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Stochastic effective core potentials, improving efficiency using a
spin-dependent core definition

Jonas Feldt,a∗ Antoine Bienvenua, and Roland Assarafa

Numerically cheap single-core subsamplings have been used to build improved estimators for molecular properties in
the variational Monte Carlo framework1. The resulting estimators depend only on the valence electron positions and
can be thought of as an exact effective core potential for the total energy. We are proposing a spin-dependent core
definition which enables exploiting these single-core subsamplings (or sidewalks) not only to decrease the variance
of the estimators but also to restrict the main variational Monte Carlo dynamics to the valence region. This results
mainly in a simplification of the algorithm and additionally in a gain in efficiency as illustrated on alkane chains and
silicon clusters. An evaluation of the efficiency on transition metal systems is done using cobalt clusters, a gain of
up to two orders of magnitude is achieved compared to a standard all-electron calculation.

1 Introduction
Quantum Monte Carlo (QMC) methods employ a stochastic ap-
proach to solve the Schrödinger equation. Freedom in the choice
of the wave function allows to treat equally dynamic and static
correlation which is exploited for the investigation of materials
and excited states.2 The N3−4 scaling of the computational cost
with the system size N is very favourable compared to determin-
istic quantum chemistry methods. Among recent developments,
the cost of multideterminant expansions and optimizing has been
greatly reduced3,4 to the point where the optimization of a ge-
ometry and all parameters of the wave function scale the same as
the computation of the total energy5.

One of the remaining challenges to establish QMC methods
as highly accurate and cost effective methods is the steep scal-
ing with the atomic number Z. The consequence is that empir-
ical effective core potentials (ECPs) are widely used which in-
troduce a bias that cannot be easily judged a priori. For exam-
ple the Burkatzki-Filippi-Dolg potentials have been parametrized
for Hartree-Fock and do not take into account the correlation en-
ergy.6 It has been demonstrated that this bias is even larger for
excited states properties.7 Furthermore, the unfavourable scaling
with the effective nuclear charge Zeff remains, Z6.5

eff for the forces
in diffusion Monte Carlo (DMC).8

Developments addressing this challenge have been mostly fo-
cusing on improving the sampling and reducing the correlation
factor. For instance in variational Monte Carlo (VMC) the dy-
namic can be carried out very efficiently in spherical coordi-
nates.9 In DMC different grids based on a spatial discretization
can be used for core and valence electrons. This enables to per-
form small moves adapted to the core electrons and large moves
adapted to the valence electrons. This results in an accelera-
tion of about one order of magnitude for very heavy elements
(Z = 118) and achieves a scaling of Z5 for all-electron calcula-
tions .10 Adapting the moves to the core and valence electrons
can be done also without discretizing the space i.e. in the usual
framework of the (overdamped) Langevin Dynamics (drift and
diffusion process) performed in Diffusion Monte Carlo methods
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and Variational Monte Carlo. For that purpose two time steps
are introduced an optimized (one small one for the core electrons
and a large for the valence electrons)11, in this last reference the
correlation factor was reduced by factor 2–4 in Variational Monte
Carlo (up to the Neon atom).

Recently, a core-subsampling approach (sidewalks on the core
electrons) was introduced to reduce not only the correlation fac-
tor but also the fluctuations coming from the core region1. The
cost of these sidewalks scales linearly with the system size N if
we use the locality of the information in the core region (e.g. the
atomic orbitals are highly local). This cost is negligible compared
to the O(N3) cost for the main walk.

Such an algorithm is equivalent to an on-the-fly construction
of an exact effective core potential, because the resulting estima-
tor is independent of the positions of the core electrons. We are
proposing to use these sidewalks or subsamplings not only to re-
move the fluctuations coming from the core region but also alle-
viate the main walk to treat only the valence region. This can be
done without loss of ergodicity thanks to a spin-dependent def-
inition of the core-valence separation11 and the use of the final
configuration of the sidewalk to advance the main walk. These
updates improve to some degree the variance but mainly the er-
godicity, the correlation factor within the main walk and the com-
putational time.

