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State Complexity of Protocols With Leaders

JÉRÔME LEROUX, LaBRI, CNRS, Univ. Bordeaux, France

Population protocols are a model of computation in which an arbitrary number of anonymous finite-memory agents are interacting

in order to decide by stable consensus a predicate. In this paper, we focus on the counting predicates that asks, given an initial

configuration, whether the number of agents in some initial state 8 is at least=. In 2018, Blondin, Esparza, and Jaax shown that with a

fix number of leaders and interaction-width, there exists infinitely many = for which the counting predicate is stably computable by

a protocol with at most $ (log log(=)) states. We provide in this paper a matching lower-bound (up to a square root) that improves

the inverse-Ackermannian lower-bound presented at PODC in 2021.

1 INTRODUCTION

Population protocols were introduced by Angluin, Aspnes, Diamadi, Fischer, and Peralta in [1, 2] to study the compu-

tational power of networks of resource-limited mobile agents. In this model, each agent has a state in a finite set of

states. When agents interact, their states are updated accordingly to a finite interaction table. This table corresponds

intuitively to a conservative Petri net (the Petri net is conservative since the number of agents is preserved by each

transition) where each line of the interaction table is matched by a transition of the Petri net. In this model, an agent

may accept or reject depending only on it own state. A population protocol is said to be stably computing a predicate,

if for any initial configurations, eventually and forever, under some natural fairness conditions, either all agents ac-

cept or all agents reject. Moreover, this outcome should only depend on the initial configuration and not on the way

interactions are performed.

Deciding if a protocol stably computes some unknown predicate is a problem called the well-specification prob-

lem. This problem was proved to be decidable in [9, 10] by observing that well-specification problem is equivalent to

the reachability problem for Petri nets up to elementary reductions. Since this last problem was recently proved to

be Ackermannian-complete [8, 11], it means that deciding the well-specification problem is Ackermannian-complete.

Intuitively, population protocols maybe intrinsically very complicated.

Despite this Ackermannian complexity result, in [4], Angluin, Aspnes, Eisenstat, and Ruppert have shown that pred-

icates stably computable by population protocols cannot be more complicated than the one definable in the Presburger

arithmetic. Combined with [1, 2], it follows that predicates stably computable by population protocols are exactly the

predicates definable in the Presburger arithmetic.

Since deciding if a population protocol is stably computing some Presburger predicate is Ackermannian-complete,

a natural question is the conciseness of population protocols. Intuitively, is it possible to define a population protocol

computing predicates that are very complex compared to the number of states of the protocol ? This problem is related

to the so-called state complexity of a Presburger predicate intuitively defined as the minimal number of states of a

population protocols deciding it.

State complexity upper-bounds are obtained thanks to algorithms computing from predicates protocols stably com-

puting it with a number of states as small as possible. In [5], by revisiting the construction of population protocols

deciding Presburger predicates, some improvement on state complexity upper-bounds was derived. On the other side,

state complexity lower-bounds is also a difficult task since such a bound requires to prove that there is no way to

stably compute a predicate with a given amount of states. In this context, focusing on the state complexity of simple

Presburger predicates is a natural question. The simplest non trivial Presburger predicates are clearly the counting

predicates that corresponds to the set of configurations such that the number of agents in a given state is larger than
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or equal to some positive number =. In 2018, Blondin, Esparza, and Jaax shown in [6] that with a fix number of leaders

and interaction-width (the number of agents that can interact at each interaction step), there exists infinitely many =

for which the counting predicate is stably computable by a protocol with at most $ (log log(=)) states.

This state complexity upper-bound was recently completed by a state complexity lower-bound in [7]. In that paper,

Czerner and Esparza shown that the number of states of a population protocol deciding a counting predicate with a

bounded number of leaders and a bounded interaction-width is at least Ω(�−1 (=)) where � is some Ackermannian

function, leaving a gap between the $ (log log(=)) upper-bound and the Ω(�−1 (=)) lower-bound.

Main result. In this paper, we follow the model of protocols introduced by Dana Angluin, James Aspnes, and David

Eisenstat in 2006 that allows agents creations and destructions [3]. We slightly extends that model to allow leaders.

We close the previously mentioned state complexity gap by proving that for any ℎ <
1
2 , and under a fix number of

leaders and a bounded number of interaction-width, any protocol stably computing a counting predicate requires at

least Ω((log log(=))ℎ) states.

Outline. In Section 2 we recall some basic definitions and results about protocols. In Section 3, we introduce the

notion of communication-width of a protocol and show that protocol with finite communication-width are naturally

related to the model of Petri nets. In Section 4 we introduce the state complexity problem and show that counting the

number of states of protocols without taking into account the number of leaders or the communication-width is not

relevant. In Section 5 we introduce the notions of stabilized configurations and show that those configurations are

characterized by their small values. Those results are obtained thanks to Rackoff’s techniques originally introduced

in the context of the coverability problem for Petri nets. Section 6 contains the central technical lemma. It is a lemma

about Petri nets that intuitively shows that from any initial configuration we can reach with short executions kind

of bottom configurations. Section 7 recalls the model of Petri net with control-states and provides a result on small

cycles satisfying some properties. This last result is obtained by introducing a linear system and by applying Pottier’s

techniques [12] in order to obtain small solutions for that linear system. Results of the previous sections are combined

in Section 8 to obtain our state complexity lower-bound. Some related open problems and future work are presented

in Section 9.

2 PROTOCOLS

In this section, we introduce our model of protocols that slightly differs from the one introduced in [3] by allowing

leaders. We extend the definition of stably computing a predicate with such a protocol. This definition is a straight-

forward extension of the one given in [3] that generalizes several definitions of fair computations in particular in the

context of unconservative protocols.

Let % be a finite set of elements called states. A %-configuration (or just a configuration if % is clear from the context)

is a mapping in N% . Given a configuration d , the number |d |
def
=
∑

? ∈% d (?) is called the number of agents in d . Let &

be another finite set of states. We associate with a %-configuration d the &-configuration d |& defined for every @ ∈ &

by d |& (@) = d (@) if @ ∈ % and zero otherwise. Notice that & is not necessarily a subset of % . Given ? ∈ % we simply

denote by ? |% (or just ? when % is clear from the context) the mapping in N% that maps ? on 1 and the other states on

zero. The sum U + V of two configurations U, V and the product =.d where = ∈ N and d is a configuration are defined

component-wise as expected.
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Let ' be a binary relation on %-configurations for some finite set of states % . We say that ' is additive if (U, V) ∈ '

implies (U + d, V + d) ∈ ' for every configuration U, d, V . As usual, ' is called a preorder if it is reflexive and transitive.

We also say that ' is conservative if |U | = |V | for every (U, V) ∈ '.

