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Abstract

We investigate the current-phase relations of Al/InAs-quantum well planar Josephson
junctions fabricated using nanowire shadowing technique. Based on several experi-
ments, we conclude that the junctions exhibit an unusually large second-order Joseph-
son harmonic, the sin(2ϕ) term. First, superconducting quantum interference devices
(dc-SQUIDs) show half-periodic oscillations, tunable by gate voltages as well as mag-
netic flux. Second, Josephson junction devices exhibit kinks near half-flux quantum in
supercurrent diffraction patterns. Third, half-integer Shapiro steps are present in the
junctions. Similar phenomena are observed in Sn/InAs quantum well devices. We per-
form data fitting to a numerical model with a two-component current phase relation.
Analysis including a loop inductance suggests that the sign of the second harmonic term
is negative. The microscopic origins of the observed effect remain to be understood.
We consider alternative explanations which can account for some but not all of the evi-
dence.
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Figure 1: (a) Schematic diagram of SQUID-1. The loop consists of two planar SNS
Josephson junctions, JJa and JJb. The magnetic field (B) is perpendicular to the
device plane. (b) Optical image of the device. The area labeled “Al/2DEG” is the
superconducting mesa. (c) Switching current (Isw) as a function of applied gate
voltage (Vg) on JJa or JJb. One junction is tuned to the non-superconducting regime
when measuring the other one. (d) Differential resistance (dV/dI) as a function of
current (I) and magnetic field. ΦJJ is the nominal magnetic flux extracted from the
Fraunhofer-like background. Gate voltages Vg,a = Vg,b = 500 mV. In panels (c) and
(d) field is offset by -0.245 mT.

1 Broad context

Growing interest in the integration of new materials into quantum devices offers opportunities
to study proximity effects, such as between superconductors and semiconductors. Elements
as basic as planar junctions, with two superconductors placed side-by-side, can host Majorana
zero modes, and be used as nonlinear quantum circuit elements [1–3]. Depending on the
junction material, planar junctions can also be used to search for exotic phenomena such as
triplet superconductivity [4].

2 Background: Current phase relations

The primary characteristic of a Josephson junction (JJ) is the current phase relation (CPR) [5,
6]. A CPR connects the supercurrent to the phase difference across the junction and is calcu-
lated from the weak link energy spectrum and interface transparency. Among other properties,
it predicts the electromagnetic response of a Josephson junction in a circuit.

The CPR of a superconductor-insulator-superconductor (SIS) Josephson junction, as orig-
inally derived, is sinusoidal, I(ϕ) = Ic sinϕ, where I is the supercurrent, ϕ is the phase differ-
ence between two superconducting leads, and Ic is the critical current. More generally, a CPR
can be decomposed into a Fourier series, I(ϕ) =

∑

n In sin(nϕ) [6]. In real SIS devices, higher-

−4 4ΔB (μT)
0.0

1.5

I (
μ

A
)

ΦJJ = 0.5

0

200

dV
/d

I (
Ω

)

−4 4ΔB (μT)
0.0

0.5

I (
μ

A
)

ΦJJ= 0.9

0

100

dV
/d

I (
Ω

)

−4 4ΔB (μT)
0

2

I (
μ

A
)

ΦJJ = 0

0

250

dV
/d

I (
Ω

)

(a) (b) (c)

Figure 2: SQUID-1 oscillations show additional modulation. (a-c) Differential resis-
tance (dV/dI) as a function of the current and the magnetic field near ΦJJ = 0, 0.5
and 0.9, respectively. Horizontal scale bars indicate the primary period of SQUID os-
cillations. Arrows in (a) and (c) show additional kinks in the oscillation. Vg,a = 128
mV, Vg,b = 113 mV, chosen to set switching currents to 0.9 µA in both junctions.
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order components may be present but the amplitude would be small [7]. In superconductor-
normal metal-superconductor (SNS) JJs, the CPR can deviate significantly from the sinusoidal
form due to contributions from Andreev bound states which are subgap quasiparticle states.

In the clean SNS limit, the CPR is predicted to be linear or a skewed sine function [8–17].
Even in junctions with skewed CPR, the first harmonic, sin(ϕ) is typically dominating. 4π-
periodic, or the half-integer harmonic in CPR is predicted in topological superconductors and
explored in a variety of materials [18,19].

3 Previous work: Second order Josephson effect

Large second-harmonic CPR was searched for in a variety of junctions at the so-called 0-π
transition [20–25] or in 45◦-twisted high-temperature superconductor junctions [26–30]. In
these cases the second harmonic can be observed because the first harmonic is cancelled.

In SNS junctions all harmonics are present, including the second harmonic. However be-
cause of the presence of even higher-order terms, we do not expect double modulation. If
a SQUID consisting of such junctions is flux-biased to π, the first harmonic can be canceled,
resulting in the domination of the second harmonic signatures [31–35]. This effect is used to
create the π-periodic energy-phase relation for so-called “0−π qubit” [33,36–38].

A possible experimental signature of the second-order Josephson effect is half-integer
Shapiro steps [39], which can also have a variety of other origins due to phase locking of
Josephson vortices or quasiparticle dynamics [40, 41]. Another type of evidence is in super-
current interference patterns where additional minima or kinks are observed at values of half-
integer magnetic flux quanta [20,25].

4 List of results

In our experiments, we find Josephson junctions with an unusually large second harmonic in
planar junctions based on an InAs quantum well. We find confirmation of this in several mea-
surements. First, we observe that the superconducting quantum interference devices (SQUIDs)
made of two planar InAs junctions exhibit extra kinks in the flux modulation. The shape of the
SQUID characteristics evolves with junction asymmetry, which can be explained by a simple
two-component CPR model. Second, single planar junction supercurrent diffraction patterns
show kinks near half-quantum of applied flux. Finally, half-integer Shapiro steps are also ob-
served. In our single junction measurements, the observation of the large sin(2ϕ) term is not
related to a cancellation of the first-order term, e.g. at the 0-π transition.

