
HAL Id: hal-03861118
https://cnrs.hal.science/hal-03861118v1

Submitted on 19 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Efficient Learning With Low Resolution
Stochastic Domain Wall Synapse for Deep Neural

Networks
Walid Al Misba, Mark Lozano, D. Querlioz, Jayasimha Atulasimha

To cite this version:
Walid Al Misba, Mark Lozano, D. Querlioz, Jayasimha Atulasimha. Energy Efficient Learning With
Low Resolution Stochastic Domain Wall Synapse for Deep Neural Networks. IEEE Access, 2022, 10,
pp.84946 - 84959. �10.1109/access.2022.3196688�. �hal-03861118�

https://cnrs.hal.science/hal-03861118v1
https://hal.archives-ouvertes.fr


Received 6 July 2022, accepted 23 July 2022, date of publication 5 August 2022, date of current version 17 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3196688

Energy Efficient Learning With Low Resolution
Stochastic Domain Wall Synapse for
Deep Neural Networks
WALID AL MISBA 1, MARK LOZANO1, DAMIEN QUERLIOZ2, (Senior Member, IEEE),
AND JAYASIMHA ATULASIMHA 1,3, (Senior Member, IEEE)
1Mechanical and Nuclear Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
2Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
3Electrical and Computer Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA

Corresponding authors: Walid Al Misba (misbawa@vcu.edu) and Jayasimha Atulasimha (jatulasimha@vcu.edu)

This work was supported in part by the National Science Foundation (NSF) under Grant ECCS 1954589 and Grant CCF 1815033 and in
part by the Virginia Commonwealth Cyber Initiative (CCI) CCI Cybersecurity Research Collaboration Grant.

ABSTRACT We demonstrate extremely low resolution quantized (nominally 5-state) synapses with large
stochastic variations in synaptic weights can be energy efficient and achieve reasonably high testing
accuracies compared to Deep Neural Networks (DNNs) of similar sizes using floating-point precision
synaptic weights. Specifically, voltage-controlled domain wall (DW) devices demonstrate stochastic
behavior and can only encode limited states; however, they are extremely energy efficient during both training
and inference. In this study, we propose both in-situ and ex-situ training algorithms, based on modification
of the algorithm proposed by Hubara et al., 2017 which works well with quantization of synaptic weights,
and train several 5-layer DNNs on MNIST dataset using 2-, 3- and 5-state DW devices as a synapse. For in-
situ training, a separate high precision memory unit preserves and accumulates the weight gradients which
prevents accuracy loss due to weight quantization. For ex-situ training, a precursor DNN is first trained based
on weight quantization and DW device model. Moreover, a noise tolerance margin is included in both of the
training methods to account for the intrinsic device noise. The highest inference accuracies we obtain after
in-situ and ex-situ training are ∼ 96.67% and ∼96.63%, respectively, which is very close to the baseline
accuracy of∼97.1% obtained from a similar topology DNN having floating-point precision weights with no
stochasticity. Large inter-state intervals due to quantized weights and noise tolerance margin enables in-situ
training with significantly lower number of programming attempts. Our proposed approach demonstrates
a possibility of at least two orders of magnitude energy savings compared to the floating-point approach
implemented in CMOS. This approach is specifically attractive for low power intelligent edge devices where
the ex-situ learning can be utilized for energy efficient non-adaptive tasks and the in-situ learning can provide
the opportunity to adapt and learn in a dynamically evolving environment.

INDEX TERMS Domain wall, synapse, quantized weight, deep neural network, energy efficient,
neuromorphic, in-memory computing.

I. INTRODUCTION
Deep neural networks (DNNs) have proven to be successful
in image recognition and other big data driven classification

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Wang .

tasks. However, implementing a DNN with traditional von-
Neumann computing is time consuming [1] as it requires
shuttling a large number of synaptic weight data stored in
the memory to the processing unit to perform matrix-vector
multiplication during the forward propagation and backward
propagation stages. Moreover, shuttling data between the

84946
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4517-3330
https://orcid.org/0000-0002-5681-0884
https://orcid.org/0000-0003-3124-9901


W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

computational unit and memory unit is energy intensive [2],
which hinders the implementation of such DNNs in edge
devices where energy is at a premium [3], [4].

In-memory computing has been widely explored to
reduce the physical separation between computation and
memory units. In-memory computing is a non-von-Neumann
computing paradigm where the computational memory
units are arranged in a way that certain computational
tasks take place in the memory itself [5], [6]. Matrix
vector multiplication, the most computationally intensive
part of a DNN [7], has been demonstrated with in-memory
computing [8], [9]. When the computational memory units
are connected in a crossbar and programmed to provide
conductances equivalent to the DNN weights [10], [11], the
matrix-vector multiplication operation can be implemented
in single time step [5], [7] and with minimal data movement.
Computational memory such as phase change random access
memory (PCM) [12], [13], resistive random-access memory
(RRAM) [14], [15], arranged in a crossbar array have
been shown to classify handwritten digits [10], [16] and
recognize human faces [17]. However, these analog memory
devices have stochastic and non-linear responses and provide
limited resolution for synaptic weights. To achieve higher
classification accuracy, these issues should be addressed with
appropriate training algorithms.

Recently spintronic memory devices have been widely
explored for in-memory DNN implementation because of
their non-volatility, high endurance, high speed of access,
high scalability and compatibility with CMOS technol-
ogy [1], [18]–[23]. Among these spintronic devices, domain
wall (DW) based computational memory [18], [19] is
promising and these devices can be programmed with a
low energy budget [24]. However, similar to other analog
devices, DW devices have limitations such as their stochastic
behavior [25]–[28] and low resolution due to the relatively
small on/off ratio of magnetic tunnel junctions (MTJs) which
are 7:1, at best, at room temperature [29].

With recent advances in computing, researchers have
shown fast and energy efficient implementation of DNNs
with low resolution synaptic weights [30], [31]–[34] where
the weights’ values can only be binary (1-bit or 2-state) [31].
However, for updating weights, gradients are calculated in
full precision to achieve high accuracy [30]. This idea of
keeping full precision gradient information for training a
network with limited precision synaptic weights can be useful
for a DNN that is built from energy efficient DWs or other
analog low-resolution devices.

Apart from the low resolution, stochasticity and non-
linear response of the analog devices should be addressed
during training to achieve higher classification accuracy [10].
To address the stochasticity of the analog devices, both
online (in-situ) and offline (ex-situ) training of the DNN
are proposed. For online training, multiple devices per
synapse have been proposed with [35] or without ‘periodic
carry’ [36] to address device variability and noise. In another
work, a 3T1C module (consists of 3 CMOS transistors

and 1 capacitor) is used in conjunction with a stochastic
PCM device to accumulate small linear updates and then
periodically transfer them to the non-volatile PCM [37].
However, with online training, using the techniques men-
tioned above during the weight update stage, each of the
synaptic weights in the crossbar array are updated. This
has great implications for the endurance of the devices
as well as the energy consumed in training the device.
Recently, a mixed precision framework [38], [39] has been
proposed where large computational loads, such as weighted
sum operation (matrix-vector multiplication) along with
conductance updates, are performed in a low precision
computational memory unit and the weight updates are
accumulated in a high precision unit. Using this framework,
a large variety of DNNs have been shown to achieve high
classification accuracy with significantly smaller number of
weight updates [38].

In contrast to the online training, for offline training
the DNN is trained in software and the actual devices are
programmed based on the learned weights from software.
In this case, hardware nonidealities are characterized first and
then included in the training process. To address stochasticity
of the devices, Gaussian noise injection for the DNN
weights has been proposed [40] and has shown excellent
accuracy. RandomGaussian noise is also added to the ternary
weights (3-state weight) of a DNN [41]. Variation aware
offline training algorithm is reported in [42], [43] where
the variation in device conductances and device defects
are first characterized and then incorporated during the
training of the DNN in software. In another case involving
a deep convolutional neural network, the optimal weights for
convolution layers and fully-connected layers are learned via
offline training before the fully connected layers’ weights
being updated by online training [44].

Although a significant amount of research has focused on
addressing the device variability and non-linearity, a largely
unexplored area is quantized (low resolution) learning with
these non-volatile devices. Even a high-resolution device (or
a low granularity device) can behave as a low-resolution
device, when device variability is taken into account. The
limited numbers of synaptic states provided by low-resolution
devices can strongly impact accuracy. At the same time,
in neuromorphic computing applications, these devices
offer advantages. An inherent benefit of the low-resolution
devices can be their large inter-state interval. It provides an
opportunity to train a neural network with significantly lower
number of the weight updates with a standard learning rate.
However, accuracy metrics need to be acceptable while using
these devices for in-situ learning.

In this study, we demonstrate that such low resolution
and stochastic non-volatile DW devices can perform highly
accurate in-situ classification tasks while taking advantage of
significantly lower number of device updates (higher energy
efficiency). In our proposed algorithm, weight gradients
are accumulated in high precision (digital domain) before
quantizing this information to program the low-resolution

VOLUME 10, 2022 84947



W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

devices in analog domain. Using rigorous device model and
simulations, we show that such in-situ training can achieve
comparable accuracy to that of a 32-bit precision synapse.
This demonstrates that there is a possible low-resolution
weight space, which can provide an optimal solution to
the classification problem with highly energy-efficient non-
volatile devices. In addition, we have shown ex-situ training
strategies to achieve high classification accuracy for DNN
implemented with these highly stochastic (non-Gaussian)
and extremely low resolution (nominally 2-state, 3-state, and
5-state for synaptic weights) analog DWbased computational
memory devices.