Limiting the main walk to the valence electrons results in a sim-
plified algorithm,also because there is no more codependency of
the parameters of this method (time steps and size of the side-
walks) in the core and valence regions. In particular the optimal
size of the sidewalks can be now obtained automatically for any
cluster using a single atom calculation (eqn 4) avoiding human
time consuming optimizations. Besides efficiency comparisons
using alkanes chains and silicon clusters, we apply the method
on cobalt clusters to evaluate its efficiency on a transition metal
system.

2 Algorithm

With X being a random variable, for example the potential or
the local energy, we are partitioning the variance based on the
variance decomposition theorem

V (X) = E(V (X |Ω))+V (E(X |Ω)) (1)
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into a contribution from the core electrons E(V (X |Ω)) and the
remaining part, which stems from the valence electrons.1 We
remind that E(X) stands for the expectation value of X (inter-
preted as a statistical average in the Monte Carlo framework) and
V stands for the variance V (X) ≡ E(X2)−E(X)2 which measures
the statistical fluctuations.

The condition Ω is a constraint in real space which allows the
core electrons alone to move within their core region while the
valence electrons are frozen. Performing an average under this
constraint produces the conditional expectation value E(X |Ω) and
the conditional variance V (X |Ω) = E(X2|Ω)−E(X |Ω)2. E(X |Ω) is
an improved estimator of X because it has the same expectation
value (thanks to the law of total expectation E(E(X |Ω)) = E(X))
and a reduced variance V (E(X |Ω)<V (X). As a by-product, using
the estimator E(X |Ω) does not change the accuracy. Note that
E(X |Ω) does not depend on the core electrons positions since they
are averaged, it depends only on the valence positions.

Ω
(i)
c being the constraint allowing only the core electrons of the

atom i to move, the improved estimator

X̃ = X +λ ∑
i

(
E(X |Ω(i)

c )−X
)

(2)

eliminates the fluctuations of the core electrons completely when
the core regions are independent1 (while not modifying the ex-
pectation value since we add a zero-expectation value term). The
coefficient λ can be determined to minimize the variance *. The
conditional expectation values E(X |Ω(i)

c ) are evaluated by side-
walks with a number of Ms steps on the core electrons, using the
ergodic theorem

E(X |Ωi
c) = lim

Ms→∞

1
Ms

MS

∑
k=1

Xk (3)

where Xk is the value of X for the kth step of the sidewalk.
One natural idea would be to use the sidewalks not only to

lower the variance of the estimators but also to advance the main
walk, moving the core electrons of the main walker to the last
positions of the core sidewalk. With such updating scheme the
sidewalk can be considered as a part of the main walk and as
such can be called a “subwalk”. In this context Ω

(i)
c would freeze

beside the valence electrons the first i−1 cores in their new con-
figuration and all remaining cores (excepted i) in their old con-
figuration. This approach should make it possible to restrict the
main walk to only the valence electrons. In practice the process
would not be ergodic with the definition of the core region in
Ref. 1. In this reference the core region was the largest nucleus-
centred ball containing nc closest electrons (regardless their spin)
to the nucleus. If there is no exchange between the valence and
the core region the total spin of the core region is frozen. Hence,
we will apply this idea with a different definition of the core and
valence regions.

We introduce a spin-dependent core constraint, i.e. two core

* Writing X̃ = X +λC, the variance can be expanded as V (X̃) =V (X)+2λ cov(X ,C)+

λ 2V (C) which is a quadratic function of λ easy to minimize after computing the
parameters (two variances and one covariance).

regions, one for the α electrons and one for the β electrons. If we
order the α electrons by their distance to the nucleus, the first α

valence electron is on the nucleus-centered sphere which defines
the boundary of the α core region (see Fig. 1). Of course the same
definition applies to the β core region.

