate the system is described in Supplementary
Fig. 10. Using this distribution of structures (Supplementary Fig. 11),
polyply gen_params was used to create parameter files for all those
structures, which took less than 15 min.

To generate starting coordinates for this system, we first
obtained a vesicle using TS2CG24. As there are more specialized
programs to generate lipid bilayers in various shapes and forms it
was not our intention to also generate those using polyply. The
lipid coordinates generated by TS2CG were given as starting
structure to polyply. In addition, a geometric constraint was used
to specify that PEO and dextran can only occupy half of the
vesicle, approximating it as a sphere, with a region of 2 nm
overlap to allow some interphase mixing. With this input, the
system is generated by our generic super CG random walk
followed by a backmapping step. Polyply also automatically
identifies that PEGylated lipids have to be extended, as the
random walk algorithm will steer the conformations away from
the membrane. Generating the entire system took about 30 min.
Once the initial coordinates are obtained, an energy minimization
was run, followed by a short equilibration and 50 ns of
production run. The system was stable, and its final configuration
is shown in Fig. 6. We clearly see that the system remains phase-
separated at least over the timescale simulated and that the
PEGylated lipids are uniformly distributed both on the inside and
outside of the bilayer.

Discussion
The increase in computing power propels MD simulations of
systems into new areas, which in their complexity or size were
unmanageable only a few years ago. However, equilibration of
such systems far from the desired equilibrium state takes time
and is costly in terms of computing power. A second compli-
cating factor relates to generating input files for such simulations,
as setting up the input parameters not only takes human time but
is also intrinsically error-prone. The latter aspect becomes espe-
cially problematic when HT approaches are being designed.
Programs which facilitate HT MD simulations featuring multi-
component complex systems are therefore highly desirable. While
those exist for biomolecular simulations, they are largely missing
in the field of material science. To resolve this situation, we have

Fig. 5 Phase separated block-copolymer PS-b-PEO doped with lithium bistriflimide (Li-TFSI) generated with polyply. a Li-TFSI salt placed within the
domains where PEO is going to be located. The zoom provides a more detailed view of the salt also showing that there is empty space in the initial
dispersion. b Structure obtained after growing in the block-copolymer around the salt shown in panel A and running 50 ns of equilibration. The generated
morphology contains six lamellar regions. The zoom shows an in-depth view onto the interface between the two polymers, showing that empty space has
been filled. Below both panels, the mapping of the all-atom residues to the CG level is shown.

Fig. 6 Liquid-liquid phase separation inside a vesicle. The vesicle is
composed of DOPC, DPPC, cholesterol, and PEGylated POPE (PEG part in
orange), containing a coacervate of PEO (red) and dextran (yellow). Inside
and outside the vesicle are water and sodium to counterbalance the
negatively charged PEGylated POPE. The diameter of the vesicle is 40 nm
and the left half is filled with PEO and the right with dextran. Some
polymers in the upper right and lower left are omitted to show the ions and
PEG tails of the PEGylated lipids on the inside. The zoom shows more detail
of the membrane showing a PEGylated lipid extending from the bilayer
surface.
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defined five major challenges a program needs to be able to solve:
(1) it needs to be resolution and force-field independent; (2) able
to set up complex and large systems; (3) support arbitrary com-
plex molecular topologies (i.e., branching); (4) be able to generate
complex morphologies; and (5) and finally be reasonably fast to
permit HT research.

In this paper, we have presented polyply, a software suite that
is aimed at facilitating simulations involving polymers at any
target resolution and force-field desired. Parameter file genera-
tion and coordinate generation are split into two independent
programs—polyply gen_params and polyply gen_coords. The
gen_params program implements the graph transformation used
within polyply to generate parameter files. The algorithm takes a
residue graph and maps it into a higher resolution graph, which
is agnostic to the target resolution thereby meeting the first of the
challenges outlined above. It further matches fragments, which
describe the bonded interactions between residues, by finding all
subgraph isomorphisms between these fragments and the residue
graph provided. Therefore, it will also assign parameters for
complex branched or cyclic polymers. This has been shown to
work based on our test cases. Especially the last test case
exemplified this aspect, where polyply was used to generate a
statistical distribution of the branched dextran polymer that
involves two different linkage types between otherwise equivalent
residues. As outlined in the challenges, polyply is also applicable
to bio-macromolecules, which we have shown previously by
using polyply as part of a protocol for setting up PEGylated
proteins63 and glycans on the SARS-CoV2 spike protein64. We
also demonstrated that polyply is capable of generating input
parameters for single-stranded (circular) DNA, further
strengthening our claim that the program is applicable to a wide
range of biopolymers.

