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A BIRATIONAL INVOLUTION

PIETRO BERI, LAURENT MANIVEL

Abstract. Given a general K3 surface S of degree 18, lattice theo-
retic considerations allow to predict the existence of an anti-symplectic
birational involution of the Hilbert cube S

[3]. We describe this invo-
lution in terms of the Mukai model of S, with the help of the famous
transitive action of the exceptional group G2(R) on the six-dimensional
sphere. We make a connection with Homological Projective Duality by
showing that the indeterminacy locus of the involution is birational to
a P2-bundle over the dual K3 surface of degree two.
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1. Introduction

Consider a complex algebraic K3 surface S whose Picard group is gener-
ated by an ample line bundle H such that H2 = 2t (a very general element
of the 19-dimensional moduli space of 2t-polarized K3 surfaces). A clas-
sification of the group of biregular automorphisms of the punctual Hilbert
scheme S[n] := Hilbn(S) has been given by Boissière, An. Cattaneo, Nieper-
Wißkirchen and Sarti [7] for n = 2, and by Al. Cattaneo for all n ≥ 3 [8].

In particular Aut(S[n]) is either trivial or generated by an involution which
is non-symplectic. More recently, extended lattice theoretic considerations
allowed Al. Cattaneo and the first author to decide whether S[n] admits non
trivial birational endomorphisms [4]. When it does, there exists a unique
such endomorphism, a birational involution that may be symplectic or non
symplectic. The precise result is the following:

Theorem 1. Suppose t ≥ 2. There exists a non-trivial birational automor-

phism σ ∈ Bir(S[n]), which is necessarily an involution, if and only if:

(1) d = t(n− 1)is not a square,

(2) the minimal non trivial solution (X,Y ) of Pell’s equation

X2 − dY 2 = 1 with X = ±1 mod n− 1

is such that Y is even and (X,X) = (1, 1), (1,−1) or (−1,−1) in

Z/2(n − 1)Z × Z/2tZ.

Such a statement does not provide much insight on how to construct this
birational involution geometrically, when it does exist. Some cases have been
explicitely described in [4, Examples 6.1, 6.2], for t = 2 and n = 6, 8, 18. A
few other cases had been known before:

• Suppose t = n, so that H embeds S into Pn+1, as a surface of degree
2n. If we choose n points p1, . . . , pn in S in general linear position,
they generate a codimension two subspace of Pn+1, which in general
cuts S at 2n distinct points p1, . . . , pn and q1, . . . , qn. This yields the
Beauville involution, which is non-symplectic, and biregular only for
n = 2 (that is for quartics in P3).

• Suppose n = 2 and t = 5, so that S is embedded in the Grassman-
nian G(2, 5) as the tranverse intersection of a quadric Q and three
hyperplanes H1,H2,H3. In particular the linear span of S intersects
the Grassmannian along F = G(2, 5) ∩ H1 ∩ H2 ∩ H3, which is in
general a smooth Fano threefold of index two. Now consider two
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general points p1, p2 in S, defining two transverse planes P1, P2 in
C5. The Grassmannian G(2, P1⊕P2) is a four dimensional quadric in
G(2, 5), its intersection with F is a conic, and its intersection with
S = F ∩ Q therefore consists in general in four points p1, p2 and
q1, q2. This yields the O’Grady involution [32, section 4.3].

• Suppose n = 3 and again t = 5, so that S can be described as
before. Given three general points p1, p2, p3 in S, defining three
planes P1, P2, P3 in C5, or equivalently three lines ℓ1, ℓ2, ℓ3 in P4, it
is a classical fact that there exists a unique line ℓ0 meeting these
three lines. Equivalently, if Σℓ ⊂ G(2, 5) is the codimension two
Schubert cycle parametrizing lines in P4 that meet a given line ℓ, then
Σℓ1 .Σℓ2 .Σℓ3 = 1. Since Σℓ has degree three, the intersection Σℓ0 ∩ S
consists in the three points p1, p2, p3 (since ℓ0 ∈ Σℓi is equivalent to
ℓi ∈ Σℓ0), and three other points q1, q2, q3 [10, Example 4.12].

In fact there are some easily identified infinite sequences of pairs (n, t),
described in [4, Prop. 2.6 (i)], that satisfy the conditions of Theorem 1: fix
any k > 0 and take t = (n − 1)k2 + 1, for any n ≥ 2. Taking k = 1 we
recover the Beauville involution. For k = 2 only the case n = 2 has been
described, this is the O’Grady involution. In this paper we describe the next
case, n = 3 and t = 9.

A general K3 surface of degree 2t = 18, or equivalently of genus 10 admits
a Mukai model: it can be described as a codimension three linear section
of the adjoint variety of the exceptional Lie group G2, the closed G2-orbit
inside the projectivized adjoint representation [30]. We denote this five
dimensional homogeneous space by Xad(G2) ⊂ P(g2), so that

S = Xad(G2) ∩ L

for some codimension three linear subspace L of P(g2).
Recall that G2 can be described as a subgroup of SO(7). This means in

particular that G2 has a natural representation V7 of dimension 7, which is
irreducible, and that it preserves some non degenerate quadratic form Q.
Since then g2 ⊂ so7 ≃ ∧2V7, we deduce that the adjoint variety Xad(G2),
which is the minimal orbit in P(g2), must be a subvariety of G(2, V7). In
fact there is a diagram

Xad(G2) →֒ OG(2, V7) →֒ G(2, V7)
↓ ↓ ↓

P(g2) →֒ P(∧2V7) = P(∧2V7)

where the vertical arrows are embeddings.

So let p1, p2, p3 be generic points on S. They can be identified with three
planes P1, P2, P3 ⊂ V7. In general, these three planes generate a hyperplane
V6 ⊂ V7. Let ℓ denote the orthogonal line to H with respect to the quadratic
form Q. We will prove that the stabilizer of ℓ in g2 is a copy s of sl3. Hence a
linear space P(s) ≃ P7 inside P(g2). We will see that P(s) meets the adjoint
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variety Xad(G2) along a copy F of the complete flag variety of sl3. But
F has dimension three and degree 6, so its intersection with L in general
consist in six distinct points, p1, p2, p3 plus three other points q1, q2, q3. This
is our main construction of a birational endomorphism ϕ of S[3]:

Theorem 2. ϕ is a non trivial birational involution of S[3].

We also provide another interpretation of ϕ in terms of the extremal ray
H3 − 2δ of S[3], where H3 is the line bundle induced by the polarization H
of S and 2δ is, as usual, the class of the locus of non reduced subschemes.
A technical deformation argument allows us to prove:

Theorem 3. The linear system |H3 − 2δ| is base point free.

We show that the associated morphism φ|H3−2δ| is generically finite of
degree two, and that the birational involution ϕ is the corresponding deck
transformation. Moreover the indeterminacy locus I of ϕ can be described
in terms of subschemes of length three that do not span a hyperplane in V7.
Such subschemes are obtained from certain cubic scrolls in the adjoint vari-
ety, parametrized by what we call decomposing five planes: those codimen-
sion two subspaces of V7 over which the invariant three-form is completely
decomposed. We show:

Proposition 4. The variety of decomposing five planes is projectively equiv-

alent to the orthogonal Grassmannian OG(2, 7).

This statement is closely related to a recent paper by Guseva [15].
From our cubic scrolls we then get a rank five vector bundle K5 over

OG(2, 7), which is a subbundle of the trivial bundle with fiber g2. This vector
bundle already appears in Kuznetsov’s description of Homological Projective
Duality for the adjoint variety of G2, that he calls the G2-Grassmannian [23,
section 9]. Remarkably, the restriction of this bundle to Xad(G2) ⊂ OG(2, 7)
is the affine version of the contact distribution on the adjoint variety, which is
a notorious holomorphic contact manifold. This connects the construction
to the Grothendieck-Springer resolution of G2, a classical construction of
great importance in geometric representation theory [9, 5].

We will recover, with a slightly different perspective, Kuznetsov’s result
that this resolution factorizes through a degree two (generically finite) cover
of P(g2), branched over the projective dual ∆6 of the adjoint variety (which
is, interestingly, one of the two components of the discriminant hypersurface,
both of degree six). This is precisely this morphism which defines (outside
some closed subset) the Homological Projective Dual to Xad(G2) [23, Corol-
lary 9.10]. In particular, to the degree 18 K3 surface S = Xad(G2) ∩ P(L)
is associated a degree 2 K3 surface Σ, derived-equivalent to S (up to the
twist by a Brauer class), defined as the double cover of the projective plane
P(L⊥) branched over its intersection with the sextic ∆6.

This finally allows us to describe our indeterminacy locus:
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Theorem 5. The indeterminacy locus I of ϕ is birational to a P2-bundle

over the degree two K3 surface Σ.

The techniques we use are a mixture of G2-geometry with moduli inter-
pretations and stability conditions. Basic facts about G2 are recalled in
section 2. The involution ϕ is defined in section 3 where we prove Theo-
rem 2. The connections with the linear system |H3 − 2δ| are discussed in
section 4. Section 5 focuses on decomposing five-planes, and the proof of
Proposition 4. The relations with the Grothendieck-Springer resolution are
discussed is section 6. Theorem 5 is finally established in section 7. The
proof of Theorem 3, which involves a specific deformation argument, was
postponed to section 8.

All along we will find strong analogies, but also important differences, with
the story of Gushel-Mukai varieties and (double) EPW sextics, a story which
includes the O’Grady involution. Being able to upgrade the constructions
we discuss, in order to construct a new locally complete family of polarized
hyperKähler manifolds, is the main challenge that remains to be met.

Acknowledgements. We warmly thank G. Kapustka, E. Macri, G. Mongardi,
K. O’Grady for their comments and hints, and S. Kuznetsov for his careful
reading of a first draft of the manuscript. We also thank C. Bai, D. Mattei,
M. Varesco for useful discussions. P. Beri is supported by the ERC Synergy
Grant HyperK, agreement ID 854361. L. Manivel acknowledges support
from the ANR project FanoHK, grant ANR-20-CE40-0023.

2. Some G2 geometry

2.1. Classical preliminaries. There are two classical ways to understand
G2, which may be both useful according to the context. Here we work over
the complex numbers, and most of what follows is translated from the real
setting. In particular, each time in the sequel we deal with octonions and
the Cayley algebra O, we will be dealing with the complexified octonions
and the complexified Cayley algebra. We will not use any special notation
for this complexification, hoping this will not cause any confusion.

(1) (Cartan 1914) G2 can be defined as the automorphism group of the
Cayley algebra of octonions. Since the Cayley algebra O is normed,
it admits a G2-invariant quadratic form Q, and it splits othogonally
as O = C1⊕ V7, where V7 is the space of imaginary octonions.

(2) (Engel 1900) G2 ⊂ SL(V7) can be defined as the stabilizer of a
generic skew-symmetric three-form ω ∈ ∧3V ∨

7 . Then V7 inherits an
invariant quadratic form, defined up to scalar by

Q(x, y) = ιxω ∧ ιyω ∧ ω ∈ ∧7V ∨
7 ≃ C,

where ιx denotes the contraction by the vector x. Conversely, on
the space of imaginary octonions the skew-symmetric three-form is
given by the formula ω(x, y, z) = Re(x(yz − zy)) (where Re must
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be interpreted as the projection on the invariant part in the decom-
position O = C ⊕ V7. From this three-form one easily recovers the
octonionic product.

The two fundamental representations of G2 are V7 and the adjoint repre-
sentation on the Lie algebra g2, whose dimension is 14. The two associated
generalized Grassmannians are G2/P1 = Q5 ⊂ P(V7), the invariant quadric,
and the adjoint variety Xad(G2) ⊂ P(g2). There is a fundamental corre-
spondence

G2/B

||②②
②②
②②
②②

%%❑❑
❑❑

❑❑
❑❑

❑❑

Q5 Xad(G2),

where the two morphisms are P1-fibrations over Fano fivefolds, Q5 of index
five andXad(G2) of index three; both of them dominated by the flag manifold
G2/B, where B is a Borel subgroup.

As we already mentionned, since g2 ⊂ so7, the adjoint variety Xad(G2) is
a subvariety of G(2, V7), hence parametrizes some special planes. According
to our two viewpoints:

(1) Xad(G2) parametrizes the family of null-planes in V7, that is, those
planes P ⊂ V7 = Im(O) on which the octonionic product vanishes
identically [25, 28].

(2) Equivalently, Xad(G2) parametrizes the planes P = 〈x, y〉 ⊂ V7 such
that the double contraction ιxιyω = 0. In other words, ω(x, y, •) = 0,
showing that ω defines a global section of Q∨(1), the twisted dual
of the quotient bundle on G(2, V7), whose zero-locus is precisely the
adjoint variety.

2.2. Action of G2 on the six-dimensional sphere. One of the beauti-
ful properties of the real compact form of G2, which is the automorphism
group of the real octonions, is that it acts transitively on the six-dimensional
sphere, seen as the set of imaginary octonions of unit norm. This leads to
the well-known identification of the six-dimensional sphere with the quotient
G2(R)/SU3, or to the fact that G2(R) can be seen as the total space of a
SU3-principal bundle over S6. Note that over the real numbers, the sphere
is a double cover of the projective space of imaginary octonions.

Over the complex numbers this is if course no longer true, since there
exists octonions of norm zero. Instead we have the following statement.

Proposition 6. The action of G2 on P(V7) admits only two orbits, the five

dimensional quadric Q5 defined by Q, and its complement

P(V7)−Q5 ≃ G2/SL3.

