Machine learning based interpretation of microkinetic data: a Fischer–Tropsch synthesis case study - Archive ouverte HAL Access content directly
Journal Articles Reaction Chemistry & Engineering Year : 2021

Machine learning based interpretation of microkinetic data: a Fischer–Tropsch synthesis case study

Abstract

A systematic approach for analysing kinetic data and identifying hidden trends using interpretation techniques in data science with the ANN.

Dates and versions

Identifiers

Cite

Anoop Chakkingal, Pieter Janssens, Jeroen Poissonnier, Alan Barrios, Mirella Virginie, et al.. Machine learning based interpretation of microkinetic data: a Fischer–Tropsch synthesis case study. Reaction Chemistry & Engineering, 2021, 7 (1), pp.101-110. ⟨10.1039/d1re00351h⟩. ⟨hal-03863322⟩
5 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More