Now we define equivalently the α (respectively β) valence re-
gion to be outside the (nucleus-centred) ball with the radius de-
fined by the last α (respectively β) core electron (see Fig. 1). This
core-valence separation definition is equivalent to the one intro-
duced in reference11.

Core and valence regions overlap because the space between
the last core and the first valence electron can be explored by
both core and valence electrons. With these definitions perform-
ing sidewalks in the core regions and a main walk restricted to
the valence region should be now ergodic, because these regions
have different radii which can evolve and exchange, ensuring for
example the sampling of the spin in a given volume of the space.
Note that with this new definition the core electrons have always
the same indices (in particular we do not need anymore to re-
order the electrons at the beginning of each sidewalk).

In summary, one iteration of the algorithm consists of the fol-
lowing steps:

1. Independent sidewalks for all cores.

2. Update of the full system after each core sidewalk.

3. Main walk only for the valence electrons .

4. Update of the full system with new valence positions.

5. Computation of the improved estimator X̃ .

The update of the configuration after each core sidewalk is a
small modification of the algorithm presented in Ref. 1 but it has
several consequences. The first is that we do not need to move the
core electrons in the main walk as stated in step 3. This implies a
further simplification of the dynamics which consisted in moving
one electron at a time using two drift and diffusion processes with
different time steps (a small one for the core region and a large
one for the valence region) 1. Only one (large) time step for
the valence region can be now used, avoiding the small time step
move which was only efficient in the core region.

In this modified dynamics the treatment of core and valence
electrons is now similar except that we do many moves per itera-
tion for the core electrons and only one move for the valence elec-
trons. With the new algorithm the estimator (eqn (2)) is formally
the same except that Ω

(i)
c for two different indices i represents

different frozen configurations (i.e. the core electrons are not the
same after one update). Note that if different core regions are
independent the core updates do not modify this estimator and
its variance, only the different definition of the core does.

The combination of all sidewalks (including updates) consti-
tutes in itself an efficient (i.e. quickly decorrelating) move for all
electrons. Hence the sidewalks are not only used to reduce the
variance but also correlation.
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Fig. 1 Representation of the α core and valence constraint for a nucleus surrounded by 3 α and 3 β electrons. The electrons are labeled according
to their distance to the nucleus. The constrained electrons are shown in red and can move freely within the green area, left for the core electrons and
right for the two α valence electrons. The frozen electrons within the core sidewalk (left) and the valence main walk (right) are shown in gray. The
valence space is infinite but here only shown within the dashed frame. Equivalent constraints apply to the β electrons.

3 Numerical Results

Simulations have been carried out for alkane chains and sili-
con clusters to compare the performance of the improved algo-
rithm in this work which uses updates and a spin-dependent core
definition with the previous algorithm1 without updates and a
purely spatial core definition. Due to the updates the estimator
in eqn (2) is different from the previous estimator. The computa-
tional cost can be compared using the expression ζ =V ct with the
variance V , the correlation factor c and the computational time of
a single step t. The gain in computational efficiency G is defined
as the inverse reduction of the computational cost. We carried
out simulations for small model systems (CH4 and Si1) fitting the
convergence of the variance with Ms to estimate the reduction
for very long sidewalks. This reduction in the limit of large Ms

is transferable to large systems where the optimal M∗s itself is in-
creasingly large. The correlation factor is also transferable in this
limit1. Therefore, we can estimate the gain in the computational
efficiency (i.e. reduction of the cost) in the asymptotic limit of
many atoms G∞ as 38 (alkanes) and 774 (Si clusters) compared
to a regular all-electron VMC simulation. Compared to the pre-
vious algorithm it is an improvement by a factor of 3.7 (alkanes)
and 3.9 (Si clusters).

