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Abstract

As molecular dynamics simulations increase in complexity, new analysis tools are
necessary to facilitate interpreting the results. Lipids, for instance, are known to form
many complicated morphologies due to their amphipathic nature, becoming more in-
tricate as particle count goes up. A few lipids might form a micelle, where aggregation
of tens of thousands could lead to vesicle formation. Millions of lipids make up a cell
and its organelle membranes, and are involved in processes such as neurotransmission
and transfection. To study such phenomena, it is useful to have analysis tools which
understand what is meant by emerging entities such as micelles and vesicles. Studying
such systems at the particle level only, becomes extremely tedious, counter-intuitive
and computationally expensive. To address this issue we developed a method to track

all the individual lipid leaflets, allowing for easy and quick detection of topological
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changes at the meso scale. By using a voxel-based approach and focussing on locality,
we forgo costly geometrical operations without losing important details and chronologi-
cally identify the lipid segments using the Jaccard index. Thus we achieve a consistent
sequential segmentation on a wide variety of (lipid) systems, including monolayers,
bilayers, vesicles, inverted hexagonal phases, up to the membranes of a full mitochon-
drion. It also discriminates between adhesion and fusion of leaflets. We show that our
method produces consistent results without the need for pre fitting parameters, and

segmentation of millions of particles can be achieved on a desktop machine.

Introduction

The increase in complexity of molecular dynamics (MD) simulations poses challenges for
current analysis software. This is well illustrated in the field of biological applications. Such
simulations changed from a single protein in vacuum' in the late 1970s to complex membrane
based systems containing millions of molecules such as (phospho)lipids, cholesterol, proteins,
DNA, drugs, water, etc.?™ The number of molecular aggregates in simulations has also
increased, and nowadays it is not rare to see a mixture of micelles, bilayers and vesicles in a
single simulation.*® X This increase in complexity of both composition and aggregation state
requires a higher level of abstraction in analysis than typically offered. During analysis we
would like to work with concepts such as bilayers, vesicles, leaflets, protein aggregates, phases,
etc. on top of simple identifiers such as molecule names and indices, often used in current
tools. This would dramatically reduce the complexity of coding the analysis software and
would allow for a more user friendly interface with data. Current MD analysis software, such
as MDAnalysis,*? Pytim,** FATSLiM** and VMD,* come with built-in functions or have
packages to detect e.g. bilayer leaflets and aggregates, and offer some of the desired level of
abstraction. However, these tools were developed to deal with relatively simple compositions
and topologies, and may fail as systems contain more than one or two segments (SI Fig. .

To avoid this problem we developed a robust method for consistent sequential segmentation



with a voxel oriented analysis paradigm. No assumptions are required regarding the number
of segments or molecules, and it natively supports all-atom or coarse-grained (CG) simulation
data. Furthermore, voxel-based methods offer very good scaling with the increase of particles
and are excellent for locality queries. 0™

To guide the reader through this work we will first present pseudo code to illustrate the
general implementation of our leaflet segmentation algorithm, which is implemented in a tool
coined MDVoxelSegmentation. We then show a wide range of examples, and we end with a

discussion of the limitations and further prospects of the tool. The Supporting Information

(SI) contains the video results of the algorithm.

Design and implementation

In the following sections, we describe the complete algorithm in two sections of pseudo code.
We start with considering a single frame and perform our multi-step connective components
analysis for lipid-based systems. Then we describe how we add the extra layer of chronological

consistency on top.

Pseudo code for spatial segmentation of leaflets

The aim is to segment a lipid density into leaflets (i.e. a single membrane leaflet is a segment).
To successfully segment lipid densities into leaflets we require three things, a reference, a
trajectory and a selection file. The reference file should contain information regarding atoms
and their naming (e.g. GRO, PDB). The trajectory file should contain coordinates for each
point in the reference file in every frame (e.g. GRO, XTC, TRR). Finally, the selection file
should contain the selections (lipid heads, lipid tails, lipid linkers and exclusion beads). By
default most CG Martini lipids are supported,“’ meaning no selection has to be specified for
the leaflet segmentation of those systems. However, if you are working on a custom lipid, it

can easily be added to the default selections file (an example for CHARMM lipids is given in



the methods for the leaflet segmentation). The completed segmentation will assign each lipid
(residue) a segment identity. A schematic representation of leaflet segmentation is shown in
Fig. [1}

Leaflet segmentation starts with reading the input files (Fig. |I| A) and mapping all the
lipid tails, lipid heads, and exclusion beads to boolean voxel matrices (0.5 nm binning for
Martini lipid systems; Fig. [1| B). This results in the following three 3D boolean matrices:
tails, heads and exclusions. The exclusions are always grown once, meaning all neighboring
voxels (26) of a True voxel become True. The exclusions are used as local stops during
segmentation, acting as boundaries for the segmentation (i.e. exclusions can be used to
confine the segmentation). We found that using exclusions can be beneficial when working
with proteins, since the protein boundaries are prone to be edge cases for lipid segmentation
and are better handled later.

The tails matrix is segmented using the adapted connected components algorithm (Fig.
C). Before segmentation starts, the heads matrix is subtracted from the tails matrix. The
exclusions act as boundaries during segmentation. The result of the tails segmentation is
depicted in Fig. [1] D.

