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Abstract 

 
Organic carbon fixed through the Calvin Cycle can be diverted towards different metabolic fates 

within and beyond the plastids of photosynthetic eukaryotes. These include export to the 

cytoplasm and mitochondrial respiration; gluconeogenesis of storage compounds; and the anabolic 

synthesis of lipids, amino acids and cofactors via the plastidial pyruvate hub. In plants, pyruvate is 

principally synthesised via the lower half of glycolysis-gluconeogenesis in the cytoplasm, although 

a secondary plastid-targeted pathway in non-photosynthetic tissue directly links glyceraldehyde-3-

phosphate to the pyruvate hub. Here, we characterize a complete plastidial lower half glycolytic-

gluconeogenic pathway in the photosynthetic plastids of diatoms, obligately photosynthetic 

eukaryotic algae that are important contributors to marine primary production. We show that the 

two enzymes required to complete plastidial glycolysis-gluconeogenesis, plastidial Enolase and 

PGAM (bis-phospho-glycerate mutase), originated through recent duplications of mitochondria-

targeted respiratory glycolytic isoforms. Through CRISPR-Cas9 mutagenesis and integrative ‘omic 

analyses in the diatom Phaeodactylum tricornutum, we present evidence that this pathway 
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functions to divert excess plastidial glyceraldehyde-3-phosphate into diverse fates accessed from 

the pyruvate hub, and may potentially also function in the gluconeogenic direction to permit more 

efficient management of cellular carbon. Considering meta-genomic data, we show that this 

pathway is of greater importance in polar and sub-polar oceans, in which diatoms dominate 

primary production; and considering experimental data, we show that this principally relates to 

the elongated photoperiods present at high latitudes. Our data provide insights into the functions 

of a poorly understood yet evolutionarily recurrent plastidial metabolic pathway, and a further 

explanation for the success of diatoms in the contemporary ocean. 

 

Keywords: chloroplast; Tara Oceans; meta-genomics informed phenotyping; post-endosymbiotic 
evolution; plastid-mitochondria crosstalk; PhaeoNet; RNAseq; GC and LC-MS; photo-physiology 
 
Introduction 

 
The photosynthetic assimilation of carbon dioxide into glyceraldehyde-3-phosphate via the Calvin 
Cycle is fundamental to plant and algal biology (1-3). Over 100 billion tonnes of inorganic carbon is 
fixed each year through this pathway, with effectively equal division of activity between terrestrial 
plants and aquatic cyanobacteria and eukaryotic algae, maintaining planetary climate homeostasis 
and supporting the entire Earth ecosystem (3, 4). Following its synthesis, glyceraldehyde-3-
phosphate may be converted into larger carbon sugars (gluconeogenesis), broken down into smaller 
carbon sugars (via glycolysis), or used for the anabolic synthesis of other metabolites. In 
photosynthetic eukaryotes, which possess plastids (or chloroplasts), these metabolic pathways 
typically involve the export of glyceraldehyde-3-phosphate or one of its derivatives to the cytosol, or 
eventually the mitochondria, for subsequent anabolic and respiratory metabolism (5).  
 
Alongside the photosynthetic production of glyceraldehyde-3-phosphate, plastids engage in multiple 
other carbon metabolism activities (Fig. 1A). In plants, these include the synthesis of starch from 
glucose-6-phosphate (6), produced directly in the chloroplasts of leaves via the gluconeogenic 
conversion of glyceraldehyde-3-phosphate into glucose-6-phosphate; or in non-photosynthetic 
plastids (amyloplasts) found in root and other storage tissue via the uptake of cytoplasmic hexose 
phosphates (Fig. 1A) (7, 8). Further metabolites are synthesised in the plastids from shorter-chain 
sugars, including: free fatty acids and lipids from acetyl-coA (9, 10); aromatic amino acids (via the 
shikimate pathway), aspartate and lysine from phospho-enol-pyruvate (PEP); small hydrophic amino 
acids (alanine, leucine, valine) from pyruvate; serine and cysteine from 3-phosphoglycerate (9, 11-
13); chlorophyll (via the tetrapyrrole pathway) from glutamate and carotenoids (via the non-
mevalonate pathway) from pyruvate (14, 15). The diverse plastidial anabolic reactions that utilize 
pyruvate, or its adjacent metabolic precursors and products (PEP, acetyl-coA) are frequently grouped 
together under the umbrella term “pyruvate hub” (16). 
 
The mechanisms through which pyruvate hub intermediates are supplied to the plastid is 
complicated, with plants classically thought to import precursors from the cytoplasm via dedicated 
pyruvate and PEP transporters (Fig. 1A) (17). Alongside this, however, certain plant plastids may 
directly synthesize PEP and then pyruvate from glyceraldehyde-3-phosphate in a complete plastidial 
lower half glycolytic pathway. This occurs via the activities of enzymes associated with the Calvin 
cycle (glyceraldehyde-3-phosphate dehydrogenase and phospho-glycerate kinase) and two others: 
plastid-targeted enolase and phospho-glycerate mutase (henceforth referred to as ptEnolase and 
ptPGAM), which allow the conversion of 1,3-bis-phosphoglycerate from the Calvin cycle to PEP, and 
subsequent incorporation into the pyruvate hub (Fig. 1A). Both ptEnolase and ptPGAM have 
bidirectional functions due to reversible reaction kinetics, which we henceforth refer to globally as 
“glycolysis-gluconeogenesis”, contrasting with “glycolysis” and “gluconeogenesis” to signify 
metabolic activities in one direction only. In plants, ptEnolase and ptPGAM enzymes are 
characteristically associated with non-photosynthetic tissue such as seeds and roots (9, 18-20). 
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Moreover, Arabidopsis mutant lines for ptEnolase and ptPGAM have, respectively, limited and null 
single phenotypes under replete growth conditions (8, 18, 19), and the broader significance of this 
pathway to plant physiology remains unknown. Genes for ptEnolase and ptPGAM are believed to be 
absent from primary red or green algae, the closest relatives of land plants (21, 22). 
 
Diatoms are a eukaryotic algal group, positioned within the stramenopile lineage that is distantly 
related to plants, with plastids originating from the secondary endosymbiosis of a red algal ancestor 
or endosymbiotic derivative thereof, separate from the primary endosymbiotic origin of plant 
plastids (23, 24). Diatoms are extraordinarily successful in the modern ocean, comprising nearly half 
of total algal abundance in the Tara Oceans dataset, and performing about one-fifth of total 
planetary photosynthesis (25, 26). The contributions of diatoms to primary production is even 
greater in specific oceanic regions, including the nutrient-rich and highly productive waters at high 
latitudes (i.e., the Arctic and Antarctic Southern Oceans) (27). Diatoms within polar environments are 
exposed to multiple photo-physiological stressors such as low environmental temperatures, 
limitations of key nutrients including iron, zinc, and cobalamin, and elongated photoperiods ranging 
from continuous illumination in the polar summer to continuous darkness in the winter (24, 26, 28, 
29). Previous genomic and physiological studies of model diatoms, such as the transformable species 
Phaeodactylum tricornutum, have identified multiple strategies that allow diatoms to tolerate photo-
stress, including extensive capacities for non-photochemical quenching pathways displaying different 
features than in plants or in primary red algae (30, 31), and complex strategies for the acquisition, 
storage and recycling of cellular iron (32), which may provide new strategies for metabolic 
engineering of enhanced photosynthetic activity in plants (33). 
 
Comparative genomic analyses have revealed the presence of a different organization of carbon 
metabolism in diatoms to plants (34). These include the storage of sugars in the form of 
chrysolaminarin in cytosolic vacuoles, as opposed to plastidial starch (35), and the probable absence 
of plastidial hexose-phosphate (e.g., glucose-6-phosphate) transporters (17, 36). These features 
seem consistent with the accumulation of photosynthetically acquired carbon in the form of fatty 
acids rather than glucose in the stroma; and the export of three-carbon metabolites to the cytosol 
for the subsequent gluoconeogenesis of storage carbons, alongside plastidial membrane 
galactolipids (eg., MGDG, DGDG) and sulfoquinovosyl-diacylglycerols (SQDG) synthesised, as per in 
plants, from cytoplasmic UDP-galactose and UDP-glucose respectively (35-37). Moreover, the lower 
half of respiratory glycolysis-gluconeogenesis in diatoms (and photosynthetic and non-
photosynthetic relatives of the stramenopiles) occurs in the mitochondria, as opposed to the 
cytosolic pathways found in plants, red and green algae (Fig. 1A) (34, 38).  
 
A second, complete lower half of glycolysis-gluconeogenesis is predicted to occur in the diatom 
plastid, based on plastid-targeted ptEnolase and ptPGAM1A proteins identified in silico in multiple 
species (23, 34, 39, 40). Thus, diatom plastids possess independent and separate pathways for the 
conversion of glyceraldehyde-3-phosphate to pyruvate in plastid and for mitochondrial respiration 
(Fig. 1A). While this metabolic arrangement has also been observed in plants, as described above, it 
is likely to have independently originated in diatoms (e.g., given the absence of reported plastidial 
glycolysis pathways in primary red algae). Moreover, while the plant plastidial glycolysis pathway is 
principally associated with non-photosynthetic tissue, diatoms (as obligately photosynthetic and 
unicellular species) presumably perform photosynthesis and plastidial glycolysis in the same 
organelle (18). Diatom ptEnolase and ptPGAM genes have further been shown to be transcriptionally 
co-regulated with photosynthetic carbon assimilation, suggesting metabolically important functions 
linked to photosynthetic activity (41). Finally, ptPGAM proteins have recently been shown to over-
accumulate under copper starvation, in the open-water diatom Thalassiosira oceanica, suggesting a 
possible connection between its function and photo-stress (40). 
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Here, we use combined bioinformatic profiling of large-scale sequence datasets from P. tricornutum, 
the broader algal tree of life, and the Tara Oceans dataset, alongside integrative functional 
characterization of P. tricornutum CRISPR-CAS9 knockout mutants, to reveal heretofore unknown 
functions of diatom ptEnolase and ptPGAM enzymes in adaptations to high latitudes. Using 
phylogenetic techniques, we demonstrate that the genes encoding these enzymes arise from a 
recent duplication and retargeting of the mitochondria-targeted and respiratory isoform in diatoms 
and their closest relatives within the stramenopiles. Using meta-genomic data from Tara Oceans, we 
further show these genes are most highly expressed in high latitudes. Considering the growth and 
physiological phenotypes of knockout lines lacking plastidial glycolysis-gluconeogenesis proteins, we 
show that this pathway has augmented importance in cells grown under continuous illumination as 
opposed to light-dark cycling, and present evidence that this may be due to diminished capacities to 
convert glyceraldehyde-3-phosphate assimilated by the Calvin cycle into plastidial amino acids and 
lipid pools, which may be compensated by a redirection of flux through mitochondrial glycolysis and 
mitochondrial: plastid amino acid shuttling. We also show that the growth phenotype of diatom 
plastid glycolysis mutants is counterbalanced by low temperatures, which may relate to enhanced 
mitochondrial respiration and impeded gluconeogenesis of plastidial phospho-enol-pyruvate. Overall, 
our data position plastidial glycolysis-gluconeogenesis as a key adaptive modulator of plastidial 
metabolic poise in diatoms, with particular importance to the light stresses associated with high 
latitudes, and reveals a new candidate pathway for the optimization of photosynthetic productivity 
in plants. 
 
Materials and Methods 

 

Culture conditions 

 

Phaeodactylum tricornutum strain Pt1.86 was grown in enhanced seawater (ESAW) medium 
supplemented with vitamins, but without silicon or added antibiotics, in 50 μE m-2 s-1 white light, as 
measured with a photofluorometer, under one of four light, temperature and shaking regimes: either 
19°C with 12h light: 12 dark cycling, shaken at 100 rpm (for general molecular work and 
transformation); 19°C with 12h light: 12 dark cycling without shaking (« LD » growth conditions and 
physiological analysis); 19°C with 24h continuous light and without shaking (« CL » growth conditions 
and physiological analysis); or 8°C with 24h continuous light and without shaking (« 8C » growth 
conditions and physiological analysis). Mutant Phaeodactylum lines were maintained on ½ ESAW 1% 
agarose plates, supplemented by 100μg ml-1 each ampicillin and streptomycin, and 30μg ml-1 

chloramphenicol, and either 100μg ml-1 zeocin (single transformants), or 100μg ml-1 zeocin and 4μg 
ml-1 blasticidin (complementation lines), as previously described (42, 43). All functional analyses of 
transformant lines were performed on transformant lines grown in the absence of antibiotic 
selection, to avoid secondary effects of antibiotics on growth or physiology. 
 

Phylogenetic analysis 

 

The peptide sequences of all genes with PFAM annotations coherent with either Enolase (PF00113) 
or Phospho-glycerate mutase (PGAM; taking histidine phosphatase, PF00300, as a proxy) encoded in 
the version 3 annotation of the P. tricornutum genome were extracted, and searched against a 
library of 289 complete cryptomonad, haptophyte and stramenopile genomes and transcriptomes by 
reciprocal BLASTp/ BLASTp best-hit search with threshold e-value 10-05, as previously described (44-
46). Sequences that retrieved a reciprocal best hit against a Phaeodactylum enolase or PGAM gene 
were trimmed to the first encoded methionine, and then screened through three targeting 
predictors: ASAFind v 2.0, used with SignalP v 3.0 (47, 48), HECTAR, integrated into the Roscoff 
Galaxy platform, under the default settings (49, 50), and MitoFates, run with threshold value 0.35 
(23, 51). Sequences that retrieved a plastid, mitochondrial or dual-targeting prediction (defined as 
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plastid-targeted with at least one programme, and mitochondria-targeted with at least one another) 
were annotated as such and retained.  
 
A parallel set of reciprocal BLAST searches, with threshold e-value 10-05, were performed against 85 
prokaryotic and eukaryotic genomes sampled with taxonomic balance from across the remainder of 
the tree of life (23), and were pooled with the organelle-targeted cryptomonad, haptophyte and 
stramenopile proteins identified above. The pooled set of sequences were aligned first with MAFFT v 
7.0 under the --auto setting, followed by the in-built alignment programme in GeneIOUS v 10.0.9, 
under default settings (52, 53), and incomplete and poorly aligned sequences were manually 
removed. The curated alignment was trimmed with trimal with setting –gt 0.5, and phylogenetic 
analyses were performed with MrBayes v 3.2 and RAxML v 8, integrated into the CIPRES webserver 
(54-56). MrBayes trees were run for 10,000,000 generations with the GTR, Jones and WAG 
substitution matrices, 4 starting chains and sumt and sump burnin fractions set to -0.5; all cold chains 
were confirmed to have reached a pvalue plateau below 0.1 prior to the start of the consensus 
building. RAxML trees were run with GTR, JTT and WAG substitution matrices, 350-400 ML 
generations, and automatic bootstopping. Alignments and individual tree topologies are provided in 
Table S1. 
 

Co-regulation analysis 

 

Transcriptional co-regulation of P. tricornutum genes to ptEnolase and ptPGAM1A were assessed 
using a composite dataset consisting of two meta-studies of Phaeodactylum gene expression: 
DiatomPortal, based on microarray data generated in particular from cultures exposed to different 
light regimes and organic and inorganic stresses (57); and PhaeoNet, constructed from RNAseq data 
generated from N, P and Fe-starved cultures (41, 58-60). 
 
To reconcile both datasets, which are based on the versions 1 and 3 annotations of the P. 

tricornutum genome, respectively, each DiatomPortal version 1 gene number was remapped to a 
PhaeoNet version 3 gene number by reciprocal BLASTp/ BLASTp best hit search (45). Version 3 genes 
that were retrieved as reciprocal BLAST best hits by >1 version 1 gene (typically resulting from 
merged gene annotations between the two genome versions) were assigned the median of all 
matching DiatomPortal relative fold expression changes. The raw normalized expression abundances 
(PhaeoNet) and fold-expression changes (DiatomPortal) for each constituent library used within each 
study were converted into percentile rank values to normalize them, with 100 equating to the most 
highly expressed or upregulated gene, and 0 to the most lowly expressed or downregulated gene. 
Genes lacking expression data for a particular study were marked N/A. Finally, correlation 
calculations of ranked gene expression (i.e., Spearman correlations) were performed for each gene in 
the P. tricornutum version 3 genome against ptEnolase (Phatr3_J41515), ptPGAM1A 
(Phatr3_J17086), and ptPGAM2 (Phatr3_J37201). Finally, the correlation coefficients were identified 
for proteins implicated in core plastid and mitochondrial metabolism pathways as per (41), with the 
highest (strongest positive) value taken in the case of proteins with multiple homologues. Full data 
pertaining to these outputs are provided in Table S2, sheets 1-3. 
 

