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ARTICLE

Forecasting the outcome of spintronic experiments
with Neural Ordinary Differential Equations
Xing Chen1,2, Flavio Abreu Araujo 3,4, Mathieu Riou4, Jacob Torrejon4, Dafiné Ravelosona2, Wang Kang1,

Weisheng Zhao 1, Julie Grollier 4 & Damien Querlioz 2✉

Deep learning has an increasing impact to assist research, allowing, for example, the dis-

covery of novel materials. Until now, however, these artificial intelligence techniques have

fallen short of discovering the full differential equation of an experimental physical system.

Here we show that a dynamical neural network, trained on a minimal amount of data, can

predict the behavior of spintronic devices with high accuracy and an extremely efficient

simulation time, compared to the micromagnetic simulations that are usually employed to

model them. For this purpose, we re-frame the formalism of Neural Ordinary Differential

Equations to the constraints of spintronics: few measured outputs, multiple inputs and

internal parameters. We demonstrate with Neural Ordinary Differential Equations an accel-

eration factor over 200 compared to micromagnetic simulations for a complex problem – the

simulation of a reservoir computer made of magnetic skyrmions (20 minutes compared to

three days). In a second realization, we show that we can predict the noisy response of

experimental spintronic nano-oscillators to varying inputs after training Neural Ordinary

Differential Equations on five milliseconds of their measured response to a different set of

inputs. Neural Ordinary Differential Equations can therefore constitute a disruptive tool for

developing spintronic applications in complement to micromagnetic simulations, which are

time-consuming and cannot fit experiments when noise or imperfections are present. Our

approach can also be generalized to other electronic devices involving dynamics.
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By combining spin and charge degrees of freedom, spin-
tronics offers multiple functionalities that are exploited in
industrial applications for sensing and memory storage1–4,

and are currently being studied for communications5 and infor-
mation processing6–11. The rich functionality of spintronic
devices stems from the intricate magnetic textures from which
they are formed, and the complex dynamical modes that can be
excited in these textures. Spintronic systems, which have typical
dimensions of a few nanometers to a few micrometers, cannot
indeed be considered as formed by a single spin and have a large
number of hidden variables: all the local magnetizations in the
device. These spin textures can be dynamically excited by a wealth
of physical quantities: magnetic fields, electrical currents or vol-
tages, temperature, and pressure, all of which giving rise to dif-
ferent responses.

The dominant approach to predicting the complex behavior of
spintronic devices is micromagnetic simulations. They divide the
structures into nanometer-sized cells and simulate the spin
dynamics of each cell using the Landau-Lifshitz-Gilbert equation,
taking into account local and non-local interactions between the
micromagnetic cells12–16. This technique, therefore, involves a
considerable number of coupled differential equations and
requires very long simulation times, easily reaching weeks in
time-dependent experiments or in micrometer-scale devices.
Beyond their long simulation time, micromagnetic simulations
come with essential limitations. The simulations have to be re-
executed from scratch when the input parameters of the template
need to be modified. Also, micromagnetic simulations can almost
never fit quantitatively the results of an experiment. In a real
experiment, the geometry of a nanostructure is indeed always
approximate, the material parameters can never be perfectly
controlled and may possess specific structural inhomogeneities.
Experimental results are also easily affected by the injection of
noise, the details of the measurement setups, and unknown
external factors, which are challenging to consider in the
micromagnetic modeling process. A new tool that could accu-
rately predict experiments, even when all these non-idealities are
present, would be invaluable. For example, experiments in the
field of neuromorphic spintronics7,17,18 currently involve
months-long experimental campaigns to optimize all the inputs
of the systems, a development time that could be reduced radi-
cally with an appropriate modeling tool. In industry, the devel-
opment of spin-torque magnetoresistive memory (ST-MRAM)
also involves a considerable amount of micromagnetic simula-
tions and experiments to optimize device parameters19.

The progress of artificial neural networks provides an alternative
road to simulate the behavior of spintronic systems and predict the
results of experiments. In recent years, machine learning has been
increasingly used in physics, for example, for discovering new
materials and learning physical dynamics from time-series
data.20–30. In the field of nanomagnetism and micromagnetics,
deep neural networks are used to extract microstructural features in
magnetic thin film elements31–34, and to explore materials with
ease35. Refrences36–38 use a sophisticated combination of machine
learning techniques to predict the magnetization dynamics of
magnetic thin film elements over one nanosecond. However, the
power of artificial neural networks has never been used to model, fit
and forecast the long-term experimental behavior of solid-state
nanocomponents. In this context, a recent type of neural network,
Neural Ordinary Differential Equations (ODE), has great potential
for modeling physical nanodevices, as it is specialized in predicting
the trajectories of dynamical systems (Fig. 1c).

Neural ODEs, initially introduced in ref. 39, are ODE models
_y ¼ f θðy; tÞ, where the function f is expressed by a neural network
with parameters θ, which, instead of being explicitly defined, can
be learned in a supervised manner. The machine learning process

identifies the θ values that allow the Neural ODE to reproduce
presented trajectory examples (training dataset), through the
stochastic gradient descent algorithm. Once the Neural ODE has
been properly trained on the training data, the corresponding
equation becomes an appropriate model of the system dynamics
and can be used to predict its behavior in novel situations not
included in the training dataset.

Unfortunately, in their original form, Neural ODEs cannot be
applied to the simulation of spintronic systems and solid-state
devices in general, due to two major challenges:

● Neural ODEs require measuring the evolution of all the
system variables, whereas in experiments and most applica-
tions, a single physical quantity is typically measured.

● Neural ODEs are not designed for dealing with external
time-varying inputs.

In this work, we solve both issues and show that Neural ODEs
can accurately predict the behavior of a non-ideal nanodevice,
including noise, after training on a minimal set of micromagnetic
simulations or experimental data, with new inputs and material
parameters, not belonging to the training data.

In the rest of the paper, we first explain how we modified
Neural ODE in order to be able to train the whole set of para-
meters based on the temporal evolution of a single physical
variable of the nanodevice under the effect of fluctuating inputs.
For this purpose, we have integrated in the Neural ODE frame-
work the idea of the embedding theorem for the reconstruction of
the state space from a time series. We then compare in detail the
results obtained by this method with micromagnetic simulations.
We demonstrate that Neural ODEs can accurately predict the
complex evolution of a skyrmion-based reservoir computer, in a
significantly reduced time compared to micromagnetic simula-
tions (20 min versus 3 days). Finally, we demonstrate that this
state-of-the-art deep learning technique for time series modeling
can be applied to complex real-world physical processes. We train
Neural ODEs to predict the results of real experiments on spin-
torque nano-oscillators. These experiments would be impossible
to model with micromagnetic simulations, as they would require
hundreds of years of simulation. Our results show that, on the
other hand, Neural ODEs quickly and accurately predict the
outcome of experiments, including the associated noise.