A protocol is a tuple (%,
∗
−→, d!, � ,W) where % is a finite set of states,

∗
−→ is an additive preorder on the %-configurations,

d! is a %-configuration called the configuration of leaders, � ⊆ % is the set of initial states, and W : % → {0,★, 1} is the

output function. The value |d! | is called the number of leaders. A protocol is said to be leaderless when this number

is zero. A configuration of the form d! + d |% with d ∈ N� is called an initial configuration. A protocol is said to be

conservative if
∗
−→ is conservative. The function W is extended on any d ∈ N% by:

W (d) = { 9 ∈ {0,★, 1} | ∃? ∈ % d (?) > 0 ∧ W (?) = 9}

For 9 ∈ {0, 1}, we introduce the following sets ( 9 called the 9-output stable configurations. Notice that (0 and (1

are not defined exactly the same way in order to manage the zero configuration. With our definition we interpret the

output of the zero configuration as 0. Notice that the definition of 0-output stable configurations introduced in [3] does

not care about the zero configuration since protocols are semantically restricted to non zero configurations. We do not

introduce a set (★ since intuitively the element ★ in the image of W is interpreted as an undetermined output.

(0
def
= {U ∈ N% | ∀V U

∗
−→ V ⇒ W (V) ⊆ {0}}

(1
def
= {U ∈ N% | ∀V U

∗
−→ V ⇒ W (V) = {1}}

A predicate is a mapping q : N� → {0, 1}. We say that a protocol stably computes q if for every d ∈ N� and for

every U ∈ N% such that d! + d |%
∗
−→ U , there exists V ∈ (q (d) such that U

∗
−→ V . A predicate q is stably computable if

there exists a protocol that stably computes it.

Remark 1. In [3], predicates that are stably computable by leaderless protocols restricted to functionsW such thatW (%) ⊆

{0, 1} are proved to be exactly the predicates definable in the Presburger arithmetic. We think that this property can be

extended to any protocol with leaders and using the ★ element in the definition of W . We left this problem open since it is

outside of the scope of this paper.

3 INTERACTION-WIDTH

The class of additive preorders is central for defining protocols as shown in the previous section. Additive preorders

are a natural generalization of the Petri net reachability relations used in classical population protocols. For param-

eterized complexity purposes, we introduce in this section the notion of interaction-width that intuitively limits the

number of agents that can communicate together in a single interaction step. As expected additive preorders with

finite interaction-width are exactly the reachability relations of Petri nets.

A %-transition (or simply a transition when the finite set % is clear from the context) is a pair C
def
= (UC , VC ) of %-

configurations. Given such a transition, we introduce |C |
def
= max{|UC |, |VC |} called the interaction-width of C . We associate

with a transition C the binary relation
C
−→ over the configurations defined by U

C
−→ V if there exists a configuration d such

that U = UC + d and V = VC + d . Notice that
C
−→ is the minimal for the inclusion additive binary relation that contains

C . Given a word f = C1 . . . C: of transitions, we introduce the binary relation
f
−→ over the configurations defined by
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U
f
−→ V if there exists a sequence d0, . . . , d: of configurations such that:

U = d0
C1
−→ d1 · · ·

C:
−−→ d: = V

An additive preorder ' is said to have a finite interaction-width if there exists< ∈ N such that for every (U, V) ∈ ',

there exists a word f of transitions in ' with an interaction-width bounded by< and such that U
f
−→ V . The minimal<

satisfying this property is called the interaction-width of ', and it is denoted as width('). When ' does not have a finite

interaction-width, we define width(')
def
= l . The interaction-width of a protocol is defined as the interaction-width of

its implicit additive preorder.

Finite interaction-width additive preorders are related to Petri nets as follows. A %-Petri net ) (or simply a Petri

net when % is clear from the context) is a finite set of %-transitions. The reachability relation of a Petri net ) is the

binary relation
) ∗

−−→ over the configurations defined by U
) ∗

−−→ V if there exists f ∈ ) ∗ such that U
f
−→ V . Observe

that the reachability relation of a Petri net ) is an additive preorder with an interaction-width bounded by maxC ∈) |C |.

Moreover, if ' is an additive preorder with a finite interaction-width then ' is the reachability relation of the Petri net

{C ∈ ' | |C | ≤ width(')}. It follows that the class of additive preorders with finite interaction-widths is equal to the

class of Petri net reachability relations.

4 STATE-COMPLEXITY OF PROTOCOLS

The state-complexity of a predicate is intuitively the minimal number of states of a protocol that stably computes it.

In this section, we show that the state-complexity must involve the interaction-width and the number of leaders to

discard trivial results.

Since our paper focuses on the so-called counting predicates, let us first introduce those predicates. The (8 ≥ =)

predicatewhere 8 is a state and = a positive natural number is the predicate q8≥= : N� → {0, 1}where �
def
= {8} satisfying

q8≥= (d) = 1 if, and only if d (8) ≥ = for every configuration d ∈ N� . Such a predicate is called a counting predicate.

The following two examples show that counting the minimal number of states of protocols stably computing a

counting predicate without taking into account the interaction-width or the number of leaders is not relevant.

Example 4.1. This example shows that the predicate q8≥= is stably computable by a leaderless conservative protocol

with a number of states bounded 2. We introduce the protocol (%,
∗
−→, d!, � ,W) where %

def
= {8, ?} for some state ? ≠ 8 , d!

is the zero configuration, �
def
= {8}, W−1 ({0}) = {8}, W−1 ({1}) = {?}, and

∗
−→ is the additive preorder defined by U

∗
−→ V

if there exists< ∈ N such that V +<.8 = U +<.? and such that< = 0 ∨ |U | ≥ =. In fact, notice that for every d ∈ N�

and U ∈ N% such that d |%
∗
−→ U , then either d (8) < = and in that case U = d |% is a 0-output stable configuration,

or d (8) ≥ = and in that case U
∗
−→ V where V is the 1-output stable configuration defined as d (8).? . We have proved

that the protocol stably computes q8≥= . The interaction-width of the previous protocol is bounded by =. In fact, just

observe that the reachability relation of the Petri net {(d + 8, d + ?) | d ∈ N% ∧ |d | = = − 1} is equal to
∗
−→. It follows

that width(
∗
−→) ≤ =. In fact, one can easily prove that width(

∗
−→) = =.

Example 4.2. This example shows that the predicate q8≥= is stably computable by a conservative protocol with a

number of states bounded 6 and an interaction-width bounded by 2. We introduce the protocol (%,
) ∗

−−→, =.8̄, � ,W) where

%
def
= {8, 8̄, ?, ?̄, @, @̄}, �

def
= {8}, W−1 ({1}) = {8, ?, @}, W−1 ({0}) = {8̄, ?̄, @̄}, and )

def
= {C, C? , C̄? , C@ , C̄@ , C?̄ , C@̄} is the Petri net
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defined as follows:

C
def
= (8 + 8̄, ? + @)

C?
def
= (?̄ + 8, ? + 8)

C̄?
def
= (? + 8̄, ?̄ + 8̄)

C@
def
= (@̄ + 8, @ + 8)

C̄@
def
= (@ + 8̄, @̄ + 8̄)

C@̄
def
= (? + @̄, ? + @)

C?̄
def
= (@ + ?̄, @ + ?)