The rest of the paper is organized as follows. In themethods
section, we detail the architecture of the DW device that can
work as a synapse in the DNN and discuss the in-situ and
ex-situ learning algorithms of such DW device based DNNs.
For both of these learning algorithms we adapt quantized
neural network learning algorithm [30], [31] with several
modifications including the weight deviation tolerance from
target weight to account for the programming noise intrinsic
to such stochastic DW devices. For ex-situ training, we also
incorporate the statistical distribution of the DW device
conductance during the training, which helps to achieve
higher test accuracy. This is followed by the results and
discussion section, and then a conclusion.

II. METHODOLOGY
A. DW BASED NANO-SYNAPSE AND MICROMAGNETIC
MODELING FOR DEVICE STOCHASTICITY
We model our synapse on a magnetic DW based nanodevice,
which is non-volatile in nature. Once the memory state (here
the synaptic weight) is written, the information is retained for
a long time. For the nano-synapse device, we simulated a thin
ferromagnetic racetrack having a dimension of 600 nm ×
60 nm × 1 nm with a DW initialized and stabilized
in a notch at one end. In addition, we assume several
engineered notches at regular intervals along the racetrack.
The racetrack dimension and notch intervals are shown
in Fig. 1a. Moreover, we consider edge irregularities (rms
roughness of ∼ 2 nm) in the racetrack to mimic the effect
of lithographic imperfections by randomly removing or
adding some finite difference cells from the edges [45], [46].
We assume the racetrack is on top of a heavy metal layer that
is patterned on top of the piezoelectric layer (see Fig. 1b).
An insulator (MgO layer) and a reference ferromagnetic
layer (one could also add a synthetic antiferromagnet (SAF)
layer to cancel dipole coupling from this fixed layer) are
stacked on top of the racetrack, these two layers combined
with the racetrack ferromagnetic layer (free layer) forms
a magnetic tunnel junction (MTJ) (see Fig. 1b), which
facilitates the readout of the device. With this configuration,
a combination of fixed amplitude and fixed time current pulse
‘‘or clocking signal’’ injected in the heavy metal layer and a
varying amplitude ‘‘control’’ voltage pulse applied across the
piezoelectric translates the domain wall to different distances
along the racetrack. Different positions of the DW lead to

different conductances of the MTJ thus forming a voltage
programmable non-volatile synapse.

B. MAGNETIZATION DYNAMICS
The magnetization dynamics of the domain wall (DW)
in the racetrack ferromagnetic layer which governs the
conductance (synaptic state) evolution of the nano-synapse
is simulated in MUMAX3 [47] using the Landau–Lifshitz–
Gilbert-Slonczewski equation. The simulation parameters are
listed in Table 1. The simulation details can be found in [28].

TABLE 1. Simulation parameter.

C. MAPPING DOMAIN WALL POSITION TO
CONDUCTIVITY
The distribution of equilibrium DW positions for five
different programming voltages, represented by different
perpendicular magnetic anisotropy (PMA) coefficient, Ku,
in addition to fixed amplitude and fixed time spin orbit
torque (SOT) generating current pulse (35 × 1010A

/
m2

applied for 1 ns) in the presence of room temperature thermal
noise are shown in Fig. 1c. The mean equilibrium DW
positions vary for different Ku, which implies that different
programming voltages can be chosen for different synaptic
states. For example, one can select five, three, or two different
programming voltages to implement a 5-state, 3-state or
2-state synapse. The number of states that can be obtained
from the device is limited due to the fact that with the
presence of Dzyaloshinskii–Moriya interaction (DMI), SOT
current causes DW titling long after the current stimulus is
withdrawn [48]. Thus, in the presence of room temperature
thermal noise and structural irregularities (edge roughness)
DW motion becomes significantly stochastic. As a result,
an average variance of ∼ 90 nm can be seen for different
DW mean positions in our modelled racetrack. Considering
all of these factors contributing to the stochasticity, we choose
a maximum 5-state for our modelled device as higher number
of states can cause larger overlaps between the states, which
is detrimental for DNN performance. While it is possible
to increase the number of states by increasing the racetrack
dimension (increase area footprint) and/or increase the notch
depth (increases energy as operating current increases), the

84948 VOLUME 10, 2022



W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

main contributions of our study is to show that we can use
extremely low precision (5-state, 3-state, etc.) non-volatile
synapses for in-situ (and ex-situ) DNN training and achieve
classification accuracy that are comparable to that of full
precision (32-bit) DNNs.

FIGURE 1. a. Micromagnetic configuration of a ∼2 nm rms rough edge
racetrack with perpendicular magnetic anisotropy (PMA). Engineered
notches are placed regularly at 75 nm interval. A DW is initialized at a
notch 60 nm from the left of the racetrack. b. DW based nano-synapse
device: racetrack ferromagnet/insulator/reference ferromagnet (MTJ) on
top of a heavy metal layer on a piezoelectric substrate. A fixed amplitude
current pulse, J in the heavy metal layer along with different amplitude
voltage pulse, V across the piezoelectric changes the perpendicular
anisotropy (PMA or Ku constant) of the racetrack and translates the DW
(shown in red rectangle) to different longitudinal positions along the
racetrack. c. Distribution of equilibrium DW positions in the racetrack
(shown in Fig. 1a) at room temperature T = 300 K for a fixed SOT
generating current pulse of J = 35 × 1010A/m2 applied for 1 ns and five
different PMA coefficients, Ku (corresponds to five different programming
voltages). Different mean positions for different Ku implies that 5-state,
3-state or 2-state stochastic synapses can be implemented by choosing
5,3 or 2 different programming voltages. d. distribution of average
perpendicular magnetization, < mz > (which is equivalent to DNN
weights according to Eq. 4) derived directly from DW positions.

Equilibrium DW positions shown in Fig. 1c can be linearly
mapped to a conductance value by means of the following
equations:

Gsynapse =
Gmax + Gmin

2
+
Gmax − Gmin

2
< mz > (1)

where, < mz > is the average magnetization moment of
ferromagnetic racetrack along z-direction and the reference
ferromagnetic layer magnetization is assumed to point
upward, +z-direction. The distribution of < mz > is shown
in Fig. 1d, which can be derived directly from DW position.
Gmax and Gmin are the maximum and minimum conductance
of the synaptic device which occur when the racetrack and
reference layer magnetizations are parallel and anti-parallel
respectively.

III. LEARNING OF FULLY CONNECTED DNN WITH DW
NANO-SYNAPSE
A. CROSSBAR WITH DW DEVICES
We assume a crossbar architecture for the DW devices
(Fig. 2b) that implements a fully connected DNN (Fig. 2a).

The task of the DNN studied here is classification of
handwritten digits from the MNIST database [49]. The
network is trained with the MNIST training images each
having 28 × 28 pixels or a total of 784 pixels with intensity
values ranging from 0-255. The pixel intensities of the image
converted to binary values acts as input to the DNN and
the corresponding linearly mapped voltages are supplied to
the crossbar using peripheral circuits. We have considered
3 hidden layers for the DNN and the numbers of neurons for
input layer, hidden layers and output layer are chosen to be
784-392-196-98-10. The reason for the choice is discussed
in the results section. The conductance of the devices can be
scaled linearly to represent the weightsWij of the DNN [18].

Gsynapseij =
Gmax + Gmin

2
+
(Gmax − Gmin)Wij

2Wmax
(2)

Here,Wmax is the maximum absolute value for the weights
of the DNN. DNN weights, Wij can be both positive and
negative; however, the DW devices can only provide positive
conductance values. To address the issue, one can add a
parallel conductance, GP =

Gmax+Gmin
2 to each of the cross-

points in the crossbar and feed this parallel conductance with
a voltage that is of opposite polarity to the voltage applied
to the DW device [18]. This parallel reference conductance,
GP can be achieved using a similar dimension DW device as
the nano-synapse with the DW being driven and pinned at the
center of the racetrack (in this case, < mz > ∼ 0 in Eq. 1).
An engineered notch placed at the center of the racetrack
can provide further pining strength to the DW in addition
to the demagnetization potential minima, which acts near the
center of the racetrack [28]. Stochasticity that could arise in
programming the parallel conductances is not considered in
our study.

Two separate rows supplied with opposite polarity voltages
connects the synaptic devices and parallel conductances to
a single column of the crossbar (bit line (BL)) as shown in
Fig. 2b. The additional read line (RL), write word line (WWL)
and source line (SL) shown in Fig. 2b are required to
enable read and write operation. The WWL for the parallel
conductances are not shown for the sake of simplicity. To read
the column sum, RL is activated and WWL is deactivated,
whereas a specific device can be read by activating RL
and supplying read voltage to the corresponding input line.
To program a device,WWL is activated and RL is deactivated
and SL and BL are made high or low depending on the
direction of the current in addition to a write voltage being
supplied across the piezoelectric thickness. The effective
conductance, Gij, at each cross-point would be,

Gij =
(Gmax − Gmin)Wij

2Wmax
(3)

Combining Eq. 1 and 2 and considering Wmax = 1, one
can get,

Wij =< mz > (4)

From the above equation it is clear that if we train the
DNN shown in Fig. 2a with weights (both positive and

VOLUME 10, 2022 84949



W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

negative) that are derived from micro-magnetics (see Fig. 1d)
for different programming conditions, we are effectively
implementing a hardware DNN with DW devices shown in
Fig. 2b given that the peripheral circuitry is designed to
provide the appropriate scaling.

During backward propagation, linearly scaled volt-
ages corresponding to the output layer, L, error signal,
δLi = yLi − d

L
i , are supplied to the crossbar, where y

L
i and dLi

are the predicted and desired outcomes of the output layer’s
neuron i.