Results
To introduce the use of Neural ODEs in spintronics, we consider
a device made of a skyrmion, a chiral spin texture extensively
studied today for its fascinating topological properties, as well as
its stability, compact size, and non-volatility, all of high interest
for applications40–42 (Fig. 1a). We consider the device of Fig. 1b,
with two inputs: the perpendicular magnetic anisotropy (PMA)
constant Ku and the Dzyaloshinskii-Moriya interaction (DMI) D.
The output of the device is the average magnetization perpen-
dicular to the thin film axis, Δmz, which translates directly to the
electrical resistance of the device. In experiments, the PMA may
be modulated by voltage through voltage-controlled magnetic
anisotropy (VCMA) effects, while the DMI is typically a constant
of the material. However, to train a Neural ODE, we perform
micromagnetic simulations where these two quantities vary arti-
ficially with random sine variations, during 50 ns, to explore the
possible responses that the system can exhibit (Fig. 1d). Figure 1e
shows the elaborate variations that the output Δmz follows in
these conditions. Our goal is to use this 50-nanoseconds time
trace, which can be obtained in 40 min of micromagnetic simu-
lations, to train a Neural ODE, capable of predicting the behavior
of the system in any new situation, and in particular on long
times whose simulation would take days with micromagnetics.
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Extension of the Neural ODEs formalism to deal with
incomplete information of dynamics. Neural ODEs take the
conventional form of ordinary differential equations _y ¼ f θðy; tÞ,
but where the function fθ is a neural network (Fig. 1d). The vector
θ contains the parameters of this neural network, i.e., its synaptic
weights and neuron thresholds. The vector y(t) describes the
different state variables of the system: the function fθ is therefore a
neural network that takes y as input and provides the derivative _y
as output. Once an initial value of y is given, the system dynamics
is computed automatically by calling an ODE solver. Training a
Neural ODE model, i.e., optimizing the θ parameters, normally
requires the knowledge of the evolution of all these state variables
over a collection of demonstrative examples39. After the training
process has been completed, the Neural ODEs can be used to
predict unseen data.

This conventional technique for training Neural ODEs has
strong limitations for predicting the behavior of physical systems.
It is often impossible to know all the state variables relevant to the
dynamics of a physical system. For example, in the spintronic
structure of Fig. 1b, only the mean magnetization Δmz is known.
It can be considered the “output” of our nanodevice and used as
parameter y1 within the Neural ODE. However, y1= Δmz results
from complex magnetic configurations and dynamics that cannot
all be determined experimentally. Additional parameters are
necessary to describe this underlying dynamics, which may be
represented by unknown internal variables: ~y2 to ~ym.

Here we develop a new scheme to train Neural ODEs in this
context of real experiments where, in practice, the knowledge of the
system is always limited. Our idea originates from the insight that
it is possible to convert a set of first-order differential equations in

multiple variables into a single higher-order differential equation in
one variable. For example, let us consider a two-dimensional ODE
½ _y1; _~y2� ¼ ½ay1 þ b~y2; cy1 þ d~y2� with a single hidden variable ~y2.
The equivalent form of this first-order system is a second-order
ODE with variable y1, €y1 ¼ ðaþ dÞ _y1 þ ðbc� adÞy1, where ~y2 no
longer appears.

This simple derivation suggests that an appropriate way for
training a Neural ODE of m internal variables where only one
variable y1 is accessible is to train a Neural ODE where the state
vector y is composed of y1 and its (m−1)th-order derivatives (see
Supplementary Note 8 for a discussion in arbitrary dimension).
The drawback of using higher-order derivatives (Time-Derivative
method) is the sensitivity to noise of derivatives, resulting in a
relative noise level much larger than in the original signal (see
Supplementary Note 8). To make the best use of the original
information and to avoid any preprocessing procedures, in this
work, we employ several successive time-delayed states as an
alternative to derivatives: we consider the input vector

yðtÞ ¼ ðy1ðtÞ; y1ðt þ ΔtdÞ; y1ðt þ 2ΔtdÞ; ¼; y1ðt þ ðk� 1ÞΔtdÞÞ;
ð1Þ

where k is the dimension of the new vector and Δtd denotes a
single delay time. Here we chose a positive Δtd value in our work.
Using a negative Δtd value, as is usually done in the time-delay
embedding literature, leads to equivalent results. These time-
delayed variables contain all the information provided by the
high-order derivatives, but are less prone to noise. This scheme,
which we introduced here in a qualitative manner, can also be
justified mathematically by using a formalism known as the

,
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Fig. 1 Modeling a skyrmion-based device with micromagnetic simulation and Neural ODEs. aMagnetic skyrmion configurations in a nano-disk. The color
scale represents the out-of-plane component magnetization, and arrows denote the spin orientation. b Sketch of a device where a single skyrmion exists in
the ferromagnetic layer. The behavior of the device depends on the Perpendicular Magnetic Anisotropy (PMA) constant (e.g., through VCMA effect) Ku
and the Dzyaloshinskii-Moriya Interaction (DMI) strength D. The output signal is the variation of perpendicular component of the mean magnetization
Δmz. c Sketch of a Neural ODE structure _y ¼ fθðy;Ku;D; tÞ with ΔKu and ΔD as external inputs into the neural network. y is a vector of system dynamics
and f is defined by a neural network (see Fig. 2 for details of the modeling method). d Time-dependent random sine variation ΔKu ranging from −0.05MJ/
m3 to 0.05MJ/m3 as an input (Input 1) and random sine variation ΔD ranging from −0.4mJ/m2 to 0.4 mJ/m2 as another input (Input 2) applied to the
skyrmion system. Equilibrium values of Ku= 0.8MJ/m3 and D= 3mJ/m2 are used. e Predicted training output of Δmz by a Neural ODE in comparison with
micromagnetic simulation (Mumax) results as a function of time. f, g Test results of the trained Neural ODE. The intrinsic response frequency of the
skyrmion system for different values of Ku in f and of D in g calculated by using the trained Neural ODE (orange star) and by micromagnetic simulations
(blue). ‘Neural ODE’ is abbreviated to 'NeurODE' in the legends of the figures.
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embedding theorem (see Supplementary Note 8). More specifi-
cally, theorems by Takens43 and by Sauer et al.44 state that if the
sequence y(t) consists of scalar measurements of the state vector
of a dynamical system, then under certain genericity assumptions,
the time delay embedding provides a one-to-one image of the
original set, provided k is large enough. The prevalent application
of employing delay embedding is to make short-term predictions
of nonlinear time series45,46. The combination of Neural ODE
with the delay embedding theorem enables making predictions
for nonlinear time series with arbitrary lengths in a precise way,
because the neural network provides a strong language to describe
the system non-linearity and thus the physical pattern can be
captured through training with a large number of observed data.

The use of delayed variables may seem equivalent to the use of
time derivatives, as the latter is typically calculated by taking
linear combinations of discrete samples of the data. However, as
mentioned earlier, numerical derivatives amplify the noise
present in the training data, making the Neural ODE training
process much more difficult with time derivatives than with
delayed variables. Supplementary note 3 discusses this issue in
detail and provides an example comparing these two training
techniques.

