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Abstract

This study concerns the determination of some mechanical properties of the periodontal ligament (PDL) by nanoindentation tests. The PDL 
is an essential promoter of the transmission of stresses applied to a tooth, then of bone remodeling. Few data available in the literature contradict 
each other. Some mechanical properties of the periodontal ligament were determined by nanoindentation and compared to the existing literature. 
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Introduction
Dental displacement is primarily a phenomenon linked to the 

periodontal ligament (PDL). This connective tissue vascularized 
and innervated, on an average thickness of 200 microns, surrounds 
the teeth and connects them to the surrounding bone, (Figure 1) [1]. 
The mechanical efforts applied on teeth will induce volume changes 
within the PDL, with the major consequence of altering blood flow. 
Depending on the deformation of the PDL, either by compression 
or tension, bone resorption or apposition, respectively will be 
activated. This combination of phenomena allows the promotion of 
tooth movement by orthodontic appliances. Orthodontists would 
like to know the effect of the forces they apply on the PDL to try 
to apply ideal forces and thus optimize their treatments [2,3]. 
Since it is difficult or impossible to quantify these phenomena in 
vivo, numerical models based on the finite element analysis offer  

 
important data to help practitioners [4]. However, it is necessary 
to identify the mechanical behavior of the involved structures as 
teeth, bone, and PDL. The scientific lock is in the identification of 
the mechanical properties including the Young’s modulus, not of 
the teeth or the bone, but of the PDL. The literature reports a wide 
range from 0.07MPa to 1750MPa [5]. This disparity can be explained 
by the complexity of the PDL, its small size, its nonlinear behavior 
and the heterogeneity of the methods used [6]. Conventional tests 
such as uniaxial traction or compression are unable to capture 
these microscopic heterogeneities. Nanoindentation responds to 
these limitations and offers new perspectives for the mechanical 
characterization of soft tissues [7-10]. However, protocols lack 
consensus. The objective of our study is to quantify the Young’s 
modulus of PDL from porcine samples by nanoindentation.
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Figure 1: Histological cross section through the right maxillary second molar of a porcine sample.

Material and Methods
Porcine second molars were used and frozen at -20 °C to 

facilitate their cutting without tissue damage and then sliced by 
ultramicrotomy (EM UC7, Leica, Germany). Samples were polished 
using sanding paper of decreasing granulometry and cleaned 
ultrasonically with distilled water between each polishing step. 
the conservation medium was a 10% neutral buffered formalin 
solution, then for the experiment they were immersed in a 5% 
saline solution. Nanoindentation were performed on Anton-paar’s 
NHT² indenter (Anton Paar TriTec NHT2, Anton Paar, Peseux, 
Switzerland) with a berkovich diamond indenter. The indentations 
were carried out with maximum load of 1mN and loading/
unloading rate 3mN/min [11-12]. 

Results and Discussion
Load and displacement are monitored during the loading 

and unloading (Figure 2), and properties such as hardness 
and reduced modulus are calculated. The stiffness at peak load 

maxh

dPS
dh

 = 
   is calculated as the slope of the unloading curve. The 
projected area (Ap) is obtained via a calibration function (here 

( )2 1 224.5 818.34 9957c c cp
A h h h= + +  with hc the contact penetration 

depth calculated as: max
max

3
4c

P
h h

S
= −  These two parameters are 

used to compute the reduced modulus, according to formulas cited 
in Figure 2.

Figure 2: Load-Penetration depth curve of PDL (Welastic and Wplastic are the elastic and plastic part of indentation work respectively
S: Stiffness; hmax and hc: Maxi and Contact Depth Penetration Respectively; H: Hardness in MPa; E*: Reduced Modulus; Er: Plane Strain Modulus; 
Es: Young Modulus; υ: Poisson’s ratio; SD: Standard Deviation.
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The data from further human experimentations would allow 
the implementation of numerical models, to reproduce more 
accurately the clinical situations, in particular the bone remodeling 
contributing to dental movements.

Conclusion
The PDL is the key element in the transmission of mechanical 

forces caused by orthodontic appliances and inducing bone 
remodeling. Its mechanical characterization is subject to important 
limitations but nanoindentation offers new opportunities for 
experimental studies. From our results, Young’s modulus of porcine 
PDL has been quantified at 1.208MPa [±0.058] on average.
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