B. BACKPROPAGATION AND LEARNING ALGORITHM
For the training of the DNN, we update the weights by
calculating the gradient of a cost function with respect
to the weights. We considered mean square error, C =

1
2

∑
(yLi − d

L
i )

2
as our cost function where the gradient of

the cost function with respect to the output of the output
layer neuron i is expressed as, δLi = (yLi − dLi ) (we also
call it error ). Once the output layer’s errors are determined,
the preceding layer’s errors can be calculated using the
backpropagation equation, δli = Wijδ

l+1
j , which is different

from the backpropagation equation, δli = Wijδ
l+1
j f ′l+1

reported in [50] where f ′l+1 is the gradient of the activation
function of layer l + 1 neuron (we use sigmoid function
as activation in our simulation). In other words, we do not
backpropagate the gradients of activation function as it does
not achieve high testing accuracy with quantized weights.
Finally, the derivative of the cost function with respect to the
weights is calculated, which determines the weight update
signal, 1W ij for the weights connected between layer l
neuron i and layer l + 1 neuron j,

1W ij = ηx li δ
l+1
j f ′l+1 (5)

Here, η denotes the learning rate. For our learning
algorithm we propose to store the updated weights in a
separate high precision memory unit. That way, the gradients
with respect to the weights can be calculated accurately [30].
We note that these high precision weights are different from
the actual synaptic weights (or equivalent conductances)
provided by the DW device that are quantized and of low
precision. However, we use these high precision weights
to update the DW device weights (conductances). As we
apply stochastic gradient decent for optimization, these high
precision weights are updated at each forward pass with an
input image.

As DW devices can only provide limited resolution in
their synaptic weights we adopt weight quantization in our
training algorithm. For that, the high precision weights are
quantized at each forward pass during the training. For weight
quantization, we use the following sets of functions in the
manner of [51]:

clip (m, a, b) = min (max (m, a) , b)

1 =
b− a
n− 1

q =
[
round

(
clip (m, a, b)− a

1

)]
×1+ a (6)

where, q is the quantized value of the real valued number
m, [a; b] is the quantization range and n is the level of
quantization. The level of quantization depends on the
number of distinct states (without significant overlap) the
device that is used to implement the DNN crossbar arrays
is capable of providing. After quantization, a programming
pulse is generated to update the DW device weights to the
quantized value, a target that is similar to the quantized
neural network learning algorithm [30]. We note that, the
cost gradients with respect to the prior quantization quantities
are zero, so to backpropagate gradients through weight
quantization we apply ‘‘straight through estimator’’ approach
similar to that used in [30]. Typically, two types of training
are possible for a DNN implemented with DW nano-synapse
device: in-situ and ex-situ. In in-situ training the DNN is
trained and tested in hardware. In contrast, in ex-situ training,
a precursor DNN is first trained in software and then the DW
devices are programmed to provide the equivalent learned
weights prior to testing.

1) IN-SITU TRAINING
Here, we describe in detail the step-by-step in-situ training
algorithm presented in Algorithm 1 and shown in Fig. 2b.
This Algorithm 1 is based on the modification of quantized
neural network algorithms presented in [30]. For each DW
device in crossbar arrays there is a corresponding high
precision weight that is stored in a separate digital memory
unit to accumulate the weight gradients in full precision.
Initially, these high (full) precision weights are chosen at
random from a Gaussian distribution. After each forward and
backward pass in the analog crossbar array, these weights
are updated according to Eq. 5. Then, these weights are
clipped and quantized so that they lie between −1 to 1.
After that, a programming pulse is sent to the DW device
to update its synaptic weight value to the quantized value.
For example, in 5-level quantization (5-state for the synaptic
device) the quantized weights can be of any value from the
set Wq ∈ (−1,−0.5, 0, 0.5, 1). Five different programming
voltages can be applied to the device, which results in Ku
= 8, 7.75, 7.5, 7.25 and 7.0 (× 105) J

/
m3 to achieve five

different quantized weights of −1, −0.5, 0, 0.5 and −1
respectively as seen from Fig. 1d (DW device weights, Wij
= < mz > according to Eq. 4). Because of the significant
spread that exists in the DW device weights (or the < mz >
distribution) due to the stochastic nature of the device we
introduce a noise tolerance hyperparameter called alpha, α
(real valued) during training, as after applying a programming
pulse (fixed current+ control voltage) the device weights can
be of a value other than the desired quantized weight. For
instance, if we want to program a DW device to a quantized
weight of Wq then we would allow any values for the device
weights that satisfy the condition,Wq − α ≤ W ij ≤ Wq + α.
Therefore, at each iteration following quantization, we read
the states of the DW device (costs read energy but that is

84950 VOLUME 10, 2022



W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

FIGURE 2. a. Architecture of a fully connected deep neural network (DNN). Any neuron i in layer l is connected to neuron j in layer l + 1 with synaptic
weight Wij . At forward propagation, inputs to neuron j are summed and passed through an activation function f to generate its output, x l+1

j .

At backward propagation, errors of layer l + 1 neurons are back propagated to calculate the error δli of neuron i in layer l b. Implementation of the DNN
in crossbar with DW devices. The peripheral circuit and the crossbar shown here implements DNN functionalities of only one layer (‘‘l ’’) and the next layer
(‘‘l + 1’’) and the number of rows in the crossbar are determined by the number of neurons in layer, l and the number of columns by the number of
neurons in layer, l + 1 (shadowed region in Fig. 2a). At each cross point of the crossbar there is a DW device with conductance Gsynapse

ij and a parallel
conductance GP . The effective conductance at each cross point is equivalent to the DNN weights Wij such that Gij = µWij . Inputs and errors of neurons
are scaled to voltages before feeding them into the crossbar. The flow of the training algorithm is shown at the right-hand side of the crossbar. For each
of the DW devices there is a corresponding high precision weight (real weight) that is stored in a separate high precision memory unit. These high
precision weights are updated after a forward and backward pass before passing it through a quantizer (i.e., 2, 3 or 5-level quantization, depending on

the number of states of the device). The DW device conductances, Gij (or the corresponding device weights, Wij =
Gij
µ ) are updated when they fall

outside the prescribed range of the target quantized weights, Wq. Figure idea adopted from [38].

typically much lower than write energy) and if it falls outside
the noise tolerance margin, a programming pulse is sent
to the device to write the corresponding quantized weight.
However, due to the large inter-state interval in quantized
learning, a quantized weight does not change at each forward
pass (the backpropagated errors update the weights slowly
due to low learning rate). Instead, it typically changes only
after several passes. Therefore, the noise tolerance condition
need not be satisfied strictly at each iteration. Furthermore,
if a DW device weight is programmed outside the tolerance
margin, it is not rectified in the current iteration, as it has a
chance to satisfy the window in the next several iterations.
This relaxation over noise tolerance condition speeds up the
training process without losing accuracy. Again, the DW
device, which already satisfies the tolerance margin, need
not be programmed for the next several iterations due to
same reason of the quantized weights not being updated
frequently. Introduction of noise tolerance hyperparameter,α,
is critical during the training of this stochastic device based
DNN. Without α, the DW device needs to be programmed
a significantly large number of times to achieve a particular
quantized weight. On the other hand, a high value of α allows
more imprecise weight update or higher variation of the DW

device weights from the target values, which will degrade
the accuracy. Thus, a proper balance needs to be found for
selecting the value of α so that it not only ensures high
classification accuracy but also low programming energy.
Once the DNN is trained, the learned DW device’s weights
(or conductances) remains the same during testing, as these
devices are non-volatile.

We have chosen two representative noise tolerance limits
for our study which are α = 0.15 and α = 0.25.
Studies have shown that during training a Gaussian noise of
standard deviation, σ that is up to 7.5% of the maximum
magnitude of DNN weights does not degrade test accuracies
significantly when no inference noise is assumed [40].
This motivates us to consider a noise tolerance limit of
α = 0.15 that is 15% of the maximum DNN weights
(most of the weights in Gaussian distribution lies within
2σ ∼ 15%). However, the DW device we studied here
does have inference noise due to the device stochasticity.
Furthermore, we choose a maximum noise tolerance of α =
0.25 that is 25% of the maximum DNN weights so that the
state overlaps between two adjacent states can be restricted
for 5-state networks (half of the interstate interval for 5-state
is 0.25).

VOLUME 10, 2022 84951



W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

We note that for 3-level quantization (3-state device),
DW device can be programmed with control voltages to
generate PMA of Ku = 8, 7.5, and 7.0 (× 105)J

/
m3 that

can achieve quantized weights of −1, 0, and 1 respectively.
For 2-level quantization (2-state device), the devices can be
programmed to Ku = 8 and 7.0 (× 105)J

/
m3 to achieve

weights of −1 and 1 respectively. During in-situ training,
the device weights are selected randomly from the < mz >
distribution of corresponding Ku to program the DW device
to a target quantized value. Although we have computed
250 instances for each of the programming conditions (in
Fig. 1c-d) due to the limitation in computational resources,
we note that there are dominant pinning sites in the
racetrack because of the notches. As a result, the DWs
tend to be stuck in or close to those pinning sites in
most cases rather than the pinning sites offered by the
rough edges of the racetrack (see supplementary Fig. S2).
Hence, generating more instances will likely follow the
probability distribution, which already exists in the current
distribution.

