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Abstract

The four-dimensional nature of physical spacetime and the possible existence of hidden dimensions are

long-standing and central questions in modern scientific research. They are associated with major theoretical

challenges in physics such as the unification of fundamental interactions or the birth and evolution of the

universe. In his pioneering work, Ehrenfest concluded that three spatial dimensions are necessary and

sufficient for classical fundamental laws of physics to agree with experimental and observational results.

Here, we extend Ehrenfest’s approach by asking how this particular dimension is selected. To this purpose,

we postulate that the current dimension of our physical world results from a dynamical evolution of the

spacetime dimension of an expanding universe. Starting from this assumption, we develop a model within the

framework of “classical” general relativity. First, we use the generalized action of gravity to any dimension

of spacetime and give dimensional arguments for the existence of a physical length scale that characterizes

the “spatial” extension of “hidden” components of the metric. Next, we solve a generalized cosmological

model in which the dimension n(t) of spacetime is allowed to jump incrementally. Within this approach and

under minimal assumptions, we show the existence of a single possible scenario of an expanding universe

with a space-time dimension that increases incrementally from n(t) = 2 to an upper limit n(t) = 4. We

conclude our study by discussing the results as well as the relevance and possible drawbacks of our approach.

∗ mokhtar.adda-bedia@ens-lyon.fr
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I. INTRODUCTION

Each of us has wondered at least once why do we live in three-dimensional space and why time

always seems to flow in the same direction. These questions are not of philosophical nature only,

but arise in different areas of theoretical physics, whether at the level of fundamental interactions

up to cosmological scales. The literature on this subject is abundant and covers a wide spectrum

ranging from purely scientific aspects to popular science, which makes any attempt at an exhaustive

introduction a heavy task. For this reason, we will briefly retrace the stroll in this fascinating quest

by following a narrative inspired by [1, 2].

Our world is made up of physical objects that we usually describe using physical laws derived

from Newtonian dynamics which suggests that the usual three spatial components and the temporal

one are independent entities. In 1917, Ehrenfest wrote a paper entitled In what way does it become

manifest in the fundamental laws of physics that space has three dimensions? [3, 4]. He noted that

if the Newtonian-Keplerian problem is generalized to any integer dimension d, one obtains stable,

bound non-colliding orbits if and only if d ≤ 3. Moreover, if one requires that the gravitational

potential should vanish at infinity, dimensions d < 3 are excluded. Ehrenfest concluded that a

three-dimensional space is perfect for describing a world in which the two previous conditions are

satisfied. Instead of considering space and time independently, Einstein (1905) proposed a unified

view of spacetime of dimension n = d + 1. As part of his special theory of relativity [5], he

postulated to explain how light moving at a constant speed relative to all observers, can best be

expressed in four dimensions by combining spatial and temporal coordinates. A decade later in

his general theory of relativity, he took up this concept and described gravity using a dynamical

four-dimensional model of spacetime [5].

The question of spacetime dimensionality has often intersected with another major challenge

in theoretical physics which is unification of fundamental interactions within the universe [1, 6–

8]. This quest started with Maxwell (1865) who unified electricity and magnetism within the

same formalism and showed that light stems from a four-dimensional potential field [5]. Since

then, tremendous effort has been deployed to unite the electromagnetic force with strong nuclear

force, weak nuclear force and gravity. The first scheme to incorporate gravity was developed by

Kaluza (1921) and Klein (1926) who proposed to unify electromagnetism and gravity by extending

general relativity by an extra dimension [1]. Since the 1970’s, Kaluza-Klein theory has seen a

revival through to the emergence of theories based on the idea that the fundamental components

of nature are higher-dimensional vibrating strands of energy [7, 8].

2



Here we revisit Ehrenfest’s proposal and ask “How come d = 3 (or n = 4) was selected?” To

answer this question, we approach the problem within the framework of general relativity but

always from a “classical” perspective. We postulate that the current dimension of our physical

world results from a dynamical evolution of the spacetime dimension of an expanding universe.

To exploit this idea, we start from the generalized Einstein-Hilbert action to any integer dimen-

sion of spacetime. Then, without resorting to a compactification-type argument but using only

dimensional considerations, we show that such a definition of the action must de facto involve a

single additional length scale. We apply this generalized formulation to the Friedmann-Lemâıtre-

Robertson-Walker (FRLW) cosmological model and show that our initial assumption reduces the

possibilities on the dynamics, curvature and constituents of the universe to almost a single scenario.

Most of the computations related to this part are standard in the field and they are reproduced for

consistency of reasoning. Finally, we conclude our study with a discussion listing the relevance of

our approach, its possible shortcomings, the main results compared to those prevailing in literature,

as well as the possible extensions of the initial proposal.