Notice that each transition, except C , can only change the bar statue of an agent in states ? and @. Let d ∈ N� and let U

be a configuration such that =.8̄ + d |%
) ∗

−−→ U and let us prove that there exists a q8≥= (d)-output stable configuration V

such that U
) ∗

−−→ V . First of all, by executing min{U (8), U (8̄)} times the transition C from U , we can assume without loss

of generality that U (8) = 0 or U (8̄) = 0. Observe that U (8̄) = 0 if and only if q8≥= (d) = 1. Assume first that U (8̄) > 0.

In that case, by executing the transitions C̄? and C̄@ the right number of times, we get from U a configuration V such

that V (8) = V (?) = V (@) = 0. Notice that V is 0-output stable. Next, assume that U (8) > 0. In that case, by executing

the transitions C? and C@ the right number of times, we get a configuration V such that V (8̄) = V (?̄) = V (@̄) = 0. This

configuration is 1-output stable. Finally, assume that U (8) = 0 and U (8̄) = 0. Since = > 0, by identifying the last time

transition C is executed, we deduce that there exist configurations `, X such that =.8̄ + d |%
) ∗

−−→ `
C
−→ X

) ∗
0

−−→ U such that

X (8) = X (8̄) = 0 where )0
def
= {C@̄, C?̄ }. Notice that X (?) > 0 and X (@) > 0. Since this property is invariant by executing

the transitions in )0, we deduce that U (?) > 0 and U (@) > 0. By executing C?̄ and C@̄ the right number of times, we get

from U a configuration V such that V (8̄) = V (?̄) = V (@̄) = 0. This configuration is 1-output stable. We have proved that

the protocol stably computes q8≥= .

In [6], it is exhibited an infinite set of natural numbers = for which there exists a conservative population protocol

stably computing the counting predicate (8 ≥ =) with an interaction-width bounded by 2, a number of leaders bounded

by 2, and a number of states bounded by$ (log log(=)). This paper left open the optimality of that bound. In this paper

we show that such a bound is almost optimal by proving the following main theorem.

Theorem 4.3. For every protocol (%,
∗
−→, d!, � , � ) with a finite interaction-width that stably computes q8≥= , we have:

= ≤ (4 + 4width(
∗
−→) + 2|d! |)

|% | ( |% |+2)2

We deduce the following state complexity lower-bound as a corollary.

Corollary 4.4. Let ℎ <
1
2 and let< ≥ 1. The number of states of a protocol stably computing the (8 ≥ =) predicate

with an interaction-width bounded by< and a number of leaders bounded by< is at least Ω((log log(=))ℎ).

Proof. Let us consider Y > 0 such that 1
2+Y ≥ ℎ. Notice that for 3 ∈ N large enough, we have 3 ≤ 2(3+2)

Y
. It follows

that 3 (3+2)2 ≤ 2(3+2)
2+Y

for 3 large enough. Theorem 4.3 shows that a protocol stably computing the (8 ≥ =) predicate

with an interaction-width bounded by< and a number of leaders bounded by< satisfies:

= ≤ (10<) |% |
( |% |+2)2

It follows that if= is large enough, then |% | is large enough to satisfy |% | ( |% |+2)
2
≤ 2( |% |+2)

2+Y
. It follows that log log(=) ≤

log log(10<) + log(2)( |% | + 2)2+Y . In particular:

|% | ≥

(

log log(=) − log log(10<)

log(2)

)ℎ

− 2

We have proved the corollary. �
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5 SMALL STABLE CONFIGURATIONS

A %-configuration d is said to be (), � )-stabilized where ) is a %-Petri net, and � is a subset of % if for every config-

uration V such that d
) ∗

−−→ V , we have V (?) = 0 for every ? ∈ %\� . In this section, we show that (), � )-stabilized

configurations are characterized by “small values”. This result is obtained by applying classical Rackoff’s techniques

originally introduced for the Petri net coverability problem. The definition of stabilized configurations is related to the

output stable configurations of protocols as shown by the following lemma.

Lemma 5.1. Let (%,
) ∗

−−→, d!, � ,W) be a protocol where ) is a Petri net and let �
def
= W−1 ({0}). A configuration is (), � )-

stabilized if, and only if, it is 0-output stable.

Proof. By definition. �

We first introduce some notations. Given a %-configuration d , we introduce ‖d ‖∞
def
= max? ∈% d (?). Given a transi-

tion C = (UC , VC ), we also introduce ‖C ‖∞
def
= max{‖UC ‖∞, ‖VC ‖∞}. Given a Petri net) , we define ‖) ‖∞

def
= maxC ∈) ‖C ‖∞.

Given a finite set & of states, we define several restrictions related to & as follows. Let us recall that given a %-

configuration d , we previously defined d |& as the &-configuration defined by d |& (@)
def
= d (@) if @ ∈ & , and zero

otherwise. Given a %-transition C = (UC , VC ), we define the &-transition C |& as the pair C |&
def
= (UC |& , VC |& ). Given a %-

Petri net ) , we introduce the&-Petri net ) |&
def
= {C |& | C ∈ ) }. Given a word f = C1 . . . C: of %-transitions, we introduce

the word f |& = C1 |& . . . C: |& of&-transitions. Notice that U
f
−→ V for some %-configurations U, V implies U |&

f |&
−−−→ V |& .

The converse property is true in some cases as shown by the following lemma.

Lemma 5.2. Assume that U |&
f |&
−−−→ d for some %-configurations U, d , some word f of transitions in a %-Petri net) , and

some finite set & . If U (?) ≥ |f | ‖) ‖∞ for every ? ∈ %\& then there exists a configuration V such that U
f
−→ V , V |& = d ,

and V (?) ≥ U (?) − |f | ‖) ‖∞ for every ? ∈ %\& .

Proof. Simple induction on |f |. �

A configuration d is said to be) -coverable from a configuration U where) is a Petri net if there exists a word f ∈ ) ∗

such that U
f
−→ V ≥ d for some configuration V . The minimal length of such a word f can be bounded using Rackoff’s

techniques with respect to ‖d ‖∞, ‖) ‖∞, and |& | as shown by the following result introduced in [13] to prove that the

) -coverability problem is decidable in exponential space.