2) EX-SITU TRAINING
In this section, we discuss the steps of ex-situ training
algorithm. The goal of ex-situ training is to achieve high
testing accuracy in hardware although a precursor DNN is
first trained in software. For this training, we also adopt
weight quantization and allocate a separate memory in
software where we store the high precisionweights (similar to
in-situ training) in addition to the DNN weights. The training
algorithm shown in Fig. 2b remains the same for ex-situ train-
ing. After each iteration (forward and backward pass), high
precision weights are updated and then quantized. Ideally,
these quantized weights should be used as DNN weights for
the next iteration in case of deterministic quantized neural
network learning [30]. However, as we are dealing with
a stochastic device for our inference engine, we include
stochastic behavior of synaptic weights during learning. This
stochasticity is obtained from a statistical distribution of
the device (shown in Fig. 1d) rather than from uniform
random distribution [30] or Gaussian distribution [40], [52].
For example, in 5-level quantization if the quantized weight
is 0 then the DNN weight can be of any values selected
randomly from the < mz > distribution of Ku = 7.5
(× 105)J

/
m3 which is responsible for generating quantized

weight of 0 (see Fig. 1d). The noise tolerance margin α
is also used during ex-situ training. This will relax the
stringent requirement of programming a stochastic DW to a
predetermined learned weight value and potentially save a
large number of programming attempts. More importantly,
if the DNN becomes aware of the statistical distribution
of the device during training it can perform well during
inference as the same device based DNN is used for
inference.

Once the ex-situ training is accomplished, the DNN
weights (or the high precision weights) are quantized and
transferred to the DW devices by suitable programming.

Here, the learned weights and the programmed weights may
not be the same due to the programming noise. During the
programming, we allow the same noise tolerance margin,
α that is used during training. Thus, any programmed
device weight, Wij need to satisfy, Wq − α ≤ W ij ≤

Wq + α for a target-quantized weight of Wq. The
devices can be programmed by repeated programming or
performing read-verify-write operation in a loop, which
is called ‘‘Open loop off device’’ method [53]. As we
have already trained our network with stochastic distri-
bution of weights by introducing finite α, the network
is expected to perform well during testing when we
allow the same noise tolerance level for programming the
device.

Algorithm 1 In-Situ Training of a Quantized Neural Network
With Crossbar Array of DW Devices. L is the Number of
Layers, C is the Cost Function, λ is the Learning Rate Decay
and α is the Noise Tolerance Margin for Writing the DW
Devices. Quantize () Specifies How to Quantize a Weight
With n-Level Quantization and Clip () Specifies How to
Clip the Weights Based on Eq. 6. Update () Specifies How
to Update Weights Once Their Gradients are Calculated
Using Stochastic Gradient Decent. These Updated Weights
are Accumulated in Full Precision (32-bit) in High Precision
Memory Unit. Program () Specifies Sending a Voltage and
Current Pulse to the DW Device to Write Its Conductance to
a Target Quantized Weight

Require: a set of inputs and desired label (a0, dL ), previous DW
device weightsWij,device and corresponding full precision weights
Wij,fp, previous learning rate η.
Ensure: updated full precision weights W t+1

ij,fp , corresponding

DW device weights W t+1
ij,device and updated learning rate η

t+1.
{1. Forward propagation in analog DW device crossbar:}
for k = 1 to L do
ak ← ak−1W k

ij,device
end for
{2. Backward propagation in analog DW device crossbar:}
{Gradients are computed in digital unit built from CMOS

devices}
Compute gradient gaL =

∂C
∂aL

from aL and dL

for k = L to 1 do
gak−1 ← gakW

k
ij,device

gW k
ij
← gT

ak
ak−1

end for
{3. Accumulating the gradients in full precision in digital

unit and update DW devices:}
for k = 1 to L do
W k,t+1
ij,fp ← Update

(
W k,t
ij,fp, η, gW k

ij

)
Level ← n//n represents maximum number of states of

DW device
W k,t+1
ij,q ← Quantize

(
Clip

(
W k,t+1
ij,fp ,−1, 1

)
,Level

)
if
∣∣∣W k,t

ij,device −W
k,t+1
ij,q

∣∣∣ > α do

W k,t+1
ij,device ← Program

(
W k,t
ij,device,W

k,t+1
ij,q

)
end if

ηt+1 ← ληt

end for

84952 VOLUME 10, 2022



W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

C. TESTING THE DNN
During the testing stage, we computed the predicted class
for all the image samples from the MNIST test dataset
using the trained DNN and compared it to the desired class.
The percentage accuracy is calculated by dividing the total
number of accurate predictions to the total number of test
samples. During the testing stage, we consider two scenarios
depending on in-situ or ex-situ training. When both the
training and testing is performed on simulated hardware, the
testing accuracy we record is termed online testing accuracy.
In contrast, when the training is performed offline (ex-situ)
in software and we program the hardware (simulated device
in this case) prior to testing according to the learned weights
then the testing accuracy we record is termed offline testing
accuracy.

IV. RESULTS AND DISCUSSIONS
A. DNN CONFIGURATION SELECTION
The focus of our paper is to demonstrate the ability to classify
images using a DW device based DNN and benchmark its
performance against a DNN with floating-point precision
(32-bit) weights. The topography of the benchmark DNN
can be arbitrary as the inference accuracy varies across the
spectrum of the parameters such as hidden layer number,
layer size ratio (ratio of neurons between a layer and the
previous layer) and learning rate constant (see Fig. S1 in
supplementary). Thus, one can select multiple configurations
for the DNN and achieve good accuracy. We select a
benchmark DNN architecture consisted of a network with
three hidden layers, an initial learning rate of 0.007 and
a layer size ratio of 1

2 . Also, we assume a learning rate
decay of 10 % after each epoch and use stochastic gradient
decent method as the optimizer. The selection criteria are
detailed in the supplementary section S1. After training the
selected benchmark DNN for 10 epochs, the test accuracy
we achieve is 97.1 %. We note that there are opportunities
to improve the accuracy further in terms of topography,
batch normalization, dropout layer and selection of different
optimizers. However, the main goal of this study is to show
how well a stochastic and low precision DW based DNN can
perform in comparison to a similar architecture floating-point
precision DNN. The selected topography mentioned above is
used throughout the study to implement the DW device based
DNN.

B. ONLINE (IN-SITU) TRAINING
After determining the DNN topography we investigate the
test accuracies of the DNNs that are built from 2-state,
3-state and 5-state DW devices and trained with the proposed
online training algorithm. For simplicity, we did not consider
additional hardware non-idealities that could arise from
peripheral circuits or unresponsive devices as these factors
would automatically be included as constraints during the
online training [40] and would not result in a significant
degradation in performance compared to our current work.

The effectiveness of the proposed in-situ training algorithm
is evident from Fig. 3a and Fig. 3b which plots the in-situ
training accuracies for different state devices for low (α =
0.15, 15% of maximum possible absolute weight) and high
(α = 0.25, 25% of maximum possible absolute weight) noise
tolerance margin respectively. The results are also compared
with baseline accuracy (accuracy of a same topography DNN
with floating-point precision weights and no stochasticity).
The training accuracies for DW device based DNNs increase
with the number of device states and almost reach the baseline
accuracy of ∼ 99.6 % for low noise tolerance of α = 0.15 as
can be seen from Fig. 3a. However, the training accuracies
with high noise tolerance, α = 0.25 become slightly lower
(see fig. 3b) as these networks allow higher deviation from the
target quantized weights. Nonetheless, competitive training
accuracies are achieved for both 3- and 5- state devices with
high noise tolerance margin.

FIGURE 3. Online training accuracy and online testing accuracy for DNNs
with different state DW devices for two different noise tolerance margins.
These accuracies are compared with a DNN trained and tested with full
precision weights and no stochasticity (baseline accuracy) a. and b. show
the online training accuracies with the numbers of epochs for α =
0.15 and 0.25 respectively. c. and d. show online testing accuracies with
numbers of epochs for α = 0.15 and 0.25 respectively.

After each epoch of the in-situ training we test the DNN
with test images formMNIST dataset and compute the online
test accuracy. Fig 3c and 3d plots online testing accuracies for
low and high level of noise tolerance margin respectively. The
baseline (DNN with floating-point precision weights and no
stochasticity) test accuracies are plotted for comparison. For
low noise tolerance margin of α = 0.15, the test accuracy
is highest for 5-state device and reaches ∼ 96.67% after
10 epochs of training. This accuracy is very close to the
baseline test accuracy of ∼ 97.1 %. It is important to note
that, the 3-state device based DNN achieves a test accuracy
of ∼ 96.6 % after 10 epochs of training, which is similar to a
5-state device. When the noise tolerance margin is increased
to α = 0.25, the test accuracies for 5-state and 3-state devices

VOLUME 10, 2022 84953



W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

are ∼ 96.56% and ∼ 96.36% after 10 epochs of training.
Thus, a maximum decrease of accuracy of ∼ 0.74 % from
32-bit precision weight is recorded for a 3-state stochastic
weight. We note that, the test accuracies for 2-state device
are∼ 95.14% and∼94.64% for low and high noise tolerance
margin respectively. Thus, the same topography networks
for 2-state does not achieve comparable test accuracies.
Changing the topography, such as increasing the number of
neurons in hidden layers, can increase the accuracy of binary
DNN [54].

Next, we analyze the total number of programming pulses
that are applied to the DW devices during the course of
the online training at various epochs. Because the network
updates the high-precision weights, a single weight may
have its high precision value updated many times before
crossing the threshold to update the DW device weight.
As the number of device updates is dependent on the number
of times a high precision weight crosses the threshold; the
larger the threshold the fewer the updates. Between the 2,
3 and 5 state networks the 5-state has the smallest threshold,
which increases the number of DW device updates as seen in
Fig. 4. These DNNs are also compared with a DNN trained
with floating-point precision weights (and no stochasticity).
In floating-point precision DNN, all the weights are updated
at each time a training image is passed to the network. Thus,
although the network is better trained with increasing number
of epochs, the weight update count remains almost constant
as seen in Fig. 4. In contrast, for DNNs with limited state DW
devices with the proposed training method, the programming
instances decrease significantly with the number of epochs.
As expected, with low noise tolerance margin the DNNs
with DW devices become more selective and require higher
number of weight updates during the course of training
(though this is much smaller than the case of floating-point
precision weights).