II. GRAVITATION WITH A DYNAMICAL SPACETIME

A. Einstein-Hilbert Action of a multi-dimensional spacetime

Consider a general multidimensional pseudo-Riemannian metric γ built upon a n-dimensional

Lorentizian spacetime metric (n)g, with n ≥ 2 spanning integer values only, and infinite number of

Euclidian-like diagonal components such that the distance element ds of a worldline is given by

ds2 = γMNdxMdxN = (n)gµνdxµdxν −
∞∑
i=n

dzidzi . (1)

Here, (n)gµν depends on the coordinates xµ only, with 0 ≤ µ ≤ n− 1 and x0 is the single time-like

coordinate. We will refer to xµ as the active coordinates and zi (i ≥ n) as the passive ones. In other

words, we assume that the physical (observable) distance derives from the renormalised distance

element ds2 +
∑∞

i=n dzidzi, which can be assumed as the projection of the distance element on

the sub-manifold defined by the metric (n)g. We define the action (n)Sg of the gravitational field

associated to the metric γ as a generalisation of Einstein-Hilbert action to any spacetime dimension

(n)Sg = −κ
∫
V

dV
√
|γ| (n)L{(n)g,Φ} , (2)

where κ is a physical constant, (n)L is the Lagrangian that depends explicitly on the metric (n)g

and possible other field(s) Φ and dV is the volume element of the infinite dimensional manifold
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associated to the metric γ. Here, similarly to (n)g, we assume that Φ depends only on the active

coordinates xµ.

To be physically consistent, the definition of the action given by Eq. (2) should be universal

independently of the partition of the hyperspace in active and passive elements. Therefore, κ must

be a single physical constant in the sense that it should not depend on n. Using the metric given

by Eq. (1) and the assumption that (n)L depends on the active coordinates only, one can rewrite

Eq. (2) as

(n)Sg = −κ

[ ∞∏
i=n

∫
dzi

]∫
Vn

dVn
√
|(n)g| (n)L{(n)g,Φ} , (3)

where dVn is the volume element the active part of the manifold associated to the metric (n)g.

Recall that the physical dimensions of the Lagrangian (n)L and the action (n)Sg are [L]−2 and

[M ][L]2[T ]−1, respectively [5]. Therefore, using the constant c3/G (c is the speed of light and G is

Newton’s gravitational constant) whose physical dimensions are [M ][T ]−1, one can write

κ
∞∏
i=n

∫
dzi =

c3`4−n

16πG
, (4)

where ` is a physical length scale which at this stage may depend on n. The constant c3/(16πG)

and the exponent (4−n) guarantee that we recover the well-established case n = 4. Eq. (4) should

be satisfied for all n ≥ 2 with κ is independent on n. The latter constraint is satisfied if and only if

`n−4
∞∏
i=n

∫
dzi =

∞∏
i=4

∫
dzi . (5)

Since the passive components of the metric γ are indistinguishable, Eq. (5) should hold for all

n ≥ 2 and for any random permutation of the coordinates zi. A solution of Eq. (5) that satisfies

these constraints is readily given by ∫
dzi = ` , (6)

for all i ≥ 2, with ` a single physical length scale independent of the actual active dimension n.

The result that the integral over zi is finite imposes that the passive dimensions of γ should be

compact, in the sense that they should have a finite extension `. Consequently, the generalisation

of the action of the gravitational field to any spacetime dimension introduces a single unknown

constant ` characterising the size of the hyperspace in the directions of the passive coordinates of

the general metric γ. It is tempting to identify ` as the Planck length, however our approach does

not invoke any quantum property. Therefore, at this stage, the (order of) magnitude of ` is still

arbitrary.
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B. Spacetime dimension as a dynamical variable

The question of the selection of the current physical spacetime dimension clearly underlies

our reasoning. Up to now, the active spacetime dimension n is an arbitrary variable, as it may be

constant, dynamical or even nonuniform throughout the hyperspace. In the following, we postulate

that the current dimension was reached through a dynamical evolution of spacetime dimension of

an expanding universe. More precisely, we explore the possibility that the active dimension of the

universe uniformly and incrementally evolved to reach the current state n = 4. To this purpose,

we define the gravitational action of the universe as

Sg =
∑
n≥2

(n)Sg = − c3

16πG

∑
n≥2

`4−n
∫
Vn

dVn
√
|(n)g| (n)L{g,Φ} , (7)

where Lagrangian density (n)L is given by

(n)L{g,Φ} =

 (n)RΦ + λ∂µΦ∂µΦ , n = 2

(n)R , n ≥ 3
. (8)

Here (n)R is the Ricci curvature of the metric given by Eq. (1), λ is a dimensionless constant and

Φ is the so-called dilaton field. For n ≥ 3, the Lagrangian is identically given by the curvature

(n)R, generalising Einstein’s gravity to any dimension n ≥ 3. The case n = 2 is particular as the

definition of the action should be modified. Here, we use Jackiw-Teitelboim (JT) gravity model in

which the Lagrangian is minimally modified by introducing an additional dimensionless field Φ and

a parameter λ [9, 10]. The relevance of JT gravity with respect to other models in literature [11, 12]

is beyond the present study. Our objective in the following is to test the assumption of a dimension

of universe that is allowed to evolve within a “classical” cosmological model.