Lemma 5.3 ([13]). If a configuration d is ) -coverable from a configuration U where ) is a %-Petri net, then there exists

f ∈ ) ∗ with a length bounded by (‖d ‖∞ + ‖) ‖∞) |% |
|% |

, and a configuration V such that U
f
−→ V ≥ d .

Proof. This is a classical result obtained by Rackoff in [13] by induction on |% |. �

We deduce the following lemma that shows that (), � )-stabilized configurations are characterized by “small values”

(the values d (?) for ? ∈ '). In the statement of that lemma the relation ≤ over the %-configurations is defined by U ≤ V

if there exists a %-configuration d such that V = U + d .

Lemma 5.4. Let d be a (), � )-stabilized %-configuration with � ⊆ % , let ℎ be a positive integer satisfying ℎ ≥ ‖) ‖∞ (1+

‖) ‖∞) |% |
|% |

, and let '
def
= {? ∈ % | d (?) < ℎ}. Every %-configuration U such that U |' ≤ d |' is (), � )-stabilized.

6
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Proof. Let us consider a %-configuration U such that U |' ≤ d |' . There exists a '-configuration ` such that d |' =

U |' + `. Assume by contradiction that U is not (), � )-stabilized. It follows that there exists a configuration V such that

U
) ∗

−−→ V and V (?) > 0 for some place ? ∈ %\� . Since ? ∉ � and d is (), � )-stabilized, we deduce that d (?) = 0. In

particular ? ∈ ' since ℎ > 0. Since ? |% is ) -coverable from U , Lemma 5.3 shows there exists a word f ∈ ) ∗ of length

bounded by (1 + ‖) ‖∞) |% |
|% |

and a configuration [ such that U
f
−→ [ ≥ ? |% . It follows that U |'

f |'
−−−→ [ |' . From this

relation and d' = U |' + `, we deduce that d'
f |'
−−−→ [ |' + `. Lemma 5.2 shows that there exists a configuration X such

that d
f
−→ X and X |' = [ |' + `. Since ? ∈ ', we deduce that X (?) = [ (?) + ` (?) ≥ ? |% (?) = 1. As ? ∉ � , it follows that

d is not (), � )-stabilized and we get a contradiction. We have proved the lemma. �

Remark 2. A similar result was provided in [7] in the context of conservative Petri nets with interaction-width bounded

by two.

6 BOTTOM CONFIGURATIONS

Let) be a %-Petri net. The) -component of a %-configuration d is the set of configurations V such that d
) ∗

−−→ V
) ∗

−−→ d . A

configuration d is said to be) -bottom if its) -component is finite and every configuration V such that d
) ∗

−−→ V satisfies

V
) ∗

−−→ d .

In this section we prove the following theorem that intuitively provides a way to reach with short words kind of

bottom configurations with small size (small and short meaning doubly-exponential in that context). Other results

proved in this section are only used for proving the following theorem and are no longer used in the sequel.

Theorem 6.1. Let) be a %-Petri net, let d be a %-configuration, and let 1
def
= (4+ 4‖) ‖∞ + 2‖d ‖∞)3

3 (1+(2+33 )3+1) with

3
def
= |% |. There exist two words f,F ∈ ) ∗, a set of places & ⊆ % , and two %-configurations U, V such that:

• d
f
−→ U

F
−→ V .

• U |& = V |& .

• U (?) < V (?) for every state ? ∈ %\& .

• U |& is) |& -bottom.

• The cardinal of the ) |& -component of U |& is bounded by 1.

• |f |, |F |, 3 ‖U ‖∞, 3 ‖V ‖∞ ≤ 1.

The proof of the previous theorem is obtained by iterating the following lemma in order to obtain an increasing

sequence of sets & .

Lemma 6.2. Let ) be a %-Petri net, let d be a %-configuration, let & be a set of states included in % such that d |& is

) |& -bottom, let B be the cardinal of the) |& -component of d |& , and let 3
def
= |%\& |.

There exist a word f ∈ ) ∗ such that |f | ≤ (1 +3 (1 + B ‖) ‖∞ + ‖d ‖∞)3
3
)B , and a %-configuration d ′ such that d

f
−→ d ′

and such that:

• either d ′ |& = d |& and d ′(?) > d (?) for every ? ∈ %\& ,

• or there exists a set & ′ ⊆ % that strictly contains & such that d ′ |&′ is ) |&′-bottom and the cardinal B ′ of the

) |&′-component of d ′ |&′ satisfies:

B ′ ≤ (1 + 3 (1 + B ‖) ‖∞ + ‖d ‖∞)3
3

)B

7
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Proof. Let us introduce the sequence _1, . . . , _3 of natural numbers satisfying _3
def
= 1+B ‖) ‖∞+‖d ‖∞ and satisfying

_=
def
= B_3−==+1 ‖) ‖∞ + _=+1 for every = ∈ {1, . . . , 3 − 1}. Observe that _1 ≥ · · · ≥ _3 . Moreover, _= ≤ _3_

3−=
=+1 for every

1 ≤ = < 3 . We deduce by induction that _31 ≤ _3
3

3
.

Let d0
def
= d . We are going to build by induction on = a sequence d1, . . . , d= of configurations, a sequence f1, . . . , f=

of words in ) ∗, and a sequence ?1, . . . , ?= of states in %\& such that for every 8 ∈ {1, . . . , =} we have:

(i) d8−1
f8
−−→ d8 .

(ii) |f8 | ≤ _3−8+18 B .

(iii) d8 (?) ≥ _8 for every ? ∈ {?1, . . . , ?8 }.

So, let us assume that d1, . . . , d= , f1, . . . , f= , and ?1, . . . , ?= are built for some = ≥ 0. Since ?1, . . . , ?= are distinct

elements in %\& , it follows that = ≤ 3 .

Let us first assume that = = 3 . In that case, we have d3 (?) ≥ _3 for every ? ∈ %\& . As d |& is a ) |& -bottom

configuration and d |&
(f1 ...f3 ) |&
−−−−−−−−−−→ d3 |& and since the cardinal of the ) |& -component of d |& is bounded by B , we

deduce that there exists a word F ∈ ) ∗ such that d3 |&
F |&
−−−−→ d |& and |F | < B . Since _3 ≥ B ‖) ‖∞ ≥ |F | ‖) ‖∞,

Lemma 5.2 shows that d3
F
−→ d ′ for some configuration d ′ such that d ′ |& = d |& and such that for every ? ∈ %\& we

have d ′(?) ≥ d (?) − |F | ‖) ‖∞ ≥ _3 − B ‖) ‖∞ > d (?) by definition of _3 . Let us introduce f
def
= f1 . . . f3F and notice

that |f | ≤ (_31 + · · · + _3−3+1
3

+ 1)B ≤ (1 + 3_31 )B and we have proved that the lemma holds (first case).