FIGURE 4. Comparison of the total number of programmed weights with
the number of training epochs for different networks. A significantly
lower number of weights are updated during the proposed online training
compared to the floating precision weight network of the same
architecture.

In Fig. 5, we show the convergence of DW device weights
during the training. DNN weights whose noise tolerance are

higher will converge to a value quicker, on an average, than
a weight with a lower noise tolerance. In Fig. 5a and 5b, the
DW device weights fall within ±α of the quantized weight
value. In both cases, the DW device weight is closer to the
high precision value than the quantized weight, which tends
to provide a higher accuracy for our DW based DNN.

FIGURE 5. Weight evolution of high precision weight, quantized weight
and the DW device weight during the first few training images for two
different noise tolerance margin a. α = 0.15 0.15 b. α = 0.25. The synaptic
weight shown here is connected between the neurons located in hidden
layer 2 and 3.

C. OFFLINE (EX-SITU) TRAINING
In this section, we first analyze the effectiveness of our
proposed ex-situ training by comparing it with other tech-
niques. For that, we train several precursor DNNs in software
using different offline training algorithms (Fig. 6) and then
test the DNNs, which are built from DW synaptic devices
(3- state and 5-state hardware). Each of the DNNs are trained
offline with a total of 10 epochs (train with entire training
dataset 10 times) and prior to the testing the DW devices
are programmed according to the weights that are learned
offline. These results are shown in Fig. 6a and 6b when we
consider a low (α = 0.15) and high (α = 0.25) value of noise
tolerance margin to program the devices. In both Fig. 6a and
6b, for each of the hardware test accuracies, a corresponding
software accuracy is presented side by side with green and
yellow bar.When the exact learned weights (no programming
noise is considered while transferring the learned weights to
the device) are used to test the DNNs we call it software
accuracy.

When offline training is performed with both the floating-
point precision and quantized weights cases, the test accura-
cies are low for low noise tolerance margin, as can be seen
from Fig. 6a. After floating-point precision weight training,
the learned weights need to be converted to 3- or 5-state
to program the DW devices. Thus, for both of the 3- and
5-state hardware the test accuracies degrade compared to
software accuracy of ∼ 97.1%. Converting floating-point
precision learned weights to 5-state compatible weights (5-
level quantization) generates smaller deviations compared
to the 3-state weight (3-level quantization). Thus the 5-
state device provides higher test accuracy which is ∼ 87%
compared to the 3-state which is only ∼10%.

Training with quantized weights (as proposed in [30])
improves the test accuracies to ∼ 90% for 5-state device

84954 VOLUME 10, 2022



W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

FIGURE 6. Testing accuracy comparison of 3-state and 5-state DW device based DNNs for different ex-situ training algorithms with a programming noise
tolerance margin of a. α = 0.15 b. α = 0.25. The networks are trained offline with floating precision weights, quantized weights, and stochastic quantized
weights derived from micromagnetic simulation. Each of the networks is trained with a total number of 10 epochs. Once training is done, the 3-state and
5-state DW devices are programmed based on the quantized value of trained weights prior to testing. For different training algorithms and for each of the
test accuracies of DNNs built from 3- and 5-state hardware, a corresponding software test accuracy (no programming noise is considered and exact
trained weights are used for testing the DNN) is plotted side by side with green and yellow bar. Error bar seen in the figure is calculated from 10 different
test trials. For both noise tolerance margins, the test accuracy is highest when the DNNs are trained with proposed training algorithm (quantized +
stochastic).

(see Fig. 6a) as the network becomes aware of the limited
states of the weights during the training period. However, the
test accuracy remains low (software accuracy is ∼ 96.74%).
The accuracy loss is mainly due to the deviation of the
programmed weights from the learned weights. We note
that, with floating precision training, weight deviations
occur in two ways: converting the floating-point precision
weights to quantized weights and during the programming
of the device where the target quantized weights are
not achieved deterministically. However, with quantized
training only the latter deviation occurs during the testing
stage.

In contrast, with our proposed training which we call
quantized + stochastic training, the test accuracy increases
and reaches up to ∼ 96.63% for 5-state device, which
is very close to the software accuracy of ∼96.67%. The
accuracy improvement can be attributed to even smaller
deviation of the programmed weights from the learned
weights. Unlike quantized training, in our proposed training
the weight quantization is also accompanied by training
the DNN weights according to the statistical distribution of
the device. As a result, during back propagation, the high
precision weights are updated depending on the weighted
sum performed over the imprecise DNN weights (which are
mapped from the stochastic distribution of the device as in
Fig. 1d). In other words, the high precision weights are being
tuned based on the stochastic signature of the device. Thus,
the statistical distribution of the device is embedded in the
learning. When the same devices are used for testing, the
distribution matches better and this plays an important role
for improving the test accuracy. This finding is also supported

by other works [40], [52]. Reference [40] shows that the
DNN trained with Gaussian distributed weights of a certain
standard deviation performs better when a weight distribution
of same standard deviation is used for inference.

With high programming noise, for both floating precision
and quantized training, the programmed weights deviate
more from the learned weights because of the higher
noise tolerance. Thus, the test accuracies for 3- or 5-state
hardware degrade significantly compare to the software-
based accuracies as seen from Fig. 6b. In contrast, with
our proposed training method, the DNNs are made aware
about the statistical distribution of the device thus resulting
in significantly higher test accuracies compare than other
offline training methods. (Note that as the device statistics are
not Gaussian and instead heavily dominated by the pinning
positions, training with Gaussian distributed weights does not
improve accuracy and was not employed).

We also studied the evolution of offline test accuracies
with the number of epochs for different state devices, which
are presented in supplementary Fig. S3. The influence of
noise tolerance margin α on training accuracy, online testing
accuracy and offline testing accuracy for DNN with limited
state device (5-state) is shown in supplementary Fig. S4,
which shows that offline testing accuracy is affected most by
the choice of different α.

D. ENERGY DISSIPATION
The energy required to program a DW synapse is deter-
mined from charging the piezoelectric layer with a voltage
pulse, 1

2CV
2 and I2R loss due to the SOT current in

the heavy metal layer. The maximum change in PMA is

VOLUME 10, 2022 84955



W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

1PMA = 0.5 × 105J
/
m3. For magnetic racetrack of CoFe

the saturation magnetostriction is, λs = 250 ppm. Thus, the
maximum required stress, σ is, 1PMA3λs

2
= 133 MPa and the

strain is, 133MPa
200GPa ∼ 10−3, considering the Young’s Modulus

of CoFe to be 200 GPa. When the electrode dimensions are
in the same order as the piezoelectric thickness, previous
study [55] demonstrated that 10−3 strain is possible in Lead
Zirconate Titanate (PZT) with an applied electric field of
E = 3 MV/m. If we consider PZT layer to be b = 60 nm
thick (same as top electrode or racetrack width as illustrated
in Fig. 1(b)) then a voltage of, Eb = 0.18 V applied between
the top electrode pair and the bottom electrode can generate
the required strain. For a top electrode of length L = 600 nm
(same as racetrack length 600 nm) and width b = 60 nm
and a relative permittivity of PZT εr = 3000, the effective
capacitance is calculated to be ε0εr (Lb)

b ∼ 16 fF. This predicts
a 1

2CV
2 loss of ∼0.5 fJ, considering two top electrodes on

each sides of the racetrack.
The heavy metal layer is considered to be Pt and for

600 × 60 × 5 nm3 dimension Pt layer the resistance is
calculated to be 200 � assuming the resistivity of Pt to
be 100 �nm. The heat loss in the heavy metal layer is
calculated to be 2.2 fJ for a fixed SOT generating current
pulse of magnitude 35 × 1010A

/
m2 applied for 1 ns. Thus,

the maximum energy dissipation to program a synapse is
calculated to be 2.7 fJ.

1) IN-SITU TRAINING
With in-situ training, highest inference accuracy is achieved
for a 5-state device when a low noise margin is considered
during the training. However, with higher noise tolerance
margin similar test accuracy is obtained with fewer device
updates as can be seen from Fig. 4. For 5-state device, if we
consider a noise tolerance margin of α = 0.25, the total
number of weight updates are calculated to be ∼ 48 million
after running the training for 10 epochs. Thus, the energy
dissipation to program the DNN synapses is calculated to be
∼13 pJ for one inference event followed by the weight updates
(10000 test images in MNIST).

2) EX-SITU TRAINING
With ex-situ training, highest inference accuracy is achieved
for 5-state device when the noise margin to program the
DW devices is considered to be low. Fig. 7 shows the
cumulative probability of the DWdevice weights for different
programming condition for a 5-state device. The solid black
line represents the target quantized weights of 1, 0.5, 0,
−0.5 and −1 (in this case −0.833) which can be achieved
by a combination of fixed SOT current pulse and a varying
amplitude voltage pulse which modulates the anisotropy of
the racetrack to Ku = 7, 7.25, 7.5, 7.75 and 8.0 (× 105)J

/
m3

respectively. The adjacent red dotted lines in the figure
shows the noise margin (α = 0.15) that is allowed while
programming the DW device to a specific quantized state.
FromFig. 7 it can be seen that the probability of programming

the DW device weight to a quantized value of 1 is the lowest
which is ∼ 6 % meaning a number of ∼ 20 attempt is
required to program the device. If we consider the worst-
case scenario, then after ex-situ training prior to the inference,
we need 20 programing pulses to program each of the
DW devices implementing the DNN weights. Thus, for our
network topology of 784-392-196-98-10 neurons, the energy
dissipation to program the DW synapse is 2.8 pJ per inference
event.