Extension of the Neural ODEs formalism to deal with time-
varying external inputs. The second challenge for employing
Neural ODEs for predicting the behavior of physical systems is to
include time-varying external inputs, such as the anisotropy and
the DMI changes in Fig. 1b-d. In this case, the time derivative of
the y variable is not only dependent on its current state, but also
related to the input at the current step, a situation that cannot be
described in the traditional form of Neural ODE.

Supplementary Note 8 details how such inputs can be included
in our approach. This note shows that, mathematically, an ODE
system _y ¼ f θðy; eðtÞ; tÞ with the state vector y and the input e(t)
of dimension m can be converted into an mth-order ODE in the
first variable y1, depending on e(t) and the first to (m− 1)th-order
derivatives of e(t). Accordingly, a system with time-varying input
can be modeled by augmenting the delay vector of Eq. (1) with
the extra variables (e(t), e(t+ Δtd),…, e(t+ (k− 1)Δtd)), and
used as input the fθ function.

A system with multiple inputs can then be modeled by
incorporating time-delayed versions of all inputs. As illustrated in
Fig. 2a, b, we treat the time t as an extended element of vector y(t)
into the neural network and concatenate its time derivative,
which is a constant one value, as a known output of the neural
network . In this way, the external inputs at any moment can be
chosen deterministically and given to the neural network. For a
clearer visualization, the whole procedure of our technique is
provided in Algorithm 1.

Algorithm 1. Training Neural ODEs using incomplete system
dynamics and external input.

input : Time intervals T= {t0, t1,…, tn−1} with uniformly spaced
step Δt, time-dependent input E= {e(t0), e(t1),…, e(tn−1)}, observed
scalar output trajectory Y= {y(t0), y(t1),…, y(tn−1)}, mini-batch
time length bt, mini-batch size bs, iterations Ni, dimension of the
new vector k (number of delays k− 1), a single time delay interval
Δtd=Δt, and Neural ODE parameters θ with forward function:

function forward (y):
t ← y[k] ⊳ Extract the last dimension of vector y.
_y ðf θðy½0 : k� 1�; eðtÞÞ; 1Þ ⊳ The derivative of time t is

constant 1.
return _y
output Updated θ
for iter= 1,…,Ni do

(1) Randomly select mini-batch with the initial time tb ¼
ftb0 ; tb1 ; ¼; tbbs�1g (bi∈ [0, n− bt], i ∈ [0, bs− 1], i is an integer),
mini-batch targets ytrue= {(y(tb), y(tb+1),…, y(tb+k−1), b),…,
(y(tb+bt−1), y(tb+bt),…, y(tb+bt+k−2), tb+bt−1)}, initial points
y0= (y(tb), y(tb+1),…, y(tb+k−1), tb), external input (at time step
tb+i, i ∈[0, bt− 1], i is an integer) e(tb+i)= (e(tb+i), e(tb+i+1),
…, e(tb+i+k−1)).
(2) Call the Neural ODE solver and compute the predicted

output trajectory ypred using current θ.
(3) Update θ by taking an ADAM step on the mini-batch loss,

which is defined as Mean Square Error (MSE) of ypred compared
to ytrue.

end

Application of Neural ODEs to predict the behavior of
skyrmion-based systems. We now test the validity of our
approach with the single-skyrmion system of Fig. 1. We train a
Neural ODE with dimension k= 2 by employing a three-layer
neural network fθ, with 50 neurons in each hidden layer, using
Algorithm 1 (see Methods) and the 50-nanosecond trajectory of
Fig. 1d as training set. Figure 1e shows an outstanding agreement
between the predicted training output of Δmz by Neural ODE and
micromagnetic simulations. To evaluate the performance of the
trained Neural ODE at extracting interesting physical quantities,
we next use it to predict the intrinsic breathing frequency of the
skyrmion system for different values of Ku or D. In that case, the
test inputs are composed of a pulse signal of ΔKu (or ΔD) and a
constant value of D (or Ku) to induce an oscillating magnetic
response Δmz and thus to predict the corresponding frequency
for specific material parameters D and Ku. They are thus different
from the sinusoidal waveforms of ΔD and ΔKu used for training
(Fig. 1d), which is important to test the ability of the neural
network to generalize (see Methods section). The results, shown
in Fig. 1f, g, again show excellent agreement with the predictions
of micromagnetic simulations.

We then investigate the impact of the dimension of the Neural
ODE on the prediction accuracy. Figure 2c compares the training
process of a Neural ODE of dimension k= 2 with a Neural ODE
of k= 1, i.e., without augmentation of delayed state (in this
Figure, the anisotropy was used as sole input). The training error
(mean square error, MSE) converges rapidly to zero for k= 2 but
not for k= 1, for which it remains finite. The corresponding
time-domain training outputs are shown in Supplementary
Note 1. In general, we observed that in the absence of noise, a
good model can be trained for any dimension k ≥ 2. This result
can be interpreted by the fact that the physical system, here a
skyrmion, can essentially be described by two variables: the
skyrmion radius and its phase47. For the modeling of noisy time
series, a dimension of two is insufficient to train a good model,
and higher accuracy can be obtained by increasing the number of
delays. This result can be explained by the fact that gathering
more information, i.e., adopting a delay vector of higher
dimension, means less distortion of noise distribution and lower
noise amplification when the time delay embedding is mapped
into the original state space48 (see Supplementary Note 2)

Further results regarding the training performance in terms of
the number of neurons Nh in the hidden layer, the sampling
interval Δt of the trajectory, the dimension k of Neural ODEs, and
different optimization algorithms can be found in Supplementary
Note 1. Concerning the choice of Δtd, this parameter should not
be too small, as there would be almost no difference between
different elements in a vector, and not too large, as the
neighboring states may lose correlations. However, our results
showed that the training results do not depend too significantly
on Δtd, and therefore, we took Δtd equal to the sampling interval.
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We also validated our algorithm in more complex situations.
Neural ODEs were able to predict the behavior of multi-
skyrmions systems with grain inhomogeneities exhibiting a
distribution of perpendicular magnetic anisotropy (PMA) Ku,
and with voltage as input, (see Fig. 2d and Supplementary
Fig. 1c). In this case, the skyrmions show coherent oscillations,
i.e., all skyrmions oscillate in phase with the same frequency49,
and grain inhomogeneity mainly distorts the shapes of skyrmions.
Therefore, the averaged magnetization dynamics can be described
in the same way as the idealized one-skyrmion system, for any
dimension k ≥ 2. Neural ODEs also worked when electric current
is used as an input, causing the skyrmion to rotate within the
device (see Supplementary Note 5).