Nucleic acid isolation 

 

For DNA isolation, 150 ml early stationary phase P. tricornutum culture, grown under 19°C with 12h 
light: 12h dark cycling, and shaken at 100 rpm as described above, was centrifuged at 4000 rpm for 
10 minutes. The resulting cell pellet was washed in sterile growth medium three times, and 
incubated for four hours in 5 ml TEN buffer (0.1M NaCl, 0.01M Tris pH8, 0.001M EDTA) 
supplemented with 2% volume: volume SDS, and 1U μl-1 proteinase K (Fisher Scientific). Lysed cell 
fractions were used for phenol: chloroform precipitation of cellular DNA, as previously described 
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(61), prior to dissolution in 50 μl nuclease-free water, and quantification with a nanodrop 
photospectrometer. 
 
For RNA isolations, 105 stationary phase P. tricornutum cells, as calculated with cell densities counted 
from a Malassez haemocytometer were inoculated in a 250 ml conical Erlenmeyer containing 80 ml 
ESAW without antibiotics. Cell cultures were harvested in late exponential phase, at counted 
densities of between 1 and 2 1-2 x 106 cells ml-1. CL cultures were typically harvested eight days post-
inoculation, LD cultures nine days post-inoculation, and 8C culture seventeen days post-inoculation, 
in agreement with growth curve dynamics. Cells were harvested at the mid-point of the light-
induction phase of the LD growth condition (15:00 CET), per previous gene expression studies in 
Phaeodactylum (58), and per the sampling parameters used within Tara Oceans (62). Cell cultures 
were harvested at densities that were insufficient to provoke N or P limitation of the ESAW medium 
(63). 
 
RNA was isolated from 108 cells from each culture, pelleted and washed as before, and snap-frozen in 
liquid nitrogen. Frozen cell suspensions were re-equilibrated with 1 ml Trizol reagent (Invivogen) and 
200 μl chloroform (Honeywell), prior to phenol: chloroform extraction as previously described (23). 
An additional separation step was performed in 500 μl pure chloroform to remove any residual 
phenol traces from the aqueous phase, and purified nucleic acids were precipitated overnight in 500 
μl isopropanol at -20°C. Precipitated RNA samples were collected by centrifugation at 10,000 rpm for 
30 minutes, washed with 900 μl 100% ethanol, and resupended in 50 μl RNAse-free water (Qiagen). 
 
2 μg RNA, as quantified with a nanodrop photospectrometer, was subsequently treated with 2U 
RNAse-free DNAse (Promega) for 30 minutes at 37°C, with the reaction arrested with 1 μl 0.5M 
EDTA. The digested RNA sample was reprecipitated in isopropanol for one hour at -20°C, washed in 
ethanol, and resuspended in 20 μl RNAse-free water. Purified RNA sample concentrations were 
quantified with a nanodrop spectrometer, and a 3 μl aliquot was migrated on an RNAse-free 1% 
agarose gel stained with 0.2 μg ml-1 ethidium bromide to confirm RNA integrity prior to all 
downstream applications. 
 

GFP localization 

 

Full length mRNA sequences of ptEnolase, ptPGAM1A and ptPGAM2 were amplified from P. 

tricornutum RNA libraries grown under 19°C, light: dark cycling and replete nutrient conditions as 
described above, by reverse transcription with RT Maxima First Strand synthesis kit (Thermo Fisher) 
from 200 ng template RNA, following the manufacturer’s instructions; and gene-specific primers as 
shown in Table S2, sheet 4. PCRs were performed using Pfu high-fidelity DNA polymerase, in 50 μl 
total reaction volume, including 1 μl cDNA template and 2 μl each specific primer, following the 
manufacturer’s protocol. Typical PCR conditions were: 10 minutes at 95°C; followed by 35 cycles of 
45 seconds at 95°C, 45 seconds at 55°C, and 2 minutes at 72°C; followed by a terminal elongation 
phase of 5 minutes at 72°C. Amplified products were migrated on a 1% agarose gel stained with 
ethidium bromide, cut out, and purified using a MinElute PCR purification kit (Qiagen). 
 
Purified products were cloned into linearised versions of pPhat vectors containing eGFP and a zeocin 
resistance gene (SHBLE). These products were amplified using an analogous PCR protocol as above, 
with 1 ng purified plasmid DNA, and outward-directed PCR primers extending from the start of the 
fluorescence protein gene sequence to the end of the FcpA promoter region (Table S2, sheet 4); cut, 
purified, and treated with 1U FastDigest DpnI (Thermo Fisher) to remove any residual plasmid DNA. 
The gene-specific primers for each ptEnolase and ptPGAM construct were modified with 15 5’ 
nucleotides complementary to the terminal regions of the FcpA and GFP sequences, allowing cloning 
of complete vector sequences using a HiFi DNA assembly kit (NEB), following the manufacturer’s 
instructions. Assembled vectors were transformed into chemically competent Top10 E. coli, and 
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positive clones (as identified by Sanger sequencing of positive colony PCR products) were used to 
generate purified plasmid DNA with a Plasmid Midi Kit (Qiagen). 
 
Subcellular localization constructs were transformed into wild-type P. tricornutum by biolistic 
transformation, as previously described (42). 5 x 107 mid-exponential phase cells were plated on a ½ 
ESAW- 1% agarose plate, and left to recover for two days, prior to bombardment with 10 mg 1 μm 
tungsten beads treated with 5 μg purified plasmid DNA in a Helios gene gun (BioRad) at 1,550 PSI. 
Cells were left to recover for two days, prior to replating on ½ ESAW- 1% agarose plates 
supplemented with 100 μg ml-1 ampicillin, 100 μg ml-1 streptomycin, 30 μg ml-1 chloramphenicol and 
100 μg ml-1 zeocin. Plates post-bombardment and for the first two days post-selection were 
maintained in a low light environment (10 μE m-2 s-1) prior to return to standard growth conditions. 
 
Positive transformant colonies, as verified by Western Blot with a mouse anti-GFP antibody 
(Promega), were visualised using a SP8 inverted spinning disc confocal microscopy (Leica) under 400 
x magnification, with excitation wavelength 485 nm and emission wavelength filters 500-550 nm.  
 
Tara Oceans Analysis 

 

The complete Tara Oceans and Tara Oceans Polar Circle libraries of meta-genome and meta-
transcriptome diversity (64, 65) were searched for orthologues of diatom ptEnolase, ptPGAM1A and 
ptPGAM2 sequences via a phylogenetic reconciliation approach. First, a HMM (hidden Markov 
model) was constructed for all diatom plastidial-targeted sequences in the untrimmed alignments for 
each phylogeny, as detailed above, and searched into the complete Tara Oceans catalog by hmmer 
(http://hmmer.org) with evalue 10-10. Matching sequences were extracted, and searched by BLASTp 
against both the complete copy of the P. tricornutum genome (45) and the complete untrimmed 
alignment, and sequences that retrieved a best hit against (i) an Enolase or PGAM sequence and (ii) a 
diatom plastidial-targeted isoform in each search respectively were retained. Retained sequences 
were combined with the untrimmed alignment of each gene and realigned using the same MAFFT, 
GeneIOUS and trimal pipeline as defined above. Curated alignments were finally screened by RAxML 
tree with the JTT substitution matrix, as above, and the monophyletic clade of Tara Oceans 
sequences and diatom plastid-targeted proteins, defined as all sequences that position closer on a 
midpoint rooting of the tree to diatom plastid-targeted proteins than to any non-diatom or non-
plastid targeted sequences, was extracted for further analyses. 
 
Relative abundances were calculated for the total occurrence of all phylogenetically verified diatom 
plastid-targeted proteins in both meta-transcriptome and meta-genome data. Relative expression 
levels of each gene were estimated by reconciling the calculated meta-transcriptome abundances 
either to total diatom meta-transcriptome sequences using the formula 10^6(ΣmetaT/ ΣDiatomT), i.e. 
expressed per million reconciled diatom reads, or to calculated meta-genome abundances, using the 
formula and log10 (1+ ΣmetaT) - log10 (1+ ΣmetaG), to allow inclusion of null values. Pearson correlations 
were calculated between relative abundances and all quantitative measured environmental variables 
associated with Tara Oceans samples as stored within the PANGAEA repository (62). To assess the 
possibility of non-linear correlations, ranked differences (i.e., Spearman correlation) were also tested 
for each variable with broadly consistent results. All calculations were repeated independently for 
each depth (surface, or deep chlorophyll maximum/ DCM) and size fraction (0.8- 2000 μm, 0.8- 5 μm, 
3/5- 20 μm, 20- 180 μm, and 180- 2000 μm), with 3 and 5 μm filters viewed as equivalent to allow 
reconciliation of Arctic and non-Arctic data, respectively. All Tara Oceans meta-gene assignations, 
alongside individual and total abundance calculations are provided in Table S3. 
 
CRISPR mutagenesis  
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CRISPR target sequences for ptEnolase and ptPGAM1A genes were identified using PhytoCRISP-Ex 
(66), privileging positions in the N-terminal region of the conserved domain to minimize the 
probability of enzyme functionality in knockout lines, and uniqueness across the entire P. 

tricornutum genome within the final 11 bp of the target sequence to minimize off-target effects. 
Primers were designed for each target sequence, and introduced into a pu6:SG1 CRISPR target 
sequence plasmid by PCR, as previously described (67). 2 μg insertion-positive pu6:SG1 plasmids, as 
confirmed by Sanger sequencing and purified using a Qiagen Midiprep kit were co-introduced into 
wild-type P. tricornutum cells by bombardment along with 2 μg HA-tagged Cas9 and pPhat vectors, 
as described above. Mutant colonies were genotyped using a DNA lysis buffer containing 0.14M 
NaCl, 5mM KCl, 10mM Tris-HCl pH 7.5, 1% v/v NP40 to generate crude DNA extracts, followed by PCR 
amplification across the CRISPR target sequences with DreamTaq PCR reagent (Promega) and Sanger 
sequencing (Eurofins genomics). Mixed mutant: wild-type colonies were segregated via repeated 
dilution on ESAW: zeocin plates until only homozygous mutant genotypes were detected (59, 67). 
Empty vector control lines were generated using the same protocol, except with only HA-Cas9 and 
pPhat plasmids, cotransformed without a CRISPR target sequence. Primers used for each 
mutagenesis are provided in Table S2, sheet 4; tabulated cleaned knockout mutants and their 
associated genotypes are shown in Table S4, sheet 1; and effective expression levels of mutated 
gene copies as assessed by qRT-PCR are shown in Table S4, sheet 2. Mutant colony genotypes were 
periodically confirmed (approx. once per month) by PCR and Sanger sequencing throughout the 
duration of all subsequent experiments, and found to remain stable. 
 
Complementation of knockout lines 

 
Knockout lines were complemented with pPhat:GFP vectors carrying overexpressing copies (under an 
FcpA promoter) of ptEnolase and ptPGAM1A synthetic constructs with all CRISPR target sequences 
replaced with silent mutations (Eurofins). Vectors were identical to those previously used for 
localization, but with a blasticidin S-deaminase gene in lieu of SHBLE (68) introduced by NEB Hi-Fi kit 
as before. Complementation constructs were transformed via bombardment, and cells were replated 
½ ESAW- 1% agarose plates supplemented with 100 μg ml-1 ampicillin, 100 μg ml-1 streptomycin, 30 
μg ml-1 chloramphenicol, 100 μg ml-1 zeocin, 4 μg ml-1 blasticidin, and left to recover at low light for 
two days followed by standard growth conditions until the appearance of colonies.  
 
For each complementation, three ptEnolase and ptPGAM1A knockout lines (including at least one for 
each CRISPR target sequence) were complemented both with the conjugate complementation 
construct, and an empty blasticidin resistance vector as a placebo; and two empty vector lines were 
further complemented with both ptEnolase and ptPGAM1A overexpressor constructs, plus an empty 
blasticidin resistance vector, to exclude possible effects from ectopic overexpression of each gene on 
cell physiology. A total of 47 colonies, with a minimum of 6 colonies for each knockout: 
complementation combination, including lines complemented from at least two distinct primary 
knockout mutant genotypes, were selected for subsequent study (Table S4, sheet 7). The retention 
of the primary knockout mutant genotype in each complemented line was verified by colony PCR and 
sequencing as above, and the overexpression and correct localization of the complementing protein 
sequence (i.e., to the chloroplast for ptEnolase:GFP and ptPGAM1:GFP, or the cytoplasm for ectopic 
GFP) was verified by western blot with an anti-GFP antibody (Promega) and a previously published 
protocol (69), and confocal microscopy.  
 

Growth rate measurements 

 

A starting density of 104 ml-1 stationary phase P. tricornutum cells of a given culture line, as verified 
with a Malassez haemocytometer, were inoculated into a 15 ml volume antibiotic-free ESAW within 
a sterile, ventilated cap plastic culture flask (Celltreat) and grown under LD, CL, or 8C culture 
conditions as described. Cell densities were recorded: every day from one day post-inoculation (CL); 
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every day from two days post-inoculation (LD); or every two days from five days post-inoculation (8C) 
at the mid-point of the LD light induction phase, as defined above, using a counting CyFlow Cube 8 
cytometer (ParTec).  
 
Typically, 15 μl cell culture, passed at 0.5 μl s-1, were used for each measurement, with three 
technical replicates performed for each culture of which the first (enriched in non-cellular particles) 
was excluded from downstream calculations. Cytometer particle counts were correlated to actual 
cell densities using a calibration curve realised from haemocytometer counted densities of wild-type 
cell culture, and cultures with observed densites > 2 x 106 cells ml-1 were diluted ten-fold in blank 
growth media to avoid saturation of the cytometer.  
 
Cell densities were measured daily from one day post-inoculation (19C conditions) and every second 
day from five days post-inoculation (8C CL condition only), until cell lines were confirmed to have 
exited log phase (i.e., reached a stable stationary phase plateau). Primary knockout mutant growth 
curves were repeated a minimum of six times (three biological replicates per-inoculation, with two 
independent repetitions) for each independent mutant line studied, providing a minimum of 24 
measurements (i.e., four distinct mutant lines) per each genotype studied (ptEnolase knockout, 
ptPGAM1A knockout and empty vector control lines).  
 
To avoid artifacts based on the proximity of the seed cell culture to exponential phase at the time of 
inoculation (which may impact on lag phase length) or the relative diameter of each cell in culture 
(which may impact on carrying capacity), cell growth rates were measured exclusively from the log-
phase relative division rate. This was calculated via considering Δlog2 (cell density) / Δlog2 (time) for 
the time period over which a linear correlation (r> 0.99) was observed between both values, typically 
equating to densities between 105 and 2x 106 cells ml-1, and covering a minimum of three and in most 
cases five successive measurements of each individual growth curve. Three exemplar growth curve 
outputs are provided in Table S4, sheets 3-5; and an overview of relative growth rates expressed as a 
function of mean empty vector control growth rates are provided in Table S4, sheet 6.  
 
Complementation growth curves were repeated with at least two independent repetitions for each 
cell line, with five timepoints taken to project growth rates, and therefore a minimum of sixty 
independent measurements for each mutant: complementation genotype under each growth 
condition, with the average of the two fastest growth rates of each culture calculated as estimates 
for the growth rate. A heatmap of all estimated complementation line growth rates is provided in 
Table S4, sheet 7.  
 
Photophysiology 

 

Cultures for photophysiological analysis were grown in 10ml ventilated plastic flasks, without 
shaking, under 19C CL and 19C LD conditions as described above. Cultures were grown from a 
starting inoculum of 105 cells ml-1 as measured with a Malassez haemocytometer, and refreshed into 
fresh media when they had reached a measured density of 106 cells ml-1 at the initial starting 
concentration of 105 cells ml-1 to allow a prolonged adaptation to each photophysiological condition 
under a continuous exponential phase. Cells from refreshed culture lines were harvested in 
exponential phase (between 1 and 3 × 106 cells ml-1, as verified by Fv/Fm measurements > 0.6 across 
all measured lines (Table S4, sheet 8). Cell cultures were concentrated to between 2 and 5 × 107 cells 
ml-1 before photophysiology measurements. Parameters measured with the miniFIRe fluorometer (as 
defined below) were also quantified for cultures grown under 8C CL conditions, as the measurements 
were sufficiently rapid to allow the culture to be maintained at growth temperatures (70). 
 