So we can assume that = < 3 . Let us introduce the set '= = (%\&)\{?1, . . . , ?=}. Since |'= | = 3 −=, the set '= is non

empty.

Assume first that for every configuration V such that d=
) ∗

−−→ V we have V (?) < _=+1 for every ? ∈ '= . In that

case let & ′ def
= & ∪ '= . It follows that the cardinal of the set of configurations V

′ such that d= |&′

) |∗
&′

−−−−→ V ′ is bounded

by B_3−==+1 . Hence, there exists a configuration V ′ that is ) |&′-bottom and a word F ∈ ) ∗ such that d= |&′

F |&′

−−−−→ V ′

and such that |F | < B_3−==+1 . Notice that the cardinal B ′ of the ) |&′-component of V ′ is bounded by B_3−==+1 ≤ B_31 .

As d= (?) ≥ _= for every ? ∈ {?1, . . . , ?=} and _= ≥ (B_3−==+1 − 1)‖) ‖∞ ≥ |F | ‖) ‖∞, Lemma 5.2 shows that there

exists a configuration d ′ such that d=
F
−→ d ′, and d ′ |&′ = V ′. Let us consider the word f

def
= f1 . . . f=F . Notice that

|f | ≤ (_31 + · · · + _3−=+1= + _3−==+1 )B ≤ 3_31B and we have proved that the lemma holds (second case).

Finally, assume that there exists a configuration d=+1 such that d=
f=+1
−−−−→ d=+1 for some word f=+1 ∈ ) ∗ and such

that d=+1 (?=+1) ≥ _=+1 for some state ?=+1 ∈ '= . We assume that |f=+1 | is minimal. Observe that every intermediate

configuration V such that d=
D
−→ V

E
−→ d=+1 with DE = f=+1 and |E | ≥ 1 satisfies V (?) < _=+1 for every ? ∈ '= by

minimality of |f=+1 |. We deduce that there exists a wordF ∈ ) ∗ such that d= |&∪'=

F |&∪'=
−−−−−−−→ d=+1 |&∪'= and such that

|F | ≤ B_3−==+1 . As d= (?) ≥ _= for every ? ∈ {?1, . . . , ?=} and _= ≥ B_3−==+1 ‖) ‖∞ ≥ |F | ‖) ‖∞, Lemma 5.2 shows that there

exists a configuration V such that d=
F
−→ V and V |&∪'= = d=+1 |&∪'= . In particular V (?=+1) = d=+1 (?=+1) ≥ _=+1. By

minimality of |f=+1 |, we get |f=+1 | ≤ |F | ≤ B_3−==+1 . Now, observe that for every ? ∈ {?1, . . . , ?=} we have d=+1 (?) ≥

d= (?) − |f=+1 | ‖) ‖∞ ≥ _= − B_3−==+1 ‖) ‖∞ ≥ _=+1 by definition of _= . We have extended our sequence in such a way (8),

(88), and (888) are fulfilled.

We have proved the lemma. �

Now, let us prove Theorem 6.1. Observe that if3 = 0 the theorem is trivial. So, we can assume that 3 ≥ 1. Let&0
def
= ∅,

d0
def
= d , and B0

def
= 1. Notice that d0 |&0 is ) |&0 -bottom and the cardinal of the ) |&0 -component of d0 |&0 contains B0

8
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elements. We build by induction on = a sequence&1, . . . ,&= of subsets of % , a sequence d1, . . . , d= of configurations, a

sequence f1, . . . , f= of words in ) ∗ such that for every 8 ∈ {1, . . . , =}:

• d8−1
f8
−−→ d8 .

• d8 |&8
is ) |&8

-bottom.

• The cardinal of the ) |&8
-component of d8 |&8

is equal to B8 .

• &8−1 ⊂ &8 .

• |f8 |, B8 ≤ (1 + 3 (1 + B8−1‖) ‖∞ + ‖d8−1‖∞)3
3
)B8−1.

Assume the sequence built for some = ≥ 0. Lemma 6.2 on the configuration d= and the set &= shows that there exist a

word f=+1 such that |f=+1 | ≤ (1+3 (1+ B= ‖) ‖∞ + ‖d= ‖∞)3
3
)B= , and a configuration d=+1 such that d=

f=
−−→ d=+1, such

that:

• either d=+1 |&=
= d= |&=

and d=+1 (?) > d= (?) for every ? ∈ %\&= ,

• or there exists &=+1 such that &= ⊂ &=+1 ⊆ % such that d=+1 |&=+1 is ) |&=+1 -bottom and the cardinal B=+1 of its

) |&=+1 -component satisfies:

B=+1 ≤ (1 + 3 (1 + B= ‖) ‖∞ + ‖d= ‖∞)3
3

)B=

Observe that in the second case we have extended the sequences. In the first case, let U
def
= d= , V

def
= d=+1, f

def
= f1 . . . f= ,

F
def
= f=+1, and &

def
= &= . Since &0 ⊂ &1 · · · ⊂ &= are subsets of % , we deduce that = ≤ 3 . Let us introduce 0 =

(1 + 3)(2 + 2‖) ‖∞ + ‖d ‖∞)3
3
and ℎ = 2 + 33 and let us prove by induction on 8 that we have |f8 |, |B8 | ≤ 0ℎ

8
and

‖d8 ‖∞ ≤ (1 + ‖) ‖∞)0ℎ
8
with the convention f0 = Y .

The rank 8 = 0 is immediate. Assume the rank 8 − 1 proved. We have:

|f8 |, B8 ≤ (1 + 3 (1 + B8−1‖) ‖∞ + ‖d8−1‖∞)3
3

)B8−1

≤ (1 + 3)(2 + 2‖) ‖∞)3
3

0ℎ
8−1 (33+1)

≤ 01+ℎ
8−1 (ℎ−1)

≤ 0ℎ
8

Since d8−1
f8
−−→ d8 , we deduce that ‖d8 ‖∞ ≤ ‖d8−1‖∞ + |f8 | ‖) ‖∞ ≤ (1 + ‖) ‖∞)0ℎ

8
. The induction is proved.

It follows that |f | ≤ 30ℎ
3
, |F | ≤ 0ℎ

3+1
, and 3 ‖U ‖∞, 3 ‖V ‖∞ ≤ 3 (1 + ‖) ‖∞)0ℎ

3+1
≤ 01+ℎ

3+1
. Since 3 ≥ 1, we deduce

that (1 + 3) ≤ 23
3
. In particular 0 ≤ (4 + 4‖) ‖∞ + 2‖d ‖∞)3

3
. We have proved Theorem 6.1.