To summarize, skyrmions systems are usually modeled by
time-consuming micromagnetic simulations, and developing
faster models is a challenging task. Isolated skyrmion dynamics
is often modeled by analytical equations that neglect the
skyrmion deformation in confined systems. On the other hand,
it is particularly difficult to model multi-skyrmions system,
especially taking into account imperfections at the material level.
Here, we showed that Neural ODEs can be trained to model these
different situations.

Benchmark test for reservoir computing: Mackey-Glass time
series prediction. We now show that the Neural ODEs trained in

the previous section can be used without any change of para-
meters to predict the response of the spintronic system in a dif-
ferent setting, and with inputs that vary in a very different way,
with computation time considerably reduced compared to
micromagnetic simulations. We focus on a neuromorphic task
called reservoir computing that exploits the intrinsic memory of
complex dynamical systems, and apply it to the case of reservoirs
made of single and multiple skyrmion textures50–52. The reservoir
input corresponds to a chaotic time series (Mackey-Glass chaotic
series, see Methods section), and the goal of the task is to predict
the next steps in the time series (Fig. 3a). The response of spin-
tronic devices to such time series is particularly long to simulate
with micromagnetic simulations. We simulated a reservoir
computing experiment using the Neural ODEs trained in the
previous section (which required 20 min of simulation time), as
well as using micromagnetic simulations, as a control (requiring
four days of simulation time). Figure 3b, c show the time series
predicted by a one-skyrmion system modeled by micromagnetic
simulations and Neural ODEs, respectively, in comparison with
the true trajectory (blue) of the Mackey-Glass time series. This
data is presented in a situation where the skyrmion reservoir has
to predict the next value in the Mackey-Glass time series (H= 1),
and in a situation where it has to predict the value happening
25 steps later (H= 25), a much more difficult task due to the
chaotic nature of the Mackey-Glass time series. In the

Fig. 2 Extending the Neural ODE formalism to predict spintronic results. A wide range of dynamical systems can be modeled using ODEs, such as the
simple pendulum motion, skyrmion-based devices, and spintronic oscillator dynamics. However, in real-world applications, the underlying physical
dynamics are not always fully measurable, or accessible, which means that the dynamics of some hidden parameters in ODEs models are unknown. Our
goal is to model a Neural ODE, _y ¼ fθðy; eðtÞ; tÞ, where f is defined by a neural network and e(t) is the time-dependent input into the system, using the
incomplete information of the system dynamics. a Schematic graph of the neural network (fθ) in a Neural ODE. The input to the neural network consists of
two parts, one is the k dimensional vector related to the observed system dynamics, where y1 is the observed dynamics and y2 to yk are the time-delayed
dynamics of y1 (as shown in b), another part comprises the time-dependent external inputs, in which e1 is the original input and e2 to ek are the time-
delayed versions of e1. The output of the neural network is a vector of time derivatives of the corresponding input system dynamics (y1, y2,…, yk, t). Here,
the derivative of the time variable t is 1, which is determined as a prior knowledge. b Illustration of the time-domain system dynamics and external time-
dependent input dynamics used for modeling the Neural ODEs. The blue curves are the system dynamics, where y1 is the original observed trajectory,
y2= y1(t+Δtd) is one time step shifted of y1, y3= y1(t+ 2Δtd) is two time steps shifted of y1, etc. Here, Δtd denotes the single time delay interval. The
green curves are the external inputs, where e1= e(t) is the original input dynamics, e2= e(t+Δtd) is one time step shifted of e1, e3= e(t+ 2Δtd) is two time
steps shifted of e1, etc. Through the augmentation, the reconstructed system dynamics (y1, y2, y3, . . ., yk) containing the information of the unknown state
variables can be used to train the Neural ODEs and then the trained Neural ODEs can be applied to make predictions for other inputs. c, d Training error
(Mean Square error, MSE) as a function of iterations for k= 1 and k= 2 for a one-skyrmion system (c) and a multi-skyrmions system with grain
inhomogeneity (d) with electric voltage as input through the VCMA effect.
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H= 1 situation, the predictions of micromagnetic simulations
and the Neural ODE match the true series perfectly, while for
H= 25, a small prediction error happens, which appears con-
sistent in both cases. To verify if the Neural ODE and micro-
magnetic simulations give equivalent predictions, Fig. 3d presents
the accuracy of the prediction of the Mackey-Glass series,
expressed in terms of Normalized Root Mean Square Error
(NRMSE) as a function of horizontal prediction step H (a lower
value of the NRMSE means a more accurate prediction). We see
that the NRMSE computed by the Neural ODE matches the one
from micromagnetic simulations very precisely. Figure 3e pre-
sents the same result for a multi-skyrmions system, where once
again, the results of the Neural ODE match those of micro-
magnetic simulations accurately. We also evaluated the prediction
performance in terms of the number of virtual nodes of the
reservoir, the time duration for each preprocessed input staying
in the reservoir, and other techniques of training the output
weights (see Supplementary Note 4).

This demonstration of a demanding benchmark task exploiting
the details of skyrmion dynamics indicates the potential of skyrmion
system for reservoir computing, and highlights the quality of
predictions by the Neural ODEs, with considerable improvement in
computational efficiency (the Neural ODEs simulation were 200
times and 360 times faster than the micromagnetic simulations for
the one-skyrmion system and multi-skyrmions system).

Predicting the experimental measurements of a nanoscale
spintronic oscillator. We now apply our approach to modeling
real experimental data, obtained using the setup of ref. 17. This

work showed experimentally that a nanoscale spintronic oscilla-
tor can be used as a reservoir computer to achieve a spoken digit
recognition task (based on a principle similar to what we
implemented in the skyrmion system). In this regime, the nano-
oscillator is functioning as a nonlinear node to map the input
signal into a higher dimensional space in which the input can be
linearly separable (see Fig. 4a).

Modeling this experiment is a difficult challenge. Until now,
analytical models of spintronic oscillators could reproduce experi-
ments only qualitatively: it is challenging to construct a reliable
model due to the high non-linearity of the devices as well as the
impact of noise appearing in the experiments. Here, we firstly train a
Neural ODE model of the oscillator dynamics by using only 5ms of
experimental data (see Methods section and Fig. 4), then we use the
trained model to predict the whole spoken digit recognition
experiment of Torrejon et al.17 (Fig. 5). The results reported in
Figs. 4 and. 5 use cochlear preprocessing (see Methods section).

