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ABSTRACT 

Telomeres, the terminal repetitive DNA sequences at the ends of linear chromosomes, have 

strong associations with longevity in some major taxa. Longevity has been linked to rate of 

decline in telomere length in birds and mammals, and absolute telomere length seems to be 

associated with body mass in mammals. Using a phylogenetic comparative method and 30 

species of birds, we examined longevity (reflected by maximum lifespan), absolute telomere 

length, the rate of change in telomere length (TROC), and body mass (often strongly associated 

with longevity) to ascertain their degree of association. We divided lifespan into two life-history 

components, one reflected by body size (measured as body mass), and a component that was 

statistically independent of body mass. While both lifespan and body mass were strongly 

associated with a family tree of the species (viz., the phylogeny of the species), telomere 

measures were not. Telomere length was not significantly associated with longevity or body 

mass, or our measure of mass-independent lifespan. TROC, however, was strongly associated 

with mass-independent lifespan, but only to a much lesser degree at best with body mass-

predicted lifespan. Our results supported an association of TROC and longevity, in particular 

longevity that was independent of body size and part of the pace-of-life syndrome of life 

histories. 
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INTRODUCTION 1 

Telomeres are repetitive nucleotide sequences at the terminal regions of eukaryote 2 

chromosomes. They serve to protect healthy chromosomes from DNA repair mechanisms that 3 

otherwise act on the terminal ends of chromosomes, and organize the replication of DNA during 4 

cell division (de Lange 2009). During replication, telomere sequences may be lost, thus 5 

shortening the telomere end (Olonikov 1973). Telomerase may replace the lost sequences, thus 6 

lengthening it (Chan and Blackburn 2004). Nonetheless, cells with over-shortened telomeres 7 

become “senescent” or “self-destruct” (termed apoptosis). When apoptosis occurs, the DNA-8 

encoded information of the cell is removed from the organism (Blackburn 2000). Thus, 9 

telomeres may play a role in both cell senescence (or alternatively in cell immortalization due to 10 

the activity of telomerase; Tian et al. 2018), accumulation of senescent cells in organs (Campisi 11 

2005), and organismal senescence (Blasco 2007; Young 2018). Further, accelerated telomere 12 

loss at a given chronological age may indicate decreasing organismal condition, especially during 13 

early development, and may underline both physiological stress and a shorter life (viz., 14 

advanced senescence; Haussmann et al. 2003; Bize et al. 2009; Boonekamp et al. 2014; Sudyka 15 

et al. 2016; Pepper et al. 2018; Whittemore et al. 2019; Sheldon et al. 2021). 16 

Previous studies have suggested that due to the association of rate of telomere loss from 17 

chromosomes and organismal senescence, telomere dynamics during life are closely and 18 

functionally associated with lifespan among species of different body sizes and pace of life (e.g., 19 

Dantzer and Fletcher 2015; Tricola et al. 2018). These studies primarily focused on birds, and 20 

recognized the possible importance of body size and historical patterns (viz., the influence of 21 

phylogeny) in explaining a general pattern of relatively slowed loss of telomeres during life in 22 
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larger species with syndromes of slower paces of life. These studies applied phylogenetic 23 

comparisons to 14 and 19 species of birds (TRF data), respectively, relatively small samples for 24 

robust phylogenetic analyses (though Dantzer and Fletcher 2016 presented an analysis that 25 

assumed no significant phylogenetic associations). Tricola et al. (2018) suggested that the rate 26 

of telomere shortening exhibited a strong historical pattern that may have coevolved with 27 

lifespan. Both studies concluded that larger species with relatively slower life histories exhibited 28 

reduced rates of telomere shortening.  29 

These key previous studies raised a series of questions that might be examined with a 30 

larger sample of species of birds. First, how flexible are telomere traits over phylogenetic 31 

history? Tricola et al. (2018) found that telomere length was not strongly influenced by the 32 

phylogenetic pattern, but telomere rate of change (TROC) was. Alternatively, Criscuolo et al. 33 

(2021) found that neither adult telomere length nor TROC showed a strong phylogenetic 34 

pattern in a corrected sample size of 52 bird species, a different result that needs to be 35 

explained.   36 

Second, how do longevity, body size, and the pace of life interact with telomere 37 

dynamics? Dantzer and Fletcher (2015) found that all three variables covaried strongly with 38 