III. APPLICATION TO A STANDARD COSMOLOGICAL MODEL

Our generalization involves a multidimensional universe: a dynamical n-dimensional spacetime

with n ≥ 2, plus infinite number of passive dimensions of typical extension ` each. Furthermore,

we assume a priori a homogeneous, isotropic, positive-curvature expanding universe; the necessity

and relevance of these assumptions to our model will be discussed in the following. Hence, the

generalised FRLW metric is given by

ds2 = Nn(τ)2dτ2 − an(τ)2dΩ2
n−1 −

∞∑
i=n

dzidzi , (9)
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where Nn is the lapse function, an is the scale factor of the n-hypersphere and dΩ2
n−1 = dθ21 +

sin θ21dθ22 + · · · +
(
sin θ21 × · · · × sin θ2n−2

)
dθ2n−1 is the Euclidian metric of unit sphere in (n − 1)

dimensions. We choose the convention that both τ and an have physical dimensions of length and

that Nn is dimensionless. We shall now compute the Ricci curvature (n)R for the metric given by

Eq. (9). Because the passive dimensions i ≥ n are all Euclidian-like, they do not contribute to

(n)R. Therefore, we only need to carry out computations for the active components of the metric

and the result is given by [13, 14]

(n)R = (n− 1)

(
2

Nn(τ)

d

dτ

(
ȧn(τ)

Nn(τ)an(τ)

)
+ n

(
ȧn(τ)

Nn(τ)an(τ)

)2

+
n− 2

an(τ)2

)
, (10)

where the dot denotes differentiation with respect to τ . Since the Lagrangian is independent of

the spatial coordinates, the integration of the spatial parts of Sg in Eq. (7) yields

Sg = −3πc3

4G

∑
n≥2

αn

∫ τ+n

τ−n

dτNn(τ)an(τ)n−1 (n)L{g,Φ} , (11)

where αn is a constant given by

αn =
`4−n

6π(2−n
2 )Γ

(
n
2

) , (12)

and τ±n delimit the time domain of the era with an active dimension n(τ). It is noteworthy that

the integration over all spatial coordinates can be performed solely for a finite closed (positive-

curvature) universe. Indeed, this is the only possible FRLW geometry that allows for a finite action

and thus, for the sub-manifolds to interact at their boundaries.

Now, we consider the action of the source term generating the gravitational field. Here, we

assume that the universe is matter dominated at all stages with an action SM given by

SM = Mc
∑
n≥2

∫ τ+n

τ−n

dτNn(τ) , (13)

where M is the total mass of the universe. The case of purely radiation dominated universe is

reported in the Appendix. Thus the total action S = Sg + SM for the multidimensional universe

under consideration can be written as follow

S =
∑
n≥2

Sn =
3πc3

4G

∑
n≥2

∫ τ+n

τ−n

dτ
(
−αnNn(τ)an(τ)n−1(n)L{g,Φ}+RMNn(τ)

)
, (14)

where the length scale

RM =
4GM

3πc2
, (15)
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is a physical parameter associated with the constituents of the universe. Notice that in the following,

we will use unconventional parameters and scalings which are justified by the assumption of a closed

universe. However, one can easily reinterpret all results using standard cosmological quantities.

Let us explore two possible scenarios for an expanding universe with a dynamical active dimen-

sion. We postulate that the current spacetime dimension n = 4 was reached either by incrementally

decreasing or increasing the active dimension from respectively n = ∞ or n = 2. We will assume

that the incremental decrease (resp. increase) of the active dimension occurs by satisfying conti-

nuity conditions on the metric components such that

an(τ+n ) = an+1(τ
−
n+1) for an increasing n(τ) ,

an(τ+n ) = an−1(τ
−
n−1) for a decreasing n(τ) .

(16)

The transition between eras of active dimension n and n + 1 is supposed to take place while

preserving the isotropy and the homogeneity of the universe at each era. Moreover, the boundary

condition given by Eq. (16) assumes that this mechanism is associated with either a dimensional

collapse (compactification) or a dimensional deployment (unfolding) of a single metric component

while keeping the scale factor continuous. The latter assumption is clearly debatable and its

relevance is discussed in the conclusion.

In addition to Eq. (16), the minimisation of the total action S given by Eq. (14) involves

boundary terms at times τ = τ±n that bound each spacetime era. The cancellation of these

contributions leads to an additional set of continuity conditions between the metric components of

the different manifolds. In the following, we conveniently scale the action in (14) by the coefficient

3πc3

4G . Moreover, as the Lagrangian (n)L{g,Φ} is given by different expressions for n = 2 and n ≥ 3,

we will analyse these two cases separately.