That sl3 can be embedded inside g2 is completely clear from the root
system of g2 (just forget the short roots!). Another reformulation of the
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previous result is that the possible embeddings are parametrized by P(V7)−
Q5.

As in [28] we denote by α, β, γ three short roots summing to zero. Then
α − β, β − γ, γ − α are three long roots also summing to zero, and we get
the twelve roots of g2 by including the opposite of those six roots.

✲✁
✁
✁
✁
✁✁✕

❆
❆
❆
❆
❆❆❯

✛ ❆
❆
❆

❆
❆❆❑

✁
✁
✁

✁
✁✁☛

✻

✟✟✟✟✟✟✟✟✟✟✯

❍❍❍❍❍❍❍❍❍❍❨

❄

❍❍❍❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✟✟✟✙

α

β

γ

α− ββ − γ

γ − α
The root system of type G2

In fact, once we have fixed a maximal torus in g2 and obtained the pre-
vious decomposition, we also get a basis of V7 consisting in weight vectors:

V7 = Ce0 ⊕ Ceα ⊕ Ce−α ⊕ Ceβ ⊕ Ce−β ⊕ Ceγ ⊕ Ce−γ ,

and we can normalize so that the invariant three-form ω and the invariant
quadratic form Q have the following expressions in the dual basis:

ω = v0 ∧ (vα ∧ v−α + vβ ∧ v−β + vγ ∧ v−γ) + vα ∧ vβ ∧ vγ + v−α ∧ v−β ∧ v−γ ,

Q = v20 + vαv−α + vβv−β + vγv−γ .

In particular e0 has norm one, and it is clearly stabilized by the copy of
sl3 ⊂ g2 generated by the long roots. The restriction of V7 to this sl3
decomposes into V7 = Ce0⊕V3⊕V

∗
3 , where V3 = 〈eα, eβ , eγ〉 is a copy of the

natural representation of sl3, in duality with V ∗
3 = 〈e−α, e−β , e−γ〉 through

the quadratic form.

Proposition 7. The intersection of Xad(G2) ⊂ P(g2) with P(sl3) is a copy

Fl3 ⊂ P(sl3), the variety of complete flags in V3, which is the adjoint variety

of sl3.

Proof. Denote by θ : g2 → End(V7) the Lie algebra action. Consider the
incidence variety

I := {(p, ℓ) ∈ Xad(G2)× (P(V7)−Q5), θ(p)(ℓ) = 0}.
7



The fibers of the projection I→P(V7)−Q5 are the intersections that we want
to describe. Let us start with the fibers of the other projection I→Xad(G2).
By homogeneity we may consider a point p in Fl3 ⊂ P(sl3), so that p =
[e∗ ⊗ f ] for some non zero vector f ∈ V3 and some non zero linear form
e∗ ∈ V ∗

3 with 〈e∗, f〉 = 0. As we already observed, the restriction of V7 to
sl3 decomposes into C⊕V3⊕V

∗
3 , and it readily follows that the kernel of θ(p)

is C⊕He∗ ⊕Hf , where He∗ ⊂ V3 and Hf ⊂ V ∗
3 are the hyperplanes defined

by e∗ and f , respectively. This implies that the fiber of I over p is an open
subset of P4. So the dimension of I is equal to nine, and its relative dimension
over P(V7)−Q5 is three. This exactly means that for any sl3 ⊂ g2, stabilizing
some non isotropic line ℓ ∈ V7, the intersection of Xad(G2) with P(sl3) is
three dimensional. Therefore it has to coincide with Fl3, the minimal orbit
in P(sl3) and the only one to be three-dimensional. �

Given a point inXad(G2), it is easy to describe the kernel of its Lie algebra
action on V7.

Proposition 8. Let p be a point in the adjoint variety of G2, let π be a

generator of the corresponding line in g2. Then the action of π on V7 kills

a vector v if and only if v is Q-orthogonal to the null-plane P defined by p.

Proof. By homogeneity, we may suppose that p = [e∗ ⊗ f ] is a point of the
adjoint variety of some sl3 ⊂ g2. We have seen in the proof of Proposition
7 that the restriction of V7 to such an sl3 is of the form C⊕He∗ ⊕Hf . By
invariance, the quadratic form Q on V7 = C⊕V3⊕V ∗

3 has to be of the form
Q(x+ u + v∗) = ax2 + b〈v∗, u〉 for some non zero scalars a, b. This implies
that the Q-orthogonal to C⊕He∗ ⊕Hf is Cf ⊕Ce∗, hence exactly the plane
defined by p. �

3. The involution

In all the sequel we consider a very general K3 surface S of genus 10. By
the work of Mukai [30], S can be described as a generic codimension three
linear section of the adjoint variety of G2,

S = Xad(G2) ∩ L.

Let p1, p2, p3 be generic points on S. They can be identified with three null
planes P1, P2, P3 ⊂ V7. In general, these three planes generate a hyperplane
H ⊂ V7. Let ℓ denote the orthogonal line to H with respect to the quadratic
form Q. In general ℓ is not isotropic and by Proposition 6, the stabilizer
of ℓ in g2 is a copy s of sl3. By Proposition 7, the projectivization of s

meets Xad(G2) along a copy F of the complete flag variety Fl3 of sl3. By
Proposition 8, the three points p1, p2, p3 belong to P(s), hence to F by
Proposition 7.

Now, since F has dimension three and degree 6, its intersection with L
consists, in general, in p1, p2, p3 plus three other points q1, q2, q3. This defines
a rational endomorphism ϕ of S[3].
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Theorem 9. ϕ is a non trivial birational involution of S[3].

In particular, ϕ has to coincide with the non natural, non symplectic
birational involution whose existence was predicted in [4].

Proof. In general, with the previous notation, the intersection F ∩L consists
in 6 simple points p1, p2, p3 and q1, q2, q3 where F = Xad(g2)∩ P(s) and s is
the stabilizer of a non isotropic line ℓ ⊂ V7. By Proposition 8, a point p ∈ S
belongs to F if and only if the corresponding null-plane P is orthogonal to ℓ,
that is P ⊂ ℓ⊥. In particular, the three null-planes Q1, Q2, Q3 corresponding
to q1, q2, q3 are contained in H = ℓ⊥, and since in general they must be
transverse, we deduce that Q1 +Q2 +Q3 = H. So starting from the three
points q1, q2, q3 of S rather than p1, p2, p3 we would define the same copy s of
sl3 and the same copy F of Fl3. This implies that ϕ is a rational involution,
and thus birational. �

Remark. A more direct proof would simply consist in checking that, given a
general hyperplane H ⊂ V7, there are exactly 6 points in S corresponding to
null planes contained in H. This follows from a straightforward Chern class
computation. Indeed recall that Xad(G2) is defined in G(2, V7) by a general
section of Q∨(1). Restricting to G(2,H) we get Q∨

H(1) ⊕ O(1), where QH
denotes the rank four quotient bundle on G(2,H), and the top Chern class
of Q∨

H(1) is c4(Q
∨
H(1)) = σ4+σ31+σ22, of degree 1+3+2 = 6. Alternatively,

it is classical that the zero-locus of a general section of Q∨
H(1) on G(2,H) is

a copy of P2 × P2, whose degree is equal to six.

One can wonder what does happen when H⊥ ⊂ V7 is an isotropic line.
Let us briefly answer this question. Up to the action of G2 we may suppose
that the isotropic line is generated by e−γ , in which case the restriction of
the invariant three-form to H is

ωH = v0 ∧ vα ∧ v−α + v0 ∧ vβ ∧ v−β + vα ∧ vβ ∧ vγ .

This is a general element of the affine tangent space to G(3,H∨) at the
point defined by 〈v0, vα, vβ〉, and it distinguishes uniquely this space, as
well as the orthogonal projective plane P(A), where A = 〈e−α, e−β , eγ〉.
Moreover ωH induces an isomorphism ι between A and B = 〈eβ, eα, e0〉.
A straightforward computation shows that the section of Q∨(1) on G(2,H)
defined by ωH vanishes at a point defined by a plane P ⊂ H if either P ⊂ A,
or P = 〈v,w + ι(v)〉 for some v,w ∈ A. This defines a four dimensional
subvariety P of G(2,H), which can be described as the image of a birational
morphism from the total space of the vector bundle C := Q ⊕ O(−1) over
P(A) ≃ P2:

PP(A)(C) //

zzttt
tt
tt
tt

P � � // G(2,H)

P(A) F //oo
?�

OO

P(A∨)
?�

OO
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The exceptional divisor F = P(Q) ≃ Fl3 is contracted to the dual plane
P(A∨), which is the singular locus of P , with transverse singularities of type
A1. We thus get a singular, flat degeneration of P2 × P2.

Now, the additional condition that ω(e−γ , ., .) = 0 defines a hyperplane

section F̃ l3 of P , which is transverse outside P(A∨), but F̃ l3 is singular along
a line in P(A∨). Its preimage in P(C) is a P1-bundle over P(A) outside the
point [eγ ] over which we get the whole fiber. In particular the exceptional
divisor is the blowup of P(A) at that point. We finally get a diagram

I6

""❊
❊❊

❊❊
❊❊

❊❊

{{✇✇
✇✇
✇✇
✇✇
✇

Xad(g2) P(V ∨
7 )

where the incidence variety I6 is a P4-bundle over Xad(g2), while the fibers
of its projection to P(V ∨

7 ) are copies of Fl3 outside Q5, and copies of its

degeneration F̃ l3 over Q5.

Another consequence of Proposition 8 is the following statement, which
will be used in the next section:

Proposition 10. The direct sum map induces a rational map S[3]
99K P(V ∗

7 )
which is generically finite of degree 20.

Proof. Suppose a general hyperplane H in V7 defines six points
p1, p2, p3, q1, q2, q3 in S as above. Then the corresponding null planes are
in general linear position and the direct sum of any three of them is con-
tained, hence equal to H. This gives 20 points in the fiber of the direct sum
map. That there is no other follows from Proposition 8. �

This direct summap is very similar to the one that, given a smooth quartic
surface Σ ⊂ P3, maps Σ[2] to G(2, 4) by sending a length two subscheme of
S to the line it generates in P3. Obviously this is a generically finite cover
of degree 6 (finite if Σ contains no line).

4. The linear system |H3 − 2δ|

Recall that the second cohomology group H2(S[n],Z) ≃ H2(S,Z) ⊕ Zδ,
where 2δ is the class of the divisor of non reduced schemes. This decomposi-
tion is orthogonal with respect to the Beauville-Bogomolov form qBB, which
restricts to the intersection form on H2(S,Z). If we denote by L 7→ Ln the

embedding of H2(S,Z) inside H2(S[n],Z), this means that qBB(Ln) = L2.
On the other hand, qBB(δ) = −2(n − 1) (see e.g. [10, 3.2.1]).

The goal of this section is to show that the linear system that defines ϕ
is |H3 − 2δ|.

10



4.1. The movable and the nef cones. We first describe the movable cone
and the nef cone of S[3]. The following result is [4, Proposition 4.1] (d = 2
for t = 9) and [4, Lemma 3.6] with n = 3 and t = 4n − 3, we write down a
direct proof for the reader’s convenience.

Proposition 11. The movable cone of S[3] has two chambers, exchanged by

the action of ϕ.

Proof. The structure of the movable cone of S[3] is described in [3, Theo-
rem 13.1] in terms of Pell’s equations: it is the interior of the convex cone
generated by H3 and 4H3 − 9 × 17δ. The walls in the movable cone are
spanned by vectors of the form XH3 − 18Y δ for (X,Y ) a positive solution
of X2 − 72Y 2 = 8+α2, and α ∈ {1, 2}; this is [3, Theorem 12.3], translated
in term of generalized Pell’s equations using [8, Lemma 2.5] (see also [8,
Remark 2.8]). Actually, the vectors cutting chambers of the movable cone
are those for which 2Y

X
< 4

17 .
One can immediately check that there are no integral solutions when

α = 2, so we are left to consider solutions of X2 − 72Y 2 = 9, which in turn
are in the form (3X̃, Y ) with X̃2 − 8Y 2 = 1; the latter is a Pell equation
with minimal positive solution (3, 1). All the solutions of this equation can
be found recursively by letting

(X̃k+1, Yk+1) = (3X̃k + 8Yk, X̃k + 3Yk).

Moreover
X̃k+1

Yk+1
< X̃k

Yk
. The first two solutions are (3, 1), (17, 6). Note that

for the second one we have 2 Y2
3X̃2

= 4
17 , so this solution corresponds to a

boundary of the movable cone, and there is therefore exactly one wall inside
the movable cone. This also means that the ample cone is the interior of
the cone generated by H3 and 9H3 − 18δ; this last vector is proportional to
H3 − 2δ, which is the generator of the invariant lattice for the action of ϕ
by [4, First case of Proposition 2.2]. Then the action of ϕ in cohomology is
a reflection w.r.t. H3 − 2δ, exchanging the two rays of the movable cone,
hence the two chambers. �

Corollary 12. Nef(S[3]) = 〈H3,H3 − 2δ〉.

Moreover there is a biregular automorphism between S[3] and its bira-
tional model corresponding to the non ample chamber of the movable cone,
and we get the following statement.

Corollary 13. ϕ is the composition of a biregular morphism with the flop

associated to the wall between the two chambers of the movable cone.

Note that the extremal contraction asociated to the extremal ray H3−2δ
is defined by the linear system |k(H3 − 2δ)| for k >> 1. In the sequel we
focus on the linear system system |H3 − 2δ| itself.