TROC, and TROC was lower for the longest-lived bird species. The latter result was confirmed by 39 

Tricola et al. (2018) with or without body mass used as a covariate. In a phylogenetic 40 

comparative analysis of 9 species of birds and mammals, Le Pepke and Eisenberg (2020) 41 

reported a low rate of telomere loss in long-lived species, but a trivial effect of body mass. 42 

These studies took a phylogenetic comparative approach where regressions were used to 43 

“control” for the phylogenetic patterns underlying variables. Still, none of them quantified how 44 
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those phylogenetically-controlled patterns of telomere dynamics change with lifespan at a given 45 

body size; that is, when influences of body size are statistically controlled (Udroiu 2020).  46 

Third, does telomere length per se change with species lifespan, with or without the 47 

influences of body size taken into account? Gomes et al. (2011) studied 61 species of mammals, 48 

and found that adult telomeres were shorter in the longest-lived species. Both body mass and 49 

longevity showed significant negative associations with telomerase and telomere length, 50 

respectively, independent of the phylogenetic pattern among the species (Gorbunova and 51 

Seluanov 2009). The conclusion of Gomes et al. (2011) was that, for large species to evolve long 52 

lifespans, replicative aging occurred (i.e., short telomeres combined with repressed telomerase 53 

activity). A result confirmed by a re-analysis of the same dataset recently (Pepke and Eisenberg 54 

2021), with emphasis on an inverse association of telomere length with body mass. These 55 

results suggest that short telomeres may have co-evolved in long-lived species as a 56 

consequence of body size, underlying the necessity for large species to control for higher risks of 57 

cell immortalization by a widespread cellular mechanism (Tian et al. 2018). Interestingly, the 58 

phylogeny-adjusted analyses of Tricola et al. (2018) conducted in birds found no significant 59 

association of telomere length and longevity, whether or not influences of body mass were 60 

included. However, longevity and body mass are known to show strong covariance (Dantzer and 61 

Fletcher 2015), and thus may be collinear. The analyses of more bird species by Criscuolo et al. 62 

(2021), however, found no significant association of adult telomere length and either body size 63 

or the pace of life, with or without inclusion of the phylogenetic pattern in the analyses, though 64 

they did not specifically examine longevity and its single-trait association with telomere length. 65 

The purpose of our present study was to examine associations of telomere length and 66 
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TROC on the one hand, and body size and longevity on the other hand in birds. We did this using 67 

a restricted sample size of 30 of the bird species (see below for justification) reviewed in the 68 

comparative analysis of Criscuolo et al. (2021). We first asked whether any of the variables 69 

showed evidence of strong phylogenetic pattern, using the Bayesian meta-analysis approach of 70 

Hadfield and Nakagawa (2010). Longevity and body size are closely associated in birds (e.g., 71 

Bennett and Owens 2002; Dantzer and Fletcher 2015; Criscuolo et al. 2021). Larger species 72 

reflect many aspects of life histories that covary over evolutionary time, in part because it takes 73 

longer to grow and survive to a large body size (Dobson 2007). Further, bird species vary along a 74 

“slow-fast continuum” that reflects alternative paces of life that are independent of body size 75 

(Gaillard et al. 1989). Thus, we examined variation in longevity that was strongly associated with 76 

body size (“mass-predicted lifespan”), and longevity that was statistically independent of body 77 

size (“mass-independent lifespan”). The latter reflects changes in lifespan that can be described 78 

as varying with the pace of life (Dobson and Oli 2007; Criscuolo et al. 2021). Because differences 79 

between phylogenetically-adjusted and unadusted assocations of traits can be biologically 80 

informative (Price 1997), we compared both of the aspects of lifespan to telomere length and 81 