Steady-state light curves (SSLC) were conducted with a fluorescence CCD camera recorder 
(SpeedZen, JBeamBio, France). Samples were exposed to 7 increasing light steps of 3 min each (5 min 
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for the first light step), from 35 to 750 µmol photons m-2 s-1 (green actinic light, 532 nm). The 
experiment was repeated with 2-4 independent replicates for all 19 strains (n ≥ 6 per construct under 
each growth condition). Minimum (F0) and maximum (FM) fluorescence were measured in dark-
adapted (at least 1 min) samples, before and at the end of a saturating pulse of light (532 nm, 5000 
µmol photons m-2 s-1) and the maximum quantum yield of PSII in the dark was calculated as FV/FM = 
(FM -F0)/FM. Every minute of light exposure, steady-state fluorescence (FS) and maximum fluorescence 
under light (FM

’) were measured.  
 
PSII quantum yield (φPSII) and non-photochemical quenching (NPQ) were calculated on the last time 
point of each light step as φPSII = (FM’-Fs)/FM’ and NPQ = FM/FM’-1. The whole NPQ vs E curve was 
fitted as NPQ = NPQM×E

n/(E50NPQn+E
n), where NPQM is the maximal NPQ value, E50NPQ is the half- 

saturation intensity for NPQ and n is the sigmoidicity coefficient (71). The PSII functional absorption 
cross-section, σPSII, was calculated from the fluorescence induction upon a single turnover flash of 
blue light (100 µs, 455 nm, 60 nm bandwidth). The induction curve was measured on 20 min dark-
acclimated samples before centrifugation (average of 2-4 independent replicates) with a 
Fluorescence Induction and Relaxation (miniFIRe) fluorometer (70). The relative electron transport 
(rETR) was then calculated as rETR = φPSII.σPSII/(FV/FM).E and was called relative because the light 
qualities for φPSII and σPSII were different. The rETR vs E curve was fitted as rETR = rETRM.(1-exp(-
α.E/rETRM)) where rETRM is the maximum rETR and α is the light-limited slope of rETR vs E. Only rETR 
values from 0 to 450 µmol photons m-2 were used for the fit because the values from 600 and 750 
µmol photons m-2 were too noisy. The light saturation parameter EK was calculated as rETRM/α and 
the fitted values of the parameters were used to estimate the rETR under the growth light intensity 
of 60 µmol photons m-2 s-1 as E60rETR = rETRM.(1-exp(-α.60/rETRM)) (30). Measured photo-
physiological values are tabulated in Table S4, sheets 8-11. 
 

Gene expression analysis 

 
RNA sequencing libraries were prepared from 200 ng DNAse-treated RNA for each mutant line and 
treatment condition, with a minimum of three replicates per sample. RNA sequencing was 
performed by Fasteris (Plan-les-Ouates, Switzerland). After initial quality control checks, stranded 
Illumina mRNA libraries were prepared with a Novaseq V1.5 kit and sequenced with an SP-flow cell 
with 2x 100 bp over 200 cycles, yielding approximately 130-160 Gb sequence data with ≥85% of 
bases higher than Q30 per sample. 
 
Output fastQ files were mapped using Nextflow’s RNA sequencing assembly pipeline https://nf-
co.re/rnaseq/usage, and gff3 annotations of the P. tricornutum version 3 genome (72). Total mapped 
read counts were then compared between all biological and technical replicates for (i) each mutant 
line sequenced, (ii) each genotype (ptEnolase knockout, ptPGAM1A knockout, control), and (iii) each 
treatment condition performed (LD, CL, 8C) by principal component analysis (PCA) using the R 
package factoextra, with highly variant libraries removed (73). The final dataset included 63 RNAseq 
libraries, including five ptEnolase and five ptPGAM1A knockout lines and four empty vector controls, 
and a minimum of four RNA libraries prepared from at least two genetically distinct mutant 
constructs for each genotype (ptEnolase, ptPGAM1A and control) considered (Table S5, sheets 1-2)., 
Differentially expressed genes (DEGs) were then calculated between each genotype for each 
treatment condition using DESeq2 with cutoff fold-change 2 and P-value 0.05 (74) (Table S5, sheets 
2-3).  
 
The mean transcript abundances of DEGs in knockout compared to control lines were first assessed 
in normalised (41) RNAseq data of N (59) and P-limited (58) Phaeodactylum cell lines under two and 
nine time-points respectively (Table S5, sheet 4). No significant differences were found between 
DEGs and other genes in the P. tricornutum genome (one-way ANOVA, P > 0.05; Table S5, sheet 5), 
confirming that the RNAseq samples were not generated from N- or P-limited cultures. Next, 
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functional enrichments in DEGs from previously tabulated values for the entire P. tricornutum 
genome (Table S5, sheets 6-10) (41, 75). Tested traits included: PFAM and KEGG from the P. 

tricornutum version 3 genome annotation (45); GO, annotated using combined BLASTkoala and 
GHOSTkoala annotations (76); WGCNA coregulated gene module, as defined within the PhaeoNet 
meta-analysis of P. tricornutum RNAseq co-expression (41); and localization, predicted in silico using 
ASAFind v 1.0 with SignalP v 3.0 (47, 48), HECTAR under default conditions (49), and MitoFates with 
threshold value 0.35 (51). Functional enrichments were tested by two-tailed chi-square (P < 0.05) of 
a differentially expressed gene occurring in either one (ptEnolase v control; ptPGAM1A v control) 
knockout-versus-control line tests, or in both tests realised under each physiological condition. 
Finally, the distribution of DEGs across Phaeodactylum core plastid and mitochondrial metabolism 
pathways were mapped onto a previously defined proteomic model of each organelle (41); with the 
strongest DEG enrichment taken in the case of enzymes with multiple homologues (Table S5, sheet 
11). 
 
Quantitative RT-PCR (qRT-PCR) validations were performed using cDNA synthesised from 5 ng 
DNase-treated RNA (per qRT-PCR reaction) and a RT Maxima First Strand synthesis kit (Thermo 
Fisher), following the manufacturer’s instruction; using a 384-well Lightcycler (Roche) and Takyon™ 
No ROX SYBR 2X MasterMix (Eurogentec), following the manufacturers’ protocols. Typical 
amplification conditions were: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 30 
seconds at 55°C, and 30 seconds at 72°C. Primer pairs for qRT-PCR amplifications were designed 
using NCBI Primer-BLAST (77), privileging unique amplification targets within the genomic sequence, 
an amplicon size of 100 to 150 base pairs, primer positions at different regions of the gene studied, 
and a 3’ terminal G or C on each primer. Primer efficiencies were tested by qPCR with serial dilutions 
of P. tricornutum gDNA, with only primer pairs that yielded a Cp increment of between 0.9 and 1.1 
per half dilution of DNA retained for qRT-PCR analysis. qRT-PCRs were performed a minimum of 
three times for each amplicon: sample pair, with at least three RT- equivalents performed to subtract 
residual genomic DNA from each Cp value obtained, and using two housekeeping genes (Ribosomal 
protein S1, RPS; and TATA binding protein, TBP) previously shown to have conditionally invariant 
expression patterns in P. tricornutum used as quantification references (78). Tabulated qRT-PCR 
outputs are shown in Table S5, sheet 12. 
 
Metabolite analysis 

 

Culture volumes containing 1.5 x 108 exponential P. tricornutum cells (counted density 1-2 x 106 cells 
ml-1), inoculated and grown in antibiotic-free ESAW under LD, CL or 8C conditions and at the time 
points described above for RNA library preparation, were calculated using a Malassez cytometer and 
harvested by centrifugation as described above. Cell pellets were washed three times in sterile 
growth medium, then transferred to a pre-weighed, double-pierced and double-autoclaved 1.5 ml 
Eppendorf tube for lyophilisation. Cell pellet masses were recorded for each sample, and samples 
were snap-frozen in liquid nitrogen and stored at -80°C for subsequent analysis. 
 
Metabolite profiling was carried out by gas chromatography–mass spectrometry (ChromaTOF 
software, Pegasus driver 1.61; LECO) as described previously (79). The chromatograms and mass 
spectra were evaluated using TagFinder software (80). Metabolite identification was manually 
checked by the mass spectral and retention index collection of the Golm Metabolome Database (81). 
Peak heights of the mass fragments were normalized successively on the basis of the fresh weight of 
the sample, the added amount of an internal standard (ribitol) and values obtained for loading 
column controls obtained from the same experiment. Normalised metabolite abundances were 
subsequently screened by PCA, as per the RNAseq analysis above, and outliers and biologically non-
representative samples were removed. The final datasets consist of 139 libraries (metabolite GC-MS), 
55 libraries (lipid GC-MS) and 49 libraries (lipid LC-MS), with a minimum of three RNA libraries 
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prepared from at least two genetically distinct mutant constructs for each genotype considered 
(Table S6, sheet 1). 
 
 Glycerolipid analysis 

 
Glycerolipids were extracted from 1.5 x 108 exponential P. tricornutum cells (counted density 1-2 x 
106 cells ml-1), with cell pellets prepared and freeze-dried as per the metabolite analysis above. 
Pellets were suspended in 4 mL of boiling ethanol for 5 minutes to prevent lipid degradation and 
lipids were extracted by addition of 2 mL methanol and 8 mL chloroform at room temperature (82). 
The mixture was then saturated with argon and stirred for 1 hour at room temperature. After 
filtration through glass wool, cell remains were rinsed with 3 mL chloroform/methanol 2:1, v/v and 5 
mL of NaCl 1% was added to the filtrate to initiate biphase formation. The chloroform phase was 
dried under argon and stored at -20°C. The lipid extract was resuspended in pure chloroform when 
needed. 
 

Total glycerolipids were quantified from their fatty acids: in an aliquot fraction, 5 µg of 15:0 was 
added and the fatty acids present were converted to methyl esters (FAME) by a 1-hour incubation in 
3 mL 2.5% H2SO4 in pure methanol at 100°C (83). The reaction was stopped by addition of 3 mL water 
and 3 mL hexane. The hexane phase was analyzed by a gas chromatography-flame ionization 
detector (GC-FID) (Perkin Elmer) on a BPX70 (SGE) column. FAMEs were identified by comparison of 
their retention times with those of standards (Sigma) and quantified using 15:0 for calibration.  
 
Glycerolipids were further analyzed by high pressure liquid chromatography-tandem mass 
spectrometry (HPLC-MS/MS), based on a previously described procedure (84). The lipid extracts 
corresponding to 25 nmol of total fatty acids were dissolved in 100 µL of chloroform/methanol [2/1, 
(v/v)] containing 125 pmol of each internal standard. Internal standards used were 
phosphatidylethanolamine (PE) 18:0-18:0 and diacylglycerol (DAG) 18:0-22:6 from Avanti Polar Lipid, 
and sulfoquinovosyldiacylglycerol (SQDG) 16:0-18:0 extracted from spinach thylakoid (85) and 
hydrogenated (86). Lipid classes were separated using an Agilent 1200 HPLC system using a 150 mm 
× 3 mm (length × internal diameter) 5 µm diol column (Macherey-Nagel), at 40°C. The mobile phases 
consisted of hexane/isopropanol/water/1 M ammonium acetate, pH 5.3 [625/350/24/1, (v/v/v/v)] 
(A) and isopropanol/water/1 M ammonium acetate, pH 5.3 [850/149/1, (v/v/v)] (B). The injection 
volume was 20 µL. After 5 min, the percentage of B was increased linearly from 0% to 100% in 30 min 
and kept at 100% for 15 min. This elution sequence was followed by a return to 100% A in 5 min and 
an equilibration for 20 min with 100% A before the next injection, leading to a total runtime of 70 
min. The flow rate of the mobile phase was 200 µL min-1. The distinct glycerophospholipid classes 
were eluted successively as a function of the polar head group. Mass spectrometric analysis was 
performed on a 6460 triple quadrupole mass spectrometer (Agilent) equipped with a Jet stream 
electrospray ion source under following settings: drying gas heater at 260°C, drying gas flow at 13 
L·min-1, sheath gas heater at 300°C, sheath gas flow at 11 L·min-1, nebulizer pressure at 25 psi, 
capillary voltage at ± 5000 V and nozzle voltage at ± 1,000 V. Nitrogen was used as collision gas. The 
quadrupoles Q1 and Q3 were operated at widest and unit resolution respectively.  
 
Phosphatidylcholine (PC) and diacylglyceryl hydroxymethyltrimethyl-β-alanine (DGTA) analyses were 
carried out in positive ion modes by scanning for precursors of m/z 184 and 236 respectively at a 
collision energy (CE) of 34 and 52 eV. SQDG analysis was carried out in negative ion mode by 
scanning for precursors of m/z -225 at a CE of -56eV. PE, phosphatidylinositol (PI), 
phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol 
(DGDG) measurements were performed in positive ion modes by scanning for neutral losses of 141 
Da, 277 Da, 189 Da, 179 Da and 341 Da at CEs of 20 eV, 12 eV, 16 eV, 8 eV and 8 eV, respectively. 
DAG and triacylglycerol (TAG) species were identified and quantified by multiple reaction monitoring 
(MRM) as singly charged ions [M+NH4]+ at a CE of 16 and 22 eV respectively. Quantification was 
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done for each lipid species by multiple reaction monitoring (MRM) with 50 ms dwell time with the 
various transitions previously recorded (63). Mass spectra were processed using the MassHunter 
Workstation software (Agilent) for identification and quantification of lipids. Lipid amounts (pmol) 
were corrected for response differences between internal standards and endogenous lipids as 
described previously (87). 
 
Data deposition 

 

RNAseq data associated with this project is deposited with NCBI BioProject with project number 
PRJNA788211. All remaining supporting data not provided directly in paper supporting tables are 
provided in the linked Open Science Foundation Supporting database https://osf.io/89vm3/ (88). 
Project contents are ordered hierarchically by theme, with an overview of all contents provided on 
the site “wiki” page. A dedicated README file in each project folder explains the data presented and 
provides detailed methodology for each analysis. 
 

Results 

 

Phylogeny and localization of ptEnolase and ptPGAM sequences suggest recent recruitments of 

mitochondrial glycolytic enzymes to the diatom chloroplast 

 

Previous comparative genomic studies of diatom carbon metabolism have identified multiple 
isoforms of core glycolysis-gluconeogenesis enzymes, targeted to both mitochondria and 
chloroplasts (34, 38, 39). To place these data into a phylogenetic context, we considered the 
evolutionary diversity and history of organelle- (plastid- and mitochondria-) targeted Enolase and 
PGAM sequences within the diatoms alongside related algae in the stramenopiles and two other 
groups, the cryptomonads and haptophytes. These algal groups all possess plastids of secondary or 
higher red endosymbiotic origin, surrounded by four membranes, and the plastid-targeting 
sequences associated with nucleus-encoded proteins in each group are sufficiently well conserved to 
be identified through common in silico prediction pipelines (23, 47). Single-gene trees were made for 
all organelle-targeted Enolase and PGAM sequences from 289 cryptomonad, haptophyte, and 
stramenopile (including diatom) genomes and transcriptomes, plus all orthologues from 85 further 
genomes selected from across the tree of life, based on RbH (reciprocal BLASTp best-hit) searches 
with all Enolase and PGAM sequences in the P. tricornutum version 3 genome annotation as queries 
(45). Figs. 1B and 1C show consensus MrBayes trees realised with three substitution matrices (GTR, 
Jones and WAG) for selected sequences from each alignment, retaining only species with both 
identifiable plastid- and mitochondria- targeted orthologues of each protein. Figs. S1-S3 provide 
consensus RAxML trees realised with three substitution matrices (GTR, JTT and WAG) for the 
complete aligned sequences for Enolase, and two non-homologous protein families annotated as 
PGAM (PGAM1 and PGAM2). 
 
The obtained tree topologies revealed multiple evolutionary origins for plastidial Enolase and PGAM 
sequences across the cryptomonads, haptophytes and stramenopiles via the duplication of 
mitochondria-targeted (respiratory) enzymes, with diatom plastidial isoforms typically having recent 
and/or diatom-specific evolutionary origins. Diatom ptEnolase sequences resolve in a well-supported 
clade with plastid-targeted enzymes from bolidophytes, dictyochophytes and pelagophytes, which 
are sisters to diatoms in the stramenopile tree (23, 75), and in turn as a sister-group to mitochondria-
targeted proteins from these groups (MrBayes PP = 1.0 under all studied matrices, Fig. 1B), followed 
by mitochondria-targeted proteins from other photosynthetic (chrysophytes) and non-
photosynthetic stramenopiles (oomycetes; MrBayes PP = > 0.95 under GTR and Jones matrices, Fig. 