We can further analyze the gain G∞ by separating according to
the definition of the computational cost into contributions due to
the variance G∞

V , the correlation factor G∞
c and the computational

time G∞
t . We begin with the estimator eqn (2) with a fixed value

of λ = 1. The correlation factor was already small with the previ-
ous algorithm (1.8 for carbon and 1.5 for silicon), consequently
we observe only an additional gain of 10% (alkanes) and 19%
(Si clusters). This supports an improvement in ergodicity coming
from the core updates but also, the new optimal time step for the
valence dynamic is larger especially for the silicon clusters. How-

ever, we observe also a small loss in the variance by about 10%
(alkanes) and 4% (silicons). To understand it, we carried out ad-
ditional simulations without updates but with a spin-dependent
core definition. Because we observe the same loss we attribute
this loss to the new core definition. It turns out that contrary to
the previous core definition the value λ = 1 is not optimal for the
variance. This is a signature of a diminished core-valence sepa-
ration coming from the new definition of these regions. Indeed
λ = 1 is the optimal value to lower the variance when the va-
lence and the core regions are independent, since in this limit
eqn (2) cancels fully the fluctuations coming from the cores of
the molecule. Here optimizing λ recovers the loss in the vari-
ance and we even observe a small gain of about 26% (alkanes)
and 11% (silicons). This reduced core separation should not be
too surprising, since in rare cases a valence electron of one spin
can be closer to the nucleus than a core electron of the opposite
spin. Optimizing λ however decreases the correlation factor by
8% (alkanes) or 21% (silicons) in comparison to Ref. 1. Never-
theless, this is compensated for by the gain in the variance. We
will focus in the following on the estimator with optimal λ .

The appreciable effect on the overall gain is in the computa-
tional time t which is improved by a factor of 2.9 (alkanes) and
3.4 (Si clusters). The cubic scaling with the system size (in the
asymptotic limit of a large number of atoms) is the same for the
new algorithm but the prefactor is reduced. On one hand, the
computational time for the main walk is reduced because only
the valence electrons need to be taken into account. On the other
hand, an additional cost (scaling O(N3)) is added to the sidewalk
which stems from the Sherman-Morrison update of the full con-
figuration at the end of each sidewalk. Nevertheless, this is more
efficient because we require less updates for more electrons: in-
stead of one update for each single electron in the main walk
we are carrying out only one update for all electrons of a core

Journal Name, [year], [vol.], 1–7 | 3



Fig. 2 The gain G for alkane chains comparing different algorithms.

Fig. 3 The gain G for silicon clusters comparing different algorithms.

at once. The formulas for the update of nc electrons at once are
shown in Appendix A. Also, we are exploiting the locality within
the core subsystems for an efficient update and the O(N2) cost for
the update of one core comes with a very low prefactor.

Next, we are looking at the results of simulations for alkanes
up to 40 carbon atoms shown in Fig. 2 and for silicon clusters
up to 24 atoms in Fig. 3 (red lines). This corresponds to about
350 electrons for the largest systems. The maximal gain for a
given system is obtained by determining the optimal number of
steps M∗s in the core sidewalk which is a balance between the
reduction of the variance and the additional computational cost.
A simple formula to determine M∗s is shown in eqn (4) in the
computational details (see Sec. 4). For comparison we present
also the results of the previous algorithm1 (blue lines). It can be
seen that the gain of the new algorithm is always at least as good
as the previous gain. We observe similar results for alkane chains
up to 20 carbon atoms and silicon clusters up to 5 atoms. For
larger systems one can see an increasingly larger gain with the
improved algorithm. For the largest systems studied here we gain
a factor of 1.9 (C40H82) and 2.0 (Si24).

The improvement for the alkanes comes mostly from the re-
duced computational time t and additionally for more than 30
carbon atoms the updating scheme reduces the variance (in the
optimal regime). This suggests that the convergence towards the
asymptotic limit of many atoms is accelerated. For the silicon
clusters the situation is different. Because of the large number of
core electrons nc = 10, the number of electrons in the main walk
is strongly reduced (and consequently the computational time t0,
see eqn (4)). Therefore, the optimal sidewalk length M∗s is shorter
which results in a reduced optimal gain in the variance multiplied
by a factor of 0.35 (one atom) to 0.7 (24 atoms). With increasing
system size this gain will approach its asymptotic value. The re-
duced optimal gain in the variance is counterbalanced by an even
larger gain in the computational time t of up to 4.1 times which
leads to an overall improvement of a factor 2 for 24 atoms.