Figure 4 b shows the 5-ms trajectories used for training, as well
as the result of trained Neural ODE of dimension k= 2, showing
remarkable agreement. For a more quantitative assessment,
Fig. 4c shows the training loss (MSE) of Neural ODEs with
dimension k ranging from one to four (a smaller MSE means a
higher accuracy). The models with dimension two or greater
reach a much smaller loss than a model of dimension one. This
result is consistent with the conventional modeling of these
devices through coupled amplitude and phase equations,
requiring therefore at least a two-dimension ODE18. It is also
remarkable that the losses can be extremely close to zero, but not
arbitrarily close. The impossibility of reaching zero loss can be

Fig. 3 Modeling of a sophisticated spintronic task, Mackey-Glass time series prediction with skyrmion systems, using Neural ODEs. a Schematic graph
of the procedure for doing the prediction task. The purpose is to predict the Mackey-Glass time series at a future time. The input signal, preprocessed through a
read-in matrix Win, is fed into the reservoir, which is a skyrmion system modeled by the trained Neural ODE or micromagnetic simulations. A trained output
matrix Wout is used for reading out the reservoir states and providing the predicted signal. b, c Selected testing (green dashed) results for prediction horizontal
step H= 1 (for short-term prediction) and H= 25 (for long-term prediction), predicted by the one-skyrmion system modeled by micromagnetic simulations in b
and the Neural ODE in c, in comparison with the true trajectory (blue) of Mackey-Glass time series. The red curves show the prediction error compared to the
true trajectory. d, e Normalized root mean square error (NRMSE) as a function of prediction horizontal step H, in log scale, for the testing set by using the trained
Neural ODE (orange) and micromagnetic simulations (blue) for the one-skyrmion system in d and the multi-skyrmions system in e.
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attributed to the existence of noise in the experimental data,
whereas the Neural ODE is entirely deterministic.

Next, the trained model can be utilized to predict the results of
the spoken digit recognition experiment. Figure 5 reports results
obtained using the Neural ODE of dimension k= 2. The aim of
the task, described in Methods, is to classify the ten digits spoken
by five different female speakers. Realizing this task experimen-
tally involves a week-long experimental campaign, while it can be
simulated in two hours using a trained Neural ODE. This task can
also not be simulated by micromagnetic simulations, as it would
require 716 years of simulation time on our reference GPU (this
number was extrapolated based on the simulation of the
dynamics of a nano-oscillator during one microsecond). Selected
response output trajectories predicted by the trained Neural ODE
and corresponding experimental output are shown in Fig. 5a,
showing very good agreement.

We can now see how these results translate in terms of spoken
digits recognition rate. Figure 5c shows the recognition rate on
spoken digits as a function of the number of utterances used. We
see that the results obtained by a Neural ODE without noise do
not match those of experiments. Incorporating noise within the
Neural ODE is essential to predict the experimental data (this is
particularly the case here, as reservoir computing is very
susceptible to the disturbance of noise). To do this, we can rely
on the 5-ms training data. We extract the error distribution by
computing the difference between the output trajectory predicted
by Neural ODE and the experimental measurement and fit this
error to a Gaussian law (Fig. 5b). We then inject Gaussian noise
in the Neural ODE, as an additional input, with an amplitude

chosen so that the output noise (σout) of the Neural ODE matches
the standard deviation of the data (σerr) of Fig. 5b (see Methods
section). When using the Neural ODE augmented with noise to
simulate the spoken digits experiments, the digit recognition rates
now match the experimental data very closely (Fig. 5c), making
the Neural ODE augmented with noise a powerful tool to predict
long and complex spintronic experiments.

Interestingly, the noise plays a role of suppressing the over-
fitting of the output states from reservoir, actually improving the
recognition rate. Conversely, we saw that task performance
deteriorates with the injection of noise if the data has been
preprocessed with the spectrogram filtering method, indicating
that the output states from reservoir is under-fitted. This
difference arises because the preprocessing procedure also
contributes to the nonlinear transformation of input signal, and
the cochlear method of preprocessing provides more non-
linearity than that of the spectrogram method17 (more informa-
tion about the impact of noise, and in particular in the
spectrogram situation, is provided in Supplementary Note 7). It
is remarkable that the Neural ODE augmented with noise is able
to predict so subtle behaviors, which we were not able to realize
from experimental data only.

Discussion and related works
Our approach allows learning the underlying dynamics of a
physical system from time-dependent data samples. Many works
today seek to use deep neural networks to predict results in
physics. They are used to find abstract data representations20,
recover unknown physical parameters22, or discover the specific

Fig. 4 Prediction of experimental results using Neural ODEs (train results). a Principle of the experiment. The original spoken digit in the audio waveform
is preprocessed, by cochlear or spectrogram filtering, to form the preprocessed input into the oscillator. The output of the digit is reconstructed by reading
out the recorded oscillator output through a trained matrix Wout (see Methods section). The purpose of modeling is to predict the experimental oscillator
output given any preprocessed input ΔVin. This Figure shows the results obtained using cochlear filtering (results using spectrogram filtering are reported
in Suppl. Fig. 8). b Training output trajectory of voltage ΔVout predicted by Neural ODE (dashed orange) with corresponding preprocessed input ΔVin, in
comparison with the experimental measurement (blue) for k= 2. A training set of 5-ms dynamics is adopted from the first utterance of the first speaker. A
three-layer neural network fθ with each hidden layer of 100 units is trained. c Training loss (MSE) of Neural ODE with k= 1, 2, 3, 4 as a function of
iterations.
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terms of functions23–25. Other research uses recurrent neural
network-based models26–28 to learn and make predictions. These
methods usually incorporate prior knowledge on the physical
system under consideration, such as molecular dynamics24,26,
quantum mechanics20, geospatial statistics28, or kinematics25 to
help their models train faster or generalize. Few of these discrete
models manage to include the relevant driving series to make
predictions. Neural ODEs hold many advantages over the con-
ventional neural networks used in these works: backpropagation
occurs naturally by solving a second, augmented ODE backward
in time; stability is improved with the use of adaptive numerical
integration methods for ODEs; constant memory cost can be
achieved by not storing any intermediate quantities of the for-
ward pass; continuously-defined dynamics can naturally incor-
porate data which arrives at arbitrary times. However, until our
work, two challenges remained to apply Neural ODEs to the
prediction of the behavior of physical systems: the impossibility,
in most practical cases, to acquire the dynamics of the set of state
variables of the system, but also the need to take into account the
external inputs that affect their dynamics.

Our work addresses both issues, and before ours, other works have
attempted to solve the first issue. One way is to introduce the
inductive bias via the choice of computation graphs in a neural
network25,53–59. For example, by incorporating the prior knowledge
of Hamiltonian mechanics58,59 or Lagrangian Mechanics55–57 into a
deep learning framework, it is possible to train models that learn and
respect exact conservation laws. These models were usually evaluated
on systems where the conservation of energy is important. Similarly,
another strategy to deal with a dataset with incomplete information is
through augmentation of original dynamics60,61: extensions of Neural
ODEs at the second-order60 or higher-order61, can learn the low-
dimensional physical dynamics of the original system. However,
nearly all the proposals mentioned above require the knowledge of

additional dynamical information, such as higher-order derivatives,
or extra processing of the original low-dimensional dynamics, which
is not appropriate for dealing with noisy time series. Neural ODE
integrated with external inputs has also been studied in some pre-
vious literature62–64. Augmented Neural ODEs63 solve the initial
value problem in a higher-dimensional space, by concatenating each
data point with a vector of zeros to lift points into the additional
dimensions. This strategy avoids trajectories intersecting each other,
and thus allows modeling more complex functions using simpler
flows, while achieving lower losses, reducing computational cost, and
improving stability, and generalization. Parameterized Neural ODE64

extends Neural ODEs to have a set of input parameters that specify
the dynamics of the Neural ODEs model such that the dynamics of
each trajectory are characterized by the input parameter instance.