1B). This topology indicates a duplication and recruitment of the host-derived mitochondrial targeted 
protein to the plastid within a common ancestor of the diatoms, pelagophytes and dictyochophytes. 
The plastid-targeted isoforms identified for haptophytes positioned within the diatom/ pelagophyte/ 
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dictyochophyte clade, consistent with a partial pelagophyte/ dictyochophyte origin of the 
haptophyte plastid (23), and independent duplications and plastid retargeting of mitochondria-
targeted enolase proteins were identified in both the chrysophytes and cryptomonads (Fig. S1), 
suggesting recurrent origins of ptEnolase functions across the secondary red plastid tree of life. 
 

The phylogenetic origins of diatom ptPGAM genes were more complex, typified by multiple origins 
and plastidial recruitments of mitochondria-targeted enzymes. Two distinct clades of diatom 
ptPGAM proteins were identified, with ptPGAM1A (typified by the Phaeodactylum protein 
Phatr3_J17086) closely related to mitochondrial-targeted proteins found across the stramenopiles 
(MrBayes PP = 1.0 under all studied matrices, Fig. 1C), and ptPGAM1B (typified by the 
Phaeodactylum protein Phatr3_J50414) closely related to mitochondrial-targeted proteins found at 
least within pelagophytes and dictyochophytes (MrBayes > = 0.85 under all studied matrices, Fig. 1C). 
More exhaustively sampled trees indicated deeper orthologies of each plastid-targeted family, 
respectively, to plastid-targeted proteins from the raphidophytes and chrysophytes and 
mitochondria-targeted oomycete proteins (ptPGAM1A, Fig. S2); and to plastid- and mitochondria-
targeted enzymes from the chrysophytes and pelagophytes (ptPGAM1B, Fig. S2). This topology 
suggests ancestral presence and mitochondrial origins of both plastid-targeted protein families, with 
possible differential retention in different photosynthetic stramenopile groups. Possible duplications 
and plastid recruitments of mitochondria-targeted PGAM proteins were also visible in the 
haptophytes and cryptomonads, again positioning plastid-targeted glycolysis-gluconeogenesis as a 
potentially widespread innovation across the secondary red chloroplast tree of life. 
 

A final plastid-targeted protein annotated as PGAM in the version 3 Phaeodactylum genome (45), 
hereafter termed PGAM2, was identified exclusively in diatoms, pelagophytes, and haptophytes (of 
inferred pelagophyte origin; Fig. S3), with limited homology to ptPGAM1 enzymes (BLASTp e-value > 
1.0 in pairwise protein-protein searches). Only PGAM1 enzymes contain an annotated phospho-
glyceromutase active site (IPR005952), while both PGAM1 and PGAM2 belong to the same PFAM 
superfamily (histidine phosphatase, PF03000) as inferred using InterProScan and PFAMscan 
respectively (46, 89). This isoform was predominantly mitochondria-targeted, with plastid- or dual-
targeted isoforms only identified in P. tricornutum (Phatr3_J37201) and a small number of other 
pennate diatoms (Attheya septentrionalis, Amphiprora coffeaformis, Entomoneis sp. CCMP2396) and 
haptophytes (Phaeocystis antarctica, Phaeocystis rex sp. CCMP2000) (Fig. S3). 
 
To confirm plastidial localization of Phaeodactylum enolase and PGAM proteins, three proteins 
(Phatr3_J41515, ptEnolase; Phatr3_J17086, ptPGAM1A; Phatr3_J37201, ptPGAM2) were cloned into 
pPhat: eGFP vector sequences and transformed into wild-type P. tricornutum Pt1.86 cells by biolistic 
transformation (Figs. 1D, S4). These proteins were selected based on co-regulation analysis, 
suggesting tight transcriptional linkage to one another and core chloroplast metabolic pathways (Fig. 

S5, see below). The observed fluorescence patterns were coincident with chlorophyll, confirming 
plastid targeting. 
 
Physiological roles of diatom ptEnolase and ptPGAM identified from cellular and environmental 

sequence expression data  

 

Next, we considered the mRNA abundances of diatom ptEnolase, ptPGAM1A and ptPGAM2 
sequences, both in published microarray (57) and RNAseq data for P. tricornutum (41) (Figs. S5-S7, 

Table S2), and more broadly within the Tara Oceans dataset (64) (Fig. 2, S8-10, Table S3), as proxies 
of their physiological function. First, considering general patterns of transcriptional co-regulation 
across published P. tricornutum data, we noted strong positive correlations (r > 0.75) between the 
sole gene encoding ptEnolase (Phatr3_J41515) and two of the genes encoding plastid-targeted 
PGAM: ptPGAM1A (Phatr3_J17086) and ptPGAM2 (Phatr3_J37201), with weaker (< 0.5) or zero 
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correlations observed for genes encoding ptPGAM1B (Phatr3_J51404, Phar3_J5629) proteins (Fig. 

S5).  
 
Next, considering patterns of transcriptional coregulation to other core components of 
Phaeodactylum chloroplast and mitochondrial metabolism (41), we noted that both ptPGAM1A and 
ptEnolase showed consistently positive transcriptional coregulation coefficients against other 
components of the lower half of plastidial glycolysis-gluconeogenesis, alongside most of the genes 
encoding Lhcr and Lhcf proteins involved in photosynthetic light assimilation, core components of 
the photosynthetic electron transport chain pathway, and enzymes involved in shikimate, alanine 
and tetrapyrrole (chlorophyll and heme) synthesis. Both ptPGAM1A and ptEnolase genes further 
showed weaker positive or negative correlations to plastid fatty acid and lipid synthesis, alongside 
LhcX genes implicated in photo-protection (Fig. S6). Finally, considering the raw and relative 
abundances in both RNAseq and microarray data, we noted elevated relative abundances of 
ptEnolase and ptPGAM1A respectively in samples exposed to >16h and >12h continuous 
illumination, consistent with a photosynthesis-associated phenotype (Fig. S7; Table S2, sheet 1). We 
noted no effects of phosphorus or nitrogen starvation, which are typically associated with lipid 
production in Phaeodactylum, on the mRNA abundances of either gene (58, 59, 63). 
 
Within Tara Oceans data, we noted high relative abundances of diatom ptEnolase and ptPGAM1 
sequences in meta-transcriptome (metaT) data in stations from both high northern and southern 
latitudes, in both surface (Fig. 2, S8) and deep chlorophyll maximum (DCM) samples (Fig. S9). This 
accumulation was visible across all size fractions (Figs. 2A, S8A, S8C, S9A, S9C) and was notably 
greater than equivalent accumulations in meta-genome (metaG) data (Figs. 2B, S8B, S8D, S9B, S9D). 
Normalisation of metaT abundances calculated for each gene in the 0.8-2000 μm size fraction against 
all diatom metaT sequences (Fig. S10A) both in surface (ptEnolase R2 = 0.18, P < 10-05, ptPGAM1A R2 = 
0.23, P < 10-05) and deep chlorophyll maximum (DCM) depths (ptEnolase R2 = 0.53, P < 10-05, 
ptPGAM1A R2 = 0.59, P < 10-05), suggesting that plastidial glycolysis plays a more central role in 
diatom cellular transcription at high latitudes. Similar, albeit weaker, positive correlations were 
observed when normalising the metaT abundances against metaG relative abundances calculated for 
each gene (Fig. S10B), in surface depths for ptEnolase (R2 = 0.10, P < 0.05) and DCM for both genes 
(ptEnolase R2 = 0.28, P < 0.05, ptPGAM1 R2 = 0.29, P< 0.05), further suggesting that latitude positively 
impacts on the relative expression of diatom plastidial glycolysis genes. Further significant positive 
correlations to with latitude, both considering absolute (Pearson) and ranked (Spearman) correlation 
values, were detected in multiple individual size fractions (0.8-5, 3/5-20, 20-180, 180-2000 μm) at 
each depth, including for ptPGAM1 metaT normalised against metaG in surface 3/5-20 (P < 10-05), 20-
180 (P < 10-05) and 180-2000 (P < 0.05) μm fractions (Table S3, sheet 10), indicating these results are 
relevant across the diversity of marine diatom functional groups. Finally, recurrent positive 
correlations in the expression of plastid glycolysis genes to day length and negative correlations to 
measured water temperatures and the calculated length of the ice-free period at each station, were 
found considering multiple normalisations, depth and size fraction combinations  (Table S3, sheet 
10), whereas weaker and inconsistent correlations were found for measured nutrients (N, P, Si, Fe) 
that also vary across oceanic latitudes. We observed some negative correlations between ptEnolase 
or ptPGAM1 transcript abundance and salinity, particularly when normalised against meta-gene 
abundance (Table S3, sheet 10), supporting recent reports of differential expression of diatom 
glycolysis genes across a Baltic Sea salinity gradient, although we note that the range of salinities 
sampled across Tara Oceans stations (23.0 – 39.4 per mille) are somewhat higher than those within 
the Baltic (i.e., 0- 25 per mille) (62, 90). 
 
The transcriptional preference of diatom ptEnolase and ptPGAM1 for long days and low 
temperatures contrasted strongly with PGAM2, which showed global expression trends, including 
effectively equivalent relative abundance in some stations from the temperate South Pacific and 
Atlantic as stations from the Arctic and Southern Oceans (Fig. S11A; Table S3, sheet 10). Although a 
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positive correlation between relative PGAM2 accumulation and latitude was observed in metaT data 
normalised against total diatom metaT abundances and 0.8-2000 μm size fractions (surface R2 = 0.20, 
DCM R2 = 0.37, P< 0.05), no such correlation was observed for metaT data normalised against PGAM2 
metaG relative abundances (surface R2 = 0.00062, DCM R2 = 0.027, P> 0.05) suggesting that latitude 
does not directly define PGAM2 expression (Fig. S11B, C). In certain size fraction and depth 
combinations (e.g., DCM 0.8-3, and 3/5-20 μm fractions, normalised against metaG abundances; and 
surface and DCM 180-2000 μm fractions normalised against all diatom metaT abundances) PGAM2 
metaT abundances even demonstrated significant negative correlations to latitude (Table S3, sheet 
10). In total, the Tara Oceans expression abundances, alongside Phaeodactylum transcriptome and 
microarray data, suggest diatom plastidial glycolysis to be of particular functional importance in high 
environmental latitudes, characterised by their extreme photoperiods and chronically low 
temperatures, with ptEnolase and ptPGAM1A being likely the principal drivers of this association 
within the lower half reactions (Figs. 2, S7-S10) 
 
Growth phenotypes of ptEnolase and ptPGAM1A knockout and complementation lines reveal 

modular roles in adaptation to high latitudes 

 

Next, we generated homozygous CRISPR knockout lines for both ptEnolase and ptPGAM1A, selected 
because of their clear transcriptional co-regulation to one another (Fig. S5, in contrast to ptPGAM1B) 
and latitudinal expression correlation in Tara Oceans (Figs. 2, S10, in contrast to ptPGAM2). Two 
distinct CRISPR regions with unique sequences in the P. tricornutum genome targeted for each gene, 
and multiple CRISPR knockout lines were generated in each case (ptEnolase CRISPR region 1 n= 4, 
CRISPR region 2 n= 3; ptPGAM1A CRISPR region 1 n= 2, CRISPR region 2 n= 3) (Fig. S12A). Each 
CRISPR line was verified by sequencing to be homozygous and to contain a frame-shift mutation 
sufficient to impede successful translation of the ptEnolase or ptPGAM1A gene sequence (Fig. S12A). 
We were unable to directly test the accumulation of ptEnolase and ptPGAM1A protein levels in 
knockout lines by western blot due to the absence of antibodies specific to each protein, but 
confirmed the effective knockdown of expression levels of mutated genes in knockout lines 
compared to empty vector control lines (n= 4) by qRT-PCR (measured knockout mRNA abundance 
1.8-39 % mean empty vector control mRNA abundance under 19°C and 12h light: 12h dark (« 19C 
LD ») conditions, Fig. S12B), consistent with non-sense mediated decay of non-translatable mRNA 
sequences (91).  
 
Next, we performed growth curves of ptEnolase and ptPGAM1A knockout lines compared to empty 
vector controls under three growth conditions (Fig. 3; Table S4, sheets 3-6). We chose to target 
changes in light and temperature, given the associations observed between these parameters and 
ptPGAM1A and ptEnolase expression both in Phaeodactylum gene expression and Tara Oceans data 
(Fig. 2; Fig. S7). The conditions were: 19°C and 12h: 12h light: dark cycling (“19C LD”), reflecting 
default growth conditions used in multiple other Phaeodactylum mutant and comparative physiology 
studies (e.g., (58, 59, 63)); 19°C and 24h continuous light (“19C CL”) to test the effects of 
photoperiod; and 8°C and 24h continuous light (“8C CL”) to test the effects of temperature. Growth 
curves were tested for seven ptEnolase knockout, five ptPGAM1A knockout and four empty vector 
control lines, with a minimum of two biological replicates and three independent repeats (i.e., six 
measurements total) per line. 
 
Under 19C LD growth conditions, plastid glycolysis-gluconeogenesis knockout lines showed an 
approximately 15% reduction in relative growth rate compared to empty vector controls (ptEnolase 
relative growth rate 0.92± 0.03 cells day-1; ptPGAM1A relative growth rate 0.98± 0.04 cells day-1; 
empty vector growth rate 1.10 ± 0.03 cells day-1; Fig. 3A, 3D; Table S4, sheet 3; ANOVA P < 0.05). 
Under 19C CL conditions, knockout lines showed a more severe (approximately 30%) reduction in 
relative growth rate compared to controls (ptEnolase relative growth rate 1.02± 0.08 cells day-1; 
ptPGAM1A relative growth rate 1.00± 0.05 cells day-1; empty vector growth rate 1.45 ± 0.05 cells day-
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1; Fig. 3B, 3D; Table S4, sheet 4; ANOVA P < 0.01), suggesting compromised ability to capitalize on the 
greater photosynthetic potential afforded by continuous illumination. For lines grown under 8C CL 
conditions, we observed in contrast an overall reduction in the difference in growth rate between 
knockout and control lines, with equivalent growth observed for ptEnolase (0.54± 0.02 cells day-1) 
and ptPGAM1A knockouts (0.56± 0.03 cells day-1), compared to empty vector controls (0.56± 0.03 
cells day-1; Fig. 3C, 3D; Table S4, sheet 5).  
 
To test the possibility of off-target activity of CRISPR constructs, we complemented mutant lines with 
blasticidin-resistant overexpressor lines of either ptEnolase or ptPGAM1A genes modified to remove 
all CRISPR target sequences (Table S4, sheet 2). Constructs were built using the constitutive FcpA 
promoter, and the genes were linked to GFP (43, 59), allowing the verification of protein expression 
and localization by confocal microscopy. To account for the inherent effects of (i) overexpression of 
complementation constructs and (ii) GFP and blasticidin deaminase gene expression in 
complementation lines, additional transformations were generated using CRISPR knockout lines, and 
placebo (cytoplasmic GFP) blasticidin-resistance vectors; and using zeocin-resistant empty vector 
lines transformed with each blasticidin-resistance complementation construct. 
 
We then performed comparative growth curves of 47 complemented versus placebo transformed 
mutant lines (Fig. S13A; Table S4, sheet 7) under the 19C CL and 19C LD conditions in which the 
primary knockout lines showed slower growth rates than empty vector controls. We noted a general 
reduction in growth rates of blasticidin complemented lines compared to primary zeocin-resistant 
transformants, which may suggest secondary effects of the ectopic overexpression of the blasticidin 
deaminase and GFP-link constructs in the complemented lines, alongside some within-population 
variation. Nonetheless, a significantly increased growth rate was observed for complemented versus 
blank transformed knockout lines, as inferred by one-way ANOVA of separation between 
complemented and blank transformed mean growth rates. This was observed under both 19C LD 
(ptEnolase complemented knockout growth rate 1.07± 0.03 cells day-1, blank transformed growth 
rate 1.00± 0.07 cells day-1, ANOVA Pvalue= 7.4 x 10-05; ptPGAM1A complemented knockout growth 
rate 1.12± 0.12 cells day-1, blank transformed growth rate 1.02± 0.10 cells day-1, P = 2 x 10-04) and CL 
conditions (ptEnolase complemented knockout growth rate 1.36± 0.13 cells day-1, blank transformed 
growth rate 1.29± 0.08 cells day-1, P = 5 x 10-03 ; ptPGAM1A complemented knockout growth rate 
1.43± 0.15 cells day-1, blank transformed growth rate 1.23± 0.14 cells day-1, P = 5 x 10-06). In contrast, 
complemented knockout line growth rates overlapped with blank transformed empty vector controls 
either transformed with ptEnolase (19C LD growth rate 1.07± 0.04 cells day-1, 19C CL growth rate 
1.37± 0.12 cells day-1), ptPGAM1A (19C LD growth rate 1.04± 0.09 cells day-1, 19C CL growth rate 
1.28± 0.08 cells day-1) or blank complementing vectors (19C LD growth rate 1.04± 0.03 cells day-1, 
19C CL growth rate 1.36± 0.12 cells day-1), indicating effective recovery of mutant phenotypes 
(ANOVA P > 0.05; Fig. S13B; Table S4, sheet 7). 
 
