
HAL Id: hal-03856962
https://hal.science/hal-03856962

Submitted on 17 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

COMPARISON OF SPARSE LINEAR SYSTEMS
SOLVERS ON 3-D SUPERCONDUCTOR PROBLEMS

G Vincent, Marta Costa-Bouzo, Christophe Guerin, Jean-Louis Coulomb,
Olivier Chadebec

To cite this version:
G Vincent, Marta Costa-Bouzo, Christophe Guerin, Jean-Louis Coulomb, Olivier Chadebec. COM-
PARISON OF SPARSE LINEAR SYSTEMS SOLVERS ON 3-D SUPERCONDUCTOR PROB-
LEMS. EMF 2003, 6th International Symposium on Electric and Magnetic Fields, Oct 2003, Aachen,
Germany. �hal-03856962�

https://hal.science/hal-03856962
https://hal.archives-ouvertes.fr


 

COMPARISON OF SPARSE LINEAR SYSTEMS SOLVERS ON 3-D SUPERCONDUCTOR 

PROBLEMS 
 

G. VINCENT(1)(2), Marta COSTA-BOUZO(3), Christophe GUERIN(2), Jean Louis COULOMB(1), Olivier Chadebec(1) 
(1)Laboratoire d’Électrotechnique de Grenoble - INPG/UJF-CNRS UMR 5529 ENSIEG,  

BP 46, 38402 St Martin d’Hères - France 
(2)CEDRAT S.A., 10 Chemin de Pré Carré, 38246 Meylan – France 

(3)School of engineering sciences, University of Southampton, S017 1BJ, United Kingdom 

e-mail : gregory.vincent@cedrat.com 

 

 

 

ABSTRACT 

 

This paper proposes to compare several solvers on two 

transient magnetic problems using superconductor material. 

Because of the highly non-linearity of the conductivity law, 

the two superconductor problems generate particularly ill-

conditioned matrices. 

We choose to test three solvers. They are the well-known 

“Incomplete Gauss Bi-Conjugate Gradient” (IGBCG), “Bi-

Conjugate Gradient Stabilized” (Bi-CGStab) from H.A. Van 

Der Vorst and “Generalized Minimum RESidual” (GMRES) 

from Y. Saad. Our aim is to compare their respective 

robustness. 

After having presented solvers and problems, we compare 

the obtained results. We conclude that Bi-CGStab and GMRES 

are more robust than IGBCG on both superconductor 

problems. 

 

 

I. INTRODUCTION 

 

The tests we present are transient magnetic problems using 

superconductor material. Because of the highly non-linearity of 

the conductivity law, they generate ill-conditioned matrices. We 

model them thanks to the FLUX software (3D application), 

developed by CEDRAT and LEG (“Laboratoire 

d’Électrotechnique de Grenoble”). It uses the T electric vector 

potential formulation. In this case, the extract matrix of the 

linear system is non symmetric. Most of the time, the solver 

used for this type of matrix is the well-known “Incomplete 

Gauss Bi-Conjugate Gradient” (IGBCG) [1]. However this 

solver often does not converge. 

 

This paper proposes to compare results obtained on the two 

superconductor problems with three solvers. These are IGBCG, 

“Bi-Conjugate Gradient Stabilized” (Bi-CGStab) from H.A. 

Van Der Vorst [3] and “Generalized Minimum RESidual” 

(GMRES) from Y. Saad [4]. 

 

We present first the solvers tested, then the two 

superconductor problems and finally the results obtained with 

all the solvers on the two last examples. 

 

 

II. DESCRIPTION OF THE SOLVERS TESTED 

 

We are interested in the resolution of the systems of the form: 

A.x = b   (1) 

Where x and b are vectors of length N and A is a matrix of rank 

N. In the 3D application of FLUX, the use of the electric vector 

potential formulation generates non-symmetric matrices. Then, 

we will be interested more precisely in the non-symmetric 

matrix solvers. 

 

In this part, we describe firstly the preconditioning techniques 

and secondly the solvers tested. 

 

a. Preconditioning 

 

To accelerate convergence, an iterative method requires a 

coupling with a preconditioning technique. 

These techniques consist in transforming the original system (1) 

into one which has the same solution, but which is likely to be 

easier to solve with an iterative solver. For example, instead to 

solve (1), we can solve the following system:  

M-1.A.x = M-1.b 

Where M is a matrix of rank N. 

If M is well-chosen, the matrix of the new system has now a 

better conditioning number than the original system. 

 

The conditioning number K(A) of the matrix A is defined so 

that: 
1A.A  K(A)   

This is a typical index to know the convergence speed of the 

iterative solvers. For example, the speed of convergence of the 

well-known Conjugate Gradient algorithm is proportional to 

)(AK . In general, the more K(A) is small, the more the 

iterative solver will converge quickly. 