7 PETRI NETS WITH CONTROL-STATES

A %-Petri net with control-states (or simply a Petri net with control-states when the finite set of states % is clear from

the context) is a triple ((,) , �) where ( is a non empty finite set of elements called control-states, ) is a %-Petri net,

and � ⊆ ( × ) × ( is a set of elements called edges. The Parikh image of a word c = 41 . . . 4: of edges is the mapping

#c ∈ N� defined by #c (4) = |{ 9 ∈ {1, . . . , :} | 4 9 = 4}|. The displacement of a transition C = (UC , VC ) is the function

Δ(C) ∈ Z% defined by Δ(C)(?) = VC (?) − UC (?) for every ? ∈ % . The displacement of an edge 4 = (B, C, B ′) is defined as

Δ(4)
def
= Δ(C). The displacement of a word c = 41 . . . 4: of edges is Δ(c)

def
=

∑

1≤ 9≤: Δ(4 9 ). We denote by |c |
def
= : the

length of c . A path c from a control-state B to a control-state B ′ is a word c = 41 . . . 4: of edges in � such that there

exists control-states B0, . . . , B: in ( and transitions C1, . . . , C: in) such that B0 = B , B: = B ′, and such that 4 9 = (B 9−1, C 9 , B 9 )

for every 1 ≤ 9 ≤ : . Such a path is called a cycle if B = B ′. A cycle \ of a Petri net with control-states is said to be total

9
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if #\ (4) > 0 for every 4 ∈ �. The cycle is said to be simple if the control-states B1, . . . , B: are distinct. A multicycle Θ is

a sequence \1, . . . , \: of cycles. We denote by |Θ|
def
=

∑:
9=1 |\ 9 |, the length of a multicycle Θ. We introduce the Parikh

image #Θ
def
=

∑:
9=1 #\ 9 and the displacement Δ(Θ)

def
=

∑:
9=1 Δ(\ 9 ) of such a multicycle Θ. A multicycle Θ is said to be

total if #Θ(4) > 0 for every 4 ∈ �.

A Petri net with control-states ((,) , �) is said to be strongly connected if for every pair (B, B ′) of control-states in ( ,

there exists a path from B to B ′. Let us recall the classical Euler lemma in the context of Petri nets with control-states.

Lemma 7.1 (Euler Lemma). For every total multicycle Θ in a strongly connected Petri net with control-states there

exists a total cycle \ such that #\ = #Θ.

We deduce the following lemma.

Lemma 7.2. For any strongly connected Petri net with control-states ((,) , �), there exists a total cycle \ with a length

bounded by |� | |( |.

Proof. Every edge 4 ∈ � occurs in at least one simple cycle \4 . It follows that the multicycle Θ = (\4 )4∈� is total.

From Lemma 7.1 we deduce that there exists a total cycle \ such that #\ = #Θ. Notice that |\ | =
∑

4∈� |\4 | ≤ |� | |( |. �

A mapping 0 ∈ Z% is called a %-action (or simply an action if % is clear from the context). Notice that displacements

of transitions, edges, paths, and multicyles are actions. We associate with an action 0 the value ‖0‖1
def
=

∑

? ∈% |0(?) |.

Given a finite set& , we denote by 0 |& the action defined for every @ ∈ & by 0 |& (@)
def
= 0(@) if @ ∈ % , and zero otherwise.

Lemma 7.3. Let Θ be a multicycle of a %-Petri net with control-states ((,) , �) with ‖) ‖∞ > 0, let & ⊆ % , let 3
def
= |% |,

and let : > ‖Δ(Θ) |& ‖1 (1 + 2|( | ‖) ‖∞)3 (3+1) .

There exists a multicycle Θ′ such that:

• For every ? ∈ % we have:

– Δ(Θ′)(?) ≤ 0 if Δ(Θ)(?) ≤ 0.

– Δ(Θ′)(?) < 0 if Δ(Θ)(?) ≤ −: .

– Δ(Θ′)(?) ≥ 0 if Δ(Θ)(?) ≥ 0.

– Δ(Θ′)(?) > 0 if Δ(Θ)(?) ≥ : .

• For every @ ∈ & we have Δ(Θ′)(@) = 0.

• For every edge 4 ∈ � we have #Θ′(4) > 0 if #Θ(4) ≥ : .

• |Θ′ | ≤ (|� | + 3)(1 + 2|( | ‖) ‖∞)3 (3+1) .

Proof. Since every cycle can be decomposed into a sequence of simple cycles without changing the Parikh image,

we can assume without loss of generality that Θ is a sequence of simple cycles. We introduce the set � of actions Δ(\)

where \ ranges over the simple cycles, and =
def
= |�| its cardinal. Notice that for every 0 ∈ � and for every ? ∈ % , we

have |0(?) | ≤ |( | ‖) ‖∞. It follows that = ≤ (1 + 2|( | ‖) ‖∞)3 .

We denote by B the sign function of 0 formally defined by B (2)
def
= 1 if Δ(Θ)(2) ≥ 0, B (2)

def
= −1 otherwise. We also

introduce the %-configuration 5 defined by 5 (?)
def
= |Δ(Θ)(?) | for every ? ∈ % , and the function 6 : � → N such that

6(0) is the number of simple cycle \ that occurs in Θ such that Δ(\) = 0.

Notice that B (?) 5 (?) =
∑

0∈� 6(0)0(?) for every ? ∈ % . We introduce the following linear system over the free

variables (U, V) ∈ N% × N� :
∧

? ∈%

B (?)U (?) =
∑

0∈�

V (0)0(?) (1)

10
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Notice that ( 5 ,6) is a solution of that system. From [12], there exists a finite set � of solutions (U, V) of that system

such that ( 5 ,6) =
∑

(U,V) ∈� (U, V) and such that for every (U, V) ∈ � , we have ‖U ‖1 + ‖V ‖1 ≤ (2 +
∑

0∈� ‖0‖∞)3 . As
∑

0∈� ‖0‖∞ ≤ (1 + 2|( | ‖) ‖∞)3 |( | ‖) ‖∞ we deduce (by using |( | ‖) ‖∞ ≥ 1):

‖U ‖1 + ‖V ‖1 ≤ (1 + 2|( | ‖) ‖∞)3 (3+1) (2)

We introduce the set �0 of pairs (U, V) ∈ � such that U (@) = 0 for every @ ∈ & . Observe that
∑

@∈&
∑

(U,V) ∈� U (@)

is equal to
∑

@∈& |Δ(Θ)(@) | = ‖Δ(Δ) |& ‖1, and it is also equals to
∑

@∈&
∑

(U,V) ∈�\�0
U (@) ≥ |�\�0 |. In particular we

have:

|�\�0 | ≤ ‖Δ(Δ) |& ‖1

We introduce the set � of edges 4 ∈ � such that Θ(4) ≥ : . Let 4 ∈ � . The sum
∑

(U,V) ∈� V (4) is equals to #Θ(4) and

it is also equals to
∑

(U,V) ∈�\�0
V (4) +

∑

(U,V) ∈�0
V (4). As

∑

(U,V) ∈�\�0
V (4) ≤ |�\�0 | (1+ 2|( | ‖) ‖∞)3 (3+1) we deduce

that
∑

(U,V) ∈�0
V (4) > 0. In particular there exists (U, V) ∈ �0 such that V (4) > 0.