Roughly the same procedure is followed for segmenting the heads as was done for the
tails. However, instead of using the complete heads matrix, it is first deconstructed by the
tails segments. Each tails segment is individually processed (Fig. |1/ E, G). This is achieved by
using only those headgroups which have a lipid residue index which is also in the active tails
segment. Before heads segmentation starts, the tails matrix is subtracted and the exclusions
act as boundaries during segmentation. Segmenting the heads in this manner results in the
leaflet segmentation per tails segment (Fig. [I| F, H).

Although the result at this point is good (Fig. (1|1, J), there might be some lipids which
still have no segment assigned. Force-segmentation can solve this problem as it can be used
to map lipids to a segment based on a distance criterion. For every lipid which does not

have a segment assigned, all neighbouring lipids are checked within a certain cutoff distance
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Figure 1: Spatial leaflet segmentation. A 2D schematic representation of the leaflet segmen-
tation of two stacked bilayers in a periodic box. The upper bilayer contains a protein channel
and the lower bilayer contains a diving lipid. The protein is used as exclusion selection.



(default is 2 nm). If the dominant segment in that search is not 0 (unsegmented), the lipid
is appointed to that dominant segment. Our implementation performs this operation in
an iterative manner by trying to classify with small cutoff distances first (default is 1 nm).
The cutoff is slightly increased (default is 0.1 nm) if no extra lipids were segmented. If an
iteration does result in new lipids being segmented the cutoff is set back to the minimum
value. The iteration halts if the force-segmentation returns a stable output (i.e. no further
changes occur), if the cutoff becomes larger than the maximum value, or if all selected lipids
have been segmented. The final result after force-segmentation is depicted in Fig. K).
Force-segmentation can be turned off.

Splitting the segmentation into two steps, using force-segmentation as a post processing
step, means that simple cases are handled in a relatively low-cost manner where hard cases
might use a different approach altogether (in this case our force-segmentation protocol). This
mixed use of a low-cost algorithm with more precise and expensive algorithms reduces the
total complexity of the calculation, whilst at the same time hardly affecting the segmentation
quality.

The result after spatial leaflet segmentation of a trajectory, is a new trajectory which
contains a segmentation entry for each index in each frame. These indexes correspond to the
atom indices in the original structure file. Atoms which have no segmentation are assigned
to 0. However, due to the arbitrary picking of our initial voxels for segmentation, the
segmentation labels miss sensible consistency over time for all other labels than 0. To solve

this lack of chronological consistency, we need to perform temporal segmentation.

Pseudo code for temporal segmentation

All that is required as input for the temporal segmentation is the spatial segmentation output.
To perform temporal segmentation, we need to find the identity of segments for each frame
sequentially. When comparing a new frame with a current frame, the algorithm first considers

the identities of segments of the current frame. The identified segments of the current frame



are then matched to the segments in the new frame (Fig. 2] A). The atoms within a segment
are used as the basis for the identity of the segment. Segments are treated as sets, for which
the unique elements are the atom indices. The identity of a segment in the new frame is the
segment in the current frame with which it shares the most atoms. In this way segments
can be matched across frames, even if due to shrinking or growth their atom contents are
not identical. Consider frame N which contains two segments N1 = {al,a2,a3,a4} and
N2 = {ab,ab6,a7,a8} and frame M which contains the segments M1 = {al, a2,a3,a8} and
M2 = {ab,a6,a7,a4,a9}. Each segment contains unique elements, which have a lowercase
unique code. When we compare frame N with frame M, we see that the elements a8 and a4
have swapped places and a9 is introduced to M2. However we still want to assign N1 to M1
and N2 to M2, to allow for the growing and shrinking of segments. We therefore need a way

to identify the amount of shared elements between two segments.

ANB

JAB) =S (1

To identify how many atoms are shared between two segments across frames the Jaccard
index is used (eq. [IJ). This index is defined as the intersection of two sets divided by the
union of two sets. This provides a ratio between 0 and 1, where 1 is complete similarity and
0 means no shared atoms. The parameter Jaccard threshold defines the minimum score on
the Jaccard index that is required for two sets to have the same identity (SI Fig. . For
example a Jaccard threshold of 0.618 means that only if two segments have a score higher
than 0.618 together, they have the same identity. This allows for consistency while also
identifying large shifts between frames in the simulation. For example a leaflet in a bilayer
system which has lost lipids due to flip-flopping can still be indentified in the next frame.
Because of the possibility of these large shifts the algorithm does not assume that the amount
of segments between frames remains the same. It therefore allows for the disappearance of
identified segments and the appearance of new identities. Identified segments can disappear

when no match in the new frame can be made that exceeds the Jaccard threshold. An



identified segment disappearing is considered to have merged with another segment. A new
identity can be created when in the new frame a segment exists to which no old identified
segment has matched. This new segment then receives a new identity. A newly created

identified segment is considered to have split from a previously existing identified segment.

A B C
Current Frame New Frame Current Frame New Frame Current Frame New Frame
Identified 0 ——) Unidentified 0 Identified 0 =3 Unidentified 0 Identified 0 =3 Unidentified 0
Identified 1 Unidentified 1 Identified 1 —l Identified 1 j Unidentified 1
Identified 2 Unidentified 2 Identified 2 —>» Unidentified 1 Identified 2 —> Unidentified 2
Identi%ed N Uniden.tiﬂed N Identi%ed N Uniden.tiﬂed N Identi%ed N Uniden:tiﬂed N

Figure 2: Finding the identity of the segments in the new frame. (A) The ordered 1 segment
has a best match with unordered 2. (B) The ordered 1 and 2 are merged into one segment,
with ordered 2 providing the identity for unordered 1. (C) The ordered 2 is split into two
new labels, unordered 1 and 2. Ordered 0 is always matched as the new segment zero, as
this is the segment which contains all non-segmented particles. Capital N indicates the total
number of segments in each frame.