Limited photo-physiological effects of ptEnolase and ptPGAM1A knockout regardless of light 

condition 

 
To understand the distinctive growth phenotypes of ptEnolase and ptPGAM1A knockouts, we 
performed comparative photo-physiological analysis of knockout lines in the two conditions where 
they presented a growth phenotype, i.e. under 19C LD and 19C CL (Table S4, sheets 8-11). We 
measured the light dependence of photosynthesis and photo-protection (see Methods) in a selected 
set of control lines (n=2), ptPGAM (n=3) and ptEnolase knockouts (n=6), as well in complemented 
ptEnolase (n=2) and ptPGAM1A (n=3) knockout lines in which we observed a suppression of the 
knockout growth defect compared to complemented control lines. We further availed of a 
Fluorescence Induction and Relaxation (FIRe) fluorometer to measure the absorption cross-section of 
photosystem II, σPSII, and Fv/Fm parameters in glycolysis mutant lines under all three growth 
conditions (i.e., including 8C CL) (70). Measurements were repeated a minimum of two and in most 
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cases four times per line and treatment condition, with a minimum of six unique measurements 
performed for each genotype and treatment combination (Table S4, sheets 8, 9). 
 
First, considering light-dependent changes in photophysiology, we found no significant difference 
between lines in rETR(II), which is the electron transfer rate through photosystem II (PSII), whatever 
the light irradiance (Fig. S14A; Table S4, sheet 10). We furthermore did not observe any change in 
the light dependency of the NPQ (non-photochemical quenching versus chlorophyll fluorescence) in 
each construct (Fig. S14B, Table S4, sheet 10).  We observed a slight but significant (one-way ANOVA, 
P < 0.05) increase in the σPSII in ptEnolase (318.5± 35.3) and ptPGAM1A knockouts (307.4± 16.7) 
compared to empty vector control lines (292.3± 8.8) under 19C CL conditions exclusively (Fig. S15A; 
Table S4, sheet 11) but not in complemented lines; which may suggest that the photosystem II of 
plastidial glycolysis mutants has an enhanced capacity to harvest light. We further noted significantly 
greater maximal non-photochemical quenching rates (NPQm) in complemented ptEnolase mutants 
compared to empty vector controls under both 19C CL and 19C LD conditions (Fig. S15B; Table S4, 
sheet 11). Overall, our results indicate that suppression of plastidial glycolysis has limited direct 
effects on diatom photophysiology, even in the 19 °C CL conditions where substantial growth defects 
are observed.  
 
Primary metabolic functions of ptEnolase and ptPGAM1A inferred from comparative gene expression 

analysis of P. tricornutum knockout lines 

 
Given the limited direct effects of plastidial glycolysis absence on photosynthesis, we considered the 
growth rates of mutant lines were due to broader impacts in primary metabolism. To do this, we 
performed quantitative RNA-seq analysis using 63 RNA samples drawn from five ptEnolase and five 
ptPGAM1A knockout lines alongside four empty vector controls under all three conditions (Table S5, 
sheet 1; Materials and Methods). Differentially expressed genes were identified by DESeq with fold-
difference threshold 2 and P-value 0.05. Complete results are provided in Table S5, sheets 5-11. 
Exemplar Volcano plots of two comparisons (ptEnolase v control lines, and ptPGAM1A v control 
under 19C CL conditions) are shown in Fig. S16, confirming under-accumulation of ptEnolase and 
ptPGAM1A mRNA in the corresponding knockout lines. 
 
Genome-scale enrichment analyses of the in silico localizations of proteins encoded by differentially 
expressed genes revealed distinctive changes in glycolysis knockout organelle metabolism compared 
to control lines. These effects were most strongly observed in 19C CL conditions, in which of the 239 
genes differentially upregulated (mean fold-change >2, P-value < 0.05) in both ptEnolase and 
ptPGAM1A knockout lines compared to controls, 85 (36%) were inferred to possess chloroplast 
targeting peptides based on ASAFind (47) and 63 (26%) were found to inferred to possess chloroplast 
targeting peptides based on HECTAR predictions (49), compared respectively to 13% and 4.8% of 
genes globally encoded across the entire genome (chi-squared P < 10-05; Fig. 4A). Less dramatic 
changes were evident in 19C LD and 8C CL conditions, reflecting the less exaggerated growth 
phenotypes of glycolysis-gluconeogenesis knockout lines under each condition, although we noted 
that 13 of the 51 genes (25%) inferred to be downregulated in both ptEnolase and ptPGAM1A 
knockout lines under 8C CL conditions were inferred to encode chloroplast-targeted proteins by 
ASAFind, representing likewise an enrichment compared to all genes within the genome (chi-squared 
P < 0.05; Fig. 4A).  
 
Considering the KEGG, PFAM, GO and transcriptional repartition of the differentially expressed genes 
in each knockout line (Table S5, sheets 5-8), we noted clear patterns of differential upregulation of 
genes encoding photosynthesis-related proteins in both ptEnolase and ptPGAM1A knockout lines, 
specifically under 19C CL conditions. These included (chi-squared P < 0.05) GO enrichments in light-
harvesting complex (GO:0030076), photosynthesis (GO:0009765) and protein-chromophore linkage 
(GO:0018298) GO terms, the chlorophyll-binding (PF00504) PFAM domain. We additionally 
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considered the accumulation of genes that are differentially expressed in knockout lines in 
PhaeoNet, a WGCNA (Weighted Genome Correlation Network Analysis)-based division of the entire 
Phaeodactylum genome into thirty co-regulated gene modules (41); and noted a chi-squared P < 0.05 
enrichment of differentially expressed genes in the lightcyan1 module, which has been linked to core 
processes in light harvesting and photosynthesis (41). Detailed resolution of gene expression 
patterns underpinning core organelle metabolism pathways (41) in RNAseq data from ptEnolase (Fig. 

S17A) and ptPGAM1A (Fig. S17B) knockout lines under 19C CL conditions confirmed, a concerted 
upregulation of genes encoding light-harvesting complexes and photosynthesis machinery and 
plastidial fatty acid synthesis machinery, alongside a probable upregulation of mitochondrial 
respiratory complex I and ATP synthase, suggesting that these transcriptional changes reflect 
concerted changes in both plastid and mitochondrial metabolism, and potentially plastid-
mitochondrion crosstalk (92). 
 

To gain a more precise insight into the effects of plastidial glycolysis-gluconeogenesis on 
Phaeodactylum chloroplast and mitochondria-targeted metabolism, we additionally validated by 
qPCR the differential expression of eleven exemplar genes encoding chloroplast- and mitochondria-
targeted proteins in knockout and empty vector control lines across all three conditions (Fig. 4B; 
Table S5, sheet 12). These data confirmed a relatively limited difference in chloroplast metabolism 
under 19C LD conditions, limited to a slight (~50% downregulation, t-test P < 0.05) depression in the 
accumulation of Lhcf1 (Phatr3_J18049) and chorismate mutase (Phatr3_J43277) mRNA in both 
ptEnolase and ptPGAM1A knockouts compared to control lines (Fig. 4B). Both knockout lines were 
found to over-accumulate (>600%; t-test P < 10-05) mRNAs encoding mitochondrial phospho-
glycerate mutase (Phatr3_J33839) under 19C LD conditions compared to control lines (Fig. 4B).  
 
Under 19C CL conditions, we observed more significant changes in plastid metabolism, including the 
over-accumulation of mRNAs encoding Lhcf1 (~150%, t-test P < 0.05) and a plastid-targeted petB-
type protein presumably involved in cytochrome b6f metabolism (Phatr3_J13558, ~90%, t-test P < 
0.05) in both ptEnolase and ptPGAM1A knockout lines, consistent again with the increased σPSII 
observed (Fig. 4B; Fig. S15). We further noted a significant over-accumulation in either ptEnolase or 
ptPGAM1A lines of mRNAs encoding plastidial signal processing peptidase (Phatr3_J10319), alanine 
transaminase (Phatr3_J34010) or copropophyrinogen oxygenase (Phatr3_J12186; Fig. 4B), consistent 
with a broader upregulation of plastid metabolic activity. We additionally noted a strong (>100%, P < 
10-05) increase in mRNA abundance of the gene encoding lysophosphatidyl acyltransferase 
(Phatr3_J20640), which diverts plastidial glyceraldehyde-3-phosphate into lipids via 3-
phosphoglycerate, in both ptEnolase and ptPGAM1A knockout lines. Concerning mitochondrial 
metabolism, we noted a strong increase (>250%, P < 10-05) in mRNA for NDH dehydrogenase subunit 
1 (Phatr3_J43944), involved in mitochondrial oxidative phosphorylation, but a corresponding 
decrease (>40%, P < 10-05) in mRNA for citrate synthase within the TCA cycle (Phatr3_J30145).  
 
Finally, under 8C and CL conditions, we noted contrasting and complementary changes: upregulation 
(>60%; P < 10-05) of genes encoding both the plastidial signal processing peptidase and petB-related 
protein, and mitochondrial PGAM and citrate synthases in both knockout lines compared to controls 
(Fig. 4B). These data suggest both enhanced flux through photosystems and through mitochondrial 
carbon metabolism in the absence of plastidial glycolysis-gluconeogenesis. Of note, Lhcf1 mRNA was 
found to severely under-accumulate (>90%; P < 10-05), but instead Lhcx4 (Phatr3_J38720), encoding a 
dark-expressed homologue of the Lhcx1 protein implicated in photo-protection although of unknown 
direct function (31), was found to substantially over-accumulate in both ptEnolase and ptPGAM1A 
knockout lines (Fig. 4B). 
 

Metabolite profiling indicates potential systemic outputs of disrupted plastidial glycolysis-

gluconeogenesis 
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Next, we considered the likely metabolic consequences for the differential gene expression patterns 
observed in ptEnolase and ptPGAM1A knockouts under each environmental condition studied via 
GC-MS profiling of 32 soluble sugar and amino acids (Fig. 5; Fig. S18) across 139 samples drawn from 
seven ptEnolase and five ptPGAM1A knockout lines alongside four empty vector controls under 19C 
LD, 19C CL and 8C CL conditions. Complete tabulated outputs are provided in Table S6, sheets 1-2. 
Accounting for within-line variance, we noted multiple concordances in the metabolites differentially 
accumulated in ptEnolase and ptPGAM1A knockout lines, with significant correlations between the 
P-values for metabolite accumulation in each knockout line observed under 19C CL (p= 0.448, t-test 
P-value < 0.01), and 8C CL conditions (p= 0.324, t-test P-value < 0.05), with an effectively zero 
correlation (p= 0.017, non-significant) observed in 19C LD conditions. We were unable to directly 
measure the accumulation of any of the products or substrates of either ptPGAM1A or ptEnolase (3-
phosphoglycerate, 2-phosphoglycerate, PEP), although we detected significantly diminished (ANOVA 
P-value < 10-05) pyruvate accumulation in ptPGAM1A knockouts under all three conditions, and in 
ptEnolase knockouts under 8C CL (Fig. 5, S18). 
 
In all three conditions, we noted significant reductions (ANOVA P-value < 0.01 in both ptEnolase and 
ptPGAM1A knockout lines) in cytoplasmic sugars and sugar derivatives (glucose, sucrose, histidine, 
myo-inositol) in ptEnolase and ptPGAM1A knockouts compared to control lines (Fig. 5). Despite a 
high overall variance between samples, we noted a probable over-accumulation of phosphoric acid 
in all knockout lines except ptPGAM1A under 19C CL conditions (Fig. 5, S18). We further noted an 
under-accumulation in both ptEnolase and ptPGAM1A knockout lines of citric acid in all three 
conditions, and malic acid in 8C CL (Fig. 5). Finally, we identified significant (ANOVA P-value < 10-05) 
over-accumulations of valine in ptEnolase and ptPGAM1A knockouts under 19C CL and 8C CL 
conditions; in methionine and ornithine in 19C CL conditions only; and an under-accumulation of 
arginine under 19C CL conditions only (Fig. 5). 
 
We also noted specific differences in the metabolite accumulation patterns observed in ptEnolase 
and ptPGAM1A knockout lines (Fig. 5; S18). These include a significant (ANOVA P < 10-05) over-
accumulation of three amino acids (aspartate, leucine and phenylalanine) and one sugar phosphate 
(glycerol-3-phosphate) specifically in ptEnolase knockout lines under all three conditions, and in 
serine under 19C CL and 8C CL conditions only; which contrasts to ptPGAM1A knockouts in which no 
significant changes were observed, or (in the case of glycerol-3-phosphate and serine) these 
metabolites were found to significantly under-accumulate under all three conditions compared to 
controls (Fig. 5; S18). These differences may be related to a greater severity of the disruption of 
plastidial glycolysis in ptEnolase knockouts, for which there is only one non-redundant enzyme 
predicted in the Phaeodactylum genome, compared to redundant ptPGAM enzymes that may partly 
compensate for ptPGAM1A activity (Fig. S5). It is furthermore possible that some of these 
metabolites relate to the specific activities of ptEnolase and ptPGAM1A in both the glycolytic and 
gluconeogenic directions, notably ptEnolase whose glycolytic product and gluconeogenic substrate 
(PEP) is a direct precursor of both aspartate and phenylalanine synthesis (13). 
 
Contrasting impacts of plastidial glycolysis-gluconeogenesis on lipid profiles depend on temperature 

 

 
Finally, to gain a greater insight into the different effects of fluxes through ptEnolase and ptPGAM 
enzymes under different light and temperature conditions, we performed GC-MS (55 samples) and 
LC-MS (49 samples) of five ptEnolase and five ptPGAM1A knockout lines alongside four empty vector 
controls under 19C LD, 19C CL and 8C CL conditions (Fig. 6; Fig. S19). Outputs are tabulated in Table 

S6, sheets 1, 3-5. Lipid quality may be influenced by multiple metabolites impacted by plastidial 
glycolytic-gluconeogenic flux, including pyruvate and acyl-coA pools (in the glycolytic-gluconeogenic 
direction), glycerol-3-phosphate (synthesised from glyceraldehyde-3-phosphate via glycerol-3-
phosphate dehydrogenase (34)) and glucosyl-1-phosphate (synthesised from exported glucosyl-1-
phosphate generated in the gluconeogenic direction, via UDP-glucosyl PPiase and UDP-glucose 
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epimerase, as described above (35)), with compound effects on fatty acid chain length, saturation 
state, and lipid head group dependent on the stoichiometric availability of each metabolite (93). Lipid 
remodelling has also previously been implicated in diatom adaptations to light and temperature, 
considering crude amounts (94), fatty acid chain length (95), and relative investments in 
triacylglycerol to plastid membrane (galacto-) lipids (96, 97). 
 
Growth conditions were observed to have strong effects on fatty acid profiles observed through GC-
MS, with a significant (ANOVA P < 0.05) replacement of C20:5 side chain lipids with C16:1 side chain 
lipids in 19C CL compared to both 19C LD and 8C CL conditions; and over-accumulation of C16:3 side 
chain lipids under 19C LD, and C18:0 side chain lipids under 8C CL conditions, respectively (Fig. S19). 
The enhanced accumulation of short-chain saturated lipid side chains under continuous illumination 
may reflect enhanced flux into fatty acid synthesis over elongation and desaturation, e.g., for the 
synthesis of storage triacylglycerols, whereas the enhanced accumulation of long-chain and 
unsaturated lipid side chains at 8C may serve to enhance membrane fluidity in response to low 
temperature (58, 63, 93). We noted no substantial differences in fatty acid profiles between 
ptEnolase, ptPGAM1A and control lines under any conditions studied (Fig. S19). 
 
In contrast to the relatively limited effects on fatty acid profiles, we noted substantial changes in lipid 
class distributions in plastidial glycolysis-gluconeogenesis knockout lines compared to controls (Fig. 