We also introduce the set ' of ? ∈ % such that |Δ(Θ)(?) | ≥ : . Let ? ∈ '. The sum
∑

(U,V) ∈� U (?) is equals to

|Δ(Θ)(?) | and it is also equals to
∑

(U,V) ∈�\�0
U (?)+

∑

(U,V) ∈�0
U (?). As

∑

(U,V) ∈�\�0
U (?) ≤ |�\�0 | (1+2|( | ‖) ‖∞)3 (3+1)

we deduce that
∑

(U,V) ∈�0
U (?) > 0. In particular there exists (U, V) ∈ �0 such that U (?) > 0.

Now, let us introduce for each 4 ∈ � a pair (U4 , V4 ) ∈ �0 such that V4 (4) > 0, and let us introduce for each ? ∈ '

a pair (U? , V?) ∈ �0 such that U? (?) > 0. Let us introduce (U ′, V ′)
def
=
∑

4∈� (U4 , V4 ) +
∑

? ∈' (U? , V?) and observe that

U ′(4) > 0 for every 4 ∈ � , V ′(?) > 0 for every ? ∈ ', and V ′(@) = 0 for every @ ∈ & . Moreover, since (U ′, V ′) is a

solution of (1), it follows that there exists a multicycle Θ′ such that #Θ′
= V ′. In particular Δ(Θ′) = Δ(V ′). Notice that

Δ(Θ′) = U ′, and |Θ′ | = ‖V ′‖1 ≤ (|� | + |' |) (1 + 2|( | ‖) ‖∞)3 (3+1) ≤ (|� | + 3)(1 + 2|( | ‖) ‖∞)3 (3+1) and we have proved

the lemma. �

8 PROOF OF THEOREM 4.3

In this section we provide a proof of Theorem 4.3.

We consider a finite interaction-width protocols (%,
∗
−→, d!, � ,W) that stably computes the (= > 8) predicate. Notice

that � = {8}. We introduce the Petri net )
def
= {C ∈

∗
−→| width(C) ≤ width(

∗
−→)}. Let us recall that the additive preorder

∗
−→ is equal to

) ∗

−−→. Let 3
def
= |& | and � = W−1 ({0}). Notice that if 3 = 1 then = = 1 and the proof of the theorem is done

in that case. So, we can assume that 3 ≥ 2. We introduce the following numbers:

1
def
= (4 + 4‖) ‖∞ + 2‖d! ‖∞) (3−1)

3−1 (1+(2+(3−1)3−1)3 )

ℎ
def
= 3 (1 + ‖) ‖∞)1

:
def
= 3ℎ3

2+3+1

0
def
= ℎ23+3

ℓ
def
= ℎ53

2

A
def
= 2(3 − 1)3−1 (1 + (2 + (3 − 1)3−1)3 )(532 + 23 + 4)

We introduce % ′
def
= %\� . It follows that |% ′ | = 3 − 1. Theorem 6.1 applied on the Petri net ) |% ′ and the configuration

d! |% ′ shows that there exist two words f,F ∈ ) ∗, a set & ⊆ % ′, and two configurations U, V such that:

• d! |% ′
f |%′
−−−−→ U

F |%′
−−−−→ V .

11
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• U |& = V |& .

• U (?) < V (?) for every ? ∈ % ′\&

• U |& is ) |& -bottom.

• The cardinal of the ) |& -component of U |& is bounded by 1.

• |f |, |F |, 3 ‖U ‖∞, 3 ‖V ‖∞ ≤ 1.

Notice that |) | ≤ (1 + 2‖) ‖∞)23 ≤ ℎ23 .

We introduce the Petri net with control-states ((,) , �) where ( is the ) |& -component of U |& , and � is the set of

edges (B, C, B ′) ∈ ( × ) × ( such that B
C |&
−−−→ B ′. Observe that |� | ≤ |( | |) | since for every (B, C, B ′) in � the value of B ′ is

determined by the pair (B, C). It follows that we have:

|� | ≤ ℎ23+1

Lemma 7.2 shows that there exists a total cycle \� of ((,) , �) with a length bounded by |( | |� |. Without loss of

generality we can assume that this total cycle is on the control-state U |& by considering a rotation of that cycle. We

denote by f� the label in ) ∗ of this total cycle. Observe that ‖) ‖∞ |f� | ≤ 0.

Since U
F |%′
−−−−→ V , U |& = V |& , and U (?) < V (?) for every ? ∈ % ′\& , we deduce that there exists a configuration [

such that [ (?) ≥ 0ℓ for every ? ∈ % ′\& , such that U |& = [ |& , and such that:

U
F0ℓ |%′
−−−−−−→ [

Moreover, since f� is the label of a cycle on U |& we deduce that U |&
f� |&
−−−−→ U |& . From [ |& = U |& it follows that

[ |&
f ℓ
�
|&

−−−−→ U |& . As [ (?) ≥ 0ℓ ≥ ‖) ‖∞ |fℓ
�
| for every ? ∈ % ′\& , Lemma 5.2 shows that there exists a % ′-configuration

X such that X |& = U |& and such that:

[
f ℓ
�
|%′

−−−−−→ X

Observe that |fF0ℓfℓ
�
| ‖) ‖∞ ≤ (1 + 10ℓ)‖) ‖∞ + 0ℓ ≤ 210ℓ (‖) ‖∞ + 1) ≤ 0ℓℎ ≤ ℎ23+4ℓ .

Assume by contradiction that = > ℎ23+4ℓ , and let us introduce the configuration d ′ defined by d ′
def
= d! + (= − 1).8

where 8 is the state such that � = {8}. Lemma 5.2 shows that there exist %-configurations U ′, [ ′, X ′ such that U ′ |% ′ = U ,

[ ′ |% ′ = [ , X ′ |% ′ = X and such that:

d ′
f
−→ U ′

FUℓ

−−−→ [ ′
f ℓ
�

−−→ X ′

Since the population protocol is stably computing the (8 ≥ =) predicate and = − 1 < =, there exists a 0-output

stable configuration ` and a word f ′ ∈ ) ∗ such that X ′
f′

−−→ `. Lemma 5.1 shows that ` is (), � )-stabilized. Ob-

serve that FUℓfℓ
�
f ′ is the label of a path of ((,) , �) from U |& to ` |& . It follows that the Parikh image of that path

can be decomposed as the Parikh image of a multicycle Θ and the Parikh image of an elementary path c . Observe

Δ(Θ) + Δ(c) = Δ(FUℓfℓ
�
f ′) = ` − U ′. Notice that #Θ(4) ≥ ℓ for every 4 ∈ � since f� is the label of a total cycle on

U |& . Since c is an elementary path, we deduce that ‖Δ(c)‖1 ≤ 3 |( | ‖) ‖∞ ≤ 31‖) ‖∞ ≤ ℎ − 31.