Last, we are evaluating the efficiency of the new algorithm
(compared to regular all-electron calculations) for transition
metals on the example of clusters of cobalt atoms (hexagonal
P63/mmc space group12). In the asymptotic limit of large clus-
ters the gain G∞ is given by about 2270 including a gain in the
variance of about 130. The efficiency for clusters consisting of
up to 20 cobalt atoms is shown in Fig. 4. The gain is still far
from its asymptotic value. Nevertheless, we can obtain already
an improvement of the efficiency by one order of magnitude for
only four cobalt atoms and by a factor of 64 for the largest sys-
tem Co20. The efficiency for all three systems studied here is com-
pared in Table 1 both for the asymptotic gain G∞ and for a gain for
twenty atoms of either carbon, silicon or cobalt G20. The gain in

Fig. 4 The gain G for cobalt clusters comparing with a regular all-electron
calculation.

the asymptotic limit is increasing drastically with Z by two orders
of magnitudes going from Z = 6 to 27. The gain for a medium-
sized system of 20 atoms increases as well with Z but at a slower
rate (a factor 6.4 from Z = 6 to Z = 27).

Table 1 The gain in efficiency (compared to regular all-electron calcula-
tions) for the asymptotic limit of many atoms G∞ and twenty atoms G20
and the atomic number Z as well as the number of core electrons nc for
the alkanes, silicon and cobalt clusters.

C Si Co
Z 6 14 27
nc 2 10 18

G20 10 40 64
G∞ 38 774 2270

4 Computational Details
The main walk and the sidewalks are carried out with a drift and
Brownian diffusion (overdamped Langevin process). Two time
steps are used, τc and τ, for the core and the valence region re-
spectively. These two parameters and the number of iterations Ms

of any one-core sidewalk have to be optimized for a minimal cost
ζ = V ct (we remind that V is the variance, c the correlation fac-
tor and t the computational time for one iteration). These three
parameters can be derived from a small number of simulations
on very small systems (e.g. isolated atoms or CH4 for alkanes).
The time steps are directly transferable to larger systems, and
the variance gain as a function of Ms is also transferable1. For a
given chemical element the reduction of the variance is a linear
function of 1/Ms leading to rV = Ṽ/V = r∞ + a/Ms. These trans-
ferability considerations allow defining a simple formula for the
optimal choice for Ms (see appendix C of Ref. 1)

M∗s =

√
a
r∞

t0
tc

(4)

where t0 is the computational time of one iteration excluding the
sidewalks, i.e. the time to do a single walk on all the valence
electrons and all the updates (it is scaling as O(N3)). tc is the CPU
time for all the core sidewalks (of the same element) with Ms =

1 (scaling as O(N)). This formula is valid with the assumption
that the correlation factor in the main walk (when sampling the
improved estimator) does not depend on Ms, which is obviously
true for sufficiently large Ms. Without the updating scheme the
correlation factor converges too slowly1 to apply eqn (4) for small
systems and tedious optimizations of Ms have to be performed.
We have checked that with the updating scheme this is no longer
the case and eqn (4) can be applied to a small number of atoms
(in all our calculations M∗s > 15, see figures 5 and 6).