A. Case n ≥ 3

When the active dimension satisfies n ≥ 3, the action given by Eq. (14) can be rewritten as

Sn =

∫ τ+n

τ−n

dτ

(
L0n +

d

dτ
Fn
)
, (17)

where

L0n ≡ −(n− 1)(n− 2)αnan(τ)n−3Nn(τ)

[
1−

(
ȧn(τ)

Nn(τ)

)2
]

+RMNn(τ) , (18a)

Fn ≡ −2(n− 1)αnan(τ)n−2
ȧn(τ)

Nn(τ)
. (18b)
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The minimisation of the action (17) with respect to variations of an(τ) and Nn(τ) yields two

Euler-Lagrange equations and boundary terms at τ = τ±n . The former are given by

∂L0n
∂an

− d

dτ

(
∂L0n
∂ȧn

)
= 0 , (19a)

∂L0n
∂Nn

− d

dτ

(
∂L0n
∂Ṅn

)
= 0 , (19b)

and the latter are given by

[Bn]τ
+
n

τ−n
=

[(
∂Fn
∂an

+
∂L0n
∂ȧn

)
δa− ∂Fn

∂ȧn
δȧn +

(
∂Fn
∂Nn

+
∂L0n
∂Ṅn

)
δNn −

∂Fn
∂Ṅn

δṄn

]τ+n
τ−n

. (20)

Here [Bn]τ
+
n

τ−n
= Bn(τ+n )− Bn(τ−n ). Using (18), we find that Eq. (19a) yields

an(τ)

Nn(τ)

d

dτ

(
ȧn(τ)

Nn(τ)

)
+
n− 3

2

[
1 +

(
ȧn(τ)

Nn(τ)

)2
]

= 0 , (21)

and Eq. (19b) yields

1 +

(
ȧn(τ)

Nn(τ)

)2

= βn

(
an(τ)

RM

)3−n
, (22)

where βn is a dimensionless constant given by

βn ≡
6π(2−n

2 ) Γ
(
n
2

)
(n− 1)(n− 2)

(
`

RM

)n−4
. (23)

Notice that β4 = 1 and that Eq. (21) is redundant as it can be retrieved by differentiating (22)

with respect to τ . Equations (21,22) are exactly the usual ones found by solving Einstein equations

for the FRLW metric and a matter dominated universe. This concordance justifies the writing of

the source term of the Action under the form given by Eq. (13). Indeed, due to the assumption of

isotropy and homogeneity of the expanding universe, the global minimization of the total action S

given by Eq. (14) performed here is equivalent to the usual local minimization leading to Einstein’s

equations.

Furthermore, the boundary terms in Eq. (20) simply give

[Bn]τ
+
n

τ−n
=

[
2(n− 1)αna

n−2
n δ

(
ȧn
Nn

)]τ+n
τ−n

. (24)

Using Eq. (22), which is also satisfied at the boundaries τ±n , we can relate δ (ȧn/Nn) to δan through

2RM

(
ȧn
Nn

)
δ

(
ȧn
Nn

)
= βn(3− n)

(
an
RM

)2−n
δan . (25)
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Hence, substituting Eq. (25) into Eq. (24), we obtain

[Bn]τ
+
n

τ−n
= RM

(n− 3)

(n− 2)

[(
ȧn
Nn

)−1
δan

]τ+n
τ−n

. (26)

Let us define the cosmic time t using the transformation dt = Nn(τ)dτ . This allows us to rewrite

the evolution equation (22) for an(t) as

1 + ȧn(t)2 = βn

(
an(t)

RM

)3−n
, (27)

with the boundary conditions at the transition between two successive states of the universe given

by

[Bn]t
+
n

t−n
= RM

(n− 3)

(n− 2)

[
δan(t)

ȧn(t)

]t+n
t−n

. (28)

Eq. (28) shows that B3 ≡ 0 which suggests that the cases n = 3 and n ≥ 4 should be studied

separately. In the following, we first focus on the latter and then analyse the former.

1. Case n ≥ 4 ℓ
RM

= 10−3

��� ��� ��� ��� �������

����

����

����

����

an(t)
ℓ

(n
−3

)
(n

−2
)

1 · a n(
t)

n = 4
n = 5
n = 6
n = 7
n = 8

FIG. 1. Plot of the boundary term Bn(t)/(RMδan(t)) as function of an(t) for different n ≥ 4 and ` = 10−3RM.

Here, Bn(t) is given by Eq. (28) and the evolution equation (27) for an(t) has been used. This result shows

that for an expanding universe, the continuity conditions Bn(t) = Bn+1(t), combined with the boundary

condition (16), are satisfied if and only if the active dimension n(t) is an increasing function of t. This result

holds for any value of the parameter `/RM. Finally, star points indicate the transition points between two

consecutive eras.

At the transition between two consecutive eras of different active dimensions, the minimisation of

the total action involves boundary terms given by Eq. (28) that should satisfy continuity conditions.
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If we assume that the scale factor an(t) is continuous at the transition between two consecutive

eras, Eq. (16), Fig. 1 shows that for n ≥ 4, an incremental increase of the active dimension is

the only possible solution for an expanding universe. Since the current state of the universe is

characterised by an active dimension n = 4, higher dimensions n > 4 would be accessible in the

future and lower ones n < 4 have been probed in the past. This result allows us to draw a possible

scenario for an expanding universe with a dynamical active dimension. At time t = 0, the universe

started to expand within a spacetime metric of active dimension n(t) = 2 and evolved so that n(t)

increased incrementally to n(t) = 3, then to n(t) = 4 which is the current era and may jump in

the future to higher dimensions n(t) = 5, 6 and so on.