The amplitude of the second harmonic from several of these measurements is found to
be around 0.4 of the first harmonic. The sign of the second harmonic is determined to be
negative from the model that includes the loop inductance (see supplementary information).
Negative sign is expected upon decomposition of a skewed sinusoidal function into Fourier
components. Because of the long mean free path on the order of the junction length and
high interface transparency, it is not surprising if the CPR has higher-order terms. However, a
skewed function should contain all sinusoidal harmonics, including those higher than two. We
do not observe an apparent third-order or higher-order terms, which is surprising and requires
further studies.
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5 Brief methods

Planar InAs quantum well junctions are prepared using the nanowire shadow method [42,43].
Because the junction area is not subjected to chemical or mechanical etching, this approach
preserves the quantum well in the junction area. Superconductors used are Al or Sn. We focus
on Al devices in the main text. Data from Sn devices are available in supplementary materials.1

Standard electron beam lithography and wet etching is used to pattern the mesa outside the
junction. Measurements are performed in a dilution refrigerator at 50 mK unless otherwise
stated.

6 Figure 1 description

We first present examples of dc-SQUID patterns with extra features that we study in the con-
text of the sin(2ϕ) terms. Device SQUID-1 is depicted schematically in Fig. 1(a) and an optical
microscope image is shown in Fig. 1(b). The device has two Josephson junctions in parallel,
JJa and JJb. Two nanowire top-gates Vg,a and Vg,b are used for tuning critical currents. We
set supercurrent to zero in one junction with its gate and measure the gate dependence of the
switching current Isw in the other junction [Fig. 1(c)]. Isw is typically referred to as critical
current, though the true Josephson critical current can be higher than the switching current.
Isw quenches at gate voltages near −100 mV and saturates above 300 mV in both junctions.
Both junctions have the same nominal geometry, so their magnetic flux modulation, or diffrac-
tion patterns are expected to have similar periods. This can be confirmed in Fig. 1(d), where
there is only one Fraunhofer-like low-frequency modulation while both junctions are in the
superconducting state. With the Fraunhofer period of 0.29 mT and the junction width of 5
µm, we get an effective junction length of 1.4 µm (an order of magnitude larger than the
typical physical length) for both JJs. The long effective length is likely due to large London
penetration depth which is typical for thin film superconductors. We use the junction magnetic
flux ΦJJ , given in the unit of Φ0 = h/2e. The SQUID flux and the junction flux are applied
from a large superconducting magnet and cannot be independently controlled. The high fre-
quency oscillations within the Fraunhofer-like envelope are due to interference between the
two junctions. The period 1.57 µT gives a SQUID area of 1.31× 103 µm2 which is similar to
the area of the inner loop (1.28× 103 µm2). The oscillations are shown in detail in Fig. 2.

7 Figure 2 description

SQUID-1 modulation patterns are shown in Figs. 2(a)-2(c) for different junction flux ΦJJ . Two
junctions are tuned to have the same zero-field switching current so that the SQUID is sym-
metric (Isw,a = Isw,b = 0.9 µA). At ΦJJ = 0, the pattern exhibits kinks near SQUID oscillation
minima [Fig. 2(a) yellow arrows, zoomed-in data in Fig. 15]. We also observe that, despite
tuning the SQUID to the symmetric point, the nodes of the modulation patterns are lifted from
zero. Pattern at ΦJJ = 0.5 [Fig. 2(b)] does not contain extra features. Here, Isw follows a
| cos B| curve as expected for standard symmetric SQUID without high-order harmonics in its
CPR. When ΦJJ is 0.9, the pattern has a distinct double-modulation character. Extra minima
in Isw are observed near half-period of SQUID modulation [Fig. 2(c) yellow arrow].

1See supplementary materials for detailed models, extended data, and more discussion.
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Figure 3: Extracted switching current (blue circle) and simulated critical current
(orange line) in SQUID-1. (a) SQUID oscillations at a variety of ΦJJ . The device is
tuned to a symmetric state where Isw,a = Isw,b = 0.9 µA. (b) SQUID oscillations for a
variety of Isw,a. Here, ΦJJ = 0 and Isw,b = 1.47 µA. Arrows are discussed in the text.
Numerical offsets of order 0.1 mT are applied to the magnetic field to compensate
for trapped magnetic flux.

8 Figure 3 description

Next, we extract Isw(∆B) traces from data like in Fig. 2 and fit them to a basic model for a
SQUID with two-harmonic CPR junctions I(ϕ) = I1 sin(ϕ)+I2 sin(2ϕ) (see supplementary ma-
terials for model description and detailed parameters1). The numerical model uses I2/I1=0.4
the ratio between the second and the first Josephson harmonics in the CPR, for both junctions
a and b.

In Fig. 3(a), the device is tuned to a symmetric state where the zero-field switching currents
in JJa and JJb are similar (Isw,a = Isw,b = 0.9 µA). As the junction flux ΦJJ increases, the
amplitude of Isw shifts towards lower values due to the Fraunhofer-like envelope. The model
reproduces the basic features. Kinks, pointed out by single-ended arrows in panel (a), are most
apparent near junction flux ΦJJ = 0 (zoomed-in data in Fig. 15). Node lifting (double arrows)
is also reproduced by the model. While it is typically associated with asymmetric SQUIDs, in
this model it originates from the second-order Josephson effect. Additional features disappear
both in the data and in the model near ΦJJ = 0.5, where the pattern closely follows the
standard | cos B| SQUID relation. When ΦJJ approaches 0.8 the experimental curve becomes
skewed while the simulated curve is more symmetric.

In Fig. 3(b) SQUID-1 is tuned by gates, and is asymmetric while ΦJJ is 0. Isw,b is fixed at
1.47 µA while Isw,a is changing. The amplitude of the oscillation decreases as Isw,a decreases.
The oscillations are asymmetric. At Isw,a = 1.2 µA, two kinks (arrows) are at different Isw
heights. As Isw,a decreases, one kink becomes difficult to resolve. In this case skewed patterns
are captured by the model, e.g. at Isw,a = 0.2 µA. More examples of SQUID data are presented
in supplementary materials from this device and additional SQUIDs.1
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Figure 4: Supercurrent diffraction in single Josephson junction device JJ-1. (a)
Differential resistance (dV/dI) as a function of the current (I) and the magnetic
field (B). Isw manifests kinks near half-integer ΦJJs (black arrows). Numerical off-
sets of about 0.03 mT are applied to the magnetic field to compensate for trapped
magnetic flux. (b) Extracted (black circle) and simulated Isw with models consider-
ing only the first harmonic (I1 = 5, I2 = 0, solid blue), first and second harmonics
(I1 = 2.5, I2 = 4.25, solid orange) or only first harmonic but with piece-wisely dis-
tributed critical current density ( jside = 5, jcenter = 16.85, dashed green).