In addition to supporting large and complex polymers, gen-
erating input parameter files is also fast, making it suitable for
HT applications. For example, generating a parameter file for an
atomistic polystyrene chain of 1000 residues, which involves
more than 100,000 bonded interactions, takes less than 10 s.
Overall, we showed that the polymer parameter generation meets
all requirements outlined in the challenges. Currently, the main
limitation of the parameter generation is that it is limited to
GROMACS input files. However, extension to other MD soft-
ware is possible and would only require additional input file-
parsers as the core of the code makes no calls to the GROMACS
software itself. Meanwhile, interested users can already use
existing input file converters65 to connect polyply to other MD
engines. Supplementary Table 2 provides an overview of con-
version programs.

As further outlined in the challenges, structure generation is a
key step for any program. It needs to be fast and generate com-
plex structures that are good enough to start the simulation
without extensive relaxation. To this end, polyply gen_coords
implements a multiscale approach to generation of condensed
phase systems at near to target density. The multiscale approach
is based upon using a generic one bead per residue CG model,
performing a self-excluding random walk, and backmapping it to
target resolution. The interaction potential used for the self-
excluding random walk, which essentially approximates the
volume of a residue, is directly computed from the geometry of
the residue as well as the force-field parameters of the target
polymer. Thus, our multiscale approach can be used independent
of the force-field and target resolution. To further validate the
robustness and quality of this approach, we generated 480 melt
systems at two levels of resolution for four polymer species. For
all systems an energy minimization could be run without failure.
Not only were the systems stable, but the average end-to-end
distance of the initial frames also averaged over ten replicas

compared very well to theoretical calculations for melts. This
suggests that the distribution of conformations and entanglement
produced by polyply are realistic, providing a good starting point
close to the equilibrium configuration. This is further confirmed
by running test simulations for some replicas, which show little
relaxation of the end-to-end distance to the force-field specific
value as well as to the force-field specific target density. Whereas
classical polymer melts consist of relatively flexible polymers,
especially biomacromolecules such as DNA can have long per-
sistence lengths. By generating ssDNA configurations setting
different persistence lengths and comparing to experimentally
available SAXS data, it was demonstrated that polyply can also
handle stiff polymers in a satisfactory fashion. Furthermore, the
multiscale coordinate generation uses a random walk breadth-
first traversal of the molecular graph. This means residues
which are connected by bonded interactions are placed close in
space, making it possible to generate even complex branched
structures.

Using a one bead per residue CG model not only makes the
approach force-field and resolution-independent, but it also
greatly increases the performance. We assessed the performance
for 480 melt systems up to 50,000 residues. For polystyrene at
Martini level 50,000 residues equates to 200,000 coordinates and
at GROMOS level to 600,000 coordinates. These systems are
typically generated in less than 5 min independent of the chain
length and target force-field. This performance compares favor-
ably to the recently published PyPolyBuilder, which takes about
8 min for a single chain of 1248 coordinates29. To further
benchmark the performance of the structure generation, we also
set up systems with 1 million residues, corresponding to 13
million coordinates for atomistic polystyrene. These are generated
on average within less than an hour on a single core.

As the generic multiscale approach is very efficient in packing
even long polymer chains, it was possible to augment it with
further acceptance criteria to steer the random walk chain pla-
cement. For example, it is possible to force the direction of the
random walk, which makes it very suitable for generation bru-
shes. An example is outlined as part of our online tutorials. In
addition, simple geometrical constraints can be utilized to build
phase-separated systems. By generating a liquid–liquid phase
separated system consisting of highly branched dextran and PEO
inside a vesicle as well as a micro phase-separated block copo-
lymer PS-b-PEO system, we have shown that these tools can
generate a variety of inhomogeneous systems. The former
example also shows that it can easily be combined with already
existing systems, especially those for which more specialized
builders exits, such as lipid membranes. Finally, we showed an
implementation of a distance restraint algorithm that lets users
define target distances between nodes. This enables polyply for
example to create large macrocycles such as circular DNA, as
demonstrated by generating the complete circular genome of the
porcine virus. Furthermore, this algorithm in principle enables
users to take experimental information into account. For exam-
ple, distances from NMR experiments could be converted to
distance restraints.

Overall, these examples demonstrate that polyply is capable of
setting up large and complex systems, with an excellent perfor-
mance in a realistic but force-field and resolution-independent
manner. However, the coordinate generation also has some lim-
itations. Custom non-bonded or bonded interactions that deviate
from standard bonded interactions or the default pairwise LJ
interactions are currently not taken into account. It is not possible
to generate coordinates for polymers that have a well-defined
geometry such as double-stranded DNA, neither at the all-atom
or CG level. As DNA geometry is well defined, we are working on
an extension that would allow us to generate dsDNA taking those
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constraints into account. A further limitation is that currently the
structure generation only supports rectangular PBC conditions.
Although they are sufficient for a wide variety of systems, more
complex PBC conditions could be implemented by extending the
scipy cKD tree, which is the workhorse for interaction compu-
tations. Finally, while simple geometric restrictions for the
random-walk work fine for many applications, extending them to
arbitrarily shaped boundary surfaces would enable to directly
read in experimental density maps and then grow polymers on
top of those. This would require some form of triangulated sur-
faces to be used as boundary surfaces, as is done in TS2CG24.