In the case of a merge (Fig. [2 B), two or more identified segments in the current frame
are merged into an unidentified segment in the new frame. Two distinct cases are possible
in the new frame. Either one of the identities of the merging segments is inherited by the
new segment or a new identity is created. If one of the identities is maintained, the Jaccard
score between one of the identified segments and the unidentified segment has exceeded
the Jaccard threshold. This indicates a large segment is merging with one or more smaller
segments. For example, this could be the result of a transient fusion between two leaflets.
If a new identity is created, this means none of the previous segments contained enough
atoms to attain a Jaccard score higher than the Jaccard threshold when compared to the
unidentified segment. In this case all previous identified segments are merged into a new
segment with a new identity.

To allow for the reappearance of identities, the disappeared identities are stored in a

database. This database contains the identity and the atoms present in the identified segment



at the current frame. It also logs into which segment the disappeared segment has merged.
The segment into which the disappeared segment has merged is the segment for which it
had the highest Jaccard score. This score will always be below the Jaccard threshold, as
otherwise the identity would be inherited. This information can be used to restore identities
when splitting events take place.

In a split, two or more unidentified segments in the new frame have the highest Jaccard
score with the same identified segment in the current frame (Fig. [2| C). In such a split there
are also two distinct cases. In one case a small part splits off from an existing identified
segment. However one of the unidentified segments still has a high enough Jaccard score to
match with the identified segment. This means that one of the unidentified segments inherits
the identity of the identified segment. This could indicate a leaflet loosing a small group of
lipids which form their own segment. The other unidentified segments will then either gain
a new identity or take the identity of an old segment from the database. The new segment
takes the identity of the segment with the highest Jaccard score in the database, but only
if the score exceeds the Jaccard threshold. If the threshold is not exceeded, the segment is
assigned a new identity.

In the other case the identified segment could not match with one of the unidentified
segments. This will lead to the disappearance of the identified segment. This could be
caused by a leaflet splitting into two roughly equal parts. For example, in the case of a
bilayer with a transient pore, closing of the pore would result in a split of the bilayer in
its previous two leaflet segments. The disappearing segment will be stored in the database,
while the new segments will each be compared to the database. Each segment which has a
match with the database will continue with the identity of this match, while the unmatched
segments continue with new unique identities.

The result after temporal segmentation is a consistent sequential segmentation over the
trajectory, both spatially and over time. Identities between time frames are consistent, based

on the atoms within each segment. Merging segments are detected and identified in a size



dependent way. Splitting segments are detected as well. The database of previous segments

allows identities to persist over a longer time frame.

Results

To validate the leaflet segmentation algorithm, we prepared a wide range of lipid systems
using the Martini CG force field.?! The same default input was used for all segmentation
unless specifically stated otherwise. We start with simple lipid bilayer systems in varying
topologies (Fig. |3). Then we add proteins and a high variety of compositional complexity
(Fig. . This is followed by a complex phase transition and fusion of DNA-lipid complexes
(lipoplexes) with endosome membrane models to illustrate segmentation quality in the pres-
ence of tight, curved and complex dynamic geometry (Fig. . We end with some more

general real world examples, including an example at atomistic resolution (Fig. @

Pure bilayer systems

Leaflet assignment for a simple bilayer containing 270 DOPC and 66 cholesterol (4:1) without
force-segmentation resulted in good segmentation, but some lipids, in particular cholesterol,
are unlabeled (Fig. |3| A, C orange). By turning on force-segmentation all lipids including
the cholesterol could be assigned successfully to a leaflet (Fig. |3| B, C green).

A common lipid property to investigate is the flip-flop rate. We compared the assigned
flip-flopping of our leaflet segmentation to a common procedure. This common analysis
would assign a lipid flip-flop based on the z-coordinate of a lipid headgroup with respect to
the average z-position of the bilayer. To prevent high frequency noise due to headgroups
at or close to the membrane center, a deadzone is used. Lipids within the deadzone region
around the center are not assigned to a leaflet. The downside of the z-height approach is
that it can only be used for small patches of a relatively flat bilayer with its normal pointing

along the z dimension. Our method takes a rather different approach. We check for changes
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in leaflet membership for each lipid. To reduce noise, a lipid which is not segmented is
assigned to its previous valid leaflet. The advantage of our segmentation based method over
the conventional approach is that it still works if the membranes/leaflets are curved, or if
they are not a well defined bilayer at all. In our comparison of cholesterol flip-flopping, our
algorithm performs well which is indicated by the close relation between the segmentation
labels and the discretization of the lipid z-height (Fig. [3| C). Segmentation without force-
segmentation is good enough for lipid flip-flop calculations. The segmentation based flip-flop
analysis compares well with the z-height approach if a deadzone of +0.6 nm is used in the
latter (Fig. [3| D). Although the flip-flop patterns for both methods are highly similar, they
are not the same, therefore, direct quantitative comparison between both methods should be
performed with care. However, if a z-height deadzone of +0.3 nm is used, nearly all flip-flops
indicated by the segmentation analysis are in the set of the z-height approach (SI Fig. E[)
In other words it appears that the flip-flops indicated by the segmentation are a near perfect
subset of the z-height approach with a relatively small deadzone.