9 Discussion of SQUID results

We first discuss the situation where ΦJJ = 0. Our SQUID model shows that for a symmetric
SQUID at ΦJJ = 0, the nodes in Isw are lifted from 0 and two additional kinks appear as I2
increases [Fig. 9(a)]. These two signatures are highlighted in Fig. 3(a). Thus the presence of
additional kinks, and the node lifting are consistent with a significant second harmonic.

As the SQUID is made more asymmetric in Fig. 3(b), the SQUID modulation appears more
skewed, meaning that the y-axis position of one kink decreases while the position of the other
increases. When Isw,a << Isw,b , JJb passes a nearly fixed supercurrent (thus a constant phase
difference) to maximize the total switching current Isw while the oscillation comes mostly from
JJa. As a result, Isw(∆B) traces out the CPR curve of JJa with a constant shift. This regime is
reached for Isw,a = 0.6 µA and 0.4 µA. We notice that at Isw,a = 0.2 µA the kink is not resolved
in the experimental curve but persists in the simulated curve. This may be due to a decrease
in the junction transparency when Isw,a is small which decreases the amplitude of the second
harmonic in the CPR, but can also be due to the decreased accuracy of extraction at lower
currents.

Near ΦJJ = 0.5, Isw oscillates like a | cos B| function (Eq. D.4) and shows no kinks or extra
minima. The device looks like an ordinary SQUID. This is because at this junction flux value
the second harmonic within each junction is cancelled. While the first harmonic has diffraction
minima at ΦJJ = 1, the second harmonic has nodes at ΦJJ = 0.5 where I2=0.

The deviation from simulations at ΦJJ = 0.8 in Fig. 3(a) and ΦJJ = 0.9 in Fig. 2(c) can be
explained by a small difference between two JJs’ Fraunhofer periods. The actual flux is closer
to 1 in one junction than the other when ΦJJ is near 1. This difference makes the SQUID more
and more asymmetric near ΦJJ = 1.

10 Figure 4 description

We also find second Josephson harmonic signatures in single junctions (Fig. 4). Similar results
from other single JJs including those made from Sn/InAs 2DEG are available in Ref. [42].1 The
overall envelope Isw(B) is Fraunhofer-like, which is standard for single-harmonic uniform and
sinusoidal junctions. However, in deviation from this behavior, kinks are observed at half-
integer magnetic flux values [Fig. 4(a) black arrows]. The kink is most clear within the first
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Figure 5: Half-integer Shapiro steps in JJ-1. (a) dV/dI as a function of the current
(I) and the microwave power (P) at zero magnetic field. The microwave frequency
f = 6.742 GHz. Shapiro steps manifest as minima in dV/dI (dark blue regimes
between bright lines). (b) Histogram of voltage (V ). Each Shapiro step becomes
a maximum (bright yellow lines) in the histogram. Half-integer steps are visible.
Shapiro indices are labeled on the right in both panels. Numerical offsets of about
0.03 mT are applied to the magnetic field to compensate for trapped magnetic flux.

lobe of the Fraunhofer-like modulation. The second lobe is skewed which is consistent with a
minor kink. The pattern is not symmetric in positive-negative field but is inversion symmetric
in field-current four-quadrant view. This is consistent with the self-field effect in these extended
junctions.

We extract Isw and fit it with three different models in Fig. 4(b), detailed in supplementary
materials.1 The solid blue trace shows the basic Fraunhofer diffraction pattern for a single-
component CPR. The two-component CPR model reproduces the kinks as shown in solid or-
ange trace. Another model shown with dashed green line is for non-uniform critical current
density and is discussed in the Alternative Explanations block.

Both non-uniformly distributed critical current and second harmonic in CPR produce half-
period kinks. We notice that measured Isw of the single junction is smaller than the simulated
value near zero field. This may be due to a non-uniformly distributed supercurrent or the
fact that the experimentally measured switching current is smaller than the theoretical critical
current [44]. Because the fit does not reproduce the data simultaneously in the central lobe
and in the side lobes, we do not rely on the values of I2/I1 extracted from this analysis (see
supplementary materials for details1). Half-periodic kinks were observed in anodic-oxidation
Al/2DEG junctions but the analysis of the second-order Josephson effect has not been per-
formed [45].

11 Figure 5 description

Shapiro steps in JJ-1 are presented at a microwave frequency of 6.742 GHz. A Shapiro step is
a minimum in dV/dI [Fig. 5(a)]. Another common form of plotting Shapiro step data is to bin
data points by measured voltage across the junction [46]. In this form steps become straight
bright lines in the histogram at Josephson voltages [Fig. 5(b)]. Apart from the usual integer
steps, half-integer Shapiro steps are also observed at 3/2, 5/2 and 7/2. The missing step at
1/2 is likely due to self-heating [47–49].

While half-integer steps are clear and observed at relatively high frequencies, we do not
observe steps at higher denominators such as 1/3 or 1/4. This is another confirmation that
higher order Josephson harmonics, such as 3rd and 4th order, are not apparent in the data.
Steps at 1/3 have been reported before in InSb nanowire junctions [50].
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Figure 6: Asymmetries between negative and positive switching currents. (a) Simu-
lated negative and positive switching currents. The loop inductance is not included
in this model. Asymmetries arise due to the second-harmonic term in the current-
phase relation. Ia,1, Ia,2, Ib,1, Ib,2 are 0.3, 0.15, 1, 0.5, respectively. (b) Experimental
dV/dI as a function of the current I and magnetic field B, showing both negative
and positive transitions in SQUID-1. The superconducting switchings qualitatively
match the simulation in panel (a), except for a relative shift between negative and
positive maximums (yellow arrow). The shift is due to the inductive effect which
coexists with the second harmonic effect. Vg,a = 100 mV, Vg,b = 500 mV.

In these junctions we also observe missing integer steps at lower microwave frequencies,
discussed in a separate manuscript [49]. This has been reported as a signature of the 4π
Josephson effect characterized by the sin(ϕ/2) CPR. However, we observe the missing step
pattern in the non-topological regime where fractional Josephson effect is not expected. We
explain this through a combination of fine-tuning and low signal levels.

