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Abstract

We provide an Ackermannian complexity lower bound for the reachability problem for
checking programs, a model equivalent to Petri nets. Moreover in fixed dimension 2d + 4,
we show that the problem is Fd-hard. As a direct corollary, the reachability problem in
dimension 10 is not elementary.

1 Introduction

Checking programs [14], or equivalently vector addition systems with states [7], or vector addi-
tion systems [8], or Petri nets are one of the most popular formal methods for the representation
and the analysis of parallel processes [5].

Those equivalent models are acting on counters ranging over the natural numbers thanks
to increment, decrement, and test commands (only at the end of an execution). The central
algorithmic problem for checking programs is reachability: given a checking program, decide
whether there exists an execution from an initial configuration to a final one. Many impor-
tant computational problems in logic and complexity reduce or are even equivalent to this
problem [21, 6]. After an incomplete proof by Sacerdote and Tenney [20], decidability of the
problem was established by Mayr [15, 16], whose proof was then simplified by Kosaraju [9].
Building on the further refinements made by Lambert in the 1990s [10], in 2015, a first com-
plexity upper bound of the reachability problem was provided [12] more than thirty years after
the presentation of the algorithm introduced by Mayr [9, 10]. The upper bound given in that
paper is “cubic Ackermannian”, i.e. in Fω3 (see [22]). This complexity bound is obtained by
analyzing the Mayr algorithm. With a refined algorithm and a new ranking function for proving
termination, an Ackermannian complexity upper bound was obtained [13] This means that the
reachability problem can be solved in time bounded by A(p(n)) where p is a primitive recursive
function and where A is the Ackermann function. This paper also showed that the reachability
problem in fixed dimension d (the dimension is the number of used counters) is primitive recur-
sive by bounding the length of executions by O(Fd+4(n)) where Fd+4 is a primitive recursive
function of the Grzegorczyk hierarchy (see