The optimal time steps are shown in Table 2. We found that
the spin-dependent core definition has a negligible effect on the
optimal value of τc, the latter can be taken directly from Ref. 1.
The optimal value of τ is larger, which is not surprising since it
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Table 2 The optimal time steps for core and valence for alkane chains
and silicon clusters

Alkanes Silicon clusters
τc 0.004 0.007
τ 0.8 1.8
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Fig. 5 The optimal sidewalk length M∗s for alkane chains obtained from
Eq. (4) .

is now exclusively used for the valence electrons. The compu-
tational cost to move the valence electrons is below 10% of the
total CPU time for silicon clusters even for Si32. This is because
most of the variance comes from the core region which has to be
consequently sampled much more extensively. With these time
steps we found an acceptance probability for the valence move of
about 0.5 for silicon and 0.66 for carbon.

The value of M∗s for the alkanes are shown in Fig. 5 and for
the silicon clusters in Fig. 6. One can observe that the linear
scaling regime of M∗s is quickly reached for about 70 electrons for
both alkanes and silicon clusters at which point a simple linear
extrapolation can be used for even larger systems. Additionally,
the simplicity of eqn (4) allows to determine the optimal value
M∗s also for smaller systems where one cannot rely on the cubic
scaling of tc.

The wave function and the Jastrow factor have been taken
from Ref. 1 and have been generated based on an SCF calcula-
tion carried out with Quantum Package.13 The wave function for
the cobalt clusters has been generated in the same manner. The
very simple Jastrow factor ensures the electron-electron cusp con-
dition. A Slater atomic orbital basis set14 has been used with a
TZP basis for the alkanes and SZ for the silicon and cobalt clus-
ters which is expanded by a large sum of Gaussian functions for
Quantum Package.

5 Conclusion
In this paper we are extending the stochastic ECP approach orig-
inally proposed to improve the estimator (removing fluctuations

Fig. 6 The optimal sidewalk length M∗s for silicon clusters obtained from
Eq. (4).

coming from core region using sidewalks) to the main dynamics
itself: here the main walk moves only the valence electrons as
we would expect in a complete ECP formalism, while the side-
walks focus exclusively on the core electrons. Key has been to
update the system at the end of each core sidewalk: to maintain
(and even improve) ergodicity we replaced the purely spatial core
definition with a spin-dependent one. Compared to the previous
algorithm the number of parameters (time steps) is reduced and
the determination of the length of the sidewalk is extracted from
calculations on a single atom which avoid a tedious optimization
for large systems. The observed additional gain in efficiency (2-
4) is growing with the system size as we observe an accelerated
convergence towards the asymptotic limit of large systems. Tests
include a transition metal (cobalt clusters). Large gains are ob-
served with respect to traditional all-electron calculations (a fac-
tor 64 for 20 cobalt atoms) but are still small compared to the
asymptotic gain (a factor 2270 for a very large cluster of cobalt
atoms). This suggests that there is a large room of improvement,
a keypoint of future developments would be to further improve
the efficiency of the core sidewalks for the gain to converge much
faster to the asymptotic limit. A natural idea would be for ex-
ample to adapt this method to many shells. One of the most in-
teresting perspective is the generalization to the diffusion Monte
Carlo approach thanks to the efficient small time step dynamics
in the core region and the following efficient updating of the full
configuration of the electrons.
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A Updating the logarithmic gradient of the
determinants

In Ref. 1 (appendix A) we described a method to update the de-
terminants and its derivatives when a few electrons are moved,
using a matrix D representing the logarithmic gradient of the
Slater matrix with respect to the atomic orbitals coefficients. Now
we also have to update the matrix D at the end of the sidewalk
when a few (core) electrons have moved.

Let us first remind how to update the Slater determinant Φ

when a few electrons are moved

Φ = det(XC) (5)

where X is the N× p matrix of atomic orbitals and C the p×N
matrix of coefficients, N and p being respectively the number of
electrons and molecular orbitals. The drift, the local energy and
many other possible quantities depending on the electron posi-
tions involve logarithmic derivatives of Φ with respect to X .