Since stacked bilayers are notoriously hard to label correctly in other methods, we de-
signed a test system containing two closely stacked and intercalating bilayers of POPC (on
average two hydration layers of CG water beads, Fig. [3| E). The close proximity and or in-
tercalation of the bilayers did not hinder correct leaflet segmentation at all over a trajectory
spanning 10 ps (Fig. 3| F).

The final pure bilayer system tested is a bilayer in which we artificially opened and closed
a pore using a biasing potential. We used the leaflet segmentation to detect the instances of
pore opening and closing (Fig. [3| G and H, SI video 1).

Consistent leaflet segmentation was successfully obtained using the default settings for
all pure bilayer systems even in the presence of cholesterol or intercalating headgroups. The
leaflet segmentation can also be used for flip-flop analysis and the detection of a toroidal

pore with high accuracy.
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Figure 3: Leaflet segmentation and analysis for pure bilayer systems. (A, B) Snapshots
of a DOPC/CHOL(4:1) bilayer with and without force-segmentation. Some lipids were
unassigned without force-segmentation due to diving/occlusion (A, yellow). Using force-
segmentation non-segmented lipids are assigned to a segment as a post-processing step (B).
(C) The flip-flop traces of a single cholesterol in the DOPC/CHOL bilayer, comparing the
z-height and segmentation flip-flop approaches. Whenever the orange line is not visible it lies
perfectly behind the green line. (D) A comparison of the up- and downward cholesterol flip-
flop events between the z-height and segmentation based flip-flop analyses. A more intense
single dot represents more than one cholesterol flip-flopping at that given instant. (E) A
snapshot of closely stacked and intercalating bilayers of DLPC. (F) Leaflet segmentation of
the intercalating bilayers over 10 ps. The width of a segment represents its relative size (G) A
snapshot of a DLPC bilayer with a toroidal pore (frame 750 of H). (H) Leaflet segmentation
of pore formation. The pore forming biasing potential was turned on between frame 500 and
1000. The width of a segment represents its relative size.
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Complex bilayers with proteins

After confirming that our leaflet segmentation performs well on simple lipid-only bilayer
systems, we went one step further and considered systems of higher compositional complexity.
As for the lipid only segmentation, segmentation of a simple bilayer containing POPC lipids
and a single protein is perfect using the default settings (Fig. |4 A, SI video 2). Next, we
tested a crowded plasma membrane model. This model contains a high variety of lipids
(~ 60) and a wide range of proteins in a planar membrane.® Segmentation resulted in a
nearly perfect assignment (Fig. [4| B). However there are 12 lipids which remain unlabeled
(Fig. 4| B zoom box), caused by an exclusion region. Setting the force-segmentation cutoff
radius slightly higher resolved the issue, but the current result is shown to demonstrate the
quality of the default settings. Missing 12 lipids out of tens of thousands of lipids would
probably not affect the analysis to any serious degree. However, if perfection is required
some tweaking might be needed. For example the force-segmentation range or the binning
distance could be altered as well as the minimum cluster size.

Based on these results we conclude that MDVoxelSegmentation works well on systems

with a complex composition even in the presence of protein(s).

Curved and tight geometry

Up to now all our test systems were relatively flat, therefore as our final test set, we introduce
heavy curvature as well as closely packed segmentation. In our previous work we showed the
phase transition of a stacked bilayer system to an inverted hexagonal phase (H;;),*%¢ which
was used as a system which should push the time consistency part of our algorithm, as well
as the agonistic behaviour with respect to the amount of segments. A snapshot of the first
intermediate and last frame of the trajectory is shown in Fig. 5| A. The corresponding graph
shows that the segmentation is extremely stable over time. A link to the video of the full
phase transition is given in the SI as video 3. During transition the following happens: First

the leaflets which share a common water reservoir (Fig. [o| A I) fuse together by multiple
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Figure 4: Leaflet segmentation in the presence of protein. (A) Adding protein (lime) to a
bilayer does not interfere with the leaflet assignment of a CG POPC bilayer (red/blue). A
video of the bilayer protein system can be found in the SI. (B) The bottom and top leaflet
of the plasma membrane. Even extremely complex bilayers such as the plasma membrane
including many different proteins (transparent/lime) and lipids (red/blue) do not hinder
leaflet assignment. However, there is a small cluster of non-assigned lipids (yellow) around
one of the proteins (zoom box).
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stalk formation (Fig. |p| A II). The leaflets are then split into smaller segments, more closely
resembling the classic view of the H;; phase. However, due to the high concentration of water
in this system not all aquatic channels are singular and some remain connected through water
pores perpendicular to the view normal (Fig. [5| A III). The final result is a stable H;; phase
of channels with a varying degree of interconnection. Note that the visualization of the
segments (which is part of the output, as can be seen in the Method section) immediately
makes it clear which channels are connected and which not.

In our previous work we showed how transfection with lipoplexes can be simulated using
the Martini force field.# Such lipoplexes are complexes of lipids and dsDNA. The dsDNA
resides inside the inverted hexagonal phase of the lipoplex lipids. Upon fusion with a mem-
brane the dsDNA is released into the cytosol. The tight packing of the lipids with the
dsDNA in combination with the change in topology during transfection, makes this another
challenging system to analyse. A render of the leaflet segmentation is shown in Fig. [5| B. A
link to the video of the complete transfection process is available in the SI video 4. Although
the segmentation is pretty good, it does contain some noise, illustrated by minor flickering
in the video. This noise could be removed with a noise filter, but we left it in for fair com-
parison and to create a realistic reference for the quality of the output under comparable
conditions. As for pores in the bilayer, we can use the amount of leaflet segments identi-
fied in the simulation as a reliable metric for fusion events (Fig. [5| B, graph). We did find
that decreasing the resolution of the leaflet segmentation for complex geometry resulted in
a steep decrease in quality of segmentation. For more simple geometry 1 nm voxels without
hyper-resolution resulted in acceptable segmentation. However, for these systems 0.5 nm
voxels with hyper-resolution is required.