To illustrate that missing Shapiro steps are weak as evidence of unusual features in the
CPR, we draw attention to the fact that the step at n = 1/2 is missing from our data. We do
not take this as evidence of an “integer” Josephson effect.

12 Figure 6 discussion

Asymmetries between negative and positive switching currents in SQUIDs. The large second-
order Josephson effect can produce asymmetries between positive and negative bias switching
currents in junctions and SQUIDs [14, 34, 51–53]. These phenomena are heavily studied un-
der the name “superconducting diode” in recent literature. To understand how the asymmetry
arises we provide a simulation of our 2-junction 2-component CPR model in positive and nega-
tive bias (Figs. 6(a)). As can be seen, a kink in the positive bias is aligned with a dip in negative
bias, and vice versa, an effect entirely due to the two-component CPR. This behavior is also
present in the experiment (Fig. 6(b)). At the same time, the experimental data differ from the
model in that the switching current maxima are not aligned for positive and negative bias in
the experiment, but they are in the model. This difference is due to the finite inductance of
the SQUID loop, of order 160 pH, resulting in finite phase winding due to circulating currents,
an inductive effect [54, 55]. This effect provides another mechanism for the asymmetry. The
simulation including both the inductance and the second Josephson harmonic shows that in-
creasing the inductance would suppress signatures due to the second harmonic, e.g., the kinks
at quarter flux values (Fig. 12).

Sign of the second harmonic term. Simulation results in the main text do not include the
inductive effect, therefore they do not reveal the sign of the second harmonic term. This is
because Isw is unchanged if both signs of the second harmonic term and the external flux are
flipped.1 The presence of finite SQUID inductance provides a simple way to determine the
sign of the second harmonic term. The model combining both second harmonic and inductive
effects shows that maxima in negative and positive Isws move towards kinks near half-integer
flux values if the second-harmonic term is negative, and vice versa (Figs. 12(b) and 13(b)). The
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movement of Isw maxima in the experiment (Fig. 6(b)) suggests a negative second harmonic
term. This is expected if the second-order effect originates from high-transparency of the
junction and from the skewed current-phase relation, which yields a negative second-order
Fourier component. Note that the sign of the second-order term can also be determined by
checking the directions of of the applied field and current flow.

13 Alternative explanations

Half-periodic kinks in a single JJ diffraction patterns can be explained by a non-uniformly dis-
tributed supercurrent. We reproduce these kinks with the model of a three-level supercurrent
density distribution (Fig. 4(b) and supplementary materials1). The non-uniform supercurrent
may be caused by resist residue introduced during fabrication. We observe stripes of residue in
our first batch (Tab. 1, Al-chip-1) of junctions which includes JJ-1, caused by double electron
beam exposure (Fig. 7). These residues are avoided and are not observed in newer devices
without double exposure (Figs. 1(b),29(b),29(c)), which includes SQUID-1 and more devices
in Fig. 29 and Ref. [42] - many of which do show additional modulation such as extra nodes
and kinks.

It is worth noting that the non-uniform model produces a “lifted odd node” diffraction pat-
tern that has been used to argue for the observation of the exotic fractional Josephson effect,
characterized by 4π-periodic current phase relations associated with Majorana modes [56].
We obtain the diffraction pattern of the same overall shape without the need to have this
physics present [Fig. 4(b)]. In planar junctions it is difficult to know whether a node cor-
responds to integer or half-integer flux. This is because the junction area for supercurrent
diffraction purposes can be much larger than the lithographic area. In our work, for instance,
the junction length is close to 1.5 microns while the lithographic length is ∼150 nm. This
makes it hard to distinguish a half-integer kink from a lifted integer node.

Another aspect we consider is whether patterns such as those extracted in Fig. 3 or Fig. 4(b)
are true representations of the switching current evolution. In some of the junctions the appar-
ent extra modulation (blue area in colorplots, highlighted in Fig. 30(c) by changing the color)
appears to be above the true switching current and may arise due to the evolution of finite-
voltage resonances in magnetic field. One origin for these resonances is multiple Andreev
reflections (MAR). See Figs. 21-24 for examples.

This type of artefacts does not explain all of our data. For example, in Fig. 4(a) we do not
see MAR or faint finite-voltage state regions. Another argument we can give in support of the
sin(2ϕ) origins of the SQUID patterns is the detailed agreement between our numerical model
and the data. See supplementary materials for an extended discussion.1

Half-integer Shapiro steps have been attributed to effects not related to the second-order
Josephson effect, such as a phase-locking of Josephson half-vortices to microwaves, and non-
equilibrium quasiparticle dynamics [40, 41]. Hence their demonstration cannot by itself be
used to claim the presence of sin(2ϕ) terms. We provide Shapiro data as additional rather
than key evidence.

Taken together, we argue that the evidence from SQUIDs, single junctions and agreement
with the model, are all consistent with a strong second-order Josephson effect. While alterna-
tive explanations can be used to support individual measurements, none of them can explain
all of the data, though multiple factors may be present simultaneously with a lower likelihood.
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14 Conclusion

In summary, we studied the current-phase relation in Josephson junctions and SQUIDs made
with the nanowire shadow-mask method. Signatures due to a strong second-order harmonic
in the CPR are observed. The simulation shows good agreement to experimental Isw data in
the SQUID device suggesting a ratio of the second to first harmonics of I2/I1 = −0.4.

In the clean limit and at zero temperature, the CPR is a skewed 2π-periodic function [6]
with many higher order terms. After Fourier decomposition, one gets |I2/I1| = 0.4 and
|I3/I1| ≈ 0.26. So, in an ideal ballistic junction, the magnitude of the second harmonic
we obtain would not necessarily be surprising. The surprising is the combination of doubly-
modulated junction characteristics together with the lack of manifested higher order terms
such as the third term. This indicates an unusual situation in which either the second order
term is unusually large, or the higher order terms are suppressed through an undetermined
mechanism.

15 Future work

The origin of such a strong second-order harmonic, not accompanied by even higher order
terms (skewed CPR) still needs to be understood. The sensitivity of observed signatures to
surface treatment can be studied. Higher harmonics can be used to engineer nonlinearity in
quantum circuits.