TROC. 82 

We also addressed a further issue with respect to how TROC is measured.  First, our 83 

sample included estimates of TROC that used mean differences in telomere lengths between 84 

chicks and older birds (after Criscuolo et al. 2021). Such estimates have the advantage of 85 

including the chick period, when the greatest rates of telomere loss occur as birds age (Sidorov 86 

et al. 2009; Monaghan and Ozanne 2018), but they have the disadvantage of including 87 

individuals that do not survive to adulthood (Fletcher and Dantzer 2015). A bias may thus occur 88 
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between the samples of younger and older birds. Thus, we estimated TROC only from samples 89 

of adult birds. A further problem is that some estimates of telomere length measure only DNA 90 

sequences of the terminal telomere repeats, whereas other methods include DNA sequences 91 

from the body of the chromosome (Remot et al. 2021). We restricted our analyses to those 92 

studies that used the former methods and thus produced the best estimates of telomere 93 

lengths. 94 

 95 

MATERIAL AND METHODS 96 

Our earlier study examined associations between telomere variables and aspects of life 97 

history for bird species (Criscuolo et al. 2021). Our comparative analysis followed the 98 

recommendations of the preferred reporting items for systematics reviews and meta-analysis 99 

(PRISMA) statement (Liberati et al., 2009).   100 

In the present study, we focused on 30 species for which adult telomere length, TROC, 101 

and life history variables were all recorded. For these species, telomere lengths were estimated 102 

in kilobases (kb) using electrophoretic separation of telomere restriction fragments or by 103 

quantitative fluorescent in situ hybridization (respectively, TRF and Q-FISH; Remot et al. 2021). 104 

All studies used samples of erythrocytes. TROC was measured as the slope of telomere length 105 

regressed over age (kb/year) for each of the species (Haussmann et al. 2003; Tricola et al. 2018), 106 

but excluding the telomere lengths of hatchling chicks or yearlings (ages of 0-1 year). We 107 

followed Dantzer and Fletcher (2015) and Tricola et al. (2018) in using maximum lifespan in 108 

nature to typify longevity and mean adult female body mass to typify body size, and log-109 

transformed both variables. Among the 30 species of birds, body-size-independent aspects of 110 
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longevity (longevity associated with the pace of life) were estimated as the residuals of 111 

maximum lifespan regressed on mean female body mass, and these residuals were checked for 112 

normality using a Q-Q plot and Shapiro-Wilk test. When multiple sources were available, a mean 113 

value of adult telomere length or TROC was used. All sources are reported in the online 114 

supplementary information (ESM1). 115 

 We divided lifespan into two statistically independent parts, based on the regression of 116 

lifespan onto body size (as estimated by mean adult female body mass for each species). The 117 

first variable represented mass-associated aspects of lifespan, as indicated by the predicted 118 

values of lifespan from the regression, and termed “mass-predicted lifespan.” The residuals 119 

from the analysis were termed “mass-independent lifespan,” and these two measures of 120 

lifespan were statistically uncorrelated. The latter variable estimated lifespan at a given body 121 

size, and may be interpreted as a measure of lifespan on the slow-fast continuum of the pace of 122 

life (Gaillard et al. 1989; Dobson and Oli 2007).  Associations of telomere and lifespan variables 123 

were examined by comparison of both correlation and by phylogeny-adjusted correlation (after 124 

Price 1997). 125 

A phylogeny was obtained from BirdTree (Figure 1), with 100 phylogenetic trees 126 

downloaded from http://www.bird.tree.org (De Magalhaes and Costa 2009; Jetz et al. 2012) 127 

using ape, apTreeshape and caper R packages. Branch lengths were estimated using the 128 

coalescent method, thus reflecting an estimate of relative divergence times for the phylogeny 129 

(Rannala and Yang 2003). Associations of the bird phylogeny with adult telomere length, TROC, 130 

adult female body mass, maximum lifespan, and the residuals of lifespan on body mass were 131 

estimated using Hadfield and Nakagawa’s (2010) Markov chain Monte Carlo generalized linear 132 

http://www.bird.tree.org/


9 
 

mixed model (MCMCglmm; Hadfield 2010) package in R (R core team 2020). The MCMCglmm 133 

package was also used to produce phylogeny-adjusted estimate of associations of telomere, 134 

body mass, and longevity variables. 135 

MCMCglmm was used to produce two types of results: 1) an estimate of the 136 

phylogenetic pattern in each of the study variables (viz., 𝜌 = the proportion of variance that 137 

could be statistically accounted for by a matrix of the phylogenetic pattern); and 2) degree of 138 

correlation of pairs of variables with statistical adjustment to remove the statistical influence of 139 

the phylogenetic pattern. Pearson’s correlations, unadjusted for phylogeny, were also 140 

calculated for comparison with phylogeny-adjusted results. Cohen’s (1988) criteria for effect 141 

sizes of associations were applied: small r = 0.1, medium r = 0.3, and large r  0.5. 142 