The presence of (high) curvature does not hinder correct leaflet segmentation, even if the
lipid arrangement does not follow a strict bilayer definition or if the amount of segments is

highly dynamic.
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Figure 5: Leaflet segmentation and analysis for both tight and curved complex geometry.
(A) The phase transition from a multilamellar bilayer system to an H;; phase. Snapshots of
the first, intermediate and last segmented frame of a 1 ps trajectory. The accessory video
is available in the SI at supporting video 3. The corresponding graph shows all segments
formed in chronological order with the snapshots indicated with the dotted lines. The width
of a segment indicates its relative size. (B) Snapshots of a lipoplex transfecting dsDNA over
a bilayer (first, intermediate and last segmented frame). The inner core (orange, yellow,
green, gray) is an intact H;; phase containing the dsDNA (not visible), whereas the upper
bilayer leaflet (red) has already fused to the outer leaflet of the lipoplex by means of a fusion
stalk (I). During transfection the inner core segments fuse with the bottom leaflet of the
bilayer (II), resulting in a single flat bilayer with all the dsDNA on the other side (III). The
transfection can be tracked in detail using the segmentation graph. The width of a segment
indicates its relative size.
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Further tests with complex and real world systems

The leaflet segmentation was tested on three additional complex systems to obtain familiarity
with the quality. The first system contains a small fatty acid vesicle (Fig. @, SI video 5).
Around the vesicle fatty acids are suspended in a water buffer. The goal was to measure
the imbalance of molecules in the inner and outer leaflet of the vesicle as it absorbs the
surrounding fatty acids in solution. As the outer leaflet of the vesicle merges with more
and more small micelles in solution the imbalance increases, potentially resulting in division.
Some flip-flopping occurs to release the tension due to the imbalance between the inner and
outer leaflet. However, there are two moments at which the inner and outer leaflet of the
vesicle temporarily fuse by means of a toroidal pore. These pores quickly cause a significant
amount of acyl chains to migrate from the outer to the inner leaflet, indicated by a jump in
the inner leaflet’s size (Fig. [] A). Passive flip-flop occurs all the time and is indicated by the
more continuous increase in size of the inner leaflet. This example furthermore illustrates the
use of our segmentation tool to track flip-flop and pore formation events with high resolution.

The second test was to assign the leaflets in the showcase mitochondrion model pre-
sented in the work by Pezeshkian et al.'” For the mitochondrion, we expected to observe
four separated leaflets, namely the separate leaflets of both the inner and outer membrane.
However, after leaflet segmentation of the complete mitochondrion we only observed three
segments. To further investigate this issue we cut the mitochondria in twenty slices. Each
piece was segmented individually (Fig. @ B). This revealed that there are issues in two of
the twenty slices. When these two problematic slices are excluded the expected four leaflets
were found by segmentation analysis. This indicates unexpected overlap is occurring in those
two slices, likely as a result of stalk formation between closely apposed membrane segments.
Further subdivision could be utilized to pinpoint the exact location, although doing so by
hand becomes rather cumbersome. Nevertheless this example shows that large structures
can be successfully handled by our algorithm and the results can be used for quality control

of systems too large for visual inspection by traditional means.
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Finally, in our previous publication on lipoplexes we described the existence of connective
channels in an overly hydrated inverted hexagonal lipid phase, shown in the example above on
formation of an Hy; phase(Fig. A).4 These channels probably have huge effects on the fusion
kinetics of such phases. Related work was performed at atomistic scale by Ramezanpour
et al., in which they did not describe any of such channels.® After contacting the group
and presenting this paradox to them, we were kindly allowed access to their data. We used
MDVoxelSegmentation to find any possible unexpected and undescribed connective channels.
The channels were confirmed to also exist in the atomistic simulations, mostly forming at
the mid to end of the trajectory of their lipid system with the highest hydration (Fig. |§]
C). The channel was stable, but difficult to spot using the conventional tools available. This
due to the fact that it spanned over the PBC, a common problem in periodic systems.
MDVoxelSegmentation was able to classify the channel, as it supports all PBC used for
molecular simulations. Checking the marked frames by eye confirmed that the results of
MDVoxelSegmentation were correct, the authors agreed after reevaluating their data. The
formation of these pores was not observed at lower temperatures, suggesting that there is a
kinetic factor and that their simulations might benefit from extension.

Together, these examples show that MDVoxelSegmentation is a fast and useful tool for
spotting complex segmentation properties, otherwise easily missed or extremely cumbersome

to analyse.