16 Duration and volume of study

This study is divided into two periods, which correspond to period 2 and period 3 in Ref. [42].
The first period was between August 2018 to June 2019, including sample preparation,

device fabrication and measurements. We explored the first-generation devices (Al, InSb
nanowire, without gates). More than 7 devices on 1 chip are measured during 2 cooldowns
in a dilution refrigerator, producing about 8900 datasets.

The second period was between March 2021 to February 2022. We explored the second-
generation devices, (Al or Sn, InAs/HfOx nanowire, with self-aligned nanowire gates). 62
devices on 6 chips are measured during 8 cooldowns in dilution refrigerators, producing about
5700 datasets.

17 Data availability

Curated library of data extending beyond what is presented in the paper, as well as simulation
and data processing code are available at [57].
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Supplementary material: Large second-order Josephson effect in
planar superconductor-semiconductor junctions

A Device information

Table 1: Device information. SQUID-1 and JJ-1 are discussed in the main text. The
rest are discussed in supplementary materials.

Name Chip name Reference code Name in Ref. [42] Superconductor Shadow wire
SQUID-1 Al-chip-3 20210924 Al InAs 2DEG 4.10 SQUID-1 Al InAs
JJ-1 Al-chip-1 2019 2DEG 9 JJ-S3 Al InSb
SQUID-S1 Al-chip-2 210329 Al InAs 2DEG 6.8 - Al InAs
SQUID-S2 Sn-chip-2 20211009 Sn InAs 2DEG 7.7 - Sn InAs
SQUID-S3 Al-chip-1 2019 2DEG 16 - Al InSb
JJ-S1 Al-chip-1 2019 2DEG 10 JJ-S4 Al InSb
JJ-S2 Al-chip-2 210329 Al InAs 2DEG 7.5b JJ-S9 Al InAs
JJ-S3 Sn-chip-2 20211009 Sn InAs 2DEG 9.8a JJ-2 Sn InAs

B Models for a single JJ

The magnetic field induces an extra phase variation inside the junction (Eq. B.3), leading to
the supercurrent interference. The switching current (Isw) of a single JJ in a magnetic field
can be written as

Isw(ΦJJ ) =max{I(ϕ0,ΦJJ ) , ϕ0 ∈ [0,2π)} , (B.1)

I(ϕ0,ΦJJ ) =

∫ W

0

I1

W
sin (ϕ(y)) d y +

∫ W

0

I2

W
sin (2ϕ(y)) d y , (B.2)

ϕ(y) = ϕ0 + 2πΦJJ
y

W
, (B.3)

whereΦJJ is the magnetic flux in the junction normalized by the superconducting flux quantum
(Φ0 = h/2e), ϕ0 is the phase difference which is a free parameter here for calculating Isw,
W is the width (perpendicular to the direction of the current) of the junction, I1 and I2 are
amplitudes of the first- and second-order harmonics in the CPR (In can be regarded as the
global current and In/W as the current density), we ignore higher-order harmonics in our
model, y is the position in the W direction. The integration in Eq. B.2 is independent of W ,
so we can set W = 1 for simplicity.

If I1 is a constant and I2 = 0, Eq. B.2 can be simplified as

I(ϕ0,ΦJJ ) = I1sinc(πΦJJ ) sin (ϕ0 +πΦJJ ) , (B.4)

12

https://scipost.org
https://scipost.org/SciPostPhys.16.1.030


SciPost Phys. 16, 030 (2024)

and Isw reduces to |I1sinc (πΦJJ )| which resembles the Fraunhofer diffraction.
Three models for JJs are used in Fig. 4(b):

1. CPR has only the 1st harmonic, I1 ̸= 0, I2 = 0.

2. CPR has 1st and 2nd harmonics, I1 ̸= 0, I2 ̸= 0.

3. CPR has only the 1st harmonic and I1 is non-uniformly distributed. In this model, I1(y)
is a three-step piece-wise function. It equals to jcenter in the middle (W/3< y < 2W/3)
and jside on two sides.

jcenter
jside

jside

jcenter

0

Figure 7: JJ simulation with non-uniformly distributed critical current. (a) SEM im-
age of a device with unintentional ma-N 2403 resist residue due to a double-exposure
dose. The residue regime is a dark vertical strip laying on the middle of the junction
and happens to occupy roughly 1/3 of the width. We have this double-exposure issue
on Al-chip-1 and get-rid of it on other chips. For more details about this fabrication
issue see other sections (e.g., Fig. 29) and Ref. [42]. Here we focus on the simulation
results from our model. The upper panel shows a sketch on how we model the criti-
cal current density. (b) Simulated critical current for a variety of jcenter/ jside values.
For jcenter/ jside = 1 the critical current resembles the Fraunhofer diffraction pattern
(red). As jcenter/ jside increases, the first and second nodes are lifted and merge as
a single dip (blue, green, and purple). This is not surprising because if jside → 0
( jcenter/ jside → ∞), we get a JJ which is 1/3 of the original width, thus 3 times
in the Fraunhofer period. (c) Fit to experimental data with jcenter/ jside = 3.76, red
dots extracted from Fig. 4(a), JJ-1. This figure is adapted from Fig. 8.4 in Ref. [43].
Parameters for extracting critical current from the experimental data and for fitting
are slightly different from Fig. 4.

13

https://scipost.org
https://scipost.org/SciPostPhys.16.1.030


SciPost Phys. 16, 030 (2024)

C More JJ simulations

Figure 8: JJ simulation with a variety of I2/I1 values. Kinks at half periods develop
as I2/I1 increases. This figure is adapted from Fig. 8.2(c) in Ref. [43].

D Non-inductive SQUID model

As sketched in Fig. 1(a), a SQUID consists of two JJs, i.e., JJa and JJb. We denote mag-
netic fluxes (normalized by h/2e) in the enclosed area of the SQUID, JJa, and JJb by ΦSQU I D,
ΦJJ ,a = ΦSQU I D/ra and ΦJJ ,b = ΦSQU I D/rb. Here ra and rb are ratios between the SQUID-
enclosed area and junction areas. We denote amplitudes of harmonics in JJa and JJb by I1,a,
I2,a, I1,b, I2,b.