To proceed further in the proposed scenario, we introduce some useful notations. Continuity

conditions on the cosmological time t and the scale factor an(t) at the transition from n to (n+ 1)

are written as

t+n = t−n+1 ≡ t
∗
n+1 > t∗n , (29)

an(t+n ) = an+1(t
−
n+1) ≡ a

∗
n+1 > a∗n , (30)

for all n ≥ 2. Also, we define the origin of time at t−2 ≡ t∗2 = 0 and impose that universe starts its

expansion from a2(t
∗
2) ≡ a∗2 = 0.

Returning to the case n ≥ 4, we define the conformal time coordinate η using dt = an(η)dη.

Then, the solution of Eq. (27) is parametrically given by

an(η) = RM

(√
βn sin

(
(n− 3)

2
η

)) 2
n−3

, (31)

t(η) = t∗n +

∫ η

η−n

an(τ)dτ , (32)

with η−n ≤ η ≤ η+n and

t∗n+1 = t∗n +

∫ η+n

η−n

an(τ)dτ . (33)

The boundaries η±n of eras with an active dimension n are determined using continuity conditions

which can be rewritten as

an(η+n ) = an+1(η
−
n+1) , (34)

(n− 2)

(n− 3)
ȧn(η+n ) =

(n− 1)

(n− 2)
ȧn+1(η

−
n+1) . (35)

Equations (34,35) allow us to determine the η±n for all n ≥ 4 except η−4 which is involved in the

boundary conditions at the transition from n = 3 to n = 4. The numerical computation of these
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constants is straightforward, however it turns out in the following that we will need to compute

only η+4 . It can be shown that for `� RM one finds

η+4 '
3
√

6

8

√
`

RM

. (36)

Now, let us proceed further and study the special case n = 3.

2. Case n = 3

Eq. (27) applied to the case n = 3 yields a constant expansion speed given by

ȧ3(t) =

√
3πRM

2`
− 1 , (37)

where we make the likely satisfied assumption RM > 2`/3π. Then, the scale factor a3(t) is simply

given by

a3(t) = a∗3 +

√
3πRM

2`
− 1 (t− t∗3) , (38)

where t∗3 and a∗3 are unknown constants. As mentioned above, the boundary conditions at the

transition between eras n = 3 and n = 4 are particular. Eq. (28) shows that B3(t) = 0 and thus

the condition B4(t∗4) = 0, or equivalently δȧ4(t
∗
4) = 0, should be satisfied. This means that ȧ4(t

∗
4)

should be fixed a priori. The only available constant speed is provided by ȧ3(t) in the era n = 3.

Therefore, one expects that both the scale factor and the expansion speed are continuous at the

transition from n = 3 to n = 4. these considerations lead to boundary conditions given by

a3(t
∗
4) = a4(t

∗
4) and ȧ3(t

∗
4) = ȧ4(t

∗
4) , (39)

which allows us to find

a∗4 =
2`

3π
, (40)

t∗4 = t∗3 +

(
2`
3π − a

∗
3

)√
3πRM
2` − 1

, (41)

where t∗3 and a∗3 are still unknown constants. In addition, one has

η−4 = 2 sin−1
√

2`

3πRM

. (42)

Comparing Equations (36,42), one shows that η−4 > η+4 for `� RM which would yield t∗5 < t∗4.

This result can be generalised for all `. However, this contradicts the assumption of an expanding
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universe. This result means that once the transition from n(t) = 3 to n(t) = 4 occurs it rules out

the possibility of a transition from n(t) = 4 to n(t) = 5. Therefore within the classical FRLW

cosmological model of an isotropic and homogeneous universe, our model predicts that the active

dimension n = 4 is the upper limit for an expanding universe. It is noteworthy that this result is

independent of the fact that the universe would have started its expansion from n(t = 0) = 3 or

n(t = 0) = 2.

B. Case n = 2

Here, we explore the possibility that at earlier times, the universe was in a state with an active

dimension n(t) = 2. Using the JT gravity model, the total action is explicitly given by

S2 =

∫ τ+2

τ−2

dτ

(
−α2

(
2Φ(τ)

d

dτ

(
ȧ2(τ)

N2(τ)

)
+ λ

a2(τ)

N2(τ)
Φ̇2(τ)

)
+RMN2(τ)

)
. (43)

Here, we extended the hypothesis of isotropy and homogeneity to the dilaton field Φ. The min-

imisation of the action (43) with respect to variations of Φ(τ), a2(τ) and N2(τ) yields three Euler-

Lagrange equations and boundary terms at the extremities of the time domain of the era n(t) = 2.