6; Table S6, sheet 4), as identified by LC-MS. Both ptEnolase and ptPGAM1A knockouts were found 
to under-accumulate triacylglycerols (TAG) compared to control lines under 19C LD (ptEnolase 2.72 ± 
1.45%, ptPGAM1A 3.39 ± 1.79%, control 8.33 ± 2.36; ANOVA P separation of means between 
knockout and control lines < 0.001) and 19C CL conditions (ptEnolase 21.23 ± 3.58%, ptPGAM1A 
20.16 ± 6.99%, control 30.35 ± 3.76%; ANOVA P < 0.001). We further noted that both ptEnolase and 
potPGAM1A knockout lines significantly over-accumulate mono-galactosyl-diacylglycerol (MGDG; 
ptEnolase 64.77 ± 2.52%, ptPGAM1A 62.75 ± 4.45%, control 53.92 ± 2.77%; ANOVA P < 10-05) and 
under-accumulate di-galactosyl-diacylglycerol (DGDG; ptEnolase 7.62 ± 0.38%, ptPGAM1A 7.57 ± 
1.12%, control 10.05 ± 0.38%; ANOVA P < 10-05) and sulfoquinovosyl diacylglycerol (SQDG; ptEnolase 
9.37 ± 0.61%, ptPGAM1A 9.22 ± 1.82%, control 11.80 ± 1.75%; ANOVA P < 0.01) in 19C CL conditions 
only (Fig. 6; Table S6, sheet 4).  
 
Considering the individual profiles of lipid side chains under 19C conditions (Table S6, sheet 5), we 
noted increased levels of C16:1 sn-1 fatty acids in glycolysis-gluconeogenesis knockouts compared to 
control lines under 19C conditions (Figs. S20, S21). These included a conserved and significant 
increase (ANOVA P < 10-05) under 19C CL in SQDG-16-1_16-0 in both ptEnolase (25.6± 1.17%) and 
ptPGAM1A knockouts (26.1± 1.93%) compared to control lines (20.8± 0.73%), and more broadly 
encompassed C16:1 sn-1 TAG, DGDG and PC (Fig. S21). In contrast, both ptEnolase and ptPGAM1A 
knockouts were found to have a significant (P < 10-05) corresponding increase in 20:5 fatty acids in 
the sn-1 positions of the betaine lipid diacylglyceryl hydroxymethyltrimethyl-β-alanine (DGTA), 
implicated in lipid catabolism, recycling and TAG synthesis in Phaeodactylum under 19C CL conditions 
(Fig. S21) (98, 99). We additionally observed significant (P < 0.05) under-accumulations of C14:0, 
C16:0 and C16:1 sn-1 fatty acids in glycolysis knockout MGDG pools under both 19C CL and 19C LD 
conditions (Fig. S21B; Table S6, sheet 5). These data in total suggest recycling of 20:5 fatty acids and 
replacement with shorter chain equivalents, although the accumulation of C16:1 sn-1 SQDG may also 
be driven by under-accumulation of C14:0 equivalents and rerouting of short-chain DAG from MGDG 
into SQDG synthesis under both 19C LD and 19C CL conditions (Figs. S20B, S21B), (100). 
 
Under 8C CL conditions, we observed quite different trends in fatty acid accumulation specifically in 
ptEnolase knockouts, compared to both ptPGAM1A knockouts and controls. Considering lipid class, 
these changes related principally to over-accumulations of TAG (ptEnolase 29.2 ± 3.05%, ptPGAM1A 
9.19 ± 4.35%, control 5.27 ± 2.30%; ANOVA P < 10-10) and SQDG (ptEnolase 12.0 ± 1.98%, ptPGAM1A 
8.96 ± 2.05%, control 7.79 ± 0.73%; ANOVA P < 0.01) in lieu of MGDG (ptEnolase 31.3 ± 3.17%, 
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ptPGAM1A 44.3 ± 3.36%, control 51.3 ± 1.34%; ANOVA P < 10-10; Fig. 6). Within the side-chain 
distributions of individual lipid classes, we further noted a significant (ANOVA P < 10-05) over-
accumulation of short-chain (C14:0, C16:1) and sn-1 fatty acids in ptEnolase knockout plastid lipid 
pools (i.e., MGDG, DGDG; Fig. S22A), although the sn-1 most abundant fatty acid in each lipid group 
remained C20:5 (Fig. S22B). We finally noted a probable exchange of very long-chain sn-2 fatty acids 
in SQDG pools in ptEnolase knockouts, with significant (ANOVA P < 10-05) increases in SQDG 14-0_16-
0 and SQDG-14_0-16-1 in lieu of SQDG-16-2_24-0 in in ptEnolase knockouts compared to ptPGAM1A 
and control lines (Fig. S22; Table S6, sheet 5). 
 
Discussion 

 
In this paper, we present the evolutionary history (Figs. 1, S1-S3), gene expression characteristics 
(Figs. 2, S4-S11), functional mutagenesis (Figs. 3, S12-13) and physiological analysis (Figs. 4-6, S14-

22) of a lower half glycolytic-gluconeogenic pathway associated with diatom chloroplasts, relating 
specifically to two plastid-targeted proteins, ptEnolase and ptPGAM1A, in the model species P. 

tricornutum. Our data position plastid glycolysis-gluconeogenesis as arising recurrently across 
secondary red chloroplasts, via the duplication of genes encoding respiratory proteins (Fig. 1), 
placing this as one of many pathways of host evolutionary origin that have been recruited to support 
the diatom plastid (23, 101, 102). This innovation sits alongside others associated with diatom carbon 
metabolism, including mitochondrial targeting of respiratory glycolysis and synthesis of storage 
sugars in cytosolic vacuoles as chrysolaminarin (35, 38); although in contrast to these features (which 
are respectively shared with all stramenopiles, and with the primary red algal ancestor of the diatom 
chloroplast, as floridoside storage (103)) the plastidial glycolysis-gluconeogenesis isoforms associated 
with diatoms are uniquely shared with their closest relatives (e.g., pelagophytes, dictyochophytes) 
and potential endosymbiotic derivatives (haptophytes) (23). 
 
Considering previously published transcriptomic data from P. tricornutum, we show that plastidial 
glycolysis-gluconeogenesis genes are co-expressed with those encoding core plastidial and 
mitochondrial carbon metabolism (Fig. S6), with more distant regulatory connections to other 
biosynthetic pathways (e.g., fatty acid synthesis; Figs. S20-22). We note that the role of plastidial 
glycolysis-gluconeogenesis is likely to not directly impact photosynthetic efficiency, given the limited 
photo-physiological phenotypes of mutant lines (Figs. S14-S15), although may indirectly impact on 
photosynthesis gene expression (Fig. 4; Fig. S17).  From both P. tricornutum and Tara Oceans data, 
we show evidence that the functions of this pathway may be particularly pertinent at high latitudes 
(Figs. 2, S7-S10), e.g., under elongated photoperiods and low temperatures. This phenotype reflects 
the growth rates observed for complemented knockout mutant lines of P. tricornutum ptEnolase and 
ptPGAM1A, where we note a retardation in growth in glycolysis-gluconeogenesis knockout lines 
under 19C continuous light compared to 19C light-dark conditions (Figs. 3, S12-13). Despite clear 
physiological defects observed in glycolysis-gluconeogenesis knockout line under 8C continuous light 
conditions (e.g., upregulation of Lhcx4 and downregulation of Lhcf1 genes, and upregulation of 
mitochondrial TCA cycle and glycolysis genes, Fig. 4B; and differential accumulation of multiple 
metabolites and lipids; Figs. 5-6), we note equivalent growth rates in knockout and control lines (Fig. 

3), suggesting additional physiological roles of plastidial glycolysis-gluconeogenesis at low 
temperatures may compensate for the growth defects observed due to continuous illumination.  
 
Considering both gene expression dynamics (Figs. 4; S15-17) and metabolite profiles (Figs. 5, 6; S18-

S22) in knockout and control lines grown under 19C LD, 19C CL and 8C CL conditions, we reconstruct 
a map of the potential functions contributed by the lower half of plastidial glycolysis-gluconeogenesis 
in P. tricornutum, shown in Fig. S23. Under 19C LD conditions, we observe limited gene expression 
changes in ptPGAM1A and ptEnolase knockout lines, except (as inferred from qPCR) a 
downregulation in plastidial shikimate biosynthesis and upregulation of mitochondrial lower-half 
glycolysis-gluconeogenesis pathways (Fig. 4B). The downregulation of a shikimate biosynthesis 
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enzyme intermediate (which might typically consume plastidial PEP (13)) might suggest a primary 
function of plastid glycolysis-gluconeogenesis in the glycolytic direction for augmenting plastidial PEP 
for shikimate biosynthesis, whereas upregulation of mitochondrial glycolysis-gluconeogenesis may 
reflect an enhanced flux of plastidial glyceraldehyde-3-phosphate to the mitochondrion in the 
absence of a direct plastidial route for its metabolism. We additionally note diminished levels of 
cytoplasmic sugars and TCA cycle intermediates (i.e., citric acid) in ptEnolase and ptPGAM1A 
knockout lines (Fig. 5) (104), whereas the overexpression of mitochondrial phospho-glycerate 
mutase observed in qRT-PCR and RNAseq data (Figs. 4B, S17) does not suggest substrate limitation of 
the TCA cycle in glycolysis knockout lines. Thhe diminished accumulation of TCA cycle intermediates 
and cytoplasmic sugars might instead suggest a diversion of glycolytic intermediates into anabolic 
activities in the Phaeodactylum mitochondrion. Finally, we note in both ptEnolase and ptPGAM1A 
mutants an over-accumulation of phosphoric acid, which may point to decreased phosphate usage 
(e.g., in phospholipid or nucleic acid synthesis) and increased storage as compatible solutes. An over-
accumulation of phosphoric acid may equally relate to changes in the cellular ADP/ ATP ratio (105), 
although we did not identify any ATP-associated GOs amongst those enriched in glycolysis-
gluconeogenesis knockout DEGs under any condition (Table S4, sheet 6) 
 
Under 19C CL conditions, we observed much more dramatic remodelling of chloroplast and 
mitochondrial metabolic architecture, consistent with reduced growth rates in knockout lines (Figs. 
3, 4A, S15, S17, S21). These include greater overall investment in photosynthesis gene expression 
and carbon metabolism (including the Calvin Cycle) compared to control lines (Figs. 4B, S17). We did 
not observe consistent differences in the expression of nitrogen or phosphorus stress metabolism in 
knockout lines compared to controls, suggesting that these difference do not relate to difference in N 
or P limitation between knockout and the faster-growing control lines under 19C CL conditions (Table 

S5, sheets 4-5) (59, 104, 106). These changes are supported by the greater absorption cross-section 
σPSII identified in photo-physiological analyses, but do not appear to impact substantially on 
measured Fv/ Fm (Figs. S13; S14), and we propose that any changes to photosynthesis machinery 
expression in glycolysis mutant lines are likely to occur proportionally to one another and to 
downstream carbon metabolism pathways, without apparent changes in photosynthetic efficiency. 
In contrast, we observed an apparent disequilibration in the expression of respiration-associated 
proteins (i.e., upregulation of NDH dehydrogenase and downregulation of TCA cycle enzymes), and 
probable upregulation of mitochondrial and peroxisomal proteins implicated in alternative electron 
flow in glycolysis knockout lines (Fig. S17). Previous studies have noted the important role of diatom 
mitochondria in dissipating excess plastidial reducing potential (30, 92), and it remains to be 
determined to what extent the export of plastidial NADPH to the mitochondria in glycolysis-
gluconeogenesis knockout lines differs compared to controls under continuous light.  
 
Under both 19C LD and 19C CL conditions, we note probable changes in the stoichiometry of lipid 
classes (i.e., MGDG in lieu of DGDG, TAG and SQDG production in 19C LD; MGDG and SQDG in lieu of 
TAG and DGDG production in 19C CL; Fig. 6); and in fatty acid chain length in specific lipid pools (e.g., 
greater accumulation of 16:0 and 16:1 fatty acids in plastidial lipid pools, and 20:5 fatty acids in DGTA 
pools, Figs. S20, S21). These trends contrast with Arabidopsis ptEnolase and ptPGAM mutants, which 
present relatively limited lipid accumulation phenotypes (18, 19). The relative over-accumulation of 
TAG in control lines under 19C conditions may be an indirect product of the diminished growth rates 
in glycolysis knockout lines, insofar as TAG accumulation is typically associated with late- over early-
exponential phase Phaeodactylum lines (Fig. 4) (63, 107). However, neither ptEnolase nor ptPGAM1A 
knockout lines show apparent changes in the expression of nitrogen or phosphate starvation-
associated genes, which as described above are typically viewed to provoke TAG over-accumulation, 
compared to control lines (59, 104, 106). The relative change in the equilibrium of MGDG to TAG 
might suggest acyl-coA limitation of lipid synthesis, or greater investment into MGDG and SQDG 
synthesis from UDP-glucose produced from exported plastidial glyceraldehyde-3-phosphate (85) (Fig. 

6). Supporting this, our RNAseq and qRT-PCR data suggest an overexpression of enzymes involved in 
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fatty acid incorporation (acyl carrier protein, enoyl-ACP reductase, lysophospholipid acyltransferase I; 
Figs. 4, S17) despite limited transcriptional changes to genes encoding lipid head group remodelling 
and cytoplasmic sugar biosynthesis (e.g., UTP-glucose-1-phosphate uridylyltransferase, 
Phatr3_J32708; and UDP-Glc epimerases, Phatr3_J46785, Phatr3_J44401; Table S5, sheet 3) (35(35) 
in glycolysis knockout lines under 19C CL conditions. The relative under-accumulation of glycose and 
sucrose, and overexpression of respiratory glycolysis enzymes in glycolysis knockout lines (Figs. 4, 5) 
is further coherent with a redirection of cytoplasmic triose phosphate from gluconeogenesis towards 
acyl-coA production, i.e. if plastidial glycolytic activity would otherwise function to directly replenish 
plastidial acyl-coA pools from Calvin cycle intermediates (Fig. S23). We note, however, from 
transcriptional coregulation data an apparent lack of coordination between the expression patterns 
of ptEnolase, ptPGAM1A and enzymes involved in fatty acid synthesis (Fig. S6); and it is possible that 
this pathway plays a secondary role to others, such as shikimate biosynthesis, for the consumption of 
plastidial pyruvate and PEP (Fig. S23).  
 
It remains to be determined what routes enable the supply of pyruvate hub intermediates, to the 
Phaeodactylum plastid in the absence of plastidial glycolytic activity. Previous studies have noted the 
dual affinity of diatom triose phosphate transporters for glyceraldehyde-3-phosphate/di-
hydroxyacetone phosphate and PEP (17, 36). One of the two annotated plastid triose phosphate 
transporters in the Phaeodactylum genome (Phatr3_J54017) is upregulated in both ptEnolase and 
ptPGAM1A knockout lines under 19C CL conditions only (Table S5, sheet 3), which may suggest some 
degree of direct PEP uptake from the cytoplasm (36). In both ptEnolase and ptPGAM1A knockout 
lines we further note an overexpression of the glycine cleavage system H protein (Phatr3_J32847) 
and underexpression of ammonia carbamoyl-phosphate synthase (Phatr3_J24195; Fig. S16), which 
may reflect an augmented importance of the mitochondrial glycine cycle in recovering photo-
respired glycolate in glycolysis mutant lines.  
 
Elsewhere our data suggest an enhanced importance of organelle amino acid metabolism in the 
absence of plastidial glycolysis. These include an overexpression of plastidial alanine transaminase 
(Phatr3_J34010; Fig. 4B, S16); and differential accumulation of multiple amino acids (over-
accumulation of valine, ornithine and methionine and under-accumulation of arginine in both 
mutant lines; overaccumulation of aspartate in ptEnolase knockout lines; and overaccumulation of 
glutamate in ptPGAM1A knockout lines; Fig. 5) under 19C CL conditions. Alanine synthesised in the 
Phaeodactylum mitochondrion could, for example, be imported into the plastid and deaminated to 
supply pyruvate (104), and an over-accumulation of pyruvate might in turn lead to an increased 
synthesis of valine (92, 108). We noted an over-accumulation of mRNA for plastidial branched chain-
amino acid aminotransferase (Phatr3_J10779, involved in isoleucine: valine transamination) in both 
ptEnolase and ptPGAM1A knockouts in 19CL RNAseq data (Fig. S17); which may be related to 
dysregulation in branched-chain amino acid synthesis or catabolism (108). Aspartate, in contrast, 
might be synthesised either in the Phaeodactylum mitochondria from oxaloacetate or peri-plastidial 
compartment (via PEP, from PEP carboxylase (109), and its overaccumulation outside the plastid 
might in turn augment flux into methionine synthesis (via homocysteine) (13). It is unlikely that 
aspartate would directly supply PEP to the Phaeodactylum plastid due to the absence of known 
plastidial C4 decarboxylases in this species, but its synthesis might enable the effective recycling of 
extra-plastidial PEP into pyruvate pools (110, 111). Ornithine, synthesised in the Phaeodactylum 
plastid at the expense of plastidial glutamate, might be used to potentiate the deamination of 
alanine or aspartate via a keto-glutarate shuttle (104, 112), prior to being converted into arginine 
(113), or dissipated via a potential urea cycle in the mitochondria (114). The depletion of both 
arginine and citrate in both glycolysis knockout lines, a further intermediate in the proposed 
mitochondrial urea cycle, and corresponding accumulation of glutamate in ptPGAM1A knockout 
lines, suggests that ornithine over-accumulation likely relates to enhanced plastidial ornithine 
synthesis as opposed to diminished mitochondrial dissipation (Fig. 5, S23).  
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Under 8C CL conditions, we note congruent and contrasting changes in mutant phenotypes to those 
identified at 19C (Fig. S23). As per 19C conditions, these include over-accumulation of mRNAs 
encoding photosystem subunit, plastid biogenesis and mitochondrial glycolytic proteins, and an over-
accumulation of short-chain amino acids (valine) and under-accumulation of cytoplasmic sugars and 
amino acids (glucose, histidine) in ptEnolase and ptPGAM1A knockouts relative to empty vector 
controls (Figs. 4B, 5). Confirming the explicit significance of plastidial glycolysis for carbon 
metabolism under 8C CL conditions, we note under-accumulations both pyruvate and in glycerol, 
synthesised typically from plastidial triose-phosphate via 3-phosphoglycerate dehydrogenase in both 
mutant lines (Fig. 5).  The absence of a specific growth defect under 8C conditions is therefore 
perhaps surprising (Fig. 3), although additional phenotypic differences in knockout lines unique to 8C 
may suggest more complicated physiological consequences for the absence of plastidial glycolysis. 
These include an overall enrichment in downregulated genes encoding plastid-targeted proteins (Fig. 