Similar to Eq. B.1-B.3, the switching current of a SQUID can be calculated by the following
equations

Isw(ΦSQU I D) =max{I(ϕ0,ΦSQU I D) , ϕ0 ∈ [0,2π)} , (D.1)

I(ϕ0,ΦSQU I D) =

∫ Wa

0

I1,a

Wa
sin (ϕa(y)) d y +

∫ Wa

0

I2,a

Wa
sin (2ϕa(y)) d y

+

∫ Wb

0

I1,b

Wb
sin (ϕb(y) +δ) d y +

∫ Wb

0

I2,b

Wb
sin (2ϕb(y) + 2δ) d y , (D.2)

ϕi(y) = ϕ0 + 2π
ΦSQU I D

ri

y
Wi

, i ∈ {a, b} , (D.3)

where δ = 2π(ΦJJ ,a + ΦSQU I D) = 2π(1/ra + 1)ΦSQU I D. Wa and Wb are junction widths. The
integration terms are independent of widths because Wa and Wb are absorbed under the trans-
formation y → y/Wi .

In the simplest situation, i.e, ra, rb >> 1, two junctions are identical, and there is only the
first harmonic in the CPR, Isw reduces to

2Isw,JJ (ΦJJ )
�

�cos (πΦSQU I D)
�

� , (D.4)

which is a high-frequency SQUID oscillation (the cosine term) modulated by a low-frequency
Fraunhofer oscillation (Isw,JJ).

In our simulation, we assume I2,i/I1,i is a constant independent of the junction index i and
the gate voltage. Parameters used for SQUID-1 in Fig. 3 are as follows, ri = 185, I1,i = αIsw,i ,
I2,i = 0.4αIsw,i , i ∈ {a, b}. ri is extracted from periods of the JJ oscillation and the SQUID
oscillation. Isw,i is the measured zero-field switching current in junction i [Fig. 1(c)]. α is a
fitting parameter which is chosen to be 0.91 in Fig. 3(a) and 0.82 in Fig. 3(b). The difference
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in αmay arise due to the uncertainty in tuning nominal switching currents by gates or higher-
order harmonics that are not considered in the simulation.

E More SQUID simulations

0

1

2

3

4

I s
w

−2 0 2
Φ  (h/2e)SQUID

0

1

2

3

I s
w

(a)

(b)

I1=1, I2=0

I1=1, I2=0.5

I1=1, I2=1

Ib/Ia=0.3

Ib/Ia=0.6

Ib/Ia=0.9

Figure 9: Simulated switching current (Isw) as a function of SQUID flux (ΦSQUID). (a)
In the symmetric condition, i.e., JJa and JJb are identical. I1 and I2 are amplitudes
of first and second harmonics, respectively. As I2 increases, Isw deviates from the
standard | cos(πΦSQUID)| curve (blue) and minimums at half-integerΦSQUIDs are lifted
from 0 (orange and green). (b) In the asymmetric condition, we fix the first (Ia,1)
and the second (Ia,2) harmonics in JJa to 1 and 0.5, respectively. Harmonics in JJb
are a fraction of those in JJa (Ib/Ia). The curve becomes more symmetric as Ib/Ia
approaches 1, and vice versa.

−1

0

1

I
, I

− sw

+ sw

(a)

−2 0 2
Φ  (h/2e)SQUID

−0.5

0.0

0.5

γ
=
Δ

I
/I

sw
sw

(b)

Figure 10: Superconducting diode effect due to the second-order Josephson har-
monic. (a) Duplication of Fig. 6(a). (b) Calculated γ coefficient for the supercon-
ducting diode effect, ∆Isw = |I+sw| − |I

−
sw|, Isw = (|I+sw|+ |I

−
sw|)/2.
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F Inductive SQUID

We model the inductive SQUID following Ref. [55], but including higher order terms. The
currents through junctions a and b are:

Ia = (1−α)I0(sinϕa + γ sin 2ϕa) , (F.1)

Ib = (1+α)I0(sinϕb + γ sin 2ϕb) , (F.2)

where ϕa and ϕb are phase differences in junctions a and b, respectively. γ is the amplitude
of the second harmonic. For simplicity, we use normalized currents, ia = Ia/I0 and ib = Ib/I0.
The total current i and circulating current j are:

i = ia + ib , (F.3)

j = (ib − ia)/2 . (F.4)

ϕa and ϕb are connected by the equation:

ϕb = ϕa + 2πφex t −πβ j + 2nπ , (F.5)

where φex t = Φex t/Φ0 is the normalized flux applied by the external field, β = 2LI0/Φ0 is the
normalized inductance, n is an arbitrary integer. Here we ignore the inductance difference
between the two arms of the SQUID for simplicity. A more general case can be found in
Ref. [55]. Note that when γ ̸= 0, I0 is different from the critical current by a factor f (γ).
We should use β ′ = (Ic,a + Ic,b)L/Φ0 = f (γ)β instead of β to compare with the experimental
parameters.

The maximized (minimized) i is achieved when both ia and ib are maximized (minimized),
which gives ϕa = ϕb, ia = ±(1− α) f (γ), ib = ±(1+ α) f (γ), + (−) for the maximum (mini-
mum). The external fluxes where i reaches maximum (minimum) can be calculated by sub-
stituting these into Eq. F.5:

φex t,± = ±αβ ′/2− n . (F.6)

The dependence of critical current on φex t is calculated using the following procedure.
First, at every φex t , we search for (ϕa,ϕb) pairs satisfying Eq. F.5. Second, we find the mini-
mum and maximum currents among valid (ϕa,ϕb) pairs, which are the negative and positive
critical currents. The results of inductive modeling can be found in Figs. 11 and 12.
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(a) α = 0 (b) β = 0.6
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Figure 11: Simulated switching current (isw = Isw/I0) as a function of the normalized
external flux (φex t = ΦSQU I D/Φ0), using the inductive SQUID model without the
second harmonic term (γ = 0). (a) Under symmetric conditions (α = 0). As the
normalized inductance (β) increases, dips at half-integer flux values are lifted from
0. No kinks are observed near quarter flux values, which is different from results
with the second harmonic (Fig. 9(a)). (b) For asymmetric conditions, we fix the
normalized inductance β = 0.6 and vary α. The ratio of critical current between two
junctions is (1− α)/(1+ α). As the SQUID becomes more asymmetric, isw becomes
more skewed despite the current-phase relation being sinusoidal. No extra kinks
appear (in contrast with Fig. 9(b)).
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(a) (b)α = 0 α = 0.3

−2 2ϕext
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w
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Figure 12: Simulated switching current (isw = Isw/I0) as a function of the normal-
ized external flux (φex t = ΦSQU I D/Φ0), using the inductive SQUID model with the
second harmonic amplitude γ = −0.4. (a) Symmetric case (α = 0). As the normal-
ized inductance (β) increases, tips at half-integer flux values move to larger absolute
values. Kinks near quarter flux values are suppressed by increasing β . (b) Asym-
metric case (α= 0.3). As β increases, the maxima and minima shift relative to each
other horizontally, and the curve becomes more sawtooth-like. The complete infor-
mation about the current-phase relation is lost at large β .