We emphasize here that our idea is closely related to the
classical theorem of time delay embedding for state space
reconstruction, where the past and future of a time series con-
taining the information about unobserved state variables can be
used to define a state at the present time. The theorem was widely
applied for forecasting in many real-world engineering
problems45,46,65, but was largely restricted into making very
short-term predictions for lack of modeling frame specifically
designed for time series. The advent of Neural ODEs, whose
formalism naturally incorporates time series, allows predictions of
arbitrary length and high accuracy to be made by training a
system equivalent to the original physical system. Additionally,
until our work, Neural ODEs-based methods for modeling time
series had only been tested in a few classical physical systems,
such as the ideal Mass-Spring system, Pendulum and Harmonic
oscillators. Our work is the first one to apply Neural ODEs to
predict the behavior of nanodevices, by resolving the above issues.

Our method also provides a significant improvement in time
efficiency compared to conventional simulation platforms. For

Fig. 5 Prediction of experimental results using Neural ODEs (test results). a Selected response output signals predicted by the trained Neural ODE with
corresponding preprocessed input, in comparison with the experimental output for digit eight of the third utterance of the third speaker. b Left to right:
error distribution (green shadow) and fitted Gaussian distribution (dashed curve) extracted by computing the difference between the output predicted by
Neural ODE and the experimental measurement, a Gaussian noise (purple shadow) added in the preprocessed input into the Neural ODE and the
corresponding noise distribution (green shadow) with fitted probability density function (pdf) (black dashed curve) in the predicted output trajectory
solved by Neural ODE. σin was adjusted so that σout= 1.76mV is close to (≈) σerr= 1.83 mV. c Spoken digit recognition rate in the testing set as a function
of utterances N used for training. Because there are many ways to pick the N utterances, the recognition rate is an average over all 10!/[(10− N)!N!]
combinations of N utterances out of the 10 in the dataset. The solid curve, blue dashed curve, orange dashed curve is the experimental result, Neural ODE
result with noise considered, Neural ODE result without any noise, respectively.
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example, the Mackey-Glass prediction task with a reservoir of
skyrmions takes only 20 min for the trained neural ODE, while
the micromagnetic simulations need 3 days (5 days) to run it on
the one-skyrmion system (multi-skyrmion system). To model the
dynamics of the spintronic oscillator using real experimental data,
output time series of 5-ms duration are sufficient to train a
complete Neural ODE model, capable of predicting the system
dynamics with any input. The Neural ODE simulation time does
not dependent directly on the size of the system, but only on the
number of dimensions and the number of data points to be
predicted; the possibility to train a Neural ODE is therefore
mostly determined by the availability of appropriate training data.
Therefore, constructing a reliable and accurate model is not the
only purpose of Neural ODEs, they can be a strong support for
fast evaluation, verification, and optimization of experiments. In
this way, our work also paves a way to Neural ODE-assisted or
machine learning-integrated simulation platform development.

Last but not least, Neural ODEs can be used for modeling
systems featuring different types of behaviors, provided that
examples of the different behaviors were included in the training
dataset. Supplementary Note 6 shows an example, where a single
Neural ODE can model a device, which, depending on the value
of the external magnetic field, exhibits either a switching or a
sustained oscillatory behavior. A limitation of Neural ODE,
however, is that they cannot be trained to model systems
exhibiting profoundly stochastic behavior, as is sometimes
observed in room-temperature switching of magnetic tunnel
junction66 or domain wall motion in some regimes67. Neural
ODEs are adapted for systems obeying deterministic equations.
Future work regarding the modeling of stochastic behaviors of a
physical system using Neural ODE remains to be explored,
which could rely on recent developments of stochastic Neural
ODE theory68,69.

In conclusion, we have presented an efficient modeling
approach for physical ODE-based systems, and highlighted its
excellent performance in modeling real-world physical dynamics.
The training data can be a single observed variable, even if the
system features higher-dimensional dynamics. We have shown
that the method can not only be applied to model ideal data from
simulations, but that it is also remarkably accurate for modeling
real experimental measurements including noise. The trained
model shows a remarkable improvement (hundreds of times
faster) in computational efficiency compared to standard micro-
magnetic simulations. We have shown that Neural ODE is a
strong support for making experimental predictions and dealing
with complex computation tasks, such as the task of Mackey-
Glass time-series predictions and spoken digit recognition in
reservoir computing. In particular, we demonstrate its use in
modeling complex physical processes in the field of spintronics,
which is considered one of the most promising future technolo-
gies for memory and computing. The proposed method is a
promising tool for bridging the gap between modern machine
learning and traditional research methods in experimental phy-
sics, and could be applied to a variety of physical systems.

Methods
Micromagnetic simulations. Our micromagnetic simulations are performed in the
MuMax3 platform (abbreviated to Mumax in the main text)70, an open-source
GPU-accelerated micromagnetic simulation program. The default mesh size of
1 nm × 1 nm × 1 nm is used in our simulations. The following material parameters
are adopted: exchange stiffness A= 15pJ/m, saturation magnetization Ms= 580
kA/m, damping constant α= 0.01, interfacial DMI strength D= 3.5mJ/m2, and
default PMA constant of the ferromagnetic layer Ku= 0.8 MJ/m3. In addition, we
set the VCMA coefficient ξ as 100 fJ ⋅V−1m−1 based on some recent
experiments71,72. Here, the typical thickness of the insulating layer is 1 nm. Under
these conditions, with an applied voltage of 0.1 V (an electric field of 0.1 V/nm), the
PMA constant in the ferromagnetic layer will change by 10 kJ/m3.

For the simulation of single-skyrmion dynamics with voltage input (system
used in Figs. 2 and 3), a nanodisk with a diameter of 80 nm is used. For the training
set, the external input voltage to the system is random sine voltage with a frequency
of 4 GHz and with amplitude ranging from −2 V to 2 V (corresponding to
variation of PMA value ΔKu from −0.2 to 0.2 MJ/m3, see Suppl. Fig 1). For the
multi-skyrmions system with grain inhomogeneity, the diameter of the nanodisk is
120 nm, and the grain size is 10 nm. Random 20% PMA variation, random 20%
DMI strength variation, and 5% random cubic anisotropy direction variation are
applied. The external input voltage to the system is a random sine voltage with a
frequency of 4 GHz and with amplitude ranging from −2 V to 2 V (corresponding
to variation of the PMA value ΔKu from −0.2 to 0.2 MJ/m3). For the testing set of
Mackey-Glass prediction task (results in Fig. 3), the input is a time varying ΔKu in
the form of preprocessed MG time series with a time interval of 10 ps (as shown in
Suppl. Fig 5).