In terms of the cosmic time t, Euler-Lagrange equations read

ä2(t)− λ
d

dt

(
a2(t)Φ̇(t)

)
= 0 , (44)

2Φ̈(t) + λΦ̇(t)2 = 0 , (45)

2ȧ2(t)Φ̇(t)− λa2(t)Φ̇(t)2 =
RM

α2
, (46)

and the boundary terms are given by

[B2]
t∗3
t∗2

= −2α2

[
λa2Φ̇δΦ + Φδȧ2 − Φ̇δa2

]t∗3
t∗2
. (47)

It is straightforward to show that the only solution of Equations (44-46) that satisfy the boundary

conditions B2(t∗2 = 0) = 0 is given by

a2(t) =
3πλ

2

RMt
2

`2
, (48)

Φ(t) =
2

λ
log

t

t∗3
+ Φ0 , (49)

where Φ0 is a constant. The boundary conditions at the transition from n = 2 to n = 3 read

a2(t
∗
3) = a3(t

∗
3) , ȧ2(t

∗
3) = ȧ3(t

∗
3) , δΦ(t∗3) = 0 . (50)

The justification of the first two equations in (50) is the same as for the boundary conditions at the

transition from n = 3 to n = 4. On the other hand, the boundary condition δΦ(t∗3) = 0 allows us to
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fix the constant Φ0. However, whichever is the physical condition that determines Φ0, it does not

influence the continuity conditions of the scale factor an(t). Finally, using (50) it is straightforward

to show that the constants a∗3 and t∗3 are given by

a∗3 =
`

4λ

(
1− 2`

3πRM

)
, (51)

t∗3 =
`2

3λπRM

√
3πRM

2`
− 1 . (52)

Notice that a transition from n(t) = 2 to n(t) = 3 within the assumption of an expanding universe

is possible only if a∗3 < a∗4. This condition imposes a lower bound on the value of the parameter λ

given by

λ >
3π

8

(
1− 2`

3πRM

)
. (53)

In the following, we will assume that this condition is fulfilled.

IV. DISCUSSION

ℓ
RM

= 10−3

t
RM ( 2ℓ

3πRM )
− 3

2

n(t) = 2 n(t) = 3 n(t) = 4

a n
(t) ℓ

� � � � � ����

���

���

���

���

���

���

��	(a)

ℓ
RM

= 10−3

t0H4(t0) = α ⇒ t0
RM

≃ (1 + 9π
16 ) ( α

3α − 2 ) ( 2ℓ
3πRM )

3
2

t
RM ( 2ℓ

3πRM )
− 3

2

tH
n(t)

� � � � � ����

���

���

���(b)

FIG. 2. Expansion of the universe within a cosmological model that allows for a dynamical spacetime

dimension n(t). Here, ` = 10−3RM and λ = 2. (a) Evolution of the scale factor an(t) during the different

eras 2 ≤ n(t) ≤ 4. The dashed curve is the continuation of a4(t) that would arise from solving the classical

cosmological model with n = 4. (b) The corresponding variation of tHn(t). The dashed curve is the classical

solution with tH4(t) < 2/3.

The results of the present cosmological model are more telling through a graphical representation

of its solution. Fig. 2 shows the evolution of the scale factor an(t) and the Hubble rate Hn(t) from

t = 0 and n(t) = 2 up to a given time t0 in the era n(t) = 4 for which the universe is still

expanding. Notice that when both t, an(t) and Hn(t) are scaled appropriately, the results depend

13



on the dimensionless parameters `/RM and λ. Nevertheless, the behavior of an(t)/` and tHn(t)

shown in Fig. 2 vary little with `/RM as long as `� RM.

Fig. 2a shows that the dynamics of the scale factor a2(t) is characterised by a constant accel-

eration ä2(t) = 3πλRM/`
2. This behavior close to t = 0 within the era n(t) = 2 allows for a weak

inflation scenario. Since the conditions a2(0) = ȧ2(0) = 0 are satisfied, one can extend the solution

to negative times t < 0 and build up a periodic behavior of universe dynamics with a succession of

bounces and crunches. Another important feature of the model concerns the dynamics of the scale

factor within the era n(t) = 4. Except for fixing a∗4 and t∗4, the evolution of a4(t) does not involve

neither the “hidden” length scale ` nor the parameter λ. Indeed a4(t) is exactly the solution of

the classical four-dimensional cosmological model in which the origin of time is shifted and the

expansion started from a finite value a∗4 6= 0.

Fig. 2(b) shows that the Hubble rate in the era n(t) = 4 satisfies the inequality tH4(t) < 2

contrary to the classical case of a purely four-dimensional FRLW cosmological model for which

one has tH4(t) ≤ 2
3 . This result is a direct consequence of the shift in the origin of time due to

the existence of lower spacetime dimension eras. For ` � RM, one can show that the age of the

universe t0 is given by

t0
RM
'
(

1 +
9π

8λ

)(
t0H4(t0)

3t0H4(t0)− 2

)(
2`

3πRM

) 3
2

. (54)

Assuming the standard estimates t0H4(t0) ' 1, RM ' 1029 m, t0 ' 1026 m and taking λ = 2,

Eq. (54) yields ` ' 1026 m ' 10−3RM. Our model is then relevant if ` is a “cosmic” length scale

which is in agreement with our purely “classical” approach. This result is in contrast with the usual

“quantum” origin assumption invoked by compactification theories and yielding to the Planck scale

`P ∼ 10−35 m. Finally, an outcome of our model is that the universe has spent equivalent times in

the two, three, and four dimensional eras so far.