The energy dissipation to program the DW devices in in-
situ training is found to be 5× the dissipation incurred in
ex-situ training, which is moderately low provided that the
training is performed over the entire 60000 training images
for 10 epochs. This low dissipation in-situ training is possible
due to distinct features of proposed training algorithm
that benefits from weight quantization and noise tolerance
margin. Large inter-state interval in quantized learning helps
to reduce the number of weight updates. Moreover, once
the device is programmed within the noise tolerance margin,
further write operation is avoided with a simple low cost read
operation. We note that onsite learning is attractive in power
constraint edge devices, where the learning itself needs to
adapt and respond to a continuously evolving environment.
Embeddedmedical systems [56], real time intrusion detection
[57], and dialect specific speech recognition systems can be
benefitted from such onsite learning. Ex-situ learning can
perform inference tasks in edge devices with energy efficient
manner (given the training is performed over cloud server),
however the benefit can only apply to non-adaptive tasks.

FIGURE 7. Cumulative probability of normalized DW device weights for
5-state device under different programming conditions denoted by
different Ku. Black solid line represents the target quantized weights and
the adjacent dotted red lines represent the programming noise tolerance
margin of α = 0.15.

Finally, the accuracy and energy consumption of our
proposed DW based approach is compared with state-of-
the-art techniques in the literature. The accuracies that we
achieve for 5-state DW are comparable to the RRAM [54]
and PCM [38] and better than the DW approach presented
in [48] that can provide 32-states.

84956 VOLUME 10, 2022



W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

For energy comparison purpose, we first calculate the
energy consumption of our proposed in-situ approach,
including the energy expenditure for performing forward
and backward propagation in the analog domain (crossbar
devices) and weight gradient accumulation in the digital
domain (high precision memory update). The details about
energy calculation can be found in supplementary section
S5. In addition, we estimate the energy consumption of a
similar architecture deep neural network (DNN) with 32-
bit precision weights (see supplementary section S5). Our
proposed approach demonstrates a possibility of ∼ 165×
more energy saving compared to the 32-bit precision DNN
implemented with on-chip CMOS static random access
memory (SRAM).

The estimated energy consumption of ∼ 26 nJ per
inference is comparable with state-of-the-art non-volatile
technologies such as RRAM [54] and PCM [38]. Moreover,
our proposed 5-state DW based DNN consumes less power
compared to 32-state DW based DNN [48] for each synaptic
weight update event as a 50 µA and 1 ns duration current
pulse is used to program the 32-state synapses as opposed
to our synapse that requires 21µA and 1 ns duration current
pulse (Note that SOT clock dominates the energy consumed
in our case). Further, the DW-based approach presented
in [24] consumes an energy∼ 8.64 fJ to program the synapse
from one extreme conductance to the other, compared to our
∼ 2.7 fJ. However, Ref [24] does not take thermal noise and
edge irregularities into consideration that could significantly
reduce the number of distinguishable states due to device
stochasticity. Finally, our algorithm ensures the number of
times the weights are programmed are also significantly
lower making the training cost very small.

V. CONCLUSION
We have shown that DNNs with extremely low resolution
and stochastic DW device-based synapses can achieve high
classification accuracy when trained with appropriate learn-
ing algorithms. In this study, both in-situ and ex-situ training
algorithms are presented for DNNs that are implemented with
2-state, 3-state and 5-state DW devices. For in-situ training,
a high precision memory unit is employed to preserve and
accumulate the weight gradients, which are quantized to
obtain target conductance for updating the low precision
DW devices. A noise tolerance margin further allows for
random deviations of the programmed conductances from the
target conductance values. For ex-situ training, a precursor
DNN is first trained in software by performing weight
quantization and considering a noise tolerance margin from
the quantized weight and later tested with an equivalent DNN
of DW devices programmed with the same noise margin.
While the energy dissipation statistics for programming the
DNN synapses shows that ex-situ method is energy efficient,
however, the in-situ training comes with an opportunity to
learn and adapt to the changing environment with only 5×
more dissipation (despite the fact that the in-situ training is
performed over a vast number of training images for many

epochs). This technology is specifically attractive for low
power intelligent edge devices of future IoT where energy
requirement is at a premium. In future we are planning to
extend our quantization aware stochastic DW device based
DNN learning to convolutional, recurrent, long-short term
memory and transformer based neural networks.

REFERENCES
[1] H.-S.-P. Wong and S. Salahuddin, ‘‘Memory leads the way to better

computing,’’ Nature Nanotechnol., vol. 10, no. 3, pp. 191–194, Mar. 2015,
doi: 10.1038/nnano.2015.29.

[2] A. Pedram, S. Richardson, M. Horowitz, S. Galal, and S. Kvatinsky,
‘‘Dark memory and accelerator-rich system optimization in the dark
silicon era,’’ IEEE Design Test, vol. 34, no. 2, pp. 39–50, Apr. 2017, doi:
10.1109/MDAT.2016.2573586.

[3] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, ‘‘Deep-learning-
based joint resource scheduling algorithms for hybrid MEC networks,’’
IEEE Internet Things J., vol. 7, no. 7, pp. 6252–6265, Jul. 2020, doi:
10.1109/JIOT.2019.2954503.

[4] F. Jiang, L. Dong, K. Wang, K. Yang, and C. Pan, ‘‘Distributed resource
scheduling for large-scaleMEC systems: Amultiagent ensemble deep rein-
forcement learning with imitation acceleration,’’ IEEE Internet Things J.,
vol. 9, no. 9, pp. 6597–6610, May 2022, doi: 10.1109/JIOT.2021.3113872.

[5] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and
E. Eleftheriou, ‘‘Memory devices and applications for in-memory
computing,’’ Nat. Nanotechnol., vol. 15, pp. 529–544, Mar. 2020,
doi: 10.1038/s41565-020-0655-z.

[6] D. Ielmini and H. S. P. Wong, ‘‘In-memory computing with resistive
switching devices,’’Nature Electron., vol. 1, no. 6, pp. 333–343, Jun. 2018,
doi: 10.1038/s41928-018-0092-2.

[7] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, ‘‘Dot-product engine for
neuromorphic computing: Programming 1T1M crossbar to accelerate
matrix-vector multiplication,’’ in Proc. 53rd Annu. Design Autom. Conf.,
Austin, TX, USA, Jun. 2016, pp. 1–6.

[8] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song,
N. Dávila, C. E. Graves, Z. Li, J. P. Strachan, P. Lin, Z. Wang, M. Barnell,
Q. Wu, R. S. Williams, J. J. Yang, and Q. Xia, ‘‘Analogue signal and
image processingwith largememristor crossbars,’’Nature Electron., vol. 1,
pp. 52–59, Dec. 2017, doi: 10.1038/s41928-017-0002-z.

[9] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler,
K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat,
M. Le Gallo, K. Moon, J. Woo, H. Hwang, and Y. Leblebici, ‘‘Neuromor-
phic computing using non-volatile memory,’’ Adv. Phys., X, vol. 2, no. 1,
pp. 89–124, Dec. 2016, doi: 10.1080/23746149.2016.1259585.

[10] G. W. Burr, R. M. Shelby, S. Sidler, C. Nolfo, J. Jang, I. Boybat,
R. S. Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti, B. N. Kurdi, and
H. Hwang, ‘‘Experimental demonstration and tolerancing of a large-scale
neural network (165 000 synapses) using phase-change memory as the
synaptic weight element,’’ IEEE Trans. Electron Devices, vol. 62, no. 11,
pp. 3498–3507, Nov. 2015, doi: 10.1109/TED.2015.2439635.

[11] M. Prezioso, F.Merrikh-Bayat, B. D. Hoskins, G. C. Adam,K.K. Likharev,
and D. B. Strukov, ‘‘Training and operation of an integrated neuromorphic
network based on metal-oxide memristors,’’ Nature, vol. 521, pp. 61–64,
May 2015, doi: 10.1038/nature14441.

[12] M. Suri, O. Bichler, D. Querlioz, O. Cueto, L. Perniola, V. Sousa,
D. Vuillaume, C. Gamrat, and B. DeSalvo, ‘‘Phase change memory as
synapse for ultra-dense neuromorphic systems: Application to complex
visual pattern extraction,’’ in Proc. Int. Electron Devices Meeting,
Dec. 2011, p. 4, doi: 10.1109/IEDM.2011.6131488.

[13] T. H. Lee, D. Loke, K.-J. Huang, W.-J. Wang, and S. R. Elliott, ‘‘Tailoring
transient-amorphous states: Towards fast and power-efficient phase-
change memory and neuromorphic computing,’’ Adv. Mater., vol. 26,
no. 44, pp. 7493–7498, Nov. 2014, doi: 10.1002/adma.201402696.

[14] S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H.-S. P. Wong, ‘‘An electronic
synapse device based on metal oxide resistive switching memory for
neuromorphic computation,’’ IEEE Trans. Electron Devices, vol. 58, no. 8,
pp. 2729–2737, Aug. 2011, doi: 10.1109/TED.2011.2147791.

[15] J. Woo, K. Moon, J. Song, S. Lee, M. Kwak, J. Park, and
H. Hwang, ‘‘Improved synaptic behavior under identical pulses using
AlOx /HfO2 bilayer RRAM array for neuromorphic systems,’’ IEEE
Electron Device Lett., vol. 37, no. 8, pp. 994–997, Aug. 2016, doi:
10.1109/LED.2016.2582859.