For the parameters-based simulations in Fig. 1, the diameter of the nanodisk is
100 nm. For the training set, the external input ΔKu is a random sine with a
frequency of 4 GHz and with amplitude ranging from −0.05 to 0.05 MJ/m3,
fluctuated ~0.8 MJ/m3. The external input ΔD is a random sine with a frequency of
0.4 GHz and with amplitude ranging from −0.4 to 0.4 mJ/m2, fluctuated around
3.0mJ/m2 (see Fig. 1d). The perpendicular average magnetization variation Δmz of
the system is recorded every p= 2.5 ps as output. For the testing set, to get the
response frequency of each material value of Ku (D), we firstly supply a pulse with
amplitude ΔKu= 0.04MJ/m3 (ΔD= 0.1mJ/m2) lasting for 1 ns, then the
magnetization variation Δmz is recorded. Finally, a Fourier transform is conducted
on the output trajectory of Δmz to obtain the frequency. Simulation time of
37 mins, 41 mins, and 43 mins for 50 ns dynamics are needed for the training set of
the one skyrmion system, multi-skyrmions system, and parameters-based system
simulations.

Training method of Neural ODE. To train the Neural ODE, we build a single-
trajectory training set ytrue consisting of n data points sampled from the output
trajectory Δmz for the skyrmion system and from ΔVout for the experimental
oscillator with a time interval Δt. We use the mean squared error (MSE) between
these points and the corresponding trajectories predicted by the Neural ODE ypred
over all time steps as the “loss function”, i.e., the value that the training process aims
at minimizing. To achieve the minimization of the loss, the gradients of the loss with
respect to the parameters θ are computed through a technique called adjoint sen-
sitivity method39, then the θ parameters can be updated by using gradient descent
optimization algorithms (usually stochastic gradient descent or Adaptive Moment
Estimation73), until the MSE approaches zero. In this work, we train a Neural ODE
in the form of _y ¼ f θðy; eðtÞ; tÞ in which y(t)= (y1(t), y1(t+ Δtd), y1(t+ 2Δtd),…,
y1(t+ (k− 1)Δtd)) and e(t)= (e(t), e(t+ Δtd), e(t+ 2Δtd),…, e(t+ (k− 1)Δtd)) with
Adaptive Moment Estimation.

The number of training data points n= 10,000, 15,000, 10,000, and 50,000 and
validation data points of 5000, 5000, 5000, 10,000 are used for the one skyrmion
system, the multi-skyrmions system, the parameter-based system and experimental
data of oscillator, respectively. A sampling interval Δt for training is determined
according to the original recorded output period p. Specifically, p= 2.5 ps, 100 ns
are used for Mumax simulations and experimental measurements, respectively. In
principle, a Neural ODE system can be properly modeled as long as the training
data are continuous in time. Considering the trade-off between the accuracy of the
model and the time efficiency for processing, Δt= 2p is chosen for modeling the
simulation data from modeling of data and Δt= p for modeling the experimental
data of oscillator (see training results with Δt= p, 2p, 4p, 5p in Supplementary
Note 1). The fθ function of the Neural ODEs is a three-layer feedforward neural
network. Each hidden layer features 50 units for Mumax data modeling, and 100
units for modeling of experimental data. The activation function is the tanh
function except for the output layer. The values of the weights are initialized from
the standard normal distribution with a mean of 0 and a standard deviation of 0.1.
To train the Neural ODE using the Algorithm 1, we set the mini-batch time length
bt= 20 and mini-batch size bs= 50. We use the optimization algorithm Adaptive
Moment Estimation (Adam) with a learning rate 0.001 to update the hidden weight
with loss gradients of MSE. Fixed step fourth-order Runge-Kutta method with 3/8
rule is used as the Neural ODE solver.

During the training, time intervals T are normalized by a multiplying a factor of
δ= 0.0125/p as default. In addition, normalized input and output is used for
training. For the skyrmion-based model, the normalized input is shown in Fig. 1d:
the variation of magnetization output Δmz is multiplied by ten for training. For
modeling the experimental data of oscillator, both ΔVin and ΔVout are multiplied
by ten for training.

The prediction is made by specifying an initial value of y and applying the time-
varying inputs e(t) into the trained Neural ODE. The test set is used for the
evaluation of the prediction performance of the trained Neural ODE. The total
number of testing points is n= 800 for each of the 37 different values of D and Ku

in Fig. 1, n= 500, 000 for the Mackey-Glass time series, n= 522, 8800 for the
experimental oscillator with the cochlear method, and n= 850, 7200 for the
experimental oscillator with the spectrogram method.

General concept of reservoir computing. Reservoir computing is a computa-
tional framework derived from recurrent neural network models and suited for
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temporal/sequential data processing74. A reservoir is a network of interconnected
nonlinear nodes with feedback. It transforms non-linearly its input signal into a
higher-dimensional space, so that the resulting signal can be linearly separable
through a simple readout to a desired output. The key benefit behind reservoir
computing is that only the output layer from the reservoir states is trained using a
simple linear regression mechanism, such as ridge regression, as all connections
inside the reservoir are kept fixed. Reservoir computing thus brings great advantage
for hardware implementation, because the computational power of naturally
available systems, such as a variety of physical systems, substrates, and devices, can
be leveraged for such computation tasks.

In general, there are several requirements for efficient computing by a physical
reservoir. First, high dimensionality ensures the mapping from inputs signal into a high-
dimensional space through a nonlinear transformation, so that the originally
inseparable inputs can be separated in classification tasks, and the spatiotemporal
dependencies of inputs can be extracted in prediction tasks. Second, the fading memory
(or short-term memory) property is necessary so that the reservoir state is dependent on
the current inputs and recent past inputs. Such a property is particularly important for
processing temporal sequential data in which the history of the states is essential.

In the Mackey-Glass prediction task, a skyrmion system can emulate a reservoir
when it is in transient dynamics under an external input of a varying current or
voltage. Similarly, in the spoken digit recognition task, a single nonlinear oscillator
is used as a reservoir by leveraging its current-induced transient response. In both
cases, an additional preprocessing step, where the original input is multiplied by a
mask, usually a random matrix, is needed to enable the virtual nodes to be
interconnected in time. The output states from the reservoir are reconstructed in a
similar way, where the states from the virtual nodes are read consecutively in time.

Mackey-Glass prediction task. In a chaotic system, small perturbations can result
in radically different outcomes. The prediction of a chaotic system is thus a pro-
blematic task. As a chaotic system, the Mackey-Glass equation is generated from a
delay differential equation (DDE),

dxðtÞ
dt
¼ βxðt � τÞ

1þ x10ðt � τÞ � γxðtÞ; ð2Þ

where x(t) is a dynamical variable, β and γ are constants. Chaotic time series can be
achieved with β= 0.2, γ= 0.1 and τ= 1775.