V. CONCLUSION

The central assumption of this work is that the current four-dimensional spacetime is selected by

a dynamical dimension of the metric associated with a homogeneous, isotropic expanding universe.

To exploit this idea, we use the generalised action of a gravitational field to any integer spacetime

dimension and give dimensional arguments for the existence of a physical length scale ` that

characterises the spatial extension, or “thickness”, of “hidden” passive components of the metric.

Then, we solve a generalised FRLW cosmological model in which the active dimension n(t) is
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allowed to jump incrementally. Within this approach and assuming the condition (16) that governs

the jump condition between two eras we show the existence of a single possible scenario of an

increasing spacetime dimension from n(t) = 2 to n(t) = 3 and then to n(t) = 4 which appears as

an upper possible dimension. In the following, we enumerate the main assumptions, outcomes and

drawbacks of our approach.

• The model mainly necessitates the introduction of a single new physical length scale `. To be

physically relevant, it turns out that ` should be a cosmic scale unrelated to the quantum-based

Planck scale. Fortunately, this possibility is not forbidden by any cosmological observation.

• The weak point of our reasoning lies in the choice of the jump condition at the transition

between two eras with different active dimensions. Even it is realistic the assumption (16) obviously

needs more physical and mathematical foundations. However, there is no particular reason to not

impose different boundary conditions induced by other types of constraints related to either metric

components (eg. conservation of area) or source field (eg. equation of state). Such alternative

conditions may modify the results and the conclusions of this study.

• Our model is consistent in the only case of a universe with elliptic geometry; hyperbolic or plane

geometries being discarded. Moreover, it is likely compatible with the description of a purely

matter dominated universe only. Indeed, we can show that purely radiation dominated universe is

not allowed within our approach (see Appendix). However, we did not address the possibility of a

universe constituted of both matter, radiation and dark energy.

• In the early stage of universe expansion, the possible existence of an era with a dimension n(t) = 2

yields a weak inflation characterised by a constant acceleration of the scale factor. Consequently,

a scenario in which universe is periodically bouncing can built upon our results [16]. However, this

behavior is closely related to the specific choice of JT action as a 2D gravity model. Nevertheless,

since ä3(t) = 0 and ä4(t) < 0, one expects that any physically relevant 2D gravity model should

be constrained to exhibit an inflation scenario.

• The existence of an intermediate era with n(t) = 3 imposes n(t) = 4 as an upper spacetime

dimension of the universe, whereas if n(t = 0) = 4 higher dimensions n > 4 are possible. This

strong result means that the current dimension of our physical world is stable, consistently with

Ehrenfest paradigm, if its dimension evolved from n(t = 0) = 2 or n(t = 0) = 3.

• We have shown that the current Hubble rate H4(t0) satisfies the inequality t0H4(t0) < 2. Con-

sequently, one can achieve a universe of age t0 & H−14 (t0) contrary to the classical case of a purely

four-dimensional FRLW cosmological model for which one has t0 ≤ 2
3H
−1
4 (t0).

• If we assume that light manifests only in four-dimensional spacetime, the dynamics of the universe
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at lower dimensions n(t) < 4 would be opaque to conventional cosmological measurements. This

would provide a lower bound on what can be “observed”. However, one could imagine that the

jump in dimension at t = t∗4 could be a trigger for fluctuations that may possibly reveal quantities

associated with eras n(t) < 4 such as the “hidden” length scale `.

Finally, the applicability of our model to a specific expanding universe (closed and matter

dominated) would make it unsuitable for other variants. Nevertheless, we could advantageously

argue that it is because it implicitly implements a selection mechanism of the cosmological model

of the universe. However, some cosmological observations, such as the current acceleration of the

universe, are still missing. Despite the possible shortcomings, we believe that the hypothesis of a

dynamical spacetime dimension of the universe is an attractive proposition worth exploring. For

example, the restriction that the dimension of spacetime only covers integer values, which is the

only possibility within the framework of a ”classical” cosmological approach, could be lifted in a

more elaborate model.

ACKNOWLEDGMENTS

I thank Marcelo Dias, Eytan Katzav and Sergio Rica for the discussions at the beginning of

this work, Arezki Boudaoud and Henning Samtleben for the careful reading of the manuscript.

DATA AVAILABILITY STATEMENT

No Data associated in the manuscript

[1] J. M. Overduin and P. S. Wesson. Kaluza-Klein gravity. Physics Reports, 283(5-6):303–378, 1997.

[2] P. Halpern. How many dimensions does the universe really have? public broadcasting service, 2014.

[3] P. Ehrenfest. In what way does it become manifest in the fundamental laws of physics that space has

three dimensions? In Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW),

volume 20 I, pages 200–209, 1918.