In conclusion, we have demonstrated that the software suite
polypy, presented here, is able to generate input files and starting
coordinates for complex and challenging systems, connecting the
bio-molecular world to material science.

Methods
MDs settings and analysis. All MD simulations were done with GROMACS66

(versions 2020 and 2019), using the Verlet cut-off scheme. For the CG simulations,
a cut-off of 1.1 nm was used for the LJ interactions, whereas the Coulomb inter-
actions were computed within a cut-off of 1.1 nm, and PME for longer-range
contribution to the electrostatics whenever the system at hand contained charges.
The energy minimizations were done with the standard steepest descent algorithm
as implemented in GROMACS. The CG MD simulations were performed using the
default leap-frog integrator with a time-step of 20 fs in the isobaric-isochoric
ensemble. The temperature was kept constant using the v-rescale algorithm67 and
the pressure was coupled using the Berendsen barostat68, typically used for equi-
libration of MD simulations.

The atomistic MD simulations with the GROMOS 2016H66 force field were
conducted with a cut-off of 1.4 nm for the LJ interactions and electrostatic
interactions. Long-range electrostatics were further treated with the reaction field
method, where the dielectric constant was set to 2 for all polymer systems, which is
reasonable considering the typical low dielectric constant of vinyl polymers.
Atomistic simulations with the Parmbsc138 and Amber39 force-field used a cut-off
of 1.0 nm for both LJ and electrostatic interactions. Long range electrostatics were
treated with PME. Energy minimizations were conducted as well with the steepest
descent algorithm and MD simulations were run with the default leap-frog
integrator using a time-step of 1 fs for the integration. The time-step of 1 fs is
necessary as the relaxation runs to target density are done using unconstrained
bonds. For production runs the time-step can be increased to 2 fs with constrained
bonds, in principle. As explained for the CG simulations also the GROMOS
simulations were run in the isobaric-isochoric ensemble using v-rescale67

temperature coupling and Berendsen pressure coupling68. Analysis of the end-to-
end distances and radii of gyration was done using MDAnalysis69 and gmx
polystat66. Fitting of the radius of gyration data was done using the symfit (v.0.4.6)
under consideration of the standard error. Snapshots of simulations were prepared
with VMD70 (v. 1.4.9a) and figure complied with Inkscape (v.0.52.0) and
matplotlib71 (v.3.3.4).

Systems. Polyply was run for all test-systems within python3 (v3.6.9 on local
machines, and v3.8.2 on the Dutch National Supercomputer, Cartesius). For
acceleration, the numba package72 was installed in all environments. All test sys-
tems were either run on a local desktop machine running Linux OS or on the
national HPC cluster. The performance for parameter file generation and input
coordinate generation were recorded on the HPC cluster for the CG systems,
running 24 processes in parallel on a single node. On the other hand, atomistic
benchmark times were recorded on a desktop machine running ten processes in
parallel.

Models. The all-atom polymer models were implemented following the rules for
creating polymers within the GROMOS 2016H66 force-field and charges adopted
from similar functional groups as is custom within GROMOS40. The current
library does not only support homopolymers but all combinations of monomers.
Parmbsc138 DNA parameters were adopted from the GROMACS implementation.
The protein capsid Amber39 parameters were obtained from gmx pdb2gmx66.
Martini CG models were parametrized newly following the Martini 3 guidelines for
making molecules or were adopted from existing Martini 2 models. Each new
model was based on the GROMOS model, for which a system was generated with
poyply and run with the settings stated above. We note that these models are
subject to future improvement and that currently only homopolymers are sup-
ported with the exception of PS and PEO block-copolymers. A detailed validation
of these models will be provided in a separate publication. The current (pre-
liminary) versions are available from the polyply library (see code availability).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The polymer model parameters used in the examples are part of the polyply library
(https://github.com/marrink-lab/polyply_1.0/tree/master/polyply/data). Input files and
protocols for generating the example test cases can be found in the polyply regression test
repository (https://github.com/marrink-lab/polyply_regression_tests/tree/main/
examples). Tutorial input files are available from the same repository (https://
github.com/marrink-lab/polyply_regression_tests/tree/main/tutorial_files). Source data
are provided with this paper.

Code availability
Polyply is distributed via the pypi package index (https://pypi.org/project/polyply/) and
is developed publically on GitHub (https://github.com/marrink-lab/polyply_1.0) under
the permissive Apache-2.0 license. Our wiki section on Github (https://github.com/
marrink-lab/polyply_1.0/wiki/FAQs) provides an FAQ section for troubleshooting, as
well as tutorials and additional information on file syntax.
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