11



4.2. First observations. We start by computing the dimension of the lin-
ear system |H3 − 2δ|.

Proposition 14. |H3 − 2δ| ≃ P9.

Proof. We know that H3 − 2δ is nef by Corollary 12. Moreover

qBB(H3 − 2δ) = H2 + 4δ2 = 18 + 4× (−4) = 2.

Since the Fujiki constant of S[3] is 15 [10, 3.2.1], this implies that (H3−2δ)6 =
15qBB(H3 − 2δ)3 = 120, in particular the class H3 − 2δ is big as well. We
can therefore invoke Kawamata-Viehweg and conclude that the number of
sections is given by the Riemann-Roch polynomial. But on a hyperKähler
fourfold X of K3-type we have (see e.g. [10, 3.3])

χ(X,L) =

(1
2qBB(L) + 4

3

)
,

hence the claim. �

Proposition 15. There is a natural identification

|H3 − 2δ| ≃ |I3(Sec(S))|.

Moreover, given a length three subscheme Z of S, not in the base locus, its

image in |I3(Sec(S))|
∨ is the hyperplane of cubics containing the projective

plane spanned by Z.

Proof. Given three distinct points p1, p2, p3 of S, corresponding to three lines
ℓ1, ℓ2, ℓ3 ⊂ g2, the fiber of H3 at Z = p1 ∪ p2 ∪ p3 is ℓ∨1 ⊗ ℓ∨2 ⊗ ℓ∨3 . A cubic
polynomial P on L defines a section of H3 whose evaluation at Z is given
by the polarisation P̃ of P , restricted to ℓ1 ⊗ ℓ2 ⊗ ℓ3. This section vanishes
on the locus of non reduced schemes E ≃ 2δ if and only if P̃ (x2, x2, x3) = 0
for any p2 = [x2], p3 = [x3] in S. This is equivalent to the condition that
P (sx2 + tx3) = 0 for any p2 = [x2], p3 = [x3] in S and any scalars s, t, hence
to the condition that P vanishes on Sec(S).

If again Z = p1 ∪ p2 ∪ p3 is reduced, the secant variety of S contains the
three lines p1p2, p2p3 and p3p1. So the restriction to the plane 〈Z〉 of a cubic
polynomial vanishing on Sec(S) is completely determined up to scalar. If
p1 = [x1], p2 = [x2], p3 = [x3], it is clear that P vanishes on the whole plane

if and only if P̃ (x1, x2, x3) = 0. This proves our last claim. �

If ϕ(Z) = p4 ∪ p5 ∪ p6, we know there exists a copy s of sl3 in g2 such
that the six points p1, . . . , p6 belong to P(s), hence to P(s) ∩ L. But the
latter is in general a P4, so the two planes 〈Z〉 and 〈ϕ(Z)〉 have to meet.
Generically they will meet outside the lines of the two triangles defined by
Z and ϕ(Z), and then a cubic vanishing on one triangle plus the span of the
other triangle has to vanish on both spans. This proves:

Corollary 16. The map φ|H3−2δ| factorises through the involution ϕ.
12



p5

p6

p4
p1

p2

p3

Remark. Here again there is a strong analogy with conics on Gushel-Mukai
fourfolds, which are all linear sections of copies of G(2, 4) inside G(2, 5).
In particular the linear system of quadratic equations of the Gushel-Mukai,
which contains the Pfaffian quadrics as a hyperplane, restricts to a pencil on
the plane spanned by the conic. So exactly as before, containing this plane
is just a codimension one condition on the linear system. See [18] for more
details.

Theorem 17. The linear system |H3 − 2δ| is base point free.

Proof. The proof relies on a technical deformation argument, and we post-
pone it to section 8. �

4.3. The secant variety and Pfaffian cubics. Since obviously Sec(S) ⊂
Sec(Xad(g2)), let us describe the latter. By [21] and [20], the secant variety
of Xad(g2) has dimension 10, hence defect one, and the generic entry locus
is a conic. (Recall that the entry locus of a general point p on the secant
variety of some variety Z, is the set of points z ∈ Z such that the line joining
p to z is a bisecant to Z, see [35].)

The action of G2 on Sec(Xad(g2)) has only finitely many orbits. This can
be seen directly by using the fact that since the secant variety is defective,
it is equal to the tangent variety. This reduces us to understanding the
isotropy representation. Since we will not use it in the sequel we omit the
proof of the next statement:

Proposition 18. The secant variety Sec(Xad(G2)) has four G2-orbits:

(1) The adjoint variety Xad(G2) itself.
(2) The orbit of [eα ∧ e−β + e−β ∧ eγ + eα ∧ eγ − e0 ∧ e−β], for which the

entry-locus is a double line.

(3) The codimension one orbit of [eα ∧ e−β + eβ ∧ e−γ ], for which the

entry-locus is a degenerate, reduced conic.

(4) The open orbit of [eα ∧ e−β + eβ ∧ e−α], for which the entry-locus is

a smooth conic.

For a variety likeXad(G2), which is cut-out by quadrics, the general expec-
tation is that the secant variety should be cut-out by cubics. Of course there
are many exceptions, typically when the codimension is not large enough.

13



Proposition 19. Sec(Xad(G2)) is not cut out by cubics, and in fact

I3(Sec(Xad(G2))) = V7.

We call the cubics defined by vectors v ∈ V7 the Pfaffian cubics, since
they are given by

Pv(x) = v ∧ x ∧ x ∧ x ∈ ∧7V7 ≃ C, x ∈ g2 ⊂ ∧2V7.

Note that the Pfaffian cubics have actually little to do with g2; in fact they
cut out in P(∧2V7) the secant variety of the whole Grassmannian G(2, V7);
otherwise said, tensors of rank at most four (when considered as skew-
symmetric forms on V ∨

7 ).

Remark. Note the strong analogy with the Pfaffian quadrics that cut out
G(2, V5) in P(∧2V5), and are parametrized by V5; these quadrics play a major
rôle in the study of Gushel-Mukai varieties.

Proof. According to Lie, S3g∨2 = [0, 3] ⊕ [2, 1] ⊕ [3, 0] ⊕ [0, 1] ⊕ [1, 0], where
we denote by [a, b] the irreducible g2-module with highest weight aω1+ bω2.
(In particular [1, 0] = V7 and [0, 1] = g2.) Since there is no multiplicity
bigger than one, the submodule spanned by cubics vanishing on the adjoint
variety must be the sum of some of these irreducible modules. It certainly
does not contain [0, 3], which is the space of cubics on Xad(G2), but it
certainly contains [1, 0] = V7, which can be identified with the space of
cubics vanishing on the whole secant variety of G(2, V7) (more precisely,
on its intersection with P(g2)). In order to complete the discussion, recall
that I2(Xad(G2)) = [2, 0] ⊕ [0, 0], the invariant factor being defined by the
Killing form K. This implies that the embedding of [0, 1] in S3g∨2 is given
by X 7→ PX with PX(Y ) = K(X,Y )K(Y, Y ). So the corresponding cubics
are in fact reducible and do not vanish on the secant variety.

There remains to understand the embeddings of [2, 1] and [3, 0] inside
S3g∨2 . For this we can use the embedding of S2V7 in S2g∨2 sending uv to the
polynomial Quv(Y ) = q(Y u, Y v). This induces an embedding of [2, 1] and

[3, 0] inside S3g∨2 since they are both contained in [2, 0]⊗ [0, 1] = S(2)V7⊗g2,

where S(2)V7 denotes the hyperplane in S2V7 spanned by tensors v2 with
Q(v) = 0. In fact there is a unique line of vectors of weight 2ω1+ω2 = 2α+ψ
in this tensor product, where ψ is the highest root, generated by e2α ⊗Xψ.
Its image is the reducible polynomial Y 7→ K(Y,Xψ)q(Y eα), which does not
vanish identically on the secant.

For the weight 3ω1 = 3α, the situation is different since there is a three-
dimensional space of weight vectors, among which we claim that

e2α ⊗Xα − eαe−β ⊗Xα−γ − eαe−γ ⊗Xα−β

is a highest weight vector. There remains to check that the corresponding
polynomial R(eα), sending Y ∈ g2 to R(eα)(Y ) given by

q(Y eα)K(Xα, Y )− q(Y eα, Y e−β)K(Xα−γ , Y )− q(Y eα, Y e−γ)K(Xα−β , Y )
14



does not vanish identically on Sec(Xad(G2)). For this we let Y = e−α ∧
eγ + eβ ∧ e−γ , that belongs to the line joining the two null-planes 〈e−α, eγ〉
and 〈eβ , e−γ〉. Then Y eα = eγ , Y e−β = e−γ and Y e−γ = −e−α hence
q(Y eα) = 0, q(Y eα, Y e−β) = 1 and q(Y eα, Y e−γ) = 0. We get R(eα)(Y ) =
−K(Xα−γ , Y ) 6= 0, since Y is a linear combination of Xγ−α and Xβ−γ with
non zero coefficients. �

By restricting Pfaffian cubics we get a natural inclusion V7 ⊂ I3(Sec(S)),

and this sublinear system defines a rational map S[3]
99K P(V ∨

7 ). The next
easy claim is that this coincides with the direct sum map.

Lemma 20. Consider S[3]
99K P(V ∨

7 ) as in Proposition 10. The diagram

S[3]

{{

φ|H3−2δ|

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

P(V ∨
7 ) P(I3(Sec(S))

∨)
pV ∨

7oo

commutes. In particular φ|H3−2δ| : S
[3] −→ P(I3(Sec(S))

∨) is generically

finite of degree d with d|20.

Proof. The rational map pV ∨
7

sends a projective hyperplane of cubics H to
the hyperplane in V7 consisting in the Pfaffian cubics Pv that belong to H.
Consider a general x = p1 + p2 + p3 ∈ S[3]. Choose a basis e1, . . . , e7 of
V7 such that the plane associated to ph is 〈eh, eh+3〉 for h = 1, 2, 3. Then
x∧ x∧ x = 6e1 ∧ e4 ∧ e2 ∧ e5 ∧ e3 ∧ e6, so Pv(x) = 0 if and only if v belongs
to 〈e1, . . . , e6〉. This implies the claim. �

Remark. The situation is in some sense close to that of Gushel-Mukai vari-
eties, which are defined by Pfaffian quadrics plus one extra, general quadric.
Here, the linear system of cubics containing Sec(S) is made of the Pfaffian
cubics, plus three extra cubics that remain mysterious. Equivalently, the
projective plane P(V ⊥

7 ) which is the center of the projection pV ∨
7

remains
elusive.

4.4. Computation of the degree. Let us determine the degree d of
φ|H3−2δ|. We will use a monodromy argument, based on some simple com-
binatorics. First note that by Corollary 16, d is even, and by Lemma 20, d
divides 20. So d = 2, 4, 10 or 20.

Proposition 21. d = 2.

Proof. Let us exclude the other possibilities. Recall that at the generic point
p1 + p2 + p3 of S[3] we have another point p4 + p5 + p6 of S[3] in the same
fiber, and that any other point in the fiber must be of the form pi+ pj + pk
and come with its complement pℓ + pm + pn, where {i, j, k} ∩ {ℓ,m, n} = ∅.
To simplify notations we will denote these pairs by (123|456) and (ijk|ℓmn),
where we can permute the two triples and the three integers in each triple.
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d = 4. Up to permutation of the indices, we can always suppose that the
four points in the fiber are given by the triples (123|456) and (124|356).
Then each triple contains a unique pair of points that are also contained in
another triple. This means that we would be able to split the generic point
of S[3] as the sum of a point of S[2] and a point of S, which is absurd!

d = 10. We will use the same idea as before, although this case is a bit more
involved combinatorially. We first remark that up to permuting the indices,
there are only three ways to choose 5 pairs of complementary triples among
six indices. We leave the following lemma to the reader.

Lemma 22. Up to permuting indices, any 5-tuple of complementary triples

of indices between 1 and 6 is equivalent to one of the following:

(123|456) (123|456) (123|456)
(134|256) (124|356) (124|356)
(145|236) (125|346) (134|256)
(156|234) (126|345) (135|246)
(126|345) (156|234) (145|236)

A nice combinatorial gadget in order to distinguish these 5-tuples is to
associate them a little graph by using the previous remark that each time
we have two pairs of complementary triples, we can arrange them in the
form (ijk|ℓmn) and (ijℓ|kmn). In particular the pair (kℓ) is distinguished.
So each 5-tuple yields ten pairs, which we can vizualise as the edges of a
graph. We get the three following graphs:

In particular the six points do not have the same combinatorial properties,
and in each case it easy to see that one of the points in the triples can be
distinguished, which is absurd.

d = 20. This means that all the triples pi + pj + pk belong to the fiber.
Denote by πijk the projective plane in L spanned by these three points,
when they are in general position. By Proposition 14, we conclude that
there is a hyperplane in I3(Sec(S)) consisting in cubics that vanish on the
20-planes πijk. Recall that the six points p1, . . . , p6 span the linear space
P(s)∩L, where s ≃ sl3, which is a P4. It is easy to check that a cubic on this
P4 vanishing on the 20 planes must vanish identically. We conclude that the
linear system |I3(Sec(S))| reduces on P(s) ∩L to a unique cubic. But since

16



these projective four spaces cover L, this would mean that the linear system
itself reduces to a single cubic, which is absurd. The proof is complete. �

Corollary 23. ϕ is the covering involution associated to φ|H3−2δ|.

Recall that φ|H3−2δ| is only generically finite; we will denote by I its
exceptional locus, defined as the union of its positive dimensional fibers.