Performance

To get some insight in the performance of the current MDVoxelSegmentation tool we timed
the segmentation for some of the test systems using a varying amount of threads. The
amount of threads were varied to test the parallel processing of MDVoxelSegmentation. In
all these tests we turned off force-segmentation, for it can have a large impact on performance
based on the exact system (especially at higher maximum recursion depth). The results are

summarized in Fig. [7] From the single thread values we can deduce that our algorithm
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Figure 6: Additional systems. (A) A snapshot of a fatty acid vesicle (red/grey), surrounded
by individual fatty acids in the medium (green). The amount of fatty acids in the inner and
outer leaflet of the vesicle over time (graph). A video of the fatty acid dinner is available in
SI supporting video 5. (B) A snapshot of the segmented mitochondrion ("83 million beads).
Four distinct leaflets can be traced (green, yellow, purple, red) if the intersection zones are
not included in segmentation (white). If the white zones are included in the segmentation,
the pink and red leaflets are fused together. (C) Snapshots of the atomistic POPC system in
the H;; phase as previously published.® Segmentation analysis reveals previously unnoticed
connections between the initial four channels at the end of the simulation. The width of a
segment in the graph indicates its relative size.
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indeed scales pretty much linearly with some variance due to packing and complexity (table
. Systems containing thousands to millions of particles of interest will roughly take between
less than seconds to minutes per frame respectively. The biggest system we timed was the
83 million particle model of a mitochondrion 10, which took over 4 hours for a single frame.
The system of the mitochondrion was the only system which could not be handled with

16GB of RAM and needed a specialized node to run. Its memory consumption peaked at

150GB.
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Figure 7: Single frame scalability. The time it takes to segment a single frame with increasing
particle count. Exact data is represented in table[l} Some variation from linearity is expected
due to the fact that the specific geometry of a system can have an impact on the complexity.

Discussion

Future development of MDVoxelSegmentation

In this manuscript we show the use of voxel based approaches for analysis of lipid and sur-

factant based systems. However, our implementation is not optimal yet. What we hope to
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Table 1: Performance of MDVoxelSegmentation. All systems were run on the same Ubuntu
desktop except for the mitochondrion. The test machine contained a Ryzen 1600 (6 cores,
hyper threading 3.8 GHz) CPU and 16GB of DDR4 memory (2x 8GB 2.133 MHz). No
GPU acceleration is currently implemented. The MDVoxelSegmentation parameters were
the same as stated in the examples above except for force-segmentation, which was turned
off (-fs 0). Timing was performed using the default Ubuntu time functionality. The CPU
for the mitochondrion system ran at 2.4 GHz for a single thread.

System H Particles ‘ Frames ‘ Threads ‘ Real time ‘ User time ‘ Sec/Frame
Bilayer pore 10,436 1,500 12 2m25s 21m41s 0.096
Fatty acid growth 66,278 1,000 12 3m35s 27Tm37s 0.215
Bilayer pore 10,436 1,500 1 13m13s 15m23s 0.529
Fatty acid growth 66,278 1,000 1 16m20s 18m30s 0.980
Plasma membrane || 1,343,450 1 1 4m35s 4m36s 275
Mitochondrion 83,288,300 1 1 260m18s - 15,618

achieve is to stimulate developers of MD software which have a large user base (MDAnal-
ysis, 22 VMD, ™ Pymol,*¥ UnityMol*¥) to embrace voxels and add user intuitive voxel APIs
with common components analysis to their packages. VMD already has a well optimized
grid density function, which could be made more accessible for users, or even contain some
GUI The VMD code could probably perform all operations in this manuscript at runtime
for systems of considerable size due to their efficient usage of GPU(s). How the segmentation
API could best be merged into the current selection syntax is not trivial, and will require

careful consideration.

Potential extra features

As shown here, leaflet segmentation can be solved with high fidelity, using only local checks,
and chronological segmentation. We showed accurate segmentation of a wide range of lipid
systems with or without the presence of cholesterol, protein and or (extreme) curvature.
Although the focus of this manuscript was lipid leaflet detection, we would like to point at
some possible additional features that further broaden the scope of the applications. One of
those features is the tracking of membrane pores and stalks. This should use the same basic

voxel operations such as erosion, growth and common neighbor segmentation, but results in
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tracking abstract segments such as pores. This would allow us to treat pores as segments,
propagating them through the trajectory using the same selection syntax and data structures.
Current attempts show to be promising, although this pore segmentation appears to rely on
a good understanding of subdividing the segmentation results. Some preliminary attempts
of the porefinding can be found in the MDVoxelSegmentation github pore branches.

Another possible application is in the analysis of interfaces and the manner in which they
percolate between set targets. In this case, the interphase itself might be the entity tracked
over time using a distance query on multiple segments.

Detecting lipid lateral phase separation is another problem which we think could be
potentially tackled with our tool. In this case we should not map lipid densities to voxels,
but lipid compositions. In the voxeled compositions a 3D edge detection algorithm could be
used to find transitions in local composition. Since we know that a phase its composition
should be constant in the bulk region, we can start with finding volumes which are constant
in composition by taking the derivative. This would work similar to the work of Sodt et al.
where they demonstrate such approach on a 2D grid.? Probably some form of compositional
smoothing or dimensionality reduction would be required to reduce noise in the spatial
composition of complex systems.

Finally, the analysis is generic enough to be used practically without adaptations on lipid
related systems such as amphipathic proteins or fatty acids, as seen in the SI videos 5 and

6, thus showing promise to be used as a more general procedure for amphipathic systems.