VOLUME 10, 2022 84957

http://dx.doi.org/10.1038/nnano.2015.29
http://dx.doi.org/10.1109/MDAT.2016.2573586
http://dx.doi.org/10.1109/JIOT.2019.2954503
http://dx.doi.org/10.1109/JIOT.2021.3113872
http://dx.doi.org/10.1038/s41565-020-0655-z
http://dx.doi.org/10.1038/s41928-018-0092-2
http://dx.doi.org/10.1038/s41928-017-0002-z
http://dx.doi.org/10.1080/23746149.2016.1259585
http://dx.doi.org/10.1109/TED.2015.2439635
http://dx.doi.org/10.1038/nature14441
http://dx.doi.org/10.1109/IEDM.2011.6131488
http://dx.doi.org/10.1002/adma.201402696
http://dx.doi.org/10.1109/TED.2011.2147791
http://dx.doi.org/10.1109/LED.2016.2582859


W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

[16] C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery,
P. Lin, Z.Wang,W. Song, J. P. Strachan,M. Barnell, Q.Wu, R. S.Williams,
J. J. Yang, and Q. Xia, ‘‘Efficient and self-adaptive in-situ learning in
multilayer memristor neural networks,’’ Nature Commun., vol. 9, no. 1,
pp. 1–8, Jun. 2018, doi: 10.1038/s41467-018-04484-2.

[17] P. Yao, H. Wu, B. Gao, S. B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang,
N. Deng, L. Shi, H.-S. P. Wong, and H. Qian, ‘‘Face classification using
electronic synapses,’’ Nature Commun., vol. 8, no. 1, pp. 1–8, May 2017,
doi: 10.1038/ncomms15199.

[18] D. Bhowmik, U. Saxena, A. Dankar, A. Verma, D. Kaushik, S. Chatterjee,
and U. Singh, ‘‘On-chip learning for domain wall synapse based fully
connected neural network,’’ J. Magn. Magn. Mater., vol. 498, Nov. 2019,
Art. no. 1654342, doi: 10.1016/j.jmmm.2019.165434.

[19] A. Sengupta, Y. Shim, and K. Roy, ‘‘Proposal for an all-spin artificial neu-
ral network: Emulating neural and synaptic functionalities through domain
wall motion in ferromagnets,’’ IEEE Trans. Biomed. Circuits Syst., vol. 10,
no. 6, pp. 1152–1160, Dec. 2016, doi: 10.1109/TBCAS.2016.2525823.

[20] D. Zhang, Y. Hou, L. Zeng, and W. Zhao, ‘‘Hardware acceler-
ation implementation of sparse coding algorithm with spintronic
devices,’’ IEEE Trans. Nanotechnol., vol. 18, pp. 518–531, 2019, doi:
10.1109/TNANO.2019.2916149.

[21] A. F. Vincent, J. Larroque, N. Locatelli, N. B. Romdhane, O. Bichler,
C. Gamrat, W. S. Zhao, J.-O. Klein, S. Galdin-Retailleau, and D. Querlioz,
‘‘Spin-transfer torque magnetic memory as a stochastic memristive
synapse for neuromorphic systems,’’ IEEE Trans. Biomed. Circuits Syst.,
vol. 9, no. 2, pp. 166–174, Apr. 2015, doi: 10.1109/TBCAS.2015.2414423.

[22] M. Alamdar, T. Leonard, C. Cui, B. P. Rimal, L. Xue, O. G. Akinola,
T. P. Xiao, J. S. Friedman, C. H. Bennett, M. J. Marinella, and
J. A. C. Incorvia, ‘‘Domain wall-magnetic tunnel junction spin-orbit
torque devices and circuits for in-memory computing,’’ Appl. Phys. Lett.,
vol. 118, Mar. 2021, Art. no. 112401, doi: 10.1063/5.0038521.

[23] M.-C. Chen, A. Sengupta, and K. Roy, ‘‘Magnetic skyrmion as a
spintronic deep learning spiking neuron processor,’’ IEEE Trans. Magn.,
vol. 54, no. 8, Aug. 2018, Art. no. 1500207, doi: 10.1109/TMAG.2018.
2845890.

[24] D. Kaushik, U. Singh, U. Sahu, I. Sreedevi, and D. Bhowmik, ‘‘Comparing
domain wall synapse with other non volatile memory devices for on chip
learning in analog hardware neural network,’’ AIP Adv., vol. 10, no. 2,
pp. 1–7, Feb. 2020, Art. no. 025111, doi: 10.1063/1.5128344.

[25] V. Uhlíř, S. Pizzini, N. Rougemaille, J. Novotný, V. Cros, E. Jiménez,
G. Faini, L. Heyne, F. Sirotti, C. Tieg, A. Bendounan, F. Maccherozzi,
R. Belkhou, J. Grollier, A. Anane, and J. Vogel, ‘‘Current-induced
motion and pinning of domain walls in spin-valve nanowires studied by
XMCD-PEEM,’’ Phys. Rev. B, Condens. Matter, vol. 81, no. 22, pp. 1–10,
Jun. 2010, doi: 10.1103/PhysRevB.81.224418.

[26] X. Jiang, L. Thomas, R. Moriya, M. Hayashi, B. Bergman, C. Rettner,
and S. S. P. Parkin, ‘‘Enhanced stochasticity of domain wall motion in
magnetic racetracks due to dynamic pinning,’’ Nature Commun., vol. 1,
no. 1, pp. 1–5, Jun. 2010, doi: 10.1038/ncomms1024.

[27] J. P. Attané, D. Ravelosona, A. Marty, Y. Samson, and C. Chappert,
‘‘Thermally activated depinning of a narrow domain wall from a
single defect,’’ Phys. Rev. Lett., vol. 96, no. 14, pp. 1–4, Apr. 2006,
doi: 10.1103/PhysRevLett.96.147204.

[28] W. A. Misba, T. Kaisar, D. Bhattacharya, and J. Atulasimha, ‘‘Voltage-
controlled energy-efficient domain wall synapses with stochastic distri-
bution of quantized weights in the presence of thermal noise and edge
roughness,’’ IEEE Trans. Electron Devices, vol. 69, no. 4, pp. 1658–1666,
Apr. 2022, doi: 10.1109/TED.2021.3111846.

[29] S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura,
H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, ‘‘Tunnel
magnetoresistance of 604% at 300 K by suppression of Ta diffusion in
CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature,’’
Appl. Phys. Lett., vol. 93, Aug. 2008, Art. no. 082508, doi: 10.1063/
1.2976435.

[30] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
‘‘Quantized neural networks: Training neural networks with low precision
weights and activations,’’ J. Mach. Learn. Res., vol. 18, no. 187, pp. 1–30,
Apr. 2017.

[31] M. Courbariaux, Y. Bengio, and J.-P. David, ‘‘Binaryconnect: Training
deep neural networks with binary weights during propagations,’’ in Proc.
28th Int. Conf. Neural Inf. Process. Syst., Montreal, BC, Canada, vol. 2,
Dec. 2015, pp. 3123–3131.

[32] H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang, ‘‘ZipML:
Training linear models with end-to-end low precision, and a little bit of
deep learning,’’ in Proc. 34th Int. Conf. Mach. Learn., Sydney, NSW,
Australia, vol. 70, Aug. 2017, pp. 4035–4043.

[33] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, ‘‘DoReFa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,’’ 2016, arXiv:1606.06160.

[34] D.Miyashita, E. H. Lee, and B.Murmann, ‘‘Convolutional neural networks
using logarithmic data representation,’’ 2016, arXiv:1603.01025.

[35] S. Agarwal, R. B. Jacobs Gedrim, A. H. Hsia, D. R. Hughart, E. J. Fuller,
A. A. Talin, C. D. James, S. J. Plimpton, and M. J. Marinella, ‘‘Achieving
ideal accuracies in analog neuromorphic computing using periodic carry,’’
in Proc. Symp. VLSI Technol., Kyoto, Japan, Jun. 2017, pp. T174–T175.

[36] I. Boybat, M. Le Gallo, S. R. Nandakumar, T. Moraitis, T. Parnell,
T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, and E. Eleftheriou,
‘‘Neuromorphic computing with multi-memristive synapses,’’ Nature
Commun., vol. 9, no. 1, pp. 1–12, Jun. 2018, doi: 10.1038/s41467-018-
04933-y.

[37] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat,
C. Di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha,
B. Killeen, C. Cheng, Y. Jaoudi, and G. W. Burr, ‘‘Equivalent-
accuracy accelerated neural-network training using analogue
memory,’’ Nature, vol. 558, no. 7708, pp. 60–67, Jun. 2018,
doi: 10.1038/s41586-018-0180-5.

[38] S. R. Nandakumar, M. Le Gallo, C. Piveteau, V. Joshi, G. Mariani,
I. Boybat, G. Karunaratne, R. Khaddam-Aljameh, U. Egger,
A. Petropoulos, T. Antonakopoulos, B. Rajendran, A. Sebastian, and
E. Eleftheriou, ‘‘Mixed-precision deep learning based on computational
memory,’’ Frontiers Neurosci., vol. 14, pp. 1–17, May 2020, doi:
10.3389/fnins.2020.00406.

[39] M. L. Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma,
C. Bekas, A. Curioni, and E. Eleftheriou, ‘‘Mixed-precision in-memory
computing,’’ Nature Electron., vol. 1, no. 4, pp. 246–253, Apr. 2018, doi:
10.1038/s41928-018-0054-8.