 143 

RESULTS 144 

 The regression of maximum lifespan on adult female body mass was highly significant (R2 145 

= 0.59, F = 40.4, d.f. = 1,28, P < 0.0001). The residuals of this analysis were fairly close to a 146 

Gaussian distribution (Shapiro-Wilk statistic = 0.98, P = 0.84), and were used as an estimate of 147 

mass-independent lifespan. The positive association of maximum lifespan and body mass was 148 

strong and significant (r = 0.768, t = 6.4, d.f. = 28, P < 0.0001). 149 

 Maximum lifespan had a strong associations with the phylogenetic pattern (𝜌 = 0.805, 150 

[credible intervals] CI0.95 = 0.284 - 0.907, N = 30). Body mass (and thus mass-predicted lifespan) 151 

also had a strong association with phylogeny (𝜌 = 0.907, CI0.95 = 0.414 - 0.994, N = 30). Mass-152 

independent lifespan had at best a small association with phylogeny (𝜌 = 0.073, CI0.95 = 0.011 - 153 

0.495, N = 30). Adult telomere length and TROC had trivial to small associations with the 154 
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phylogeny (respectively; 𝜌 = 0.073 and 0.062, CI0.95 = 0.017 - 0.497 and 0.018 - 0.568, N = 30). 155 

Adult telomere length was not significantly correlated with maximum lifespan, mass-156 

predicted lifespan, or mass-independent lifespan (Figure 2a). Once the phylogenetic pattern was 157 

taken into account statistically, adult telomere length exhibited trivial to moderate correlations 158 

with different estimates of lifespan (adjusted maximum lifespan, r = 0.004, CI0.95 = -0.356 - 159 

0.394; adjusted mass-predicted lifespan, r = -0.132, CI0.95 = -0.499 - 0.271; adjusted mass-160 

independent lifespan, r = 0.108, CI0.95 = -0.232 - 0.768; all d.f. = 27, P > 0.20). It is noteworthy 161 

that the adults of large species tended to have shorter telomeres, but at a moderate correlation 162 

at best (unadjusted for phylogeny, r = -0.249, t = 1.4, N = 30, P = 0.18). 163 

TROC was significantly positively correlated with lifespan (r = 0.497, t = 3.0, d.f. = 28, P < 164 

0.01), and this pattern was similar but not significant when the phylogenetic pattern was taken 165 

into account (adjusted r = 0.366, CI0.95 = -0.057 - 0.637, d.f. = 27, P = 0.12) (Figure 2b). TROC 166 

exhibited a small to medium positive association with mass-predicted lifespan that was not 167 

significant (r = 0.288, t = 1.6, d.f. = 28, P = 0.12), and with phylogenetic “adjustment” this 168 

association turned slightly negative (adjusted r = -0.145, CI0.95 = -0.522 - 0.225, d.f. = 27, P > 169 

0.20). TROC and mass-independent lifespan exhibited a moderate but significant positive 170 

correlation (r = 0.432, t = 2.5, d.f. = 28, P = 0.02), and the effect size of this association was 171 

slightly lower but still significant when the phylogenetic pattern was taken into account 172 

statistically (adjusted r = 0.327, CI0.95 = 0.037 - 0.661, d.f. = 27, P = 0.04). 173 

 174 

DISCUSSION  175 
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Our first question concerned the association of life history and telomere variables with 176 

the phylogenetic pattern across 30 species of birds. Lifespan and body mass are well known to 177 

covary among bird species and exhibit strong phylogenetic constraint (e.g., Bennett and Owens 178 