To conclude

We showed that consistent and accurate leaflet segmentation can be obtained with our se-
quential segmentation algorithm. The algorithm proved to be successful on a wide range of
lipid and lipid related systems. These systems contained both high compositional and topo-
logical complexity which were not segmentable with any of the currently available methods

known to us. To achieve this we used a voxel data structure, which allows for fast local
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queries, segmenting each frame individually. To achieve consistent segmentation over multi-
ple frames, this was followed by set theory, making use of the Jaccard index. In our tests we
show many examples of CG Martini lipid systems, mostly performed with the same param-
eter settings. These settings show very few artefacts indicating that in many cases no time
needs to be spent on parameter tweaking. Besides CG systems we also looked at an atomistic
system for which segmentation showed to be of high quality with only minor changes needed
to the default settings.

Our algorithm practically scales linearly with the increase in particles and is able to
handle millions of particles in minutes on a desktop machine. However, performance gains
of orders of magnitude could probably be achieved by proper SIMD/GPU implementation®
and careful memory management using more advanced voxel data structures16-18. The
resulting segmentation is easy to work with in python or VMD and can directly be used for
visualization due to its supported segmentation data format.

The MDVoxelSegmentation package will be expanded by our own attempts to tackle
problems within this framework. We do invite interested researchers to contribute to the
further development of the tool. To add your own segmentation routines to the package,
simply open a ticket at our github and indicate your interest.

(https://github.com/marrink-lab/MDVoxelSegmentation)

Methods

Molecular dynamics simulations

To simulate the lipid only systems we made use of GROMACS 2019.1.%7 Martini 2 was used as
the force field.”Y All lipid parameters were taken from cgmartini.nl and initial configurations
were generated using insane.”? Each simulation contained 0.15 M NaCl and 10% antifreeze
(WF) to prevent unnatural freezing of the water as described in the original Martini paper.*

Rectangular periodic boundary conditions were employed to prevent artificial wall effects
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(xy 10 nm). The steepest descent algorithm was used for energy minimization (1,000 steps)
and equilibration was performed using the default Martini settings with a time step of 2
fs for 25,000 steps.?**8 The Verlet cut-off scheme was used with a 1.1 cut-off for both the
coulombic (reaction-field) and van der Waals interactions. The v-rescale scheme (tau-p=1
ps) was used for the thermostat at 310 K, coupling the lipids and solvent /ions in two separate
groups. Pressure coupling during equilibration was performed using the Berendsen barostat
for semi-anisotropic systems (tau-p=3 ps, compressibility=3e-4 bar-1, ref-p=1.0 bar in each
dimension).*” The production run made use of a 20 fs time step and the pressure coupling
was switched to Parrinello-Rahman (tau-p=12).""

To simulate pores in the DLPC bilayer, positional restraints were used in the form of a
cylindrical biasing potential acting on the C1A and C1B tail beads (GROMACS potential
function 2, shape 8, hole radius -1.2 nm, force constant 1,000 kJ mol-1). The negative sign
in front of the hole radius indicates an inversion of the biasing potential in GROMACS.
A reference file was created with all beads at the same position, acting as the pore center
reference position (-r flag in GROMACS). The pore formation was simulated by running a
production run for 10 ns without the biasing potential, then the potential was turned on for

another 10 ns and turned off again for the final 10 ns.

Leaflet segmentation

We used the same default settings for all the presented segmentation unless specified differ-
ently. These settings used a binning resolution of 5 A and made use of hyper-resolution of
0.5 (adding points half the resolution away from the source point). The headgroups, linkers,
tails and exclusions were as specified in the default selection input. The minimum size of a
segment was 50 particles and iterative force-segmentation was turned on with a maximum
distance of 20 A. An identity threshold of 0.618 was used for the Jaccard threshold. All
keyword arguments represent default values which do not need to be specified except for the

reference frame and trajectory file (any MDAnalysis supported MD format).
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mdvseg -f start.gro -x trajectory.xtc
--headgroups martini_heads --linkergroup martini_linkers
--tailgroups martini_tails --exclusiongroup martini_proteins
--resolution 5 —--hyper_resolution 0.5
--recursion_depth 10 --force_segmentation 20
-—force_information False --minimum_size 50 —--begin O
-—-end None --stride 1 --threads 12 --bit_size 32

--output clusters --verbose False

For the segmentation of the atomistic H;; system hyper-resolution was turned off (-
force_segmentation 0). In general hyper-resolution is not required for atomistic systems.

The respective headgroups, tails and linkers selections were specified in the selections input

file:

[charmm_heads]

"name N P C12 C11 011 012 013 014"

[charmm_linkers]

"name C1 C2 021 C21 C3 031 C31"

[charmm_tails]

"name C22 C23 C24 C25 C26 C27 C28 C29 C210 C211 C212 C213
C214 C215 C216 C217 C218 C32 C33 €34 C35 C36 C37 C38 C39

C310 C311 C312 C313 C314 C315 C316 C317 C318"
The AA terminal input was:

mdvseg -f start.gro -x trajectory.xtc -hg charmm_heads

-lg charmm_linkers -tg charmm_tails -hres 0
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Lipid flip-flop

The average z-height of the cholesterol headgroups was subtracted from the headgroup z-
position. This resulted in headgroups lying either above or below zero. Headgroups with
a normalized z-position less than 0.6 nm away from 0 were labeled either up or down (dis-
cretization of the z-height). Differentiating the individual lipid traces results in peaks at
flip-flop events. These peaks were counted, registering if the flip occurred up- or downwards.
This calculation was repeated for all cholesterols in all frames and a graph was made using
python3 matplotlib.*¥ The z-height and flip-flop analysis is available at the MDVoxelSeg-
mentation github.