∂λ lnΦ(X) = tr(D∂λX) (6)

where
D≡C(XC)−1 (7)
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eqn (6) can be seen as the application of the chain rule involving
D, the rectangular matrix representing the logarithmic gradient
of Φ with respect to X . Note that eqn (6) must be valid for any
parameter λ and can thus be seen as the definition of D. If we
are going to move only a few electrons within a core sidewalk, X
is modified in X ′ which differs from X by a few lines, D(X) must
be replaced by D′ = D(X ′) with efficient formulas.

First, we define the operator P which applied on the left selects
those lines, PX ′ are the lines which may differ from the lines of
PX . We also define the operator QT which applied on the right
of PX or PX ′ removes the zero columns (atomic orbitals which
are zero because the electrons selected by P are out of range). P
and Q can be written in terms of rectangular matrices containing
zeroes and ones4. X̄ is the matrix of atomic orbitals within a
subsystem and a submatrix of X ′

X̄ ≡ PX ′QT .

We obtain the changed Slater determinant Φ(X ′)

Φ(X ′) = det(XC)det(PX ′C(XC)−1PT )

= det(XC)det(PX ′QT QC(XC)−1PT )

= det(XC)det(X̄C̄) (8)

where C̄ is a submatrix of D =C(XC)−1.

Eqn (8) performs an update of the determinant of a product of
two matrices, using the determinant of a reduced matrix. The last
expression of Φ depends on X ′ and we can write

X = PT PX +(1−PT P)X ′ (9)

where PT P represents the projector on the space spanned by the
lines which have been modified. We note that the final expression
should not depend on PX . Introducing

ᾱ ≡ (X̄C̄)−1

D̄ ≡ C̄(X̄C̄)−1

the logarithmic derivative of eqn (8) is

∂λ lnΦ(X ′) = tr(D∂λX)+ tr(D̄∂λX̄)+ tr(ᾱX̄ ∂λC̄)

= tr(D∂λX)+ tr(D̄∂λX̄)

− tr(ᾱX̄QD∂λX DPT ) (10)

which should also be tr(D′ ∂λX ′) so that D′ can be obtained by
identification. First using the cyclic property of the trace we ob-
tain

∂λ lnΦ(X ′) = tr(D∂λX)+ tr(QT D̄P∂λX ′)−

tr(DPT
ᾱX̄QD∂λX). (11)

Since this expression should not depend on P∂λX we have

∂λ lnΦ(X ′) = tr(D∂λX ′)+ tr(QT D̄P∂λX ′)−

tr(DPT
ᾱX̄QD∂λX ′) (12)

which can be also found using eqn (9). By identification we finally
find the (Sherman Morrison) formula to update the logarithmic
gradient

D′ = D−DPT
ᾱX̄QD+QT D̄P. (13)

In the second term we select a few columns (DPT ) and lines (QD)

of D and build the product with the small rectangular subsys-
tem matrix ᾱX̄ . The cost for the update comes with a very small
prefactor because we are exploiting the locality of the subsystem
(thanks to the matrix Q which selects a few orbitals). A bit more
efficient formula can obtained as follows

QD′ = QD− D̄X̄QD+ D̄P

QD′PT = QDPT − D̄X̄QDPT + D̄.

Using that αX̄QDPT = PT P we can decompose D′ as follows

D′ = D(1−PT P)−DPT
ᾱX̄QD(1−PT P)+QT D̄P (14)

B Updating a Jastrow-Slater Function
We define a Jastrow-Slater function

Ψ = JΦ = eU
Φ (15)

where Φ is a Slater determinant and J the Jastrow factor. We
need to update U when a few electrons move but also the spatial
derivatives of U which are involved in the drift. This is trivial
since the new value of U can be written as

U ′ =U +(U ′−U) (16)

If U is a sum of pairwise interactions the only term to be com-
puted is U ′−U which involves only a few pairs of electrons. The
computational cost scales as O(N) which can be reduced to O(1)
if the pairwise interactions are short range. This was the case
for the silicon and cobalt clusters because we used a cutoff (
rcutoff = 7.07 au). The same discussion holds for the spatial deriva-
tives of U .
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