2002; Dantzer and Fletcher 2015; Criscuolo et al. 2021). Less is known of phylogenetic 179 

influences on telomere dynamics, but Tricola et al. (2018) suggested little phylogenetic 180 

influence on telomere length and a significant influence on TROC. We found the expected fairly 181 

strong association of phylogenetic pattern and lifespan and mass-predicted lifespan, but a very 182 

weak association of the phylogeny with mass-independent lifespan (long or short life at a given 183 

body size). Telomere length and the rate of decline in telomere length over time exhibited weak 184 

associations with the phylogeny, contrary to the suggestion of Tricola et al. (2018). Given the 185 

fairly strong association of phylogeny with lifespan and body mass, however, it seemed 186 

reasonable to account for the phylogenetic pattern statistically when evaluating associations of 187 

lifespan, body mass, and telomere dynamics. 188 

Our second question was whether there was a strong association of lifespan and TROC, 189 

as suggested by Dantzer and Fletcher (2015) and Tricola et al. (2018). For this, we considered 190 

two aspects of longevity. Large animals live longer, as shown by a large number of studies on 191 

life-history traits that scale with body size (e.g., Gaillard et al. 1989; Read and Harvey 1989; Roff 192 

1992; Stearns 1992; Bennett and Owens 2002; Dobson and Jouventin 2007). Larger animals take 193 

longer to grow to adult size and must allocate considerable resources and effort to maintaining 194 

their large number of cells. As such, the first question about longevity is whether it is associated 195 

with the overall size of an organism (Dobson 2007). The second aspect of longevity is associated 196 

with the pace of life, along the so-called “slow-fast continuum” (Gaillard et al. 1989; Dobson and 197 
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Oli 2007). At a given body size, some species have greater maximum lifespan than others, and 198 

this may be associated with lower reproductive effort, and vice versa for short-lived species. 199 

Thus, alternative life-history tactics may be produced among species, at a given body size.  200 

For the first aspect of lifespan, that associated with the size of the species, mass-201 

predicted lifespan had a small association with TROC that was not statistically significant, with 202 

or without statistical adjustment for the phylogenetic pattern (note that with adjustment for 203 

phylogeny, the sign of this correlation turned negative, Figure 2b). However, our lifespan 204 

variable that was independent of body size (viz., mass-independent lifespan) had a moderate 205 

positive association with TROC as judged by its effect size, significant with or without statistical 206 

adjustment for phylogeny. These results suggest that TROC does not vary strongly with body 207 

size per se, but rather has at best a poor association with body size, such that longer-lived 208 

species that are somewhat larger exhibited only slightly less telomere loss than somewhat 209 

smaller species. However, at a given body size, birds exhibited a stronger pattern of association 210 

of relative longevity (i.e., a slow pace-of-life) and TROC. Species with the longest lives for their 211 

body mass exhibited the slowest rate of loss of telomeres during life. Thus, the division of 212 

lifespan into two parts associated with different aspects of life histories revealed biologically 213 

meaningful patterns of varying strengths.  214 

The analyses of Dantzer and Fletcher (2015), Tricola et al. (2018), Udroiu (2020), and Le 215 

Pepke and Eisenberg (2020) revealed a general pattern of positive association of longevity and 216 

TROC, but without testing for different underlying aspects of longevity. Our results revealed 217 

nuances to their conclusions: longevity and TROC showed no consistent pattern of change as 218 

body size increased, but rather there was a stronge pattern of longevity and TROC increasing 219 
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together at a given body size. This pattern likely underlies the positive associations of longevity 220 

and TROC found by previous studies. Overall, the general agreement of unadjusted and 221 

phylogeny-adjusted associations (Figure 2) may suggest that correlations in our results were 222 

little influenced by the historical evolutionary pattern reflected by the consensus phylogenetic 223 

tree. 224 

Our final question was whether adult telomeres were shorter in the larger and longest-225 

lived species, as suggested by Gomes et al. (2011) and Pepke and Eisenberg (2021) for 226 

mammals. This latter study suggested that telomere length coevolved with body size, such that 227 

large species have short telomeres, and thus facilitated the evolution of long lifespans, notably 228 

via the use of cell replication senescence and the reduction of risks of cell immortalization 229 