To show the flip-flopping of cholesterol using our leaflet segmentation we used the default
settings except for the force-segmentation which was turned off. Lipids which were not
assigned to segment 0 were assigned to their previous segment. A graph was made using
matplotlib and the plotting script included with mdvseg. The leaflet flip-flop analysis is

available at the MDVoxelSegmentation github.

Visualization

All figures and videos were rendered using VMD and a little TCL script of MDVoxelSeg-
mentation to load the segmentation array. Examples of TCL scripts are provided together
with the code at:

https://github.com/marrink-lab/MDVoxelSegmentation
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Supporting Information Available

Supporting Figures

Comparing leaflet detection algorithms

A qualitative comparison of segmentation quality between MDAleaflets,*? FATSLiM*# and
MDVoxelSegmentation was performed to explore the strengths and weaknesses of each ap-

proach.
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Figure 8: Qualitative comparison of leaflet segmentation algorithms. A variety of lipid
systems was segmented using the default options of MDAleaflets, FATSLiM and MDVox-
elSegmentation (MDVseg). Solid images indicate reliable output. Faded images represent
the best case output for unreliable segmentation. The headgroups were selected using the
default MDVoxelSegmentation input selection. The large stop sign indicates no output was
generated at all during segmentation. Unreliable segmentation is indicated with the fingers
crossed symbol. *The speed is indicated relative to the MDVoxelSegmentation performance.
**Segmentation can be extremely sensitive to diving lipids. ***The option for sparse ma-
trices does exist, however, it is not the default behavior and the calculation speed suffered
severely. 928



Flip-flop comparison with smaller deadzone
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Figure 9: Comparing flip-flop detection with a small deadzone. Reducing the deadzone for
the z-height based flip-flop registration to 0.3 showed that the flip-flops detected by the
MDVoxelSegmentation approach is a near perfect subset of the z-height approach with a
small deadzone. Although the exact moment of the flip-flop is sometimes shifted by a few
frames between the two approaches.

The role of the Jaccard threshold

For temporal segmentation a Jaccard threshold had to be set. This threshold defines when
two sets are similar enough to be a candidate for shared identity. Picking a very low threshold
results in an overzealous attempt to never generate a new set, where a very high threshold
results in a flood of new identities — a single lipid flip-flopping can cause a loss of identity.

We found that values around the golden ratio correspond well with our human intuition.
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Figure 10: Comparing Jaccard thresholds. Three values for the Jaccard threshold (0.000,
0.618, 0.999) were tested on two bilayer systems. A bilayer with a toroidal pore (A). A bilayer
with cholesterol (B). The Jaccard threshold of 0.618 gives the desired results in both systems.
Setting the threshold to 0 results in incorrect temporal segmentation of system A, although
system B is fine. Setting the threshold to 0.999 results in bad temporal segmentation in both
systems. Segment IDs beyond 50 were truncated.

Supporting Videos

Supporting Video 1: Bilayer pore

bilayer_pore The opening and closing of an artificial pore in a DLPC bilayer. Right before
the stable toroidal pore is formed, a short lived water pore spans the bilayer. This pore was
visualized using the following selection syntax in VMD: ‘(name W) and (within 20 of name
PO4 and user 1) and (within 20 name PO4 and user 2)’. User 1 and 2 are the respective

leaflets. We can visualize water pores connecting two leaflets and segment them. However,
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we lose all information of the pore as soon as the leaflets become continuous (as illustrated

in the video).

Supporting Video 2: Protein bilayer

protein_bilayer Stable segmentation of a bilayer in the presence of a protein. Close to the
protein some lipids can be observed which are diving relatively deep under the surface,

however, this diving is handled without missegmentation.

Supporting Video 3: Lipid phase transition

phase_transition| Lipid segmentation of a phase transition from dehydrated stacked bilayers

to inverted hexagonal (left). Water densities (right).

Supporting Video 4: Lipoplex transfection

transfection A lipoplex was placed on top of a model endosomal membrane. The simulation
was started in the presence of a fusion stalk, connecting the outer leaflet of the lipoplex coat
with the upper leaflet of the endosomal membrane (red, transparent). Over time the internal
compartments of the lipoplex (orange, yellow, pink, green) fuse with the bottom endosomal
leaflet (red, transparent). At the end of the simulation all dsDNA from inside the lipoplex
was transfected over the endosomal membrane. Some flickering is observed, but overall the

segmentation is very stable and flickering could easily be removed with a noise filter.

Supporting Video 5: Acyl chain dinner

acyl_chains, acyl_chains_dof In an attempt to understand early life ‘cell’ division we placed
a small vesicle (acyl chains) in the presence of food (also acyl chains). The vesicle adds the
food from its surroundings to its own composition, but without internal reorganization the

food is only added to the outer leaflet. With a large enough leaflet disbalance three things
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can happen to restore the balance. The acyl chains flip-flop from the outside to the inside.
The leaflets temporarily fuse to balance the amount of acyl chains in the inner and outer
leaflet, or the disbalance causes the vesicle to divide. MDVoxelSegmentation was used to
analyse the imbalance as well as to monitor the feeding rate. Both flip-flopping and toroidal

pore formation takes place. No divisions occur.

Supporting Video 6: Segmentation of other amphipathic systems

amphipathic_peptides With trivial adaptations of the input GRO file we used our method to
perform segmentation of amphipathic peptides. Due to their amphipathic nature, micelles
from such peptides can touch but not fuse (like lipid leaflets). MDVoxelSegmentation shows

to be suited to be used for such systems.
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