4A); a specific over-accumulation of TCA cycle (citrate synthase, Phatr3_J30145) and a possible non-
photochemical quenching-associated mRNA (LhcX4, Phatr3_J38720) (Fig. 4B) (30, 115); and an over-
accumulation of TAGs and SGDQs over glucosyl-lipids (Fig. 6) in both ptEnolase and ptPGAM1A 
knockout lines at 8C only. We tentatively propose that some of the contrasting investments observed 
in glycolysis knockout lines under 8C (e.g., diversion of fixed carbon either into mitochondrial 
respiration or anabolic pathways) conditions may to some extent compensate for phenotypes (i.e., 
inhibited flux into pyruvate and remodelling of carbon metabolism) observed in 19C CL conditions, 
thus yielding equivalent growth rates between mutant and control lines (Fig. 3; Fig. S23). 
 
Finally, across all three conditions, we note specific phenotypic differences between ptEnolase and 
ptPGAM1A knockout lines, including the ptEnolase-specific accumulation of several amino acids 
(aspartate, phenylalanine, serine, leucine) across all three studied conditions (Fig. 5; Fig. S18). The 
overaccumulation of phenylalanine is particularly striking given the apparent downregulation of 
mRNA of chorismate mutase, (Phatr3_J43277) in both RNAseq and qRT-PCR data (Fig. 4B; Fig. 5; Fig. 

S17) (13), suggesting strong metabolic forcing of its synthesis. We further notea predominant 
accumulation of short-chain sn-1 fatty acids in ptEnolase plastid lipid pools under 8C CL conditions 
(Fig. S22), which may act as a further electron sink in response to low temperature and continuous 
illumination (116). The exact reasons for these contrasting phenotypes remain to be determined, 
although may relate to the fact ptEnolase is projected to be the only plastid-targeted enolase protein 
encoded in the Phaeodactylum genome, whereas alternative phospho-glycerate mutases to exist 
that can compensate for ptPGAM1A (e.g., ptPGAM1B, ptPGAM2; Figs. S4, S6); and each enzyme 
performs different metabolic activities, with ptPGAM1A converting 3-phosphoglycerate to 2-
phosphoglycerate, and ptEnolase converting 2-phosphoglycerate to PEP in the glycolytic direction, 
and the reverse fluxes anticipated in the gluconeogenic direction (Fig. 1A). The absence of ptEnolase 
activity in a gluconeogenic direction, in particular, would lead to an over-accumulation of PEP in the 
Phaeodactylum plastid, which could explain the over-accumulation of aspartate (synthesised via PEP 
carboxylase (13, 104, 109)); phenylalanine (if excess PEP were diverted into shikimate biosynthesis) 
and potentially even leucine (via pyruvate) (13). In contrast, the excess of serine and short-chain sn-1 
amino acids might relate to an absence of activity in the glycolytic direction (i.e., diminished flux of 
plastidial triose phosphate into acyl-coA pools from either plastidial or exported mitochondrial 
pyruvate (93), and increased flux into glycerol-3-phosphate synthesis (13)). The relevance of 
plastidial glycolysis in the gluconeogenic direction is particularly relevant under 8C CL conditions, 
where several of the phenotypes common to both ptEnolase and ptPGAM1A knockouts (including 
increased investment into respiration and neutral lipid accumulation, and diminished investment 
into plastid biogenesis and core plastid metabolism enzymes) might equally well be explained by a 
disruption of mitochondrial-to-plastid metabolic flux to support plastid primary carbon metabolism 
(Fig. S23). Ultimately, the relative importance of metabolic flux in each direction of each diatom 
plastid glycolysis enzyme will be best determined by kinetic studies, e.g. radio-labelled substrate 
tracing, in mutant lines under each growth condition. 
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Concluding Remarks 

 
Overall, our data position the lower half of glycolysis-gluconeogenesis as providing a functionally 
redundant, but nonetheless significant component of the diatom plastid proteome, evidenced by the 
presence of viable mutants with observable growth and physiological phenotypes. We infer using 
combined growth, gene expression, photo-physiology and metabolomics analysis that plastidial 
glycolysis permits more efficient cycling of glyceraldehyde-3-phosphate from the Calvin cycle to the 
pyruvate hub, for a wide range of downstream pathways, with particular importance under 
continuous illumination such as the tested 19C CL condition. We additionally provide some more 
tentative evidence for functions of this pathway in the gluconeogenic direction, particularly in the 
context of the differential accumulation of metabolites specific to ptEnolase knockout and 8C CL 
conditions. The poise and interactions between the glycolytic and gluconeogenic functions of diatom 
ptEnolase and ptPGAM1A may in part contribute to the functional success of diatoms at high 
latitudes (27), where they must tolerate extreme annual variances in photoperiod and low 
temperatures (25, 26). The glycolytic functions of diatom plastidial glycolysis-gluconeogenesis may 
enable diatoms to dominate in the initial spring pulse of biomass that accompanies photoperiod 
induction (117, 118), and across the light-saturated conditions of the continuous polar summer by 
allowing augmented metabolic activity through the Calvin cycle (119). In contrast, a potential 
gluconeogenic activity may have relevance throughout the polar night (120) where photosynthesis is 
not possible, and might potentially induce photosynthetic activity via replenishment of the Calvin 
cycle from mitochondrial intermediates, in response to transient and seasonal enrichments in 
nutrients (e.g., in autumnal polar blooms (121)). It remains to be determined what roles plastidial 
glycolysis plays in other habitats where diatoms dominate phytoplankton biomass, e.g. in upwelling 
cycles where diatoms may preciously upregulate components of their core metabolism to rapidly 
avail of optimal light and nutrient conditions (119, 122) 
 
It furthermore remains to be determined what functions a lower half of plastidial glycolysis-
gluconeogenesis perform elsewhere across the tree of life. This question is pertinent not only to 
other eukaryotic algal groups (Figs. 1; S1-S2); but also in plants, where the presence of plastidial 
glycolysis-gluconeogenesis is to our knowledge uncharacterized in photosynthetic cells. Plastid 
glycolysis-gluconeogenesis in leaves has been proposed to be involved in the metabolism of 
imported sugars at night (123), and the synthesis of fatty acids and isoprenoids from excess 
glyceraldehyde-3-phosphate during the day (124), and lower half glycolysis-gluconeogenesis proteins 
have further been proposed to perform a secondary role as a structural component of protein 
contact points between plant plastids and mitochondria (125); but the eco-physiological roles of 
plant plastid glycolysis-gluconeogenesis remain underexplored. Notably, cytoplasmic phospho-
gycerate mutase (126-128) and enolase enzymes (129-131) have been identified in proteomic 
surveys of plant and algal cold-responsive genes, but it remains to be determined whether plastidial 
versions of these enzymes possess functions relevant to high latitudes. Our data shed light into 
functions of a poorly understood metabolic resource that may facilitate diatom success at high 
latitudes, and that may serve as a candidate for metabolic engineering in crop species for enhanced 
photosynthetic activity under continuous light and low temperatures (33). 
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Fig. 1. Metabolic context and evolution of the lower half of diatom plastidial glycolysis-

gluconeogenesis. A: schematic comparison of diatom and plant core carbon metabolism, adapted 
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from (34), highlighting the localization and functions of two enzymes in the lower half of glycolysis-
gluconeogenesis (phospho-glycerate mutase, and enolase) whose localization to the chloroplast can 
connect endogenous enzymes in the Calvin cycle and pyruvate hub to create a complete glycolytic-
gluconeogenic-gluconeogenic pathway. B, C: consensus MrBayes topologies realised with three 
substitution matrices (GTR, Jones, WAG) of a 163 taxa x 413 aa alignment of organelle-targeted 
enolase and 105 taxa x 220 aa alignment of selected organelle-targeted PGAM1 enzymes from 
diatoms and their closest relatives, identifying recent duplications and recruitments of respiratory 
glycolytic-gluconeogenic enzymes from the mitochondria to plastid in diatoms and their closest 
relatives. Phylogenies realised with full datasets are provided in Figs. S1-S3. D: overlay images of 
GFP-tagged full-length ptEnolase (top) and ptPGAM1A (bottom) constructs (green), chlorophyll (red) 
and bright-field images of transformant Phaeodactylum tricornutum lines. Individual images for each 
channel and cytoplasmic GFP and GFP-free control lines confirming specificity and sensitivity of the 
excitation and emission conditions used are provided in Fig. S4.  
 

 
Fig. 2. Environmental distributions of diatom plastidial glycolysis-gluconeogenesis meta-genes. 

Total meta-transcriptome (top) and meta-genome (bottom) relative abundances for Tara Oceans 
meta-genes phylogenetically resolved to diatom ptEnolase and ptPGAM1A families (64), sampled 
from all size fractions and surface layer stations, and demonstrating higher meta-transcript 
abundance without commensurate increases in meta-gene abundance at high northern and southern 
latitudes. Individual abundance maps for each size fraction and depth, and the correlations of meta-
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genome normalised meta-transcriptome abundance to different quantitative environmental 
variables, are provided in Fig. S9-S11. 

 
Fig. 3. Growth phenotypes of ptEnolase and ptPGAM1A CRISPR-Cas9 knockout mutant and zeocin-

resistant empty vector control P. tricornutum lines. A: exemplar growth curves from single 
experiments realised for P. tricornutum lines in 50 μE m-2 s-1 illumination, non-shaken cultures and 
replete ESAW media, under three conditions- (i) 19°C and 12h light: 12h dark Circadian cycles (« 19C 
LD »); (ii) 19°C and 24h continuous light (« 19C CL »); and (iii) 8°C and 24h continuous light (« 8C 
CL »). B: mean relative log phase growth rates of each genotype under each condition, measured 
through a minimum of three biological replicates and two technical repetitions (six measurements 
per line, minimum 24 measurements per genotype). Plastid glycolysis-gluconeogenesis knockout 
lines show a substantial retardation in growth rate under 19C CL compared to 19C LD conditions, 
which is compensated by 8C CL conditions. Equivalent growth curves realised with compensated and 
blasticidin-resistant lines are shown in Fig. S13. 
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Fig. 4. Changes in plastid and mitochondrial metabolic architecture inferred from gene expression 

analyses. A: bar plots of the predicted localizations from ASAFind (47) and HECTAR (49) of all genes 
inferred (P < 0.05, fold-change expression >2) to be differentially up- or down-regulated in both 
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ptEnolase and ptPGAM1A knockout compared to control lines under 19C LD, 19C CL and 8C CL 
conditions. Localizations that are significantly enriched in gene expression categories (chi-squared P < 
0.05), including a significant over-accumulation of genes with chloroplast- and mitochondria-
targeting sequences upregulated in knockout lines under 19C CL conditions, are asterisked. Volcano 
plots and detailed organelle metabolism maps for genes differentially expressed under 19C CL in 
ptEnolase and ptPGAM1A lines are provided in Figs. S16-S17. B: relative mRNA abundances of eleven 
genes encoding exemplar chloroplast- and mitochondria-targeted proteins, verified by qRT-PCR. 
Abundances were calculated using two sets of qRT-PCR primers per gene and normalised against two 
housekeeping genes (Ribosomal protein S1, and TATA binding protein (78) ); across five ptEnolase, 
seven ptPGAM1A and four empty vector control lines, with four reverse transcriptase positive and 
four reverse transcriptase negative replicates each. Each bar plots thus the mean and standard 
deviation of expression ratio of all knockout genotypes and replicates for each line. Genes 
differentially expressed (t-test, P < 0.05) in each condition are asterisked. 
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Fig. 5. Volcano plots of differentially accumulated metabolites assessed by GC-MS. Scatterplots of 
the log2 accumulation ratios –log10 P-values of difference in the mass, ribitol and quality-control-

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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normalised abundances of 39 sugar and amino acid metabolites in ptEnolase and ptPGAM1A 
knockout compared to empty vector control lines, measured by GC-MS in all three experimental 
conditions tested. Metabolites that show a differential accumulation in each plot (P < 10-05) are 
labelled, and metabolites that show a differential accumulation in both knockout lines in each 
condition are shown in black text, and five metabolites that are uniquely over-accumulated in 
ptEnolase knockout lines under all three conditions are shown in dark red text. Bar plots showing 
relative differences in metabolite abundance are shown in Fig. S18. 
 

 
Fig. 6. Violin plots of LC-MS lipid distributions in glycolysis-gluconeogenesis mutant lines. This 
figure shows plots of the observed frequencies (short bars), mean (long bars) and inferred normal 
distribution of the % of lipids found to belong to one of four lipid categories in ptEnolase and 
ptPGAM1A knockout and empty vector control lines under 19C LD, 19C CL and 8C CL conditions. 
Significant differences between knockout and control lines (ANOVA, P < 0.05) are asterisked. 
Equivalent plots of GC-MS fatty acid distributions, showing limited differences between knockout 
and control lines are provided in Fig. S19. ANOVA P-value distributions of sn-1 and sn-2 fatty acids 
associated with different lipid classes are shown in Figs. S20-S22. 
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Fig. S2. Consensus topology of a 220 aa x 560 taxa alignment of PGAM isoform 1 sequences, shown as per Fig. S1.
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Fig. S4. Individual fluorescence channel and control confocal microscopy images for P. 
tricornutum plastis glycolysis proteins. 



Fig. S5. Transcriptional coordination of plastidial enolase, PGAM1 and PGAM2 from RNAseq data. This figure shows Spearman coefficients of all 
genes across the version 3 annotation of the Phaeodactylum tricornutum genome against two query genes: Phatr3_J41515, plastid-targeted enolase; and 
Phatr3_J17086, plastid-targeted PGAM1; calculated from ranked mRNA abundances within PhaeoNet (Ait-Mohamed et al., 2020). Genes are coloured by 

inferred in silico localisation; and other annotated enolase and PGAM enzymes in the Phaeodactylum genome are shown as large, labelled points. 
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Fig. S5. Transcriptional coordination of plastidial enolase, PGAM1 and PGAM2 from 
published gene expression data. This figure shows Spearman coefficients of all genes across 
the version 3 annotation of the Phaeodactylum tricornutum genome against two query genes: 
Phatr3_J41515, plastid-targeted enolase; and Phatr3_J17086, plastid-targeted PGAM1; calculated 
from ranked mRNA abundances within normalised RNAseq (PhaeoNet, Ait-Mohamed et al., 2020) 
and microarray (DiatomPortal, Ashworth et al., 2016) meta-datasets. Genes are coloured by 
inferred in silico localisation; and other annotated enolase and PGAM enzymes in the 
Phaeodactylum genome are shown as large, labelled points.  