Corollary 24. The indeterminacy locus of ϕ coincides with the exceptional

locus of φ|H3−2δ|.

In particular, call N the contraction of the indeterminacy locus of ϕ,
as given by the Stein factorization of φ|H3−2δ|. Then N is normal and ϕ
descends to a regular involution ϕ̄ of N . The quotient N/〈ϕ̄〉 is still normal,

hence isomorphic to the normalisation of φ|H3−2δ|(S
[3]). This is summarized

in the following diagram:

S[3]
φ|H3−2δ| //

c
  ❆

❆❆
❆❆

❆❆
❆❆

ϕ

MM φ|H3−2δ|(S
[3])

N

ν

99ssssssssss

ϕ̄

MM

&&▲▲
▲▲

▲▲
▲▲

▲▲
▲

N/ϕ̄

ν̄

OO

Remark. Note the analogy with the O’Grady involution, which yields a
similar picture where the map c : S[2] → N contracts a P2, N is a double
EPW sextic singular in c(P2) which is the inverse image of the Plücker

point, and N → φ|H3−2δ|(S
[2]) is the double cover ỸA → YA of a special

EPW sextic [32]. This is a situation where YA = φ|H3−2δ|(S
[2]) is normal

(although Y
[3]
A 6= ∅ does not have the expected dimension).

In our situation we do not know whether ν̄ is an isomorphism. But pur-
suing the analogy with EPW sextics, it would be tempting to imagine that
the double cover ν : N→φ|H3−2δ|(S

[3]) can be deformed to a locally complete
family of polarized hyperKähler sixfolds. This very natural question is also
discussed in [22].

4.5. Structure of the indeterminacy locus. Now we focus on the in-
determinacy locus I of the birational involution ϕ. By the previous corol-
lary, I coincides with the exceptional locus of the generically finite mor-
phism φ|H3−2δ|. By [27, Lemma 2.1.28], this is also the exceptional locus of
φ|k(H3−2δ)|, which is for k >> 1 nothing else than the extremal contraction
defined by the extremal ray H3 − 2δ.

Extremal contractions of holomorphic symplectic manifolds have been
extensively studied (see for example [16, 1]). We will use the methods and
results of [3] to describe the structure of our exceptional locus I. Our final

17



result will be that this locus can be described in terms of the degree two K3
surface associated to S by Homological Projective Duality [23, section 8] (to
be precise, the HPD to S is the degree-two K3 surface twisted by a Brauer
class). We will first use stability conditions to show that I is birational to a
P2-bundle over such a surface. In the next section, we will use the geometry
of G2 to show that the base of the fibration is exactly the expected surface.

Let us consider, see for example [3, Section 13] for a reference, S[3] as
the moduli space Mσ(1, 0,−2) of stable sheaves on S with Mukai vector
v = (1, 0,−2), for some generic stability condition σ with ℓ(σ) lying in the

ample chamber of S[3], where ℓ : Stab†(S) → NS(S[3]) is as in [3, Theorem

1.2]. As in the previous diagram we denote by c : S[3] → N the contraction
associated to the flopping wall generated by H3 − 2δ; here N is Mσ0(v)
for a stability condition σ0 with ℓ(σ0) ∈ R(H3 − 2δ). Once again, the
indeterminacy locus of ϕ is also the exceptional locus of c.

Proposition 25. The indeterminacy locus of ϕ is birational to a P2-bundle

over a K3 surface Σ. In particular it is irreducible.

Proof. In the following, we denote by v(E) the Mukai vector of an object
E ∈ K(Db(S)). A numerical description of the wall R(H3 − 2δ) is given
by [8, Lemma 2.5], and [4, Section 4]: the associate primitive, rank two,
hyperbolic lattice in H∗

alg(S,Z) is H = vZ + aZ with a = −(2,−H, 5); its

Gram matrix with respect to the base (v, a) is
[
4 1
1 −2

]
.

We take a look at the stability conditions in the potential walls associated
to H, see [3, Definition 5.2]. In particular, we focus on stability conditions
in the form

σα,β = (Cohβ(S), Zα,β) for (β, α) ∈ R× R>0,

whose central charge are of the form Zα,β = (eiαH+βH ,−), so

Zα,β(w0, w1, w2) = iαH · (w1 − βw0H)− w2 + βH · w1 +
H2

2
(α2 − β2)w0.

In the (β, α) half-plane in Stab†(S), we obtain a numerical semicircular
wall of center (−1

2 , 0) and radius 1
6 . The only spherical class in H is a =

−(2,−H, 5), so all the pairs (β, α) on the wall effectively correspond to
stability conditions by [2, Theorem 3.1], except for (β, α) = (−1

2 ,
1
6 ); the

latter does not give a stability condition, since in this case the evaluation
of Zα,β at a is zero. We pick (β0, α0) on the wall and just on the right side

of the critical value (−1
2 ,

1
6), so that the class a is effective with respect to

the stability condition (see [3, Proposition 5.5] for a definition of effective
classes in H).

We fix then σ0 = σα0,β0 ; since a2 = −2 and it is effective for σ0, the
moduli space Mσ(a) is a single point and is equal to Mσ0(a).

18



By [3, Theorem 2.18], curves inside the exceptional locus are given by σ-
stable objects which are S-equivalent with respect to the stability condition
σ0. Recall that S-equivalent objects with respect to a stability condition σ
are objects whose Jordan-Hölder filtrations have the same stable quotients;
the factors of the filtration have same phase with respect to σ0, hence their
Mukai vectors are in H, see [3, Proposition 5.1 (d)]. So we need classes
w1, w2 ∈ H such that w1 + w2 = v and w2

h ≥ −2 for h = 1, 2. More pre-
cisely, the decompositions really inducing contractions are already classified
by Bayer-Macr̀ı in [3, Theorem 5.7], or rather [3, Theorem 12.1] for the par-
ticular case of Hilbert schemes of points.
As we expected, a straightforward computation shows that the only possi-
ble decomposition in the form of the ones listed in [3] is v = a + (v − a).
Moreover, we cannot further decompose a and v − a as above.

Now we follow the proof of [3, Proposition 9.1] as an algorithm to find
the exceptional locus of c. We are in the case where a is effective, a2 = −2
and (a, v) = 1, and the parallelogram with vertices 0, a, v − a, v does not
contain any integer point other than the vertices. The description holds up
to birationality since, for particular elements in the contracted locus, the
filtration can be more complicated.

Call A the object with v(A) = a and F an object with v(F ) = v − a.
By definition of the Mukai pairing, we have −(v(A), v(F )) = χ(A,F ) =∑3

i=1 dim(Exti(A,F )), thus dim(Ext1(A,F )) ≥ (a, v − a) = 3. An explicit
computation shows that φ(A) > φ(F ), for φ the phase associated to σ =

(Cohβ(S), Zα,β) such that ℓ(σ) lies in the ample cone of S[3]. So, by [3,
Lemma 9.3], any extension F →֒ E ։ A is σ-semistable. Clearly any such
objects E,E′ have v(E) = v(E′) = v and are S-equivalent, so the morphism
c contracts the whole P(Ext1(A,F )) to a point.

Moreover, F varies in a moduli space Mσ(v − a), which is a K3 surface
Σ. So we obtain a family of dimension 2 + dim(Ext1(A,F )) − 1. The
exceptional locus of c is the indeterminacy locus of a flop between hy-
perKähler manifolds, so it has codimension at least two, hence we must
have dim(Ext1(A,F )) = 3. �

As it is clear from the proof above, up to birationality the morphism
c : S[3] → N contracts the fibers of a P2-bundle to the surface Σ, which is a
double cover of the projective plane P(V ⊥

7 ), center of the projection pV ∨
7
.

Lemma 26. The K3 surface Σ is a double cover of a projective plane,

ramified over a sextic curve.

Proof. We have seen that Σ =Mσ(v − a), so

NS(Σ) ∼=
(v − a)⊥

(v − a)Z
∼= (1, 0,−1)Z.

This implies the claim, the covering involution of Σ being the Mukai reflec-
tion associated to v. �
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5. More G2-geometry

5.1. Another perspective on the indeterminacy locus. An obvious
problem in the definition of ϕ occurs when we consider a scheme Z ∈ S[3]

that does not generate a hyperplane V6 ⊂ V7, which means that if U denotes
the restriction of the tautological rank two vector bundle on G(2, V7), the
restriction map

V ∨
7 −→H0(Z,OZ ⊗ U∨)

has a two-dimensional kernel; this is exactly the indeterminacy locus of the
rational map S[3]

99K |V7|
∨.

Outside this locus, Lemma 20 implies that any positive dimensional fiber
of φ|H3−2δ| must also be contracted by the direct sum map S[3]

99K |V7|
∨. If

a length three subscheme Z of S generates a hyperplane V6 ⊂ V7, recall from
the beginning of section 3 that ϕ(Z) is defined as a subscheme of F ∩ L,
where F is the copy of Fl3 defined by V6. In particular, there can exist
a positive dimensional fiber of the map S[3]

99K |V7|
∨ passing through Z

only when the length six scheme F ∩L contains infinitely many subschemes.
(Note that F ∩ L can never be positive dimensional withouth violating the
condition that Pic(S) = ZH.) This requires that F ∩ L has multiplicity
at least three at some point of its support, something that for L generic
occurs only in codimension at least four in S[3], and would give rise to one-
dimensional fibers. So we would get a component of I of dimension at most
three, and by Proposition 25 this is not possible. We conclude:

Proposition 27. I is contained in J = φ−1
|H3−2δ|(P(V

⊥
7 )), the locus

parametrizing length-three subschemes Z of S that only generate a V5 ⊂ V7.

On the other hand, we know that I is contracted in N to a two-

dimensional variety, birationally equivalent to Σ, and that N
ν
−→ P9 is fi-

nite on its image, since it is the second factor in the Stein decomposition of
φ|H3−2δ|. So necessarily φ|H3−2δ|(I) = P(V ⊥

7 ).
Unfortunately, at this point we are not able to conclude that I = J . Note

that J \ I would be mapped to P(V ⊥
7 ) with finite fibers, each point of which

would be a connected component of the corresponding fiber of φ|H3−2δ|. Such
a fiber would then have more than two connected components, and since the
degree is two this would mean that φ|H3−2δ|(S

[3]) cannot be normal, which
we do not know (see the discussion after Corollary 24).

Proposition 27 urges the need to understand length-3 subschemes of the
adjoint variety of G2, that generate a V5 ⊂ V7. The main result of this
section will be that these subschemes can be constructed from certain special
codimension two subspaces of V7. The proof that I = J will only come in
Proposition 43.

5.2. Hyperplanes and the three-form. Let us start by classifying hy-
perplanes. Taking their orthogonals with respect to the invariant quadratic
form, this is equivalent to classifying lines, so there are only two types, that
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we will call (with some abuse of terminology) isotropic and non isotropic
hyperplanes, respectively.

What about the restriction of the invariant-three form ω to these hy-
perplanes? Recall that non zero three-forms in six variables have only four
orbits, with the following normal forms (for e1, . . . , e6 a basis of linear forms):

Type 0 : e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6,
Type 1 : e1 ∧ e2 ∧ e4 + e2 ∧ e3 ∧ e5 + e3 ∧ e1 ∧ e6,
Type 2 : e1 ∧ e2 ∧ e3 + e1 ∧ e4 ∧ e5,
Type 3 : e1 ∧ e2 ∧ e3.

In type 0, the two planes 〈e1, e2, e3〉 and 〈e4, e5, e6〉 are uniquely defined
by the three-form (this is the one apparent double point property of the
Grassmannian G(3, 6)). In type 1 only the plane 〈e1, e2, e3〉 is canonically
attached to the three-from, which defines a tangent vector to G(3, 6) at the
corresponding point. By [24, Lemma 3.6], ω|V6 has type 0 when V6 ⊂ V7 is
a non isotropic hyperplane, and ω|V6 has type 1 when V6 is isotropic.

5.3. Codimension two subspaces. Slightly more difficult than the classi-
fication of hyperplanes, we proceed to the classification of codimension two
subspaces (or equivalently, of dimension two) up to the action of G2. Such a
plane defines a line in P(V7), which can be contained in Q5, or a tangent line,
or a bisecant line. We split the classification in the two following statements.

Proposition 28. Consider two points x 6= y on the quadric Q5 ⊂ P(V7).
Up to the action of G2, there are three possible relative positions.

(1) They are joined by a special line in the quadric, which means that

they span a null plane.

(2) They are joined by a non special line in the quadric, which means

that they span an isotropic plane which is not a null plane.

(3) They are not joined by a line in the quadric, which means that they

span a non degenerate plane.

Representatives of the three cases are (eα, e−β), (eα, eβ), (eα, e−α).

Proof. Suppose that the line xy is not contained in the quadric. This means
that the plane P ⊂ V7 generated by x and y is non degenerate. So it suffices
to show that G2 acts transitively on such planes. Let us prove the stronger
statement that G2 acts transitively on pairs (P, z), with P non degenerate
and z ⊂ P a non isotropic line. Recall that the stabilizer of z in G2 is a copy
of SL3, whose action on V7 decomposes as z ⊕ V3 ⊕ V ∨

3 . So we are reduced
to proving that SL3 acts transitively on the invariant quadric in P(V3⊕V

∨
3 ),

which is clear.
The remaining claims follow from the general fact that there are at most

two G-orbits of lines in any generalized Grassmannian G/P , P being a
maximal parabolic subgroup of a simple complex Lie group G [26, Theorem
4.3]. �
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Proposition 29. If x ∈ Q5 and xy is a tangent line not contained in the

quadric, then up to the action of G2 there are two possibilities.