We introduce the set '
def
= {? ∈ % | ` (?) < ℎ}. Since ℎ ≥ ‖) ‖∞(1 + ‖) ‖∞)3

3
, Lemma 5.4 shows that every

configuration `′ such that ` |' = `′ |' is (), � )-stabilized. Observe that if 8 ∉ ' then ` + 8 is (), � )-stabilized, and by

additivity, we deduce that d! + =.8
) ∗

−−→ ` + 8 . Since ` + 8 is (), � )-stabilized, this configuration cannot reach a 1-output

12
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stable configuration. In particular the protocol is not stably computing the (8 ≥ =) predicate and we get a contradiction.

It follows that 8 ∈ '.

We introduce'′
def
= '\� . Since3 ‖U ‖∞ ≤ 1 and U ′ |% ′ = U |% ′ , we deduce that3 ‖U ′ |'′ ‖∞ ≤ 1. FromΔ(Θ) = `−U ′−Δ(c)

we deduce:

‖Δ(Θ) |'′ ‖1 ≤ (3 − 1)ℎ + 1 + ℎ − 31 ≤ 3ℎ

As 1 + 2|( | ‖) ‖∞ ≤ 1 + ℎ − 21 < ℎ, we deduce that : > ‖Δ(Θ) |'′ ‖1 (1 + 2|( | ‖) ‖∞)3 (3+1) , Lemma 7.3 shows that there

exists a multicycle Θ′ such that:

• For every ? ∈ % we have:

– Δ(Θ′)(?) ≤ 0 if Δ(Θ)(?) ≤ 0.

– Δ(Θ′)(?) < 0 if Δ(Θ)(?) ≤ −: .

– Δ(Θ′)(?) ≥ 0 if Δ(Θ)(?) ≥ 0.

– Δ(Θ′)(?) > 0 if Δ(Θ)(?) ≥ : .

• For every ? ∈ '′ we have Δ(Θ′)(?) = 0.

• For every 4 ∈ � we have #Θ′(4) > 0 if #Θ(4) ≥ : .

• ‖Θ′‖1 ≤ (|� | + 3)(1 + 2|( | ‖) ‖∞)3 (3+1)

Let <
def
= −Δ(Θ′)(8) and let us prove that< > 0. We have Δ(Θ)(8) = ` (8) − U ′(8) − Δ(c)(8). Since 8 ∈ ', we get

` (8) < ℎ. Since d! + (= − 1).8
f
−→ U ′, we deduce that U ′ (8) = d! (8) + (= − 1) − Δ(f)(8) ≥ = −ℎ since |f | ≤ 1. We deduce

that Δ(Θ)(8) < ℎ − = + ℎ + ℎ ≤ 3ℎ − = ≤ −: . Hence Δ(Θ′)(8) < 0. It follows that< > 0.

Let [
def
= <.8 + Δ(Θ′). Notice that [ (8) = 0 and [ (?) = 0 for every ? ∈ '′. In particular [ (?) = 0 for every

? ∈ '. Let us prove that [ is a configuration. For every ? ∈ %\' we have Δ(Θ)(?) = ` (?) − [ ′(?) − Δ(c)(?) ≥

31‖) ‖∞ + 1 − 1 − 31‖) ‖∞ ≥ 0. It follows that Δ(Θ′)(?) ≥ 0. In particular [ (?) ≥ 0. We have proved that [ is a

configuration.

Finally, observe that #Θ(4) ≥ ℓ ≥ : for every 4 ∈ �. In particular #Θ′(4) > 0. Lemma 7.1 shows that #Θ′ is the

Parikh image of a cycle \ on G |& . Let D be the label of that cycle. Since |D | = ‖Θ′‖1, we deduce that:

|D | ‖) ‖∞ ≤ ‖) ‖∞ ( |� | + 3)(1 + 21‖) ‖∞)3 (3+1)

≤ 3 (1 + ‖) ‖∞)23 (1 + 21‖) ‖∞)3
2+3+1

≤ ℓ

Lemma 5.2 shows that:

[ ′ +<.8
D
−→ [ ′ + [

We have proved:

d! + (= − 1 +<).8
fF0ℓDf ℓ

�
f′

−−−−−−−−−−→ ` + [

Since (` +[) |' = ` |' we deduce that ` +[ is (), � )-stabilized. It follows that this configuration cannot reach a 1-output

stable configuration. In particular the protocol is not stably computing the (8 ≥ =) predicate and we get a contradiction.

It follows that = ≤ ℎ23+4ℓ = ℎ53
2+23+4.

Notice that 3 (1 + ‖) ‖∞) ≤ 23 (1 + ‖) ‖∞)3 ≤ 1. Thus ℎ ≤ 12. We deduce that = ≤ (4 + 4‖) ‖∞ + 2‖d! ‖∞)A .

Since 3 ≥ 2, we deduce that 33 = ((3 − 1) + 1)3 ≥ (3 − 1)3 + 3 (3 − 1)3−1 + 1 ≥ (3 − 1)3−1 + 2 + 1. Hence

1 + (2 + (3 − 1)3−1)3 ≤ 1 + (33 − 1)3 ≤ 33
2
. Moreover, 2(3 − 1)3−1 ≤ 33 . Notice that 23 ≤ 32 and 4 ≤ 32. Hence

13
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532 + 23 + 4 ≤ 732 ≤ 35 since 7 ≤ 33. We deduce that A is bounded by 33
2+3+3. As 32 + 3 + 3 ≤ (3 + 2)2, we get

A ≤ 3 (3+2)2 .

We have proved Theorem 4.3 just by observing that ‖d! ‖∞ ≤ |d! | and ‖) ‖∞ ≤ width(
∗
−→).

9 CONCLUSION

This paper introduces protocols that allow agents destructions/creations and leaders. Our definition of stably com-

puting is a straight-forward extension of the one introduced by Dana Angluin, James Aspnes, and David Eisenstat

in [3].

We provided in this paper state complexity lower-bounds of the form Ω(log log(=)ℎ) for any ℎ <
1
2 for protocols

stably computing the counting predicates when the number of leaders and the interaction-width are bounded. This

lower-bound almost matches the upper-bound $ (log log(=)) introduced in [6] by Blondin, Esparza, and Jaax. We left

as open the exact asymptotic state complexity.

Notice that for leaderless protocols, the state complexity is still open since there is an exponential gap between the

upper-bound$ (log(=)) given in [6] and the lower-bound introduced in this paper.
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