Fig. S6. Transcriptional coordination of plastidial enolase, PGAM1 and PGAM2 from microarray data. This figure shows Spearman coefficients of 
all genes across the version 3 annotation of the Phaeodactylum tricornutum genome against two query genes: Phatr3_J41515, plastid-targeted enolase; 

and Phatr3_J17086, plastid-targeted PGAM1; calculated from ranked relative fold changes from DiatomPortal (Ashworth et al., 2016). Genes are coloured 
by inferred in silico localisation; and other annotated enolase and PGAM enzymes in the Phaeodactylum genome are shown as large, labelled points. 
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Fig. S6. Transcriptional coregulation of plastid-targeted Enolase and PGAM1 to other core organelle metabolism 
pathways. These heatmaps show the Spearman correlation coefficients calculated between ptEnolase and 

ptPGAM1 against genes encoding other core Phaeodactylum plastid- and mitochondrial-targeted proteins, as 
annotated in Ait-Mohamed et al. 2020, considering a merged and ranked RNAseq and microarray dataset. Where 

more than one homologue of a particular enzyme exist, the highest correlation coefficient is shown. Complete 
gene lists, including abbreviations, are provided in Table S2.
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Fig. S8. Relative transcriptional regulation of 
plastidial enolase and PGAM under nutrient and light 

stress conditions. A-C: the relative ratio of plastid to 
mitochondria-targeted gene isoform expression for 

enolase (vertical axis), PGAM1 (horizontal axis), and 
PGAM2 (bubble size) in published Phaeodactylum 

RNAseq datasets subject to nitrate limitation (McCarthy 
et al., 2017), phosphate starvation and addition (Cruz de 
Carvalho et al., 2016) and Circadian Fe enrichment and 
limitation (Smith et al., 2016), respectively. While limited 
transcriptional responses are identifiable in response to 
changing N, P or Fe availability, the relative transcription 

of plastidial to mitchondrial-targeted enolase is 
substantially greater in RNA sampled in long day (> 12h 

post-illumination) conditions in C. D: relative fold changes 
in plastidial enolase and PGAM1 expression in published 

microarray data  assembled in Ashworth et al., 2016, 
under different illumination conditions. Both Enolase and 

PGAM1 show substantial downregulation in dark-
incubated (48h) and short post-illumination-incubated (< 

0.5h) cultures, and show the greatest positive fold 
expression changes respectively > 16h and > 12h post-

illumination.
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C) Fe starvation/ Circadian RNAseq (Smith et al., 2016) 
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A) N03 induction RNAseq (McCarthy et al., 2017) 
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D) DiatomPortal light conditions (Ashworth et al., 2016) 
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B) P starvation RNAseq (Cruz de Carvalho et al., 2016) 
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Fig. S8. Relative abundances of Tara Oceans meta-genes that resolve phylogenetically with (top) diatom plastidial enolase and (bottom) diatom plastidial PGAM1 sequences over all size 
fractions of surface meta-transcriptome (left) and meta-genome (right) data, shown as per Fig. 2. 
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Fig. S9. Relative abundances of Tara Oceans meta-genes that resolve phylogenetically with (top) diatom plastidial enolase and (bottom) diatom plastidial PGAM1 sequences over all size 
fractions of DCM meta-transcriptome (left) and meta-genome (right) data, shown as per Fig. 2. 
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Ai) Relative ptEnolase metaT abundance, all diatom metaT normalised 
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Fig. S10. Scatterplots of Tara Ocean expression patterns of sequences assigned phylogenetically to diatom ptEnolase and ptPGAM1A against station latitude. Abundances are shown for 
0.8-2000 µm surface and DCM sample meta-transcriptome data, and are normalised relative to (A) total diatom metaT abundances at each station and (B) the corresponding metaG 
abundances for diatom ptEnolase and ptPGAM1A. In each case, a significant positive correlation between latitude and relative expression is observed. 
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Fig. S11. Tara Ocean expression patterns of diatom PGAM2. A: 
total relative abundances of meta-genes phylogenetically 
reconciled to diatom PGAM2 in 0.8-2000 µm surface sample 
meta-transcriptome and meta-genome data, showing effective 
congruence between both. B, C: scatterplot as per Fig. S10 of 
phylogenetically reconciled diatom PGAM2 metaT abundances, 
normalised against all diatom metaT abundances and against 
PGAM2 metaG abundances respectively, for both surface and 
DCM stations in the 0.8-2000 µm size fraction, showing 
effectively no correlation between metaT abundance and 
latitude. 



Fig. S12. Genotypes of 
plastid glycolysis gene 
mutants. A: alignments of 
the two CRISPR regions 
targeted for mutagenesis of 
ptEnolase (Phatr3_J41515) 
and ptPGAM1A 
(Phatr3_J17086), and the 
genotypes obtained from 
Sanger sequences of 
homozygous CRISPR 
mutants obtained for each 
gene. B: average relative 
expression level of each 
mutated gene, assessed by 
quantitative RT-PCR with 
two primer combinations 
and normalised against two 
housekeeping genes (RNA 
polymerase II and TATA 
binding protein), expressed 
as a % of the relative 
expression levels calculated 
in two empty vector 
expression controls. One-
way t-test significance 
levels of the knockdown of 
gene expression in each 
mutant line compared to the 
empty vector controls are 
provided. 
 
*  Significant to P < 0.05 
** Significant to P < 0.01 
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Fig. S13. Growth phenotypes of 
complemented glycolysis mutants. A: 
scatterplot of maximum growth rates, 
calculated from two replicates, under 19C LD 
cycling (horizontal) and 19C CL conditions 
(vertical axis) for 47 total ptEnolase (i) and 
ptPGAM1A mutants (ii) complemented with 
blasticidin-resistant and GFP-linked 
ptEnolase, ptPGAM1 or blank constructs, 
compared to empty vector zeocin-resistant 
control lines transformed with the same 
constructs. The distribution of individual 
growth rates within complemented and blank 
transformed populations are shown using 
solid coloured, and grey dashed line circles 
respectively. Vectors plot the difference 
between the mean growth rates calculated for 
blank transformed versus complemented 
mutant lines, alongside ANOVA P-values of 
separation. B: mean growth rates calculated 
for blank transformed and complemented 
mutant lines, alongside empty vector primary 
transformants complemented either with 
blank, ptEnolase or ptPGAM1A constructs, 
showing effective overlap between 
complemented mutant and empty vector 
primary transformant line growth rates. 
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Fig. S14. Photophysiology curves in 

glyclolysis mutant lines for (i-ii) relative 

electron transport (rETR) of 

photosystem II fitted as a function of 

light intensity (E) and (iii-iv) 

photoprotective non-photochemical 

quenching (NPQ)fitted as a function of 

E. Separate values are shown for 

cultures acclimated under CL (i, iii) and 

LD (ii, iv) growth conditions. Data points 

are the mean between the average 

values (n=2-4) measured in each strain 

within a mutant line (number of lines per 

genotype; Control = 2, ptEnolase 

complemented = 2, ptPGAM1A 

complemented = 3, ptEnolase knockout 

= 6, ptPGAM1A knockout = 3). 
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Fig. S15. Boxplots of measured 

photophysiological parameters in glycolysis 

mutants lines for cultures acclimated under 

19C CL (left panels) and LD (right panels) 

growth conditions: (i-ii) maximum quantum 

yield of photosystem (PSII) in the dark 

(Fv/Fm)  (iii-iv) PSII functional absorbtion 

cross-section (σPSII), (v-vi) PSII quantum 

yield under the growth light of 50 µmol 

photons m-2 s-1 (ΦPSIIE50) (vii-viii) 

maximal relative electron transport at PSII 

and (ix-x) maximum non-photochemical 

quenching (NPQm). Significantly different 

values observed for knkockout and 

complementation mutants relative to 

control lines (one-way ANOVA, P < 0.05) 

are asterisked, with asterisk colour 

corresponding to the mutant line 

considered. Each boxplot includes all 

measured/fitted values for each strain 

within a mutant line (number of lines per 

genotype; Control = 2, ptEnolase 

complemented = 2, ptPGAM1A 

complemented = 3, ptEnolase knockout = 

6, ptPGAM1A knockout = 3). 
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Fig. S16. Volcano plots of differentially expressed genes in ptEnolase (left) or ptPGAM1A mutants (ight) compared to empty vector 
control lines under 19C CL conditions. Genes are labelled by consensus localisation prediction, and differentially expressed Enolase and 
PGAM isoforms are enlarged as per Fig. S6. Of note, ptEnolase (PhatrJ_41515) and ptPGAM1A (PhatrJ_17086) are significantly less 
expressed in the corresponding mutant lines than the controls, consistent with effective transcriptional suppression of the mutated genes. 
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Fig. S  Differentially expressed components of core plastid and mitochondrial metabolism in (a) ptEnolase and (b) ptPGAM1A
Fig. S7. Cells are shaded

based on DESeq P-value of gene expression difference, with blue cells indicating upregulation and red cells
downregulation compared to control lines. Where more than one gene exists for an encoded function in the 
Phaeodactylum genome, only the most strongly differentially expressed isoform is shown. 
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mutants compared to empty vector control lines under 19C CL conditions, shown per

(a) ptEnolase mutants compared to empty vector controls DEGs, 19C CL conditions (b) ptPGAM1A mutants compared to empty vector controls DEGs, 19C CL conditions



Fig. S18. Differentially accumulated metabolites in glycolysis mutant lines. This figure shows 
bar plots of the mean and standard deviation of the ratios of 39 metabolites assessed by GC-MS in 
plastid glycolysis mutant lines under the three tested experimental conditions. Metabolites are 
sorted in ranked decreasing accumulation in mutant lines over all three conditions. Metabolites 
inferred to be differentially accumulated in each mutant line and condition are asterisked: ** 
denotesANOVA  P < 10-05; * denotes P < 0.01. 
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Fig. S19. Differential accumulation of fatty acids across experimental conditions. This 
figure shows violin plots as per Fig. 6 of the frequency, mean and normal distributions of the 
relative proportions of four fatty acids assessed by GC mass spectrometry in glycolysis mutant 
and control lines across three experimental conditions. Despite substantial variation in fatty acid 
profile across experimental treatments (e.g., overaccumulation of C16:1 in lieu of C20:5 under 
19C CL; C16:3 overaccumulation specifically in 19C LD; and C18:0 overaccumulation specifically 
in 8C CL), little difference is observed between glycolysis mutant and control lines under each 
condition. 
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Fig. S20. Differentially accumulated lipids in 19C LD condition. A: Volcano plots shows (horizontal axis) log2 accumulation ratios and (vertical axis) –log10 ANOVA Pvalues for 
separation of mean proportions of specific fatty acids, across all fatty acids observed in a specific lipid class in glycolysis mutants versus control lines, harvested under 19C LD conditions. 
Specific lipids that show extreme (P < 10-05) differences in accumulation between both mutant genotypes and control lines are labelled, and coloured by lipid class. B: Bar plots showing 
total DGTA lipid class distributions in all three lines under these conditions. These data suggest limited changes in glycolysis mutant lipid architecture, barring a probable 
overaccumulation of sn-1 C16 in ptEnolase mutant MGDG and DGDG pools, a corresponding underaccumulation of sn-1 C20 in ptEnolase mutant DGTA pools, and a conserved 
underaccumulation of DGTA-16-1_18-3 in both ptEnolase and ptPGAM1A mutants. 
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Fig. S21. Differentially accumulated lipids in 19C CL condition. A: Volcano shows (horizontal axis) log2 accumulation ratios and (vertical axis) –log10 ANOVA Pvalues for separation of 
mean proportions of specific fatty acids, across all fatty acids observed in a specific lipid class in glycolysis mutants versus control lines, and B: bar plots of SQDG and DGTA 
accumulation in lines harvested under 19C CL conditions, shown as per Fig. S19. These data suggest greater changes in glycolysis mutant lipid architecture than under 19C LD 
conditions, including conserved overaccumulations of sn-1 C16 in ptEnolase and ptPGAM1A mutant SQDG and sn-1 C20 in ptEnolase and ptPGAM1A mutant DGTA pools compared to 
control lines. 
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Fig. S22. Volcano plots of specific differentially accumulated lipids in ptEnolaqse mutants under 8C CL conditions. These plots shows (horizontal axis) log2 accumulation ratios 
and (vertical axis) –log10 ANOVA Pvalues for separation of mean proportions of specific fatty acids, across all fatty acids observed in a specific lipid class in ptEnolase mutants versus 
control lines, and ptEnolase mutants versus ptPGAM1A mutants harvested under 8C CL conditions, shown as per Fig. S19. No sigificantly differentially accumulated (P < 10-05) lipids 
were observed in corresponding comparisons of ptPGAM1A mutants and control lines. These data suggest specific overaccumulations in short-chain sn-1 MGDG, DGDG, and sn-2 
SQDG-in ptEnolase mutants compared to other lines. 

A) 

B) 

0 

10 

20 

30 

40 

8C CL, DGDG 

0 

10 

20 

30 

SQ
D

G
 1

4-
0_

16
-0

 
SQ

D
G

 1
4-

0_
16

-1
 

SQ
D

G
 1

4-
0_

16
-2

 
SQ

D
G

 1
4-

0_
24

-0
 

SQ
D

G
 1

6:
0_

18
:3

 
SQ

D
G

 1
6:

0_
18

:4
 

SQ
D

G
 1

6-
0_

24
-0

 
SQ

D
G

 1
6-

1_
16

-0
 

SQ
D

G
 1

6-
1_

16
-2

 
SQ

D
G

 1
6-

1_
24

-0
 

SQ
D

G
 1

6-
2_

16
-0

 
SQ

D
G

 1
6-

2_
24

-0
 

SQ
D

G
 1

8-
0_

18
-0

 
SQ

D
G

 1
8-

2_
24

-0
 

SQ
D

G
 1

8-
3_

24
-0

 
SQ

D
G

 2
0-

5_
14

-0
 

SQ
D

G
 2

0-
5_

16
-0

 
SQ

D
G

 2
0-

5_
18

-0
 

SQ
D

G
 2

0-
5_

18
-1

 
SQ

D
G

 2
0-

5_
24

-0
 

8C CL, SQDG 

ptEnolase 8C CL 

ptPGAM1A 8C CL 

Control 8C CL 

0 

20 

40 

60 

%
 a

cc
um

ul
at

io
n 

8C CL, MGDG 



		

Glucose-1-P 

Glucose-6-P 

Fructose-6-P 

Fructose-1,6-bisP 

Glyceraldehyde-3-P 

1,3-bis-phosphoglycerate 

3-phosphoglycerate 

2-phosphoglycerate 

ptPGAM1A,1B,2 

PEP 

ptEnolase 

Pyruvate 

Glucose-1-P 

Glucose-6-P 

Fructose-6-P 

Fructose-1,6-bisP 

Glyceraldehyde-3-P 
1,3-bis-phosphoglycerate 

3-phosphoglycerate 

2-phosphoglycerate 

PEP 

		
Calvin Cycle 
RuBisCo+CO2 

Acetyl CoA 

NCL CL 8C 

		
		

Citrate 

Malate 
		TCA cycle 

Glyceraldehyde-3-P 

Glucose 

Galactose-1-P 
MGDG 

Glycolate 

Glyoxylate 

Malate Isocitrate 

Acetyl CoA 

		

Glycolate 

Glycine 

Serine 

Glycerate 

Acetyl 
CoA 

Fatty acids 

Triacylglycerols 

Oil body 

Peroxisome 

Mitochondrion Chloroplast 

Glyoxylate 

Hydroxypyruvate 

Glycerate 

Serine 

Cysteine 

Aspartate 

Lysine 

Homoserine 
Threonine, Methionine 

Isoleucine 

Valine,  
Leucine 

Valine, 
 Leucine 

Threonine, 
Methionine 

Isoleucine 
	 		

Shikimate 

Ribose-5-P 

Ribose-5-P 

		

	 			 		
Glutamate 

Keto-glutarate 

Glutamine 

Keto-
glutarate 

		
	 		
Glutamate 

Glutamine 

Aspartate 

		
Oxalo-
acetate 

Histidine 

Oxalo-acetate 

IPP 

Carotenoids, 
steroids 

Chlorophyll, Haem 

Myo-inositol, 
Sucrose 

Sucrose 

Arginine 

Ornithine Ornithine 

Urea Proline 

	 		
Alanine 

		
		

		

Fatty acids 

Phosphatidic 
Acid 

Diacylglycerols 

CER 
LPAT 

Larger flux Smaller flux ptEnolase mutants ptPGAM1A mutants 19C LD 19C CL 8C CL 

Light 
harvesting, 

photosynthesis 

Respiratory ETC 

Photoprotection 

Plastid biogenesis 

Elongation Desaturation 

DGDG SQDG 

Alternative 
electron flow 

Homoserine 

Aromatic AA 

Alanine 

Pyruvate 
		 	

Cysteine 

Aspartate 

Fig. S23. Systemic effects of plastidial glycolysis on Phaeodactylum organelle metabolism. 
This figure schematic diagrams of core Phaeodactylum chloroplast, mitochondrial and cytoplasmic 
metabolism pathways, and the proposed functions of plastidial glycolysis under 19C LD, 19C CL 
and 8C CL conditions based on combined transcriptomic, qPCR, metabolomic and lipid profiles.  