G Sign of the second harmonic term

In the JJ model and the non-inductive SQUID model, changing the sign of the second har-
monic term is equivalent to changing the sign of the external flux. This is because Eqs. B.2
and D.2 are unchanged under the transformation {I2,ΦJJ ,ϕ0} → {−I2,−ΦJJ ,π − ϕ0} and
{I2,a, I2,b,ΦSQU I D,ϕ0} → {−I2,a,−I2,b,−ΦSQU I D,π−ϕ0}, respectively.

In the inductive SQUID model, changing the sign of the second harmonic term
is equivalent to changing both signs of the external flux and the normalized induc-
tance β . This is because Eqs. F.1 and F.2 are unchanged under the transformation
{γ,φex t ,β ,ϕa} → {−γ,−φex t ,−β ,π−ϕa}.
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The results for flipping the signs of coefficients in above models can be found in Figs. 13
and 14.
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α = -0.3
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Figure 13: Changing the signs of parameters in the inductive SQUID model, to be
compared with Fig. 12. (a)(b), (c)(d), and (e) changing the signs of the second
harmonic term γ, the normalized inductance β , and the junction asymmetry α. We
observe that changing the sign of γ is equivalent to changing both the sign of β and
ϕex t , while changing the sign of α is equivalent to changing the sign of the external
flux (flipping the figure along the y axis). Note that β is positive in these devices.
The sign of γ can be determined by the evolution of Isw dips (maxima) against |β | in
the symmetric (asymmetric) case.
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Figure 14: Changing the signs of the second harmonic term and the external flux
simultaneously keeps the result unchanged in the model without inductance. Orange
curves are the same simulations as orange curves in Figs. 3 and 4(b), while dashed
blue curves are simulations with opposite signs of both the second harmonic term
and the external flux.
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H Supplementary data from SQUID-1
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Figure 15: (a), (b) Zoomed-in data of Figs. 2(a) and 3(a) (ΦJJ = 0), respectively.
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Figure 16: Non-identical negative and positive critical currents (superconducting
diode effect) in SQUID-1 when tuned to the asymmetric regime. Vg,a = 100 mV,
Vg,b = 500 mV. (a) Duplication of Fig. 6(b). (b) Extracted negative and positive
switching currents from panel (a). (c) Calculated γ coefficient for the superconduct-
ing diode effect, ∆Isw = |I+sw| − |I

−
sw|, Isw = (|I+sw|+ |I

−
sw|)/2.
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Figure 17: Supplementary data to Fig. 3(a). SQUID oscillation in SQUID-1 at a
variety of ΦJJs which are noted at the top of each panel. Vg,a = 128 mV, Vg,b = 113
mV. Isw,a = Isw,b = 0.9 µA.
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Figure 18: Supplementary data to Fig. 3(b). SQUID oscillation in SQUID-1 at differ-
ent Isw,as which are noted at the top of each panel. Isw,b > Isw,a is fixed at 1.47 µA.
ΦJJ = 0.

20

https://scipost.org
https://scipost.org/SciPostPhys.16.1.030


SciPost Phys. 16, 030 (2024)

−2 2
0

1

2

3
(g) Isw,b = 0.6 μA

−2 2
0

1

2

3
(h) Isw,b = 0.5 μA

0

100

200

dV
/d

I (
Ω

)

−2 2B (μT)
0

1

2

3

I (
μ

A
)

(i) Isw,b = 0.4 μA

−2 2B (μT)
0

1

2

3
(j) Isw,b= 0.3 μA

−2 2B (μT)
0

1

2

3
(k) Isw,b = 0.2 μA

−2 2B (μT)
0

1

2

3
(l) Isw,b= 0.1 μA

−2 2
0

1

2

3
I (
μ

A
)

(a) Isw,b = 1.2 μA

−2 2
0

1

2

3
(b) Isw,b = 1.1 μA

−2 2
0

1

2

3
(c) Isw,b= 1.0 μA

−2 2
0

1

2

3
(d) Isw,b = 0.9 μA

−2 2
0

1

2

3

I (
μ

A
)

(e) Isw,b= 0.8 μA

−2 2
0

1

2

3
(f) Isw,b = 0.7 μA

Figure 19: SQUID oscillation in SQUID-1 at a variety of Isw,bs which are noted at the
top of each panel. Isw,a > Isw,b is fixed at 1.22 µA. ΦJJ = 0. The half-periodic kink
position and the skew direction flip comparing to those in Fig. 18.
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Figure 20: SQUID oscillation in SQUID-1 when Isw,a = Isw,b which are noted at the
top of each panel. ΦJJ = 0.
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Figure 21: Single JJ oscillation in SQUID-1 at a variety of Isw,as which are noted at
the top of each panel. Isw,b is tuned to 0.
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Figure 22: Single JJ oscillation in SQUID-1 at a variety of Vg,bs which are noted at
the top of each panel. Isw,a is tuned to 0. Note that here we show Vg,b instead of
Isw,b.
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Figure 23: Switching current (Isw) oscillation at higher temperatures in SQUID-1.
The temperature is noted at the top axis. (a-b) The SQUID is tuned to a symmetric
state. Nominal zero-field switching currents in two junctions are Isw,a = Isw,b = 1 µA.
(c-d) The SQUID is tuned to an asymmetric state. Isw,a = 1 µA, Isw,b = 0.42 µA. Half-
periodic kinks are still clear at 0.81 K (yellow arrow).