 

The first preconditioning technique we describe is the 

Incomplete Factorisation of Gauss of type LDU [2][6]. It uses 

the same principle than the full LDU factorisation. But to 

reduce computation time, it only computes the matrix elements 

corresponding to the non-zero structure of the matrix A. For 

example, if A is tri-diagonal then M is tri-diagonal as well. That 

preconditioning computes a matrix M so that M=LDU, where 

L, D and U are respectively the approximations of the unit 

lower triangular, diagonal and upper triangular matrices 

computed by the full LDU factorisation algorithm. When 

conditioning number is bad and in order to increase 



 

convergence speed of the iterative solver, we multiply the 

element of D by a number a little higher than 1 [2][6]. 

 

The second preconditioning technique we describe is the ILUT 

algorithm [5]. Its principle is also based on the full LU 

factorisation, but does not only takes into account the non-zero 

structure of A. In fact, it uses two parameters: the level of fill, 

LFIL and the tolerance TOL. For each line of A, it calculates the 

LFIL larger elements with the last algorithm and drops the 

smallest thanks to TOL. 

That preconditioning is interesting for matrices with bad 

conditioning because we can tune the quality of the 

preconditioning. In the other hand, it needs more memory 

requirement and more computation time than the Incomplete 

Factorisation of Gauss of type LDU. 

 

b. Solvers 

 

In this part, we describe the solvers we test. These are Bi-CG, 

Bi-CGStab and GMRES. 

 

Bi-CG [1] is an extension of the conjugate gradient to the non 

symmetric matrices. In fact, it applies the conjugate gradient 

method to solve in the same time the two systems A.x=b and 
tA.x’=b (x and x’ are the solution of the two different systems). 

Each iteration of this algorithm requires a product matrix by 

vector with the transpose of A. 

 

The main idea of Bi-CGStab [3] is the same than Bi-CG. It is 

based on the fact that the two descent directions are computed 

using the same recurrence. Thanks to a polynomial 

interpretation, the algorithm does not require matrix by vector 

product with the transpose of A. 

 

The principle of GMRES [4] is different than the two last ones. 

Indeed, the other solvers find, at each iteration one direction of 

descent and compute the best approximation of the solution in 

this direction. The GMRES algorithm finds first all descent 

directions and then computes the approximate in the space 

created by those directions. In practice, because of the 

necessary memory requirement, we do not compute the N 

directions but only a number m given by the user. This 

algorithm is called the restart GMRES or GMRES(m). In this 

paper, we use this last one. 

 

For our tests, we choose to compare three “combinations” of 

solvers. These are Bi-CG with the Incomplete Factorization of 

Gauss of type LDU, Bi-CGStab and GMRES(m). These two 

last solvers are combined with the ILUT preconditioning. 

 

A version of these solvers coming from the Sparskit library of 

Y. Saad [5] has been implemented in the FLUX software (3D 

application). 

 

 

III. DESCRIPTION OF THE SUPERCONDUCTOR 

PROBLEMS 

 

The solvers are tested on two transient magnetic problems using 

superconductor material. In a first paragraph, we describe the 

law used for describe the relation between E and J in the 

superconductor material. Afterwards, we describe geometry and 

physical properties of the two problems. 

 

a. The power law 

 

In our problems, the relation between the electric field E and 

the current density J is given by the power-law [7]: 
nJcJEcE )/(=  

The curves obtained for different values of n are shown on the 

figure 1. 

 
FIGURE 1: CURVE E(J) OF THE POWER LAW 

 

For high n, the curve has a sharp knee. The limit case, when n 

tends to infinity is a curve with a right angle. 

However, the matrix to solve contains elements with 
J

E
t


 in 

factor. Then, when we are just near the curve knee, the value of 

this factor will be high compared to other matrix elements. That 

difference damages the conditioning of the matrix.  

 

b. First Problem 

 

Geometry and materials properties are shown on figure 2. For 

reasons of symmetry, only one eighth of the geometry is 

represented (=2f, where f is the frequency and is equal to 50 

Hertz). 

 
FIGURE 2: GEOMETRY AND PHYSICAL PROPERTIES OF THE FIRST PROBLEM 



 

 

The example contains a silver sheet. On both sides of this silver 

sheet there is a superconductor material with high non-linear 

conductivity properties. The relation between the electric field 

E and the current density J is given by the power-law. 

The source is a sinusoidal time varying uniform magnetic field 

and we use the nodal electric vector potential formulation [8]. 