[4] F. R. Tangherlini. Schwarzschild field in n dimensions and the dimensionality of space problem. Il

Nuovo Cimento (1955-1965), 27(3):636–651, 1963.

[5] L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields, volume 2. Butterworth-Heinemann,

1975.

16



[6] K. Kang, H. Fried, and P. Frampton. Fifth workshop on Grand Unification, eds. World Scientific,

Singapore, 1986.

[7] M. J. Duff, B. E. W. Nilsson, and C. N. Pope. Kaluza-Klein supergravity. Physics Reports, 130(1-2):1–

142, 1986.

[8] D. Bailin and A. Love. Supersymmetric gauge field theory and string theory. Taylor & Francis, 1993.

[9] C. Teitelboim. Gravitation and hamiltonian structure in two spacetime dimensions. Physics Letters B,

126(1-2):41–45, 1983.

[10] R. Jackiw. Lower dimensional gravity. Nuclear Physics B, 252:343–356, 1985.

[11] D. Grumiller, W. Kummer, and D. V. Vassilevich. Dilaton gravity in two dimensions. Physics Reports,

369(4):327–430, 2002.

[12] E. Witten. Deformations of JT gravity and phase transitions. arXiv preprint arXiv:2006.03494, 2020.

[13] A. A. Garcia and S. Carlip. n-dimensional generalizations of the Friedmann-Robertson-Walker cos-

mology. Phys. Lett. B, 645(2-3):101–107, 2007.

[14] P. S. Letelier and J. P. M. Pitelli. n-dimensional FLRW quantum cosmology. Phys. Rev. D,

82(10):104046, 2010.

[15] S. M. Carroll. The cosmological constant. Living Reviews in Relativity, 4(1):1–56, 2001.

[16] M. Novello and S. E. P. Bergliaffa. Bouncing cosmologies. Physics Reports, 463(4):127–213, 2008.

Appendix A: Case of radiation dominated universe

If we assume that the source term in the total action originates from a radiation energy, the

corresponding action Sr is given by

Sr = σr

∑
n≥2

∫ τ+n

τ−n

dτ
Nn(τ)

an(τ)
, (A1)

where σr has physical dimensions of an action. The total action S = Sg +Sr can be simplified into

S =
3πc3

4G

∞∑
n≥2

∫ τ+n

τ−n

dτ

(
−αnNn(τ)an(τ)n−1(n)L{g,Φ}+R2

r

Nn(τ)

an(τ)

)
, (A2)

where

Rr =

√
4Gσr

3πc3
, (A3)

is a length scale associated with radiation content of the universe. The minimisation of Eq. (A2)

can be performed following the same steps as for matter dominated universe. For the present case

we show that an incrementally increasing n(t) is still the only possible solution for an expanding

universe with a dynamical spacetime metric. However, contrarily to matter dominated case, we
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find that n(t) increases indefinitely without reaching an upper bound. In the following, we briefly

present the main results.

For n ≥ 3, the minimisation of S as given by Eq. (A2) yields

1 + ȧn(t)2 = β(r)n

(
an(t)

Rr

)2−n
, (A4)

where β
(r)
n is given by Eq. (23) with RM replaced by Rr. Eq. (A4) is exactly the one derived by

solving Einstein equations for the FRLW metric for a radiation dominated universe. In addition,

the jump conditions at the transition between two successive eras are given by

ȧn(t∗n) = ȧn+1(t
∗
n) . (A5)

Notice that ȧn(t) is continuous at the transition for all n ≥ 3 contrarily to the matter dominated

case. Using the conformal time η defined by dt = an(η)dη, the solution of Eq. (A4) yields

an(η) =

[√
βn sin

(
n− 2

2
η

)] 2
n−2

, (A6)

tn(η) = t∗n +

∫ η

η−n

an(τ)dτ , (A7)

with η−n ≤ η ≤ η+n . The boundary conditions at the transition read

an(η+n ) = an+1(η
−
n+1) , (A8)

ȧn(η+n ) = ȧn+1(η
−
n+1) . (A9)

These conditions allow us to determine η±n for all n ≥ 3 except η−3 which should be fixed by the

boundary condition at the transition from n = 2 to n = 3.

For n = 2, we also follow the same steps as in the matter dominated case and find

ä2(t)− λ
d

dt

(
a2(t)Φ̇(t)

)
= 0 , (A10)

2Φ̈(t) + λΦ̇(t)2 = −Rr

α2

1

a2(t)2
, (A11)

2ȧ2(t)Φ̇(t)− λa2(t)Φ̇(t)2 =
Rr

α2

1

a2(t)
, (A12)

while the boundary conditions are still given by Eq. (47). The only possible solution of Eqs. (A10-

A12) are given by a2(t) ∼ t and Φ̇(t) ∼ 1/t. However these behavior do not satisfy the boundary

conditions B2(t = 0) = 0.

On the other hand, if one assumes that universe started its expansion at t = 0 with a metric of

dimension n(t) = 3, inflation scenario does not take place. Because either cases are not conclusive,

we conclude that purely radiation dominated universe is unlikely possible in our approach.
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