(Risques and Promislov 2018; Seluanov et al. 2018). On the other hand, Tricola et al. (2018) 230 

found a slight but non-significant positive association of telomere length and maximum lifespan 231 

among 19 species of birds. While we found that both longevity and body mass followed the 232 

phylogenetic pattern fairly closely, telomere dynamics did not. Nonetheless, we found little 233 

evidence of larger species having shorter telomeres, with or without statistical adjustment for 234 

the influence of the phylogenetic pattern (Figure 2a). In the light of our results, postulating that 235 

large birds use replication senescence, as larger mammals do, as a mechanism favouring long 236 

lifespan is still an unanswered question. This begs the question of whether at least some bird 237 

species have evolved specific anti-ageing or anti-cancer mechanisms that are similar to the 238 

telomere-related control suggested for long-lived mammalian species that weigh less than a 239 

kilogram (Gomes et al. 2011; Tian et al. 2018; but see Seluanov et al. 2018). 240 
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Comparative studies like the present one help to point out how aging mechanisms at the 241 

cell level may have coevolved with life histories among animal species. So far, as we have seen 242 

above, comparative studies have concluded that large body size and long lifespan have evolved 243 

with short telomeres and reduced loss of telomeres in mammals, or that longevity and reduced 244 

loss of telomeres (but not short telomeres) are matched in birds. This discrepancy might be 245 

attributed to the smaller range of sizes in birds, suggesting that if body size and the number of 246 

cells is the main constraint to the evolution of long telomeres, this may explain why birds show 247 

higher levels of telomere maintenance (e.g., via an enhanced telomerase expression) than 248 

mammals and long up-to Mb telomeres (Delany et al. 2000; Monaghan 2010). Our analysis that 249 

controlled for the effects of body size suggested that enhanced telomere maintenance has 250 

coevolved with longevity in birds independently of body size, and this differently, even in closely 251 

related species. This is, in addition to that of high glycemia and aerobic metabolism, a 252 

paradoxical association with avian longevity (Holmes and Harper 2018), a new aging enigma 253 

that requires continued exploration in relation to species’ evolutionary histories. 254 
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 409 

FIGURE LEGENDS  410 

Figure 1. Phylogenetic tree of the 30 bird species for which adult telomere length and telomere 411 

length rate of change (TROC) were collected from published papers on avian telomeres using 412 

the TRF or Q-FISH methodologies.  The consensus phylogenetic tree was obtained from 413 

BirdTree.org (100 trees). 414 

 415 

 416 

Figure 2. a) Correlations of adult telomere length and 3 life-history traits of 30 bird species:  417 

lifespan, mass-predicted lifespan, and mass-independent lifespan. b) Correlations of telomere 418 

length rate of change (TROC) and the 3 aspects of longevity. “Lifespan” shows unadjusted 419 

correlations, “Mass-Pred Lifespan” shows lifespan values predicted from the regression of 420 

lifespan on body size, and “Mass-Ind Lifespan” shows the residuals of the regression of lifespan 421 

on body size. Pearson correlations are shown with horizontal center bars and 95% confidence 422 

intervals with high and low horizontal bars. Triangles show the phylogeny-adjusted correlation 423 

values (none are significantly different from zero at the P < 0.05 level). The horizontal black 424 

dashed lines show zero correlation. 425 

426 
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FIGURES  427 

Figure 1. Phylogenetic tree of the 30 bird species for which adult telomere length and telomere 428 

length rate of change (TROC) were collected from published papers on avian telomeres using 429 

the TRF and q-FISH methodologies.  The consensus phylogenetic tree was obtained from 430 

BirdTree.org (100 trees). 431 
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Figure 2. a) Correlations of adult telomere length (TL) and 3 life-history traits of 30 bird species:  435 

lifespan, mass-predicted lifespan, and mass-independent lifespan. b) Correlations of telomere 436 

length rate of change (TROC) and the 3 aspects of longevity. “Lifespan” shows unadjusted 437 

correlations, “Mass-Pred Lifespan” shows lifespan values predicted from the regression of 438 

lifespan on body size, and “Mass-Ind Lifespan” shows the residuals of the regression of lifespan 439 

on body size. Pearson correlations are shown with horizontal center bars and 95% confidence 440 

intervals with high and low horizontal bars. Triangles show the phylogeny-adjusted correlation 441 

values (none are significantly different from zero at the P < 0.05 level). The horizontal black 442 

dashed lines show zero correlation. 443 
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