 

c. Second problem 

 

The second problem represents superconductor filaments in a 

silver matrix. The geometry is shown on the figure 3. The silver 

has a conductivity equal to 4.108 S/m. The superconductor 

filaments have a relative permeability equal to 1 and a relation 

between J and E given by the power law, with the parameters: 

Ec=10-3 V/m, Jc=1,61.108 A/m² and n=16,8. 

 

 
 

 
FIGURE 3: DESCRIPTION OF THE SECOND PROBLEM 

(GENERAL AND TOP SIGHT) 

 

A current source of value 5,92*sin(2ft) A (f is the frequency 

and is equal to 50 Hz) is imposed thanks to solid conductors on 

the top side of each filament. 

 

For this problem, we do not use the nodal T vector potential 

because it gives errors in re-entrant corners [10]. We prefer to 

use the edge elements that give correct results in this case. 

 

 

 

IV. OBTAINED RESULTS 
 

This part shows the results obtained with the solvers we have 

just described. These solvers are Bi-CG with the LDU 

preconditioning, Bi-CGStab with the ILUT preconditioning and 

GMRES(m) with ILUT preconditioning. In this paper, these 

solvers are respectively referred to as IGBCG, BCGS and 

GMRES. 

 

For each problem, we compare robustness, speed and memory 

requirement for each solver. 

 

In the 3D application of FLUX, the transient model is taken into 

account by a step by step solving process that is the Euler 

scheme. Because of the non-linearity of the conductivity 

properties, the system to solve will be also non-linear. In this 

case, the 3D application of FLUX uses the Newton-Raphson 

process, which is an iterative method solving a linear system at 

each iterations. For the first problem, we will be particularly 

interested in the second (case 1) and the seventh (case 2) 

iteration of the Newton-Raphson process of the first time step. 

For the second problem, we will be interested in the first (case 

3) and the second (case 4) iteration of the Newton-Raphson 

process of the first time step. 

 

For the first problem, the matrix has 37703 lines and 2579157 

non-zeros values. For the second problem it has 29739 lines 

and 1441607 non-zeros values. 

TABLE I: Obtained results on the two problems tested. 

DIV means the solver diverges. 

 

The results obtained with BCGS and GMRES on the second 

superconductor problem are shown on figures 4 and 5. We can 

see the shaded map of the current density on the three filaments 

on the right of the figure 3. 

We see they are almost the same in both cases and are conform 

to what we expected. 

The same remark can be made for the first superconductor 

problem. 

 

    
FIGURE 4: CURRENT DENSITY ON THE RIGHT PART OF THE TOP FACE 

OBTAINED WITH BCGS (A/m²) 

 

 Memory requirement 

(Number of real*106) 

Time (sec) 

IGBCG BCGS GMRES IGBCG BCGS GMRES 

1st problem 

(case 1) 
8,148 10,161 23,591 1430 173 184 

1st problem 

(case 2)  
8,148 10,161 23,591 DIV 129 320 

2nd 

problem 

(case 3) 

5,144 22,194 10,653 8379 857 780 

2nd 

problem 

(case 4) 

5,144 22,194 10,653 DIV 773 720 



 

    
FIGURE 5: CURRENT DENSITY ON THE RIGHT PART OF THE TOP FACE 

OBTAINED WITH GMRES (A/m²) 

BCGS and GMRES converge then on the two problems while 

the IGBCG does not converge. Moreover, obtained results seem 

to be correct. When all the solvers converge, BCGS and 

GMRES require also less time. We can conclude that the two 

solvers we have introduced are more robust and faster than 

IGBCG on our ill-conditioned matrices. 

On the other hand, this progress is done by using more memory 

requirement than IGBCG. It is then possible we cannot solve 

problems with a lot of degrees of freedom.  

 

 

V. CONCLUSION 

 

In this paper, we present two combinations formed by the 

GMRES and Bi-CGStab solvers with ILUT preconditioning. 

We find that they are more robust on our 3-D superconductor 

problems than the well-known Bi-CG solver with Gauss 

preconditioning of type LDU. 

In the other hand, GMRES and Bi-CGStab require more 

memory space. We will test them on matrices of higher rank N 

so as to see their limits. 

The second example uses another origin of ill-conditioned 

matrices, that is the edge elements for approximating T electric 

vector potential. We can think our two combinations of solvers 

are also more robust with several other categories of 

electromagnetic problems generating ill-conditioned matrices. 

To be sure, we will test these solvers on a largest list of 

benchmark tests containing examples from very different 

physical applications (thermal magnetic coupling, 

dielectric,…). These tests on a large list can also allow us to 

compare more precisely the memory requirement and the 

computation time for both Bi-CGStab and GMRES solvers. 
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