−0.8 0.8B (mT)

−1

1

I (
μ

A
)

0 μA, 1 μA

−1

1

I (
μ

A
)

1 μA, 0 μA

−0.8 0.8B (mT)

0

300
dV

/d
I (
Ω

)

−0.8 0.8B (mT)
0

300

dV
/d

I (
Ω

)

0.05 K 0.81 K 1.2 K

(a) (b) (c)

(d) (e) (f)

Figure 24: Temperature dependence of single JJ diffraction patterns. The tempera-
ture is noted at the top axis. (a-c) Isw,a = 1 µA, Isw,b = 0. (d-f) Isw,a = 0, Isw,b = 1 µA.
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I Data from SQUIDs not shown in the main text
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Figure 25: Data from SQUID-S1 which is similar to SQUID-1 except that mask
nanowires are not connected to electrodes. (a) Measured differential resistance as a
function of current bias and magnetic field threading the SQUID. (b) Zoomed-in data
of the regime enclosed by the dashed rectangle in panel (a) . (c-g) Zoomed-in data of
panel (b) taken near B0 equals to 130, 155, 180, 205, and 230 µT, respectively. ∆B
is the deviation of the magnetic field from B0. Similar to SQUID-1, the half-periodic
oscillation is more obvious in panels (d) and (e) when Φ j j is approaching 1.
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Figure 26: Data from SQUID-S2 which is made of Sn/InAs 2DEG. (a) Optical mi-
croscope image. (b) Differential resistance as a function of the current and the field.
Two superconducting transitions, instead of one, are observed. The smaller switch-
ing current does not have a high frequency SQUID component. This extra transition
may be due to breaks in the superconducting film outside the SQUID loop [42]. (c)
Zoomed-in data of the SQUID oscillation shows half-periodic oscillation near 400 µT.
Yellow scale bars are indicators for the fundamental period and have the same length.
(d) Zoomed-in data of panel (c).
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Figure 27: SQUID-S3. (a) SEM of the device. The dark strip is the residue of the
e-beam resist (ma-N 2403) due to double exposure. (b) Simulations of SQUID char-
acteristics with two-component CPR that resemble data in this panel. (c-e) SQUID
oscillation at different background fields which are noted in the top-left of each panel.
Switching current pattern has double the frequency in panel (c) compare to panel
(e) going through a transition regime in panel (d). A vertical line-cut is subtracted in
panels (c) and (e) to remove a spurious superconducting switching transition from
an uncontrolled junction elsewhere in the circuit (see Fig. 28).

Figure 28: SQUID oscillation in SQUID-S3 on a vast span of field. The device shows
multiple superconducting transition as well as a flux difference between two junc-
tions. Fluxes in the two junctions of the SQUID were offset, presumably due to
trapped flux, which resulted in the Fraunhofer pattern maxima at different values
of global flux. This allowed to explore SQUIDs with different ratios of I1 and I2 as
a function of a single global junction flux control knob, without gates that were not
yet developed at that time.
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J Supplementary data from JJs not shown in the main text
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Figure 29: Half-periodic kinks from three different types of JJs made with the
nanowire shadow method. (a) SEM image of the first type of JJs which is made from
Al/InAs 2DEG and bared InSb shadowing wires (Al-chip-1). The InSb nanowire is
etched during the etching for making the Al/2DEG mesa. The dark horizontal strip is
unintentional ma-N 2403 resist residue due to a double-exposure dose. JJ-1 and JJ-
S1 belong to this type (including the residue). (b) SEM image of the second type of JJ
which is also made from Al/InAs 2DEG but the shadow nanowire is InAs with a HfOx
capping layer (Al-chip-2 and Al-chip-3). The HfOx layer protects the nanowire from
being etched. Wires can be contacted by Ti/Au electrodes to work as self-aligned
gates like those in SQUID-1 [Fig. 1(b)]. (c) Optical microscope image of the third
type of JJ which is similar to the second type except that Al is replaced by Sn and
leads are partially covered by Ti/Au to short possible unintentional breaks on the
leads (Sn-chip-2). (d-f) Superconducting diffraction patterns from devices JJ-S1, JJ-
S2, and JJ-S3 which are similar to or are the devices in (a-c), respectively. All three
kinds of devices show kinks at half-periods. Data from more JJs are available in the
supplementary materials of Ref. [42].
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Figure 30: Details near a kink. Data from JJ-S2. (a) Replotted from the same dataset
as Fig. 29(e). (b) Zoomed-in data of panel (a). The white arrow points at an apparent
kink in negative bias where the superconducting-normal state switching boundary is
sharp and the slope of the switching current in applied flux changes visibly. (c) Same
as panel (b) except the colors are adjusted. We observe that the boundary of the true
zero resistivity region is straight and exhibits no kink. However, there is an additional
blue bump just outside the boundary which is a region of low resistivity that is flux-
dependent. Because of the low value of resistivity, depending on the exact method
we use to extract the switching current there maybe a kink in the extracted curve.
(d),(e) Linecuts at fixed magnetic fields indicated in titles.

0.0

2.5

5.0

7.5

15.64 GHz

0

100

dV
/d

I (
Ω

)

0.0

2.5

5.0

7.5

8.53 GHz

−10 0 10
P (dBm)

2

4

6

0

10

C
ou

nt
s

−10 0 10
P (dBm)

2

4

6

0

1

2

7.0 GHz

0

1

2

I (
μ

A
)

4.044 GHz

0 10
P (dBm)

2

4

6

0 10
P (dBm)

2

4

6

V
 (

hf
/2

e)

(a) (b) (c) (d)

(e) (f) (g) (h)

1

2

2
3

1
2

3

3

1

2

3

JJ-S2 (Al) JJ-S3 (Sn)

Figure 31: Shapiro steps from JJ-S2 (Al, left panels) and JJ-S3 (Sn, right panels) at
zero field. The microwave frequency is noted at the top. (a-d) Differential resistance
as a function of the current and the microwave power. Shapiro steps manifest as dips
in dV/dI , some of which are indicated by yellow numbers. Peaks between Shapiro
steps split at higher frequencies. (e-h) Histogram of the voltage as a function of the
microwave power. Shapiro steps are peaks in histograms. Half-integer steps at high
frequencies are highlighted by white arrows in panels (f) and (h). JJ-S2 has a missing
first step at 4.044 GHz which is likely due to self-heating. More discussion about the
missing Shapiro steps are available in Ref. [49].
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