[40] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar,
C. Piveteau, M. Dazzi, B. Rajendran, A. Sebastian, and E. Eleftheriou,
‘‘Accurate deep neural network inference using computational phase-
change memory,’’ Nature Commun., vol. 11, no. 1, pp. 1–13, May 2020,
doi: 10.1038/s41467-020-16108-9.

[41] G. Boquet, E. Macias, A. Morell, J. Serrano, E. Miranda, and J. L. Vicario,
‘‘Offline training for memristor-based neural networks,’’ in Proc. 28th
Eur. Signal Process. Conf. (EUSIPCO), Amsterdam, The Netherlands,
Jan. 2021, pp. 1547–1551, doi: 10.23919/Eusipco47968.2020.9287574.

[42] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang,
‘‘Accelerator-friendly neural-network training: Learning variations and
defects in RRAM crossbar,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Lausanne, Switzerland, Mar. 2017, pp. 19–24, doi:
10.23919/DATE.2017.7926952.

[43] B. Liu, H. Li, Y. Chen, X. Li, Q. Wu, and T. Huang, ‘‘Vortex:
Variation-aware training for memristor X-bar,’’ in Proc. 52nd Annu.
Design Autom. Conf., San Francisco, CA, USA, Jun. 2015, pp. 1–6, doi:
10.1145/2744769.2744930.

[44] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and
H. Qian, ‘‘Fully hardware-implemented memristor convolutional neural
network,’’ Nature, vol. 577, no. 7792, pp. 641–646, Jan. 2020, doi:
10.1038/s41586-020-1942-4.

[45] E.Martinez, L. Lopez-Diaz, L. Torres, C. Tristan, and O. Alejos, ‘‘Thermal
effects in domain wall motion: Micromagnetic simulations and analytical
model,’’ Phys. Rev. B, Condens. Matter, vol. 75, no. 17, pp. 1–11,
May 2007, doi: 10.1103/PhysRevB.75.174409.

[46] S. Dutta, S. A. Siddiqui, J. A. Currivan-Incorvia, C. A. Ross, and
M. A. Baldo, ‘‘Micromagnetic modeling of domain wall motion in sub-
100-nm-wide wires with individual and periodic edge defects,’’ AIP Adv.,
vol. 5, Aug. 2015, Art. no. 127206, doi: 10.1063/1.4937557.

[47] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez,
and B. V. Waeyenberge, ‘‘The design and verification of MuMax3,’’ AIP
Adv., vol. 4, no. 10, Oct. 2014, Art. no. 107133, doi: 10.1063/1.4899186.

[48] S. Liu, T. P. Xiao, C. Cui, J. A. C. Incorvia, C. H. Bennett, and
M. J. Marinella, ‘‘A domain wall-magnetic tunnel junction artificial
synapse with notched geometry for accurate and efficient training of deep
neural networks,’’ Appl. Phys. Lett., vol. 118, May 2021, Art. no. 202405,
doi: 10.1063/5.0046032.

84958 VOLUME 10, 2022

http://dx.doi.org/10.1038/s41467-018-04484-2
http://dx.doi.org/10.1038/ncomms15199
http://dx.doi.org/10.1016/j.jmmm.2019.165434
http://dx.doi.org/10.1109/TBCAS.2016.2525823
http://dx.doi.org/10.1109/TNANO.2019.2916149
http://dx.doi.org/10.1109/TBCAS.2015.2414423
http://dx.doi.org/10.1063/5.0038521
http://dx.doi.org/10.1109/TMAG.2018.2845890
http://dx.doi.org/10.1109/TMAG.2018.2845890
http://dx.doi.org/10.1063/1.5128344
http://dx.doi.org/10.1103/PhysRevB.81.224418
http://dx.doi.org/10.1038/ncomms1024
http://dx.doi.org/10.1103/PhysRevLett.96.147204
http://dx.doi.org/10.1109/TED.2021.3111846
http://dx.doi.org/10.1063/1.2976435
http://dx.doi.org/10.1063/1.2976435
http://dx.doi.org/10.1038/s41467-018-04933-y
http://dx.doi.org/10.1038/s41467-018-04933-y
http://dx.doi.org/10.1038/s41586-018-0180-5
http://dx.doi.org/10.3389/fnins.2020.00406
http://dx.doi.org/10.1038/s41928-018-0054-8
http://dx.doi.org/10.1038/s41467-020-16108-9
http://dx.doi.org/10.23919/Eusipco47968.2020.9287574
http://dx.doi.org/10.23919/DATE.2017.7926952
http://dx.doi.org/10.1145/2744769.2744930
http://dx.doi.org/10.1038/s41586-020-1942-4
http://dx.doi.org/10.1103/PhysRevB.75.174409
http://dx.doi.org/10.1063/1.4937557
http://dx.doi.org/10.1063/1.4899186
http://dx.doi.org/10.1063/5.0046032


W. A. Misba et al.: Energy Efficient Learning With Low Resolution Stochastic DW Synapse for DNNs

[49] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based
learning applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.

[50] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning repre-
sentations by back-propagating errors,’’ Nature, vol. 323, pp. 533–536,
Oct. 1986, doi: 10.1038/323533a0.

[51] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks for
efficient integer-arithmetic-only inference,’’ 2017, arXiv:1712.05877.

[52] T. Hirtzlin, M. Bocquet, J.-O. Klein, E. Nowak, E. Vianello, J.-M. Portal,
and D. Querlioz, ‘‘Outstanding bit error tolerance of resistive RAM-based
binarized neural networks,’’ 2019, arXiv:1904.03652.

[53] B. Liu, H. Li, Y. Chen, X. Li, T. Huang, Q.Wu, andM. Barnell, ‘‘Reduction
and IR-drop compensations techniques for reliable neuromorphic com-
puting systems,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Jan. 2015, pp. 63–70, doi: 10.1109/ICCAD.2014.7001330.

[54] T. Hirtzlin, M. Bocquet, B. Penkovsky, J.-O. Klein, E. Nowak, E.
Vianello, J.-M. Portal, and D. Querlioz, ‘‘Digital biologically plausible
implementation of binarized neural networks with differential hafnium
oxide resistive memory arrays,’’ Frontiers Neurosci., vol. 13, pp. 1–14,
Jan. 2020, doi: 10.3389/fnins.2019.01383.

[55] J. Cui, J. L. Hockel, P. K. Nordeen, D.M. Pisani, C.-Y. Liang, G. P. Carman,
and C. S. Lynch, ‘‘A method to control magnetism in individual strain-
mediated magnetoelectric islands,’’ Appl. Phys. Lett., vol. 103, no. 23,
Dec. 2013, Art. no. 232905, doi: 10.1063/1.4838216.

[56] T. Dalgaty, N. Castellani, C. Turck, K.-E. Harabi, D. Querlioz, and
E. Vianello, ‘‘In situ learning using intrinsic memristor variability
via Markov chain Monte Carlo sampling,’’ Nature Electron., vol. 4,
pp. 151–161, Jan. 2021, doi: 10.1038/s41928-020-00523-3.

[57] M. S. Alam, B. R. Fernando, Y. Jaoudi, C. Yakopcic, R. Hasan, T. M. Taha,
and G. Subramanyam, ‘‘Memristor based autoencoder for unsupervised
real-time network intrusion and anomaly detection,’’ in Proc. Int. Conf.
Neuromorphic Syst., Jul. 2019, pp. 1–8, doi: 10.1145/3354265.3354267.

WALID AL MISBA received the B.Sc. degree
in electrical and electronic engineering from
the Bangladesh University of Engineering and
Technology, Dhaka, Bangladesh, in 2013, and
the M.S. degree in electrical engineering from
Tuskegee University, AL, USA. He is currently
pursuing the Ph.D. degree in mechanical and
nuclear engineering with Virginia Commonwealth
University, Richmond, VA, USA.

MARK LOZANO received the B.S. degree in
mechanical engineering from Virginia Common-
wealth University, Richmond, VA, USA, in 2020,
and the M.S. degree in computer science. His
research interest includes designing machine
learning algorithms for varying applications. After
fulfilling his ongoing contract in Chantilly, VA,
USA, he plans on going back to school to further
research in neuromorphic computing.

DAMIEN QUERLIOZ (Senior Member, IEEE)
received the Graduate degree from the Ecole
Normale Supérieure, Paris, and the Ph.D. degree
from Université Paris-Sud, in 2008. After post-
doctoral appointments at Stanford University and
CEA, he became a Permanent Researcher with
the Centre for Nanoscience and Nanotechnology,
Université Paris-Sud. He focuses on novel usages
of emerging non-volatile memory, in particular
relying on inspirations from biology and machine

learning. He coordinates the INTEGNANO Interdisciplinary Research
Group. He is currently a CNRSResearch Scientist with Univeristé Paris-Sud.
In 2016, he was a recipient of the European Research Council Starting Grant
to develop the concept of natively intelligent memory. In 2017, he received
the CNRS Bronze Medal.

JAYASIMHA ATULASIMHA (Senior Member,
IEEE) received the M.S. and Ph.D. degrees in
aerospace engineering from the University of
Maryland, College Park, MD, USA, in 2003 and
2006, respectively. He is currently a Professor in
mechanical and nuclear engineering and electrical
and computer engineering with Virginia Com-
monwealth University, Richmond, VA, USA. His
current research interests include magnetostrictive
materials, nanoscale magnetization dynamics, and

multiferroic nanomagnet-based computing architectures.

VOLUME 10, 2022 84959

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/ICCAD.2014.7001330
http://dx.doi.org/10.3389/fnins.2019.01383
http://dx.doi.org/10.1063/1.4838216
http://dx.doi.org/10.1038/s41928-020-00523-3
http://dx.doi.org/10.1145/3354265.3354267