In the main paper, our goal is to predict the Mackey-Glass time series at a future
time step: the preprocessed input signal at the current time is fed into the reservoir,
which maps it non-linearly into higher-dimensional computational spaces (see
Fig. 3a), and a trained output matrix Wout is used for reading out the reservoir
states. The number of steps between the future time step and the current step is
defined as prediction horizontal step H. Wout is different for the different H values.

More precisely, the dataset for the prediction task is prepared in the following way.
First, Eq.(2) is solved for 100,000 integration time steps with dt= 0.1. Before the data
are processed by the reservoir, they are downsampled with a downsampling rate of 10
to remove the possible redundancy in the input data75. Thus, we obtain 10,000 data
points in total. The first 5000+H data points are used for the training, and the rest
5000−H are for testing. The first stage of the masking procedure is a matrix
multiplicationWin ⋅Mo, whereWin 2 RNr ´ 1 is the mask matrix with data values drawn
from a standard normal distribution and Mo∈R1×L is the original input data. Here
L= 5000+H is the number of the scalar input data points and Nr is the reservoir size.
We adopt Nr= 50 in the main text. As a consequence of the masking, we obtain the
data matrix Me ¼Win �Mo 2 RNr ´ L . Then Me is column-wise flattened into a vector
e 2 RL�Nr and then fed into the reservoir of skyrmion systems.

Each of the value from e, multiplied by a voltage of 1.6 V (ΔKu= 0.16 MJ/m3)
for the one skyrmion system and a voltage of 1 V (ΔKu= 0.1 MJ/m3) for the multi-
skyrmions system, is provided as preprocessed input into the reservoir (modeled by
a trained Neural ODE or Mumax) for tstep= 4p= 10 ps to make sure there is an
effect of the input on the reservoir dynamics. In the following, the reservoir
dynamics is recorded for every tstep to form a vector of My 2 RL�Nr , which is then

unflattened into a response matrix Mx 2 RNr ´ L for output reconstruction. We use
the matrix A 2 RNr ´Tr consisting the first Tr= L−H columns of Mx for training
the read out Matrix. The teaching matrix B 2 R1´Tr consisting the last Tr of the
original signal Mo is the time series to be predicted. A read out matrix Wout is
therefore constructed through the method of ridge regression,

Wout ¼ ðA � AT þ μIÞ�1ðA � BT Þ; ð3Þ
where μ= 10−4 is used as regularization parameter. To evaluate the performance of
the trained matrix Wout, NRMSE is calculated on the prediction results of the
testing set ypre compared to the true trajectory of MG series ytar,

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nsσ2tar

∑
ns

i¼0
ðytarðiÞ � ypreðiÞÞ2

s

: ð4Þ

Spoken digit recognition task. In the task of spoken digits recognition, the inputs
are taken from the NIST TI-46 data corpus. The input consists of isolated spoken
digits said by five different female speakers. Each speaker pronounces each digit ten
times. The original input signals of the spoken digits are preprocessed using two

different filtering methods: spectrogram and cochlear models. In both methods,
firstly, each word is broken into Nτ time intervals of duration τ. Here, Nτ can be
different for different speakers. Then in each interval τ, a frequency transformation
is performed to convert the signal into the frequency domain with Nf channels.
This frequency signal is then processed by multiplying a mask matrix Win con-
taining Nf ×Nθ random binary values for each interval to obtain Nθ ×Nf values in
total as input to the oscillator. The number of virtual neurons is Nθ= 400. Each
preprocessed input value is consecutively applied to the oscillator as a constant
current for a time interval θ= 100 ns. For the classification task, the response
matrix S consisting of the output of all neuron responses for all of the Nτ intervals
from N utterances of ten digits of five speakers is used for training. The target
matrix Y contains the targets for each interval, which is a vector of 10 with the
appropriate digit equaling to 1 and the rest equaling to 0. The output matrixWout is
constructed by using the linear Moore-Penrose method,

Wout ¼ YSy; ð5Þ
where † denotes the pseudo-inverse operator. For the evaluation on the testing set of the
remaining (10-N) utterances, the ten reconstructed outputs corresponding to one digit
are averaged over all of the time intervals of τ of one word, and the digit is identified by
taking the maximum value of the ten averaged reconstructed outputs. The recognition
rate is obtained by calculating the word success rate. For the recognition rate of each N,
there is 10!/(N!(10−N)!) different ways to pick the N training set; therefore, we average
the results from all the different ways to obtain the final recognition rate (cross-
validation). The experimental details, the preprocessing and post-processing procedures
for the spoken digit recognition task can be found in Torrejon et al.17.

Experimental measurements on spintronic oscillator. The experimental
implementation for the spoken digit recognition task is illustrated in Fig. 4a. The
preprocessed input signal is generated by a high-frequency arbitrary-waveform
generator and injected as a current through the magnetic nano-oscillator. The
sampling rate of the source is set to 200 MHz (20 points per interval of time θ). The
bias conditions of the oscillator are set by a direct current source (IDC) and an
electromagnet applying a field (μ0H) perpendicular to the plane of the magnetic
layers. For the cochlear method, IDC= 7 mA, μ0H= 448 mT. For the spectrogram
method, IDC= 6 mA, μ0H= 430 mT. See Torrejon et al.17 for more details.

Prediction of experimental data. We use the output signal recorded for every
p= θ= 100 ns from the oscillator. The first 50,000 output data points, which
corresponds to a time length of 5 ms, from the oscillator of the first utterance of the
first speaker and corresponding preprocessed signal as input is used as training set
to train a three-layer neural network fθ with each hidden layer of 100 units. The
trained model is then utilized to predict the response output of the oscillator of all
other speakers. The trained fθ function is a deterministic function without noise.
We therefore evaluate the effect of the noise on the task performance by adding the
noise drawn from a Gaussian distribution into the preprocessed input, so that the
standard deviation of noise in the output trajectory predicted by Neural ODE (σout)
is close to the standard deviation of error between experiments and the results of
the noiseless trained ODE (σerr), over the 5 ms training dataset, as shown in Fig. 5b
for the cochlear method. See Supplementary Note 5 for the spectrogram method.

Simulation machine specifications. For micromagnetic simulations, we used an
Nvidia GeForce GTX 1080 graphics processor unit. For Neural ODE simulations,
we used an Intel Xeon E5-2640 CPU with 2.5 GHz base clock frequency and
3.0 GHz maximum turbo frequency.

Data availability
The data that support the findings of this study are available in the github repository
[Xing-CHEN18/NeuralODEs_for_physics], at https://github.com/Xing-CHEN18/
NeuralODEs_for_physics. The data generated in this study are provided in the
Supplementary Information and Source Data file. Source data are provided with
this paper.

Code availability
The micromagnetic simulations are performed using the freely available MuMax3
platform. Neural ODEs simulations are performed using Pytorch. The source codes used
in this work are freely available online in the Github repository76: https://github.com/
Xing-CHEN18/NeuralODEs_for_physics
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