(1) The linear form ω(x, y, •) is a non zero multiple of q(x, •).
(2) These two linear forms are not proportional.

Representatives of the two cases are (eα, e0) and (eα, eβ + e−β). The first
case is easier to express in the language of octonions: it means that the
plane 〈x, y〉 contains a unique isotropic line, generated by x such that the
octonionic product xy is a (non zero) multiple of x. We call such a plane
a semi-null plane. Alternatively, we may observe that (eα, e0) generate a
Lie subalgebra of g2 (whose derived algebra is generated by eα); this is the
point of view chosen in [15, Appendix A].

In the second case xy is still non zero, but does not belong to 〈x, y〉.

Proof. We may suppose that x is the line generated by eα, in which case the
sub-Lie algebra of g2 stabilizing x is

p = 〈t,Xβ−γ ,Xγ−β ,Xα,X−β ,X−γ ,Xα−β ,Xα−γ〉.

The first three terms generate a copy of gl2 which is the Levi part of this
parabolic subalgebra. The remaining terms generate the nilpotent part. One
checks that there is a minimal filtration of e⊥α /Ceα preserved by p, which is

〈eβ , eγ〉 −→ 〈e0〉 −→ 〈e−β, e−γ〉.

Vectors in 〈e−β, e−γ〉 generate with eα special lines contained in the quadric,
so we can discard them. Consider a vector of the form e0 + ae−β + be−γ . It
belongs to the P -orbit of e0, and we are in the first case of the Proposition.
Consider then a vector of the form u + ze0 + v. Up to the action of P we
may suppose that u = eβ . Using the action of P we can let z = 0. Then
we remain with the action of GL2 on V2 ⊕ V ∗

2 , whose only covariant is the
evaluation map. This means that we may suppose that v is orthogonal to
eβ, in which case u+ v is isotropic and we are back to a previous case, or it
is not, and we are in the second case of the Proposition. �

This finally yields a complete classification of the G2-orbits in G(2, V7).
Define a rank one plane to be a plane in V7 on which the restriction of the
invariant quadratic form Q has rank one.

Corollary 30. Up to the action of G2, a plane V2 ⊂ V7 can be:

(1) a null-plane,

(2) an isotropic plane which is not a null-plane,

(3) a semi-null plane,

(4) a rank one plane which is not semi-null,

(5) a non-degenerate plane.

Explicit representatives are 〈eα, e−β〉, 〈eα, eβ〉, 〈e0, eα〉, 〈e0, eα + eβ〉,
〈eα, e−α〉. Each case defines a unique orbit of the G2-action on G(2, V7),
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and the incidence diagram is
O7
semi

##●
●●

●●
●●

●●

��

O10
gen

// O9
rank1

;;✈✈✈✈✈✈✈✈✈

##❍
❍❍

❍❍
❍❍

❍❍
O5
null

O7
iso

OO

;;①①①①①①①①①

Here the exponents are the dimensions of the orbits. We will see in the
next subsection that Osemi andOiso are projectively equivalent. Considering
the Zariski closures of these orbits we get the diagram

LieGr(2, V7)
K
k

yysss
ss
ss
ss
ss

��

G(2, V7) C3? _oo Xad(g2)
J
j

ww♣♣♣
♣♣
♣♣
♣♣
♣♣

4 T

gg◆◆◆◆◆◆◆◆◆◆◆

OG(2, V7)

OO

3 S

ee❑❑❑❑❑❑❑❑❑❑❑

where C3 is a cubic hypersurface (indeed the restriction of the invariant
quadratic forms to planes yields a section of S2U∨, and the condition that
this restriction is degenerate gives a section of det(S2U∨) = OG(2,V7)(3)).
The notation LieGr(2, V7) is taken from [15, Appendix A].

5.4. Decomposing five-planes. When we restrict the invariant three-form
to a codimension two subspace V5 ⊂ V7, since a three-form in five variables
is the same as a two-form in five variables, there are three possibilities: we
could get zero, a form of rank two, or a form of rank four. The first case
is actually impossible, because if ω|V5 = 0, then the restriction of ω to any
hyperplane V6 ⊃ V5 must be of type 2 or 3, and we know that this cannot
happen.

Definition. A subspace V5 ⊂ V7 is decomposing if ω|V5 has rank two. Equiv-
alently, there exists linear forms e1, e2, e3 such that ω|V5 = e1 ∧ e2 ∧ e3. So

if V5 = 〈e6, e7〉
⊥, there exists two-forms θ6 and θ7 such that

ω = e1 ∧ e2 ∧ e3 + e6 ∧ θ6 + e7 ∧ θ7.

Note in particular that the five linear forms 〈e1, e2, e3, e6, e7〉 define a plane
A2 ⊂ V5, that we call the axis of the decomposing plane.

It is straightforward to translate this property in terms of our previous
classification of planes. Since being decomposing is a G2-invariant property,
it must hold when V2 = V ⊥

5 belongs to a certain union of G2-orbits in
G(2, V7). An explicit check yields the following conclusion.
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Proposition 31. A five-plane V5 is decomposing if and only if V2 = V ⊥
5 is a

null or a semi-null plane. Its axis A2 is an isotropic plane, which coincides

with V2 if and only if it is a null-plane.

From the axis A2, it is actually easy to reconstruct V5. The correspon-
dence between A2 and V2 induces an isomorphism between LieGr(2, V7) and
OG(2, V7), as noticed in [15, Proposition A.7]. This isomorphism is actu-
ally linear and can be described as follows. Recall the decomposition into
irreducible components

∧2V7 = g2 ⊕ V7,

where V7 ≃ V ∨
7 embeds into ∧2V7 by contraction with the (dual) invariant

three-form, and ∧2V7 maps to V7 by a similar contraction, whose kernel is
g2. Denote by ι the involution of ∧2V7 acting by +1 on g2 and by −1 on
V7. Starting from the Plücker representative eα ∧ eβ of the general isotropic
plane A2 as above, we first compute its image in V7 to be ω(eα, eβ) = e−γ .
Then we identify this vector with the two-form e−γ .ω = e0 ∧ e−γ − eα ∧
eβ. As a consequence, if we apply the symmetry ι of ∧2V7 defined by its
decomposition into g2-modules, we see that

ι(eα ∧ eβ) = e0 ∧ e−γ .

This is nothing else than the Plücker representative of V ⊥
5 , where V5 is the

unique decomposing five plane containing A2, that we computed above.

Corollary 32. LieGr(2, V7) = ι(OG(2, V7)).

Now we turn to the property that makes decomposing five-planes relevant
for our problems.

Proposition 33. Let V5 be a decomposing five-plane.

(1) The kernel of the map ω : ∧2V5 → V ∨
7 is a five-plane K5.

(2) If V ⊥
5 is not a null-plane, the intersection of Xad(G2) with P(K5) is

a cubic scroll.

Proof. For ψ ∈ ∧2V5, the contraction with ω yields

ιψ(ω) = ιψ(e1 ∧ e2 ∧ e3) + ιψ(θ6)e6 + ιψ(θ7)e7,

showing that the image of ω : ∧2V5 → V ∨
7 is V ⊥

2 . So the kernel K5 is five
dimensional.

Since K5 is contained in g2, the intersection of Xad(G2) with P(K5) is the
set of planes P = 〈p1, p2〉 such that ψ = p1 ∧ p2 belongs to K5 . Concretely,
this means that ιψ(θ6) = ιψ(θ7) = 0, and that ιψ(e1 ∧ e2 ∧ e3) also vanishes.
This latter condition precisely means that P meets V2 non trivially. Given
a line ℓ ⊂ V2, θ6 and θ7 cut the four-dimensional space ℓ ∧ V5 along a
plane, that does not contain ψ (for V5 generic at least). This implies that
Σ(V5) := Xad(G2)∩P(K5) is a surface scroll. In order to compute its degree,
we cut Σ with two extra hyperplanes, whose equations can be expressed as
the restriction to K5 ⊂ ∧2V5 of two extra linear forms θ8 and θ9. We get
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the set of planes 〈p, q〉, where p ∈ V2 and θi(p, q) = 0 for i = 6...9. For a
given line 〈p〉, q varies in V5/〈p〉 and we need the four linear forms θi(p, •)
on this space to be linearly independent. This is a cubic condition, and we
are done. �

We can compute the intersection Σ(V5) = G(2, V5) ∩ P(g2) for each type
of five planes. The result is presented in the table below.

V2 = V ⊥
5 Representative Σ(V5)

non degenerate 〈eα, e−α〉 smooth conic
rank one 〈e0, eα + eβ〉 reduced singular conic
isotropic 〈eα, eβ〉 double line
seminull 〈e0, eα〉 smooth cubic scroll
null 〈eα, e−β〉 cone over a rational cubic

An important consequence is the following. We say that a scheme
Z ⊂ G(2, V7) generates the linear space W ⊂ V7 if the linear span of Z
is contained in P(∧2W ), and W is minimal for this property.

Proposition 34. Let Z ⊂ S be a length three subscheme that does not

generate a hyperplane. Then it generates a decomposing codimension two

subspace of V7.

Proof. First observe that Z cannot generate a V4, because its linear span
would intersect G(2, V4) along a conic, that would be contained in S.

If Z generates a V5, it must be contained inside G(2, V5) ∩ Xad(g2). If
V5 is not decomposing, then V2 = V ⊥

5 is either non degenerate, rank one
or isotropic, and by the previous table G(2, V5) ∩Xad(g2) is a conic, so its
intersection with L is either a line, a conic or a finite scheme of length two.
But since it contains Z, the latter case is impossible and S must contain a
line or a conic, a contradiction. �

5.5. Vector bundles interpretations. A consequence of Corollary 32 is
that OG(2, V7) has two distinct G2-equivariant embeddings inside G(2, V7),
the natural one and its twist by ι. To each point A2 of OG(2, V7), we have
associated a decomposing five-plane V5 and its orthogonal V2 = V ⊥

5 , and
then the rank five kernel K5 of the contraction ∧2V5→V ∨

7 ≃ V7.

Definition. We denote by E2 and F2 the corresponding tautological vector
bundles on OG(2, V7). The rank two bundles E2 and F2 are subbundles of
the trivial bundle with fiber V7, and they coincide on Xad(G2). We also let
V5 = F⊥

2 which contains E2 as a subbundle. Note that the quadratic form
on V7 descends to a non degenerate quadratic form on the quotient V5/F2,
which is in particular self-dual. Finally, the morphism ∧2V5→V ∨

7 ⊗OOG(2,V7)

has constant rank by Proposition 33, its kernel is thus a rank five vector
bundle that we denote K5. All these bundles are G2-equivariant.
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By construction there is a commutative diagram

0 0
x

x

∧2(V5/E2) ∧2(V5/E2)x
x

0 −−−−→ K5 −−−−→ ∧2V5 −−−−→ E⊥
2 −−−−→ 0

∥∥∥
x

x

0 −−−−→ K5 −−−−→ E2 ∧ V5 −−−−→ F2 −−−−→ 0
x

x

0 0

We deduce that the determinants of our bundles are

det(E2) = det(F2) = det(V5) = OOG(2,V7)(−1), det(K5) = OOG(2,V7)(−3).

Recall that the adjoint variety Xad(G2) is a contact manifold, which means
that it admits a contact distribution, that is a corank one subbundleH of the
tangent bundle which is maximally non integrable. Exactly as there is also
an affine tangent bundle T̂ for the adjoint variety in its minimal embedding,
there is an affine contact bundle Ĥ, fitting in the diagram

0 0
y

y

O(−1) O(−1)
y

y

0 −−−−→ Ĥ −−−−→ T̂ −−−−→ O −−−−→ 0
y

y
∥∥∥

0 −−−−→ H(−1) −−−−→ T (−1) −−−−→ O −−−−→ 0
y

y

0 0

Proposition 35. On the closed orbit Xad(G2) ⊂ OG(2, V7), the vector bun-

dle K5 restricts to the affine contact bundle.

Proof. Recall that K5 is a subbundle of E2∧V5. Denote by L5 its restriction
toXad(G2). By the definition of null-planes, L5 contains ∧

2E2 as a subbundle
of rank one. We get an exact sequence

0−→L5/ ∧
2 E2−→E2 ⊗ V5/E2−→E2−→0.
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We can complete this sequence into a big commutative diagram as follows:

0 0 0
y

y
y

0 −−−−→ L5/ ∧2 E2 −−−−→ E2 ⊗ V5/E2 −−−−→ E2 −−−−→ 0
y

y
y

0 −−−−→ P −−−−→ E2 ⊗ V7/E2 −−−−→ V5 −−−−→ 0
y

y
y

0 −−−−→ O −−−−→ E2 ⊗ E∨
2

−−−−→ V5/E2 −−−−→ 0
y

y
y

0 0 0

where we have used the fact that on the adjoint variety, V5 = E⊥
2 and

therefore V7/V5 is naturally identified with E∨
2 . For the same reason V5 is

identified with (V7/E2)
∨, the dual of the quotient bundle Q. But recall that

inside G(2, V7), the adjoint variety can be defined as the zero locus of the
(generic) section of Q∨(1) defined by the invariant three-form. We conclude
that the middle horizontal exact sequence of the diagram above is the twist
by O(−1) of the normal exact sequence of the embedding of Xad(G2) inside
G(2, V7). In particular, the bundle P is nothing else than the twisted tangent

bundle T (−1). Thus L5/ ∧
2 E2 = H(−1), and therefore L5 = Ĥ. �

Remark. The previous observations already appear in [23, Lemma 9.4],
although the point of view there is a bit different.

6. A story with two planes

Our next task will be to describe the locus I ⊂ S[3] parametrizing length
three subschemes in S that do not span a hyperplane, which is the inde-
terminacy locus of the direct sum map S[3]

99K P(V ∨
7 ). By Proposition 27

this is also the exceptional locus of φ|H3−2δ|. Our description will be closely
related with Homological Projective Duality for the G2-Grassmannian, as
developped in [23].

6.1. The two planes. Note that K5 is by construction a subbundle of the
trivial bundle with fiber g2. In particular its dual is globally generated. Let
us first determine its space of global sections.

Proposition 36. H0(OG(2, V7),K
∨
5 ) ≃ g2.

Proof. We will use the exact sequence

0−→F∨
2 −→(E2 ∧ V5)

∨−→K∨
5−→0,

whose dual appeared in section 6.4. As observed in [15, Remark A.8], F∨
2 is

the spinor bundle on OG(2, V7), an irreducible homogeneous vector bundle.
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The Bott-Borel-Weil theorem implies that its higher cohomology vanishes,
while its space of global sections is isomorphic with the spin representation
∆8 of so7. Note that as a g2-module, ∆8 ≃ C⊕ V7.

Now we consider (E2 ∧ V5)
∨, and the exact sequence

0−→E∨
2 ⊗ (V7/E2)

∨−→(E2 ∧ V5)
∨−→∧2 E∨

2 −→0.

Note that ∧2E∨
2 is the Plücker line bundle; it has no higher cohomology on

OG(2, V7) and its space of global sections is ∧2V ∨
7 . Also E∨

2 ⊗ (V7/E2)
∨ has

a canonical section given by the morphism V7/E2→V7/V5 ≃ E∨
2 . Using the

fact that this bundle is the restriction of an irreducible homogeneous vector
bundle on the full Grassmannian G(2, V7), it is easy to check that this gives
the full cohomology, namely Hq(OG(2, V7), E

∨
2 ⊗ (V7/E2)

∨) = δq,0C. Putting
everything together we get an exact sequence

0−→∆8−→C⊕ ∧2V7−→H0(OG(2, V7),K
∨
5 )−→0,

and the result follows. �

Proposition 37. The zero locus of a general section of K∨
5 is the union of

two anticanonically embedded projective planes.

Proof. Since ωOG(2,V7) = OOG(2,V7)(−4) and det(K5) = OOG(2,V7)(−3), the
zero locus of a general section of K∨

5 must be a smooth anticanonically
embedded del Pezzo surface Z.

We may suppose that our section is defined by a general element of g2,
which we may choose to be a general element h in the Cartan subalgebra t.
Then we can compute explicitely the number of fixed points in Z = Zh of
the corresponding maximal torus T , as follows. We are looking for isotropic
planes A2, fixed by the torus, such that the corresponding K5 is orthogonal
to h. There exists 12 isotropic planes fixed by the torus: 6 of type 〈eα, e−β〉,
which are null planes, and 6 of type 〈eα, eβ〉, which are not. The first plane
A2 = 〈eα, e−β〉 is the axis of V5 = 〈eα, e−β , e0, eγ , e−γ〉, in which case

K5 = 〈eα ∧ e−β , eα ∧ e−γ , eγ ∧ e−β, e0 ∧ eα − e−β ∧ e−γ , e0 ∧ e−β , eα ∧ eγ〉

is orthogonal to the whole Cartan subalgebra, hence to h in particular. The
second plane A2 = 〈eα, eβ〉 is the axis of V5 = 〈eα, e−α, eβ , e−β , e−γ〉, in
which case K5 contains eα ∧ e−α − eβ ∧ e−β which is not orthogonal to h.

So finally we find exactly 6 fixed points, which are all null planes. As a
consequence of the Byalinicki-Birula decomposition [6], this implies that the
topological Euler characteristic χ(Zh) = 6. This leaves only two possibilities:
either Zh is a del Pezzo surface of degree 6, or it is the disjoint union of two
planes. We exclude the first case by observing that the difference with the
second case is the existence of lines.

Claim. For h generic, Zh contains no line.

By contradiction, consider a line d ⊂ OG(2, V7). Recall that a line in
G(2, V7) is the set of planes A such that L1 ⊂ A ⊂ L3 for some fixed line L1
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and three-plane L3; it is contained in OG(2, V7) when L3 is isotropic. As a
consequence d moves in an eight-dimensional family.

To each point x of d corresponds an isotropic plane A2(x) which is the axis
of a unique decomposing five-plane V5(x), to which we associate K5(x) ⊂ g2.
Then x belongs to p−1

2 ([h]) if and only if K5(x) ⊂ h. So let K(d) be the
linear span of the five-planes K5(x) for x ∈ d. If its dimension is δ, then
[h] must belong to a P13−δ. Since d moves in an eight-dimensional family, it
would be enough to check that δ ≥ 8 for any line d. By semi-continuity, it
is enough to check this for the most special lines.

What are these lines? The most special isotropic three-planes are those
that contain null-planes, in which case they contain a pencil of null-planes,
meeting along one line which is the most special line in the three-plane. In
other words, we may suppose that L1 = 〈eα〉 and L3 = 〈eα, e−β , e−γ〉. The
computation goes as follows. Suppose A2(x) = 〈eα, ue−β + ve−γ〉. Since

this is a null-plane, we know that the corresponding V5(x) = A2(x)
⊥ =

〈e0, eα, e−β , e−γ , veβ − ueγ〉. Then we get

K5(x) = 〈eα,−β, eα,−γ , e0,α − e−β,−γ , x(eα,γ − e0,−β)− y(eα,β + e0,−γ),
y2eβ,−γ − x2eγ,−β + xy(eβ,−β − eγ,−γ)〉.

So K(d) has dimension eight. This concludes the proof. �

6.2. The Grothendieck-Springer simultaneous resolution. Consider
the incidence variety

JOG :=
{
(x, s) ∈ OG(2, V7)× PH0(K∨

5 ), s(x) = 0
}
,

a smooth P8-bundle over OG(2, V7). The Stein factorization of the second
projection yields

JOG
p2 //

p1

��

P2

$$■
■■

■■
■■

■■
■

PH0(K∨
5 ) ≃ Pg2

OG(2, V7) J
OG

2:1

88qqqqqqqqqqqq

where it follows from Proposition 37 that JOG→J
OG

is generically a P2-

bundle, and J
OG

→P(g2) is a double cover.

In fact this double cover already appears in [23, Theorem 9.9], where it
is shown that it provides (at least outside some closed subset, and up to
a twist by a Brauer class) the Homological Projective Dual to the adjoint
variety of G2. Denote by JG2 the restriction of JOG to Xad(g2) ⊂ OG(2, V7).

Proposition 38. JG2 is the projectivisation of the vector bundle G2 ×P2 p2
over G2/P2 = Xad(G2).

Proof. By definition, JOG→OG(2, V7) is the projective bundle P(K
⊥
5 ). When

we restrict to Xad(G2), we know by Proposition 35 that K5 coincides with
the affine contact bundle, and we need to check that the orthogonal bundle
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(inside the trivial bundle with fiber g2) can be identified with the homoge-
neous bundle defined by the adjoint representation of P2 on its Lie algebra,
which is an easy exercise. �

A classical result in Lie theory asserts that for B ⊂ G a Borel subgroup
of a simple Lie group, with Lie algebras b ⊂ g, the adjoint action of B on b

defines a homogeneous vector bundle g̃ := G ×B b on G/B, with a natural
projection to g known as the Grothendieck-Springer simultaneous resolution

[9, Chapter 3]. Although it extends the classical Springer resolution of the
nilpotent cone, this is not a resolution stricto sensu, but a generically finite
cover. Note that it restricts to an unramified Galois cover, with the Weyl
group W of g for Galois group, over the open subset of regular semisimple
elements. In particular the branch locus is contained in the discriminant
hypersurface, the complement of the set of regular semisimple elements.

There also exists a variant of this construction for a parabolic subgroup
P ⊂ G, with Lie algebra p ⊂ g: the adjoint action of P on p defines a
homogeneous vector bundle g̃P := G×P p on G/P , and the natural projec-
tion to g is a generically finite cover of degree equal to the cardinality of
W/WP [5, 2.1.4]. Supposing that P ⊃ B we get a factorization of the usual
Grothendieck-Springer simultaneous resolution:

G×B b //

��

G×P p //

��

g

G/B // G/P

Specializing these results to P = P2 ⊂ G = G2, and projectivizing, we
deduce that JG2−→P(g2) is a generically 6 : 1 cover that factorizes the
Grothendieck-Springer simultaneous reolution. Let us make this statement
more concrete.

Lemma 39. Let X ∈ g2 be regular semisimple.

(1) There exists exactly 12 isotropic planes in V7 stabilized by X, among

which 6 are null planes.

(2) The 6 null-planes define in P(g2) the six sides of a hexagon. There

are only two triples of these null planes that are linearly independent.

(3) The 6 other isotropic planes define in P(g2) the sides of two triangles,

inscribed in the hexagon.

Proof. We may suppose that X belongs to our standard Cartan subalgebra
t, and then a plane stabilized by X must be generated by two eigenvectors
of the action of X on V7. Among those, there are 6 null planes of type
〈eα, e−β〉 (up to permutation of α, β, γ), and 6 other isotropic planes of type
〈eα, eβ〉. �
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eα

④④
④④
④④
④④

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗ e−β

❈❈
❈❈

❈❈
❈❈

♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

e−γ

❈❈
❈❈

❈❈
❈❈

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗ eγ

④④
④④
④④
④④

♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

eβ e−α

Because G2 is not simply laced, the discriminant hypersurface ∆ is the
union of two irreducible sextics ∆6 and ∆′

6 that can be characterized as
follows: X ∈ t belongs to ∆6 if a long root vanishes on X, and to ∆′

6 if a
short root vanishes on X. (But beware that the general elements of ∆6 and
∆′

6 are not semisimple.) Moreover, according to [34], the sextic ∆6 is the
projective dual variety of Xad(g2).

Lemma 40. Let X ∈ g2 belong to ∆′
6\∆6.

(1) If X is not semisimple, it stabilizes exactly 4 null planes.

(2) If X is semisimple, the variety of null planes stabilized by X is the

disjoint union of two points and two rational normal cubics.

Proof. We start with the case where X is semisimple, so we may suppose
that X belongs to our fixed Cartan subalgebra, and that no long root, but at
least one short root vanishes on X. Up to the action of the Weyl group, we
may suppose this short root is γ, so that α and −β take the same value onX.
Then the action of X on V7 has three eigenspaces A0 = 〈e0, eγ , e−γ〉, A+ =
〈eα, e−β〉, A− = 〈e−α, eβ〉. A null plane fixed by X must be generated by
two eigenvectors, and a straightforward computation shows that apart from
A+ and A−, we can get planes of the form 〈seα + te−β, ste0 + s2eγ − t2e−γ〉
or 〈se−α + teβ, ste0 + s2eγ − t2e−γ〉, for [s, t] ∈ P1. Hence the two rational
cubics.

If X is not semisimple, we may suppose that its semisimple part Xs is as
before, and then its nilpotent part can be supposed to be Xγ . Since they
commute, a null plane stabilized by X must be stabilized by both Xs and
Xγ . One readily checks that among the planes parametrized by the two
cubic rational normal curves, only 〈e−β , eγ〉 and 〈e−α, eγ〉 are stabilized (in
fact, annihilated) by Xγ . �

Lemma 41. Let X ∈ g2 belong to ∆6\∆
′
6.

(1) If X is not semisimple, it stabilizes exactly 3 null planes.

(2) If X is semisimple, the variety of null planes stabilized by X is the

disjoint union of a conic and two lines.

Proof. As for the previous lemma we start with the case where X is semisim-
ple, so we may suppose that X belongs to our fixed Cartan subalgebra, and
that no short root, but at least one long root vanishes on X. Up to the
action of the Weyl group, we may suppose this short root is α− β, so that
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α and β take the same value on X, half that of −γ. Then the action of
X on V7 has five eigenspaces A0 = 〈e0〉, B+ = 〈eα, eβ〉, B− = 〈e−α, e−β〉,
C+ = 〈eγ〉 and C− = 〈e−γ〉. A straightforward computation shows that the
null planes stabilized by X are parametrized by a conic in P(B+) × P(B−)
and the two lines P(B+)× P(C−) and P(B−)× P(C+).

When X is not semisimple we may suppose that its semisimple part Xs

is as before, while its nilpotent part is Xα−β . Then there is one fixed point
of Xα−β in the conic and each of the two lines, namely 〈eα, e−β〉, 〈eβ , e−γ〉
and 〈eγ , e−β〉. �

7. Back to the indeterminacy locus : conclusions

7.1. The branch locus. We first draw the conclusions of the previous dis-
cussion on the morphism JOG→P(g2). Restricting its Stein factorization to
JG2 we get a diagram

JOG
p2 //

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆
Pg2

JG2 //

OO 88♣♣♣♣♣♣♣♣♣♣♣♣♣
J
OG

p2 2:1

OO

which shows that the degree two morphism JOG→Pg2 factorizes the
Grothendieck-Springer resolution. Since we know the branch locus of the
latter, we can get precise information on the branch locus of the former
(compare with [23, Corollary 9.10]):

Proposition 42. The ramification locus of the map p2 : J
OG

→P(g2) is the

projective dual of the adjoint variety Xad(G2).

Proof. We know that the Grothendieck-Springer resolution is ramified over
the discriminant hypersurface ∆ = ∆6 ∪∆′

6. The branch locus of p2 must
therefore be (the projectivization of) one of these irreducible sextics, or their
union. So we just need to exclude ∆′

6 according to which the preimage of
a general point consists in four points. If p2 was ramified at such a point,
we would then get four points in a fiber of a morphism which is generically
finite of degree three: this is absurd. �

7.2. The dual K3 surface. Consider a decomposing five-plane V5 ⊂ V7.
When we cut out the cubic scroll

Σ(V5) = Xad(G2) ∩ P(K5) = G(2, V5) ∩ Pg2

with the codimension three linear space L = P(V11) ⊂ Pg2 that defines the
K3 surface S, we get the empty set in general, just for dimensional reasons.
But we get three points in general when we suppose L = P(V11) to be non
transverse to P(K5). This happens when the restriction morphism V ⊥

11→K∨
5

is not injective, hence in codimension three. So we get a four-dimensional
family D(S) of decomposing planes, which essentially parametrizes J .
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We will at last be able to deduce that J does coincide with the indeter-
minacy locus I of φ|H3−2δ|.

Proposition 43. J = I.

Proof. We know by Proposition 34 that a scheme Z from J ⊂ S[3] defines
a decomposing five-plane V5 ⊂ V7. Then Z is contained in Σ(V5), which is
by the Table before the same Proposition, either a smooth cubic scroll or a
cone over a twisted rational cubic. The linear span of Σ(V5) is P(K5) ≃ P4,
and it cannot intersect L properly: indeed, if it was the case Z would be
contained in a line, and since S is cut-out by quadrics this line would be
contained in S, which is impossible. So V5 belongs to the degeneracy locus
D(S) parametrizing the decomposing five planes for which P(K5) meets L
in codimension two.

Since K∨
5 is generated by global sections, for L generic D(S) has pure

codimension three in OG(2, V7), and its singular locus is the next degeneracy
locus, of codimension eight; so D(S) is in fact smooth, and everywhere of
dimension four. For V5 in D(S), the intersection Σ(V5) ∩ L must have
dimension zero, since otherwise, Σ(V5) being cut out by three quadrics, we
would get in S a curve of degree at most eight. So this intersection is a length
three scheme. We thus get a flat family of finite schemes over D(S), inducing
a morphism D(S)−→S[3]. By construction the image of this morphism is J ,
and it is injective since V5 can easily be reconstructed from Z = Σ(V5) ∩ L.

Although we do not know whether J is normal (and then isomorphic
to D(S), thus smooth in particular), we can at least deduce that J has
pure codimension four everywhere. In particular φ|H3−2δ| must contract it
to P(V ∨

7 ) with non trivial fibers at every point, which exactly means that
J ⊂ I. Since we already know from Proposition 27 that I ⊂ J , this concludes
the proof. �

With the notation L = P(V11) ⊂ Pg2, the fact that for V5 ∈ D(S), the
projective four-space P(K5) meets L in codimension two rather than three
means that the natural morphism V ⊥

11→K∨
5 has a one dimensional kernel.

This yields a morphism D(S)→P(V ⊥
11) ≃ P2. What are the fibers? A point

in P(V ⊥
11) is nothing else than a hyperplane H in g2 containing V11, and we

look at the locus where K5 ⊂ H. But this is exactly the zero locus of the
section of K∨

5 defined by an equation of H, hence in general the union of two
projective planes, by Proposition 37. So we have recovered the birational
structure of I obtained in Proposition 25, as a P2-bundle over a surface.

We can be more precise. The Stein factorization of D(S)−→P(V ⊥
11) is

D(S) //

p
!!❉

❉❉
❉❉

❉❉
❉

P(V ⊥
11) = P2

Σ

2:1

99ttttttttttt
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where the general fiber of p is a projective plane and the degre two finite
cover Σ−→P(V ⊥

11) is ramified along the smooth sextic curve cut out by the
projective dual ∆6 of the adjoint variety. As a consequence, Σ (which may a
priori be singular) must be birational to the K3 surface of degree two which
is homologically projectively equivalent, up to the twist by a Brauer class,
to the initial K3 surface S. We have finally proved:

Theorem 44. I is birational to a P2-bundle over the K3 surface of degree

two which is dual to S.

Remark. Note the following strange phenomenon. According to the previ-
ous discussion, the projective plane covered by the degree two K3 surface
Σ can be naturally identified with L⊥ = P(V ⊥

11). But it can also be identi-
fied with P(V ⊥

7 ), when we see P(V7) as the linear system of Pfaffian cubics
inside |I3(Sec(S))|, see the comment after the proof of Proposition 25. The
identification

L⊥ ≃ P(V ⊥
7 )

is certainly an important clue for understanding the linear system
|I3(Sec(S))|.

7.3. More about isotropic three-planes. In this section we suggest an-

other construction of the double cover p2 : J
OG

→P(g2) from the action of G2

on the isotropic subspaces of V7 of dimension two and three. Recall that the
orthogonal Grassmannian OG(3, 7) of isotropic 3-planes in V7 is isomorphic
to any of the two components of OG(4, 8), which by triality are isomorphic
to Q6.

Proposition 45. The action of G2 on OG(2, 7) has two orbits, the closed

orbit of null planes, and its complement.

The action of G2 on OG(3, 7) ≃ Q6 has also two orbits; the closed orbit is

isomorphic with Q5 and parametrizes the isotropic three-planes that contain

a pencil of null planes; those in the open orbit do no contain any null-plane.

Proof. The first assertion follows from Corollary 30. For the second one,
consider for example the three-plane 〈eα, eβ , eγ〉. A direct computation
shows that its stabilizer in g2 is copy of sl3, so its orbit has dimension
dim g2 − dim sl3 = 14 − 8 = 6. We conclude that OG(3, 7) contains an
open orbit of G2, and since any non trivial projective homogeneous space
under G2 has dimension five, the complement of this open orbit must be a
union of closed orbits. We can locate these closed orbits by looking at the
decomposition of ∧3V7 into irreducible g2-components, which is

∧3V7 = C⊕ Vω1 ⊕ V2ω1 .

This implies that there are three closed G2-orbits inside P(∧
3V7): a point and

two quadrics, one being embedded by a quadratic Veronese morphism. The
point simply corresponds to the (dual) invariant three-form, so it does not
belong to G(3, V7). The first quadricQ5 is embedded inside P(V ∨

7 ) = P(Vω1),
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which is itself embedded in P(∧3V7) by wedging vectors with the invariant
three-form ω and considering the result inside ∧4V ∨

7 ≃ ∧3V7; again we
never get a decomposed four-form and therefore, this copy of Q5 is not
contained in G(3, V7), a fortiori not either in OG(3, V7). We conclude that
OG(3, 7) contains a unique closed orbit, which is a copy of Q5, and our
claims follow. �

Now consider the incidence variety

I = {(P,X) ∈ OG(3, V7)× P(g2), X(P ) ⊂ P},

with its two projections p1 and p2.
For h ∈ g2 generic, say regular semisimple, the action of h on V7 is

diagonalizable with distinct eigenvalues, so the three-planes P stabilized
by h are generated by three eigenvectors. Among these 35 three-planes,
exactly 8 are isotropic, among which only two do not contain null-planes.
In particular p2 is generically finite of degree 8.

Now consider P ∈ OG(3, 7) and the fiber p−1
1 (P ). If P belongs to the

open orbit we have already used in the proof of Proposition 45 that the
fiber is a copy of sl3. If P belongs to the closed orbit, we can suppose that
P = 〈eα, e−β , e−γ〉. Then a direct computation shows that

stab(P ) = t⊕ gβ−γ ⊕ gγ−β ⊕ gα−β ⊕ gα−γ ⊕ gα ⊕ g−β ⊕ g−γ

has dimension nine. We deduce:

Proposition 46. The incidence variety I = I0 ∪ I1 has two irreducible

components: I1 is a P8-bundle over Q5, while I0 projects surjectively to

OG(3, V7), with eight-dimensional fibers. The projection to Pg2 is generically

finite of degree 2.

In words, the degree two morphism I0−→Pg2 can be described as follows:
if h ∈ g2 is generic, its centralizer is a maximal torus and defines a root
space decomposition of g2; keeping only the long roots we get a copy of sl3,
whose action on V7 decomposes as

V7 = C⊕ U3 ⊕ U ′
3.

The two isotropic three-planes U3 and U ′
3 represent the two points in the

fiber over [h].

8. Exceptional locus: the deformation argument

In this section we provide the proof of Theorem 3 or 17. The deformation
argument that we use relies on the properties of the period map [11], and is
also suggested in [22].
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8.1. The Heegner divisor D18. For the notation and the general ideas
about period maps, we refer to [11]. We fix Λ = U⊕3⊕E8(−1)⊕2⊕Zℓ, with
ℓ2 = −4; this is the model lattice for the cohomology group of a manifold
of K3[3]-type, with its Beauville-Bogomolov form. We will denote by {e, f}
a standard base for U , a copy of the hyperbolic plane. For any lattice R we
denote the discriminant group by AR. For any r ∈ R, we write divR(r) for
the divisibility of r in R. The class r∗ = [r/divR(r)] ∈ AR has order divR(r).

In order to use the period map in a proper way, in particular its surjectiv-
ity, we fix a connected component of the moduli space of marked manifolds
of K3[3]-type and any manifold of this kind considered in the sequel will be
taken from this component.

We denote by P the period domain associated to 2-polarized manifolds
of K3[3]-type - and divisibility 1, the only possibility for those degree and
dimension. Recall the construction of this period domain. We first fix h ∈ Λ
with the prescribed length and divisibility. In our case the divisibility is 1,
so by [14, Example 3.8] the construction does not depend on the choice of
h, and we take h = e+ f . Then P is obtained by quotienting one of the two
connected components of

Ω =
{
x ∈ P(h⊥) such that x2 = 0, (x, x̄) > 0

}

by the restriction to h⊥ of the group of monodromies fixing h (see [29,
Definition 7.2] for a definition of the group of monodromies of the abstract
lattice Λ). For us it is actually more convenient to see the period domain as

the quotient of the whole Ω by Ô(Λ, h) = {θ ∈ O(Λ) such that the action of
θ on Ah⊥ is ±id}, which is a double extension of the group of monodromies,
see [29, Lemma 9.2].

Definition. The Heegner divisor D2d is the image, in P, of the union of
K⊥ ∩Ω for all the primitive, hyperbolic, rank two lattices K ⊂ Λ such that
h ∈ K and K⊥ has discriminant −2d.

Inside P, we restrict to the Heegner divisor D18. Consider a manifold
of K3[3]-type X, together with a line bundle L of length 2 and a marking
sending L to h: the associated period point lies in D18 if and only if NS(X)

contains a primitive, rank-2 lattice K such that L ∈ K and K
⊥

H2(X,Z) has
discriminant −18.

For (X,D) a manifold of K3[3]-type with a line bundle whose class has
degree two, we call period point of (X,D), the point of P obtained by fixing
a marking ψ on X such that ψ(D) = h: there is a unique O(Λ)-orbit of
vectors of degree 2 and divisibility 1, see [12, Corollary 3.7], so for any D of
degree 2 there exists such a marking. By the surjectivity of the period map,
any point of P is obtained that way.

Definition. For any hyperKähler manifold X, we denote by Wexc the sub-
group of Mon2Hdg(X) generated by reflections with respect to classes of

stably prime-exceptional divisors, see [29, Definition 6.8] for details. An
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important feature of Wexc is that it acts simply transitively on the set of
exceptional chambers of X [29, Theorem 6.18].

By the action ofWexc ⊆Mon2Hdg(X), there is a line bundle D̃ of the same

degree as D inside the movable cone of X [29, Theorem 6.18 and Lemma
6.22]. This means that there exists a birational morphism φ : X ′

99K X such

that (X ′, φ∗D̃) is a manifold of K3[3]-type with a big and nef line bundle
(and even ample if the period point falls outside a finite number of Heegner
divisors). As a consequence, the periods of manifolds with a degree two big
and nef line bundle cover the whole of P.

Lemma 47. The Heegner divisor D18 is irreducible.

Proof. The Heegner divisor can be seen as the image, in P, of the union of
the hyperplanes κ⊥ ⊂ h⊥ such that κ ∈ h⊥, κ2 < 0 and the saturation of
Zh⊕ Zκ in Λ has discriminant −18.

The restriction of Ô(Λ, h) to h⊥ clearly contains the stable orthogonal

group Õ(h⊥) = {θ ∈ h⊥ acting trivially on the discriminant of h⊥}, by [13,

Lemma 7.1]. Since Ô(Λ, h) acts on a projective space, we also quotient out
by the action of −idh⊥ .

So, to prove the irreducibility of D18 it is sufficient to ask that, up to a

sign, there is a unique orbit, by the action of the polarized monodromy, of
vectors κ ∈ h⊥ such that the orthogonal complement of Zh ⊕ Zκ ⊂ Λ has
discriminant −18. The main tool we use is Eichler’s criterion [14, Lemma

3.3]: the Õ(h⊥)-orbit of a non-isotropic vector κ is determined by κ2 and
κ∗ ∈ Ah⊥ = (e− f)∗ × ℓ∗ ∼=

Z
2Z × Z

4Z .
Decompose κ = a(e − f) + bℓ + cm, where gcd(a, b, c) = 1 and m ∈

U⊕2 ⊕ E8(−1)⊕2 a primitive vector. For simplicity, we denote by s the
divisibility of κ in h⊥, s = gcd(2a, 4b, c). Clearly s ∈ {1, 2, 4}. In Z

2Z × Z
4Z ,

we have κ∗ = (2a
s
, 4b
s
).

Using [13, Lemma 7.2], we check that κ2 = −18·s2

8 ; since κ2 has to be

an even integer, we deduce that s = 4 and κ2 = −36. Moreover a is
even and c ≡ 0 (mod 4). Since κ is primitive, b has to be odd. Hence
κ∗ = (a2 , b) = (a2 ,±1). We also know that 36 = 2a2 + 4b2 − c2m2 (with m2

even and negative), so

9 = 2(a/2)2 + b2 −
c2m2

4
,

which reduces to 0 ≡ (a/2)2 (mod 4), and finally to κ∗ = (0,±1). �

Denote by K2t the moduli space of 2t-quasi-polarized K3 surfaces. There
is a map ψ : K18 99K P sending (S,H) to the period point of (S[3],H3− 2δ).

Lemma 48. The map ψ is generically injective, and its image is a dense

subset of the Heegner divisor D18.
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Proof. First observe that the image of ψ is contained in D18: indeed the
lattice K = ZH3 ⊕ Zδ ⊂ H2(S[3],Z) has the required properties to ensure

that (S[3],H3 − 2δ) ∈ D18.
To prove the generic injectivity of ψ, note that at a point (S,H) such

that H generates NS(S), injectivity is equivalent to asking that, if there is
(S′,H ′) ∈ K18 such that (S[3],H3 − 2δ) ∼= ((S′)[3],H ′

3 − 2δ′), then (S,H) ∼=
(S′,H ′). This can be checked by a straightforward computation, using [4,
Theorem 5.2]. Finally, the moduli space and the Heegner divisor have the
same dimension, and D18 is irreducible, so the image of ψ must be dense in
the latter. �

8.2. On degree two K3 surfaces. We turn for a moment to 2-polarized
K3 surfaces.

Proposition 49. Let T be a K3 surface, D a big and nef line bundle of

degree 2 on it. If |D| is base point free, then |D3| on T [3] is base point free

as well.

Proof. Denote by µ : S → P(H0(T,D)∨) ≃ P2 the morphism defined by |D|.
Then |H0(T [3],D3)| is the linear system of cubics on P(H0(T,D)∨) = P2.

By definition φ|D3| factors through the Hilbert-Chow morphism T [3] → T (3),

so that the image by φ|D3| of a scheme Z ∈ T [3] only depend on its support,
actually the image of its support by µ.

More precisely, for Z ∈ T [3] such that the support of µ(Z) is {p1, p2, p3},
then φ|D3|(Z) is the hyperplane of cubics C on P2 whose polarization is such
that C(p1, p2, p3) = 0. For any triple this is clearly a non trivial condition
on C, hence the claim. �

Now we consider a K3 surface T whose Néron-Severi group is generated
by {D,Γ}, with associated Gram matrix

[
2 0
0 −2

]
.

Lemma 50. Up to a change of sign, the class D is big and nef and |D| is
base-point-free. Moreover the period point of (T [3],D3) lies in D18.

Proof. The only (−2)-classes of T are ±Γ, so the positive cone of T has
two chambers exchanged by Γ 7→ −Γ [17, VIII, Section 2]; one of the two
chambers is the ample cone. Since D.Γ = 0, D cannot be ample since, by
Riemann-Roch Theorem, Γ or −Γ must be effective. Nevertheless, no matter
which chamber of NS(T ) is the actual ample cone, D or −D belongs to the
closure of the ample cone. So up to a change of sign, D is nef and big. Since
divNS(T )(w) is even for any w ∈ NS(T ), any nef and big divisor has empty
base locus by [17, II.3.15 (ii)].

Consider inside the lattice U⊕3 ⊕ E8(−1)⊕2 a copy U1 of the hyperbolic
plane, with a standard basis {e1, f1} orthogonal to {e, f} defined at the
beginning of the section. By [17, Corollary XIV.1.9], there exists an isometry
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ψ′ : H2(T,Z) → U⊕3 ⊕E8(−1)⊕2 such that ψ′(D) = h and ψ′(Γ) = e1 − f1,

Thus we can fix a marking ψ, on T [3], restricting to ψ′ on U⊕3 ⊕ E8(−1)⊕2

and such that ψ(δ) = ℓ. Finally, set K = Zh ⊕ Z(4(e1 − f1) + ℓ): this is a
primitive, hyperbolic lattice and K⊥ = Z(e−f)⊕N ⊕U⊕E8(−1)⊕2, where
N is the orthogonal complement of 4(e1− f1)+ ℓ in U1⊕Zℓ; by [13, Lemma
7.2], K⊥ has discriminant −2 · 9 = −18. �

8.3. End of the proof. We will use the fact that for a family of polarized
manifolds (X,D) such that h0(X,D) remains constant, base point freeness
is an open condition on the base of the family.

We consider the period point of (T [3],D3) and a small neighborhood U
of this point inside the Heegner divisor D18. By Lemma 48, the image of ψ
contains an open and dense subset of U . The corresponding points in K18

are birationally equivalent to S[3] for some 18-polarized K3 surface (S,H);
this actually implies that, very generally, they are in fact isomorphic to S[3],
since there is no non-trivial smooth birational model of S[3] when its Picard
rank is two (recall that any birational model has a birational morphism to

S[3] which by Proposition 11 is in fact biregular, up to composing it with
ϕ).

On this S[3] we also get a degree two class Θ by deformation of D3. We
do not know, a priori, if Θ is big and nef, but for sure it is base point free
(up to shrinking again U), hence movable. But any degree two class on
S[3], lying in the interior of the movable cone of S[3], produces a birational
involution on it, since minus the reflection in the class is a Hodge monodromy
of H2(S[3],Z) [4, proof of Thm. 1.1]. Since when S has Picard rank one, the

only birational involution on S[3] is the one fixing H3 − 2δ (recall Theorem
1), we conclude that Θ has to coincide with H3−2δ. In particular, the latter
is base point free. �

Remark. While (T [3],D3) deforms to (S[3],H3 − 2δ), the natural involution
i on (T [3],D3) does not deform to the involution ϕ, since the fixed lattice of
the natural involution has rank two. Indeed this must remain true for any
deformation, while the fixed lattice of ϕ has only rank one; the theory of
deformation of involutions has been studied by Joumaah [19].

8.4. Non separated points in the moduli space. We conclude this sec-
tion with some heuristic observations. Indeed the 2-polarized K3 surface T
seems to come out of the blue, but a posteriori it is not so out of place.

First of all it has a nice geometric description, as it is the very general
2-polarized K3 surface obtained by desingularizing the 2-to-1 cover of P2

ramified over a sextic curve with a single node. But the most interesting
thing is that there is a natural dominant map M : K18 99K K2, sending
(S,H) to the HPD (up to a twist by a Brauer class) 2-polarized K3 sur-
face described in the previous sections. Equivalently, at least for a general
element of K18, the image of this map is the K3 surface which is the base
locus of the contracted locus of the flop on S[3] i.e. Mσ(3,−H, 3), where
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σ is a general stability condition on S, see Corollary 13. (The attentive
reader will have observed that (3,−H, 3) is precisely the Mukai vector v− a
from Lemma 26.) So, it is natural to wonder if there exists (S,H) such that
M(S) =Mσ(3,−H, 3) has Néron-Severi lattice R = 〈2〉 ⊕ 〈−2〉.

Consider a K3 surface S′ whose Néron-Severi lattice is again R, with basis
{D,Γ} as above (that is D2 = 2, D.Γ = 0, Γ2 = −2). In the basis given by
H ′ = 5D + 4Γ and E = D + Γ, the associated Gram matrix is[

18 2
2 0

]
.

Since H ′ does not lie in a wall and has positive intersection with D, we can
suppose, up to a finite number of reflections in H2(S′,Z), that (S′,H ′) is an
18-polarized K3 surface.

Lemma 51. The K3 surface M(S′) is isomorphic to S′, in particular its

Néron-Severi lattice is again R.

Proof. The Néron-Severi lattice of M(S′) can be computed as in Lemma 26
and turns out to be again R: in the present case (3,−H ′, 3)⊥ ⊂ H∗

alg(S
′,Z)

is generated by {(3,−H ′, 3), (1, 0,−1), (1,−3E, 1)}, so

(3,−H ′, 3)⊥

(3,−H ′, 3)Z
∼= Z(1, 0,−1) ⊕ Z(1,−3E, 1) ∼= R.

Moreover, M(S′) is a Fourier-Mukai partner of S′: indeed it is sufficient,
in order to prove this claim, to check the existence of a universal family on
M(S′)× S′, see [33, Theorem 1.4]. For this, by [17, X.2.2., item (i)] we just
need to find w ∈ H∗

alg(S
′,Z) such that (3,−H ′, 3) · w = 1. We can choose

w = (−1, E, 0).
Finally, there remains to check that S′ is in general its only Fourier-

Mukai partner with the correct Néron-Severi group. Recall that the number
m of isomorphism classes of Fourier-Mukai partners of S′, whose Néron-
Severi group is isomorphic to R, is bounded by the number m′ of non-

isomorphic embeddings of the abstract lattice NS(S′)⊕NS(S′)
⊥

H2(S′,Z) in
the unique even unimodular lattice of signature (3, 19), such that NS(S′)

and NS(S′)
⊥

H2(S′,Z) are primitively embedded (see [33, Section 3]). In
turn, as explained in [31, Section 5], the number of such embeddings is
bounded by the number m′′ of isotropic subgroups of maximal cardinality
of ANS(S′) ⊕ A

NS(S′)
⊥
H2(S′,Z)

such that the projection to both discriminant

groups is injective.
As NS(S′) ∼= R, its discriminant group is isomorphic to 〈12〉 ⊕ 〈−1

2〉
as an abelian group endowed with a finite form qR with values in Q/2Z.
The discriminant group of the orthogonal complement of R is isomor-
phic to AR, since H

2(S′,Z) is unimodular; the corresponding finite form
is again 〈12 〉 ⊕ 〈−1

2 〉, since qR⊥
∼= −qR by unimodularity and −qR ∼=

qR. So the finite form q := qR ⊕ qR⊥ : (Z/2Z)4 → Q/2Z has val-
ues q(1, 0, 0, 0) = q(0, 0, 1, 0) = 1

2 and q(0, 1, 0, 0) = q(0, 0, 0, 1) = −1
2 .
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An explicit computation shows that there are only two isotropic max-
imal subgroups, namely {(0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1)} and
{(0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1)}. For the latter the projections
to the two discriminant groups are not injective; in particular it corresponds
to an embedding R→ H2(S′,Z) with respect to which the saturation of R is
a copy of the hyperbolic plane. We conclude that m′′ = 1, hence m′ = 1 and
finally m = 1: any Fourier-Mukai partner of S′, whose Néron-Severi group
is isomorphic to R, is in fact isomorphic to S′. In particular this holds for
M(S′), and we are done. �

In other words, there is an irreducible codimension one family in K18

made of K3 surfaces which are mapped by M : K18 99K K2 to the same K3
surface, but with a polarization of degree two. (Note that M(S) and S are
not even Fourier-Mukai partners in general.) For Hilbert schemes of three
points, this translates into the following phenomenon:

Proposition 52. For H ′ = 5D + 4Γ the pairs ((S′)[3],H ′
3 − 2δ) and

((S′)[3],D3) have the same period point.

Proof. We consider, on H2((S′)[3],Z), the rational isometry given by the
reflection with respect to the class ν = −2E3+ δ, denoted by ρ. Because E3

lies in the unimodular lattice U⊕3⊕E8(−1)⊕2, it has divisibility 1, so ν has
divisibility 2 and, since ν2 = −4, ρ is actually integral and a monodromy
operator [29, Proposition 9.12]. More precisely, ρ ∈ Wexc, since we are in
the fifth case of [29, Theorem 9.17], as one can see directly from the table in
[29, Proposition 9.16 (i)]. Hence the action of ρ does not change the period
point. It is then sufficient, in order to conclude the proof, to observe that
ρ(H ′

3 − 2δ) = D3. �
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Birkhäuser Classics, Birkhäuser, 2010, Reprint of the 1997 edition.

10. O. Debarre, Hyperkähler manifolds, arXiv:1810.02087 (2018).
11. O. Debarre and E. Macr̀ı, On the period map for polarized hyperKähler fourfolds, Int.

Math. Res. Not. IMRN (2019), no. 22, 6887–6923.
12. V. Gritsenko, K. Hulek, and G. K. Sankaran, Moduli spaces of irreducible symplectic

manifolds, Compos. Math. 146 (2010), no. 2, 404–434.
13. , Moduli of K3 surfaces and irreducible symplectic manifolds, Handbook of

moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013,
pp. 459–526.

14. V. Gritsenko, K. Hulek, and G.K. Sankaran, Moduli spaces of polarized symplectic

O’Grady varieties and Borcherds products, J. Diff. Geom. 88 (2011), no. 1, 61–85.
15. L. Guseva, On the derived category of the Cayley Grassmannian, arXiv:2206.14525

(2022).
16. B. Hassett and Y. Tschinkel, Extremal rays and automorphisms of holomorphic sym-

plectic varieties, K3 surfaces and their moduli, Progr. Math., vol. 315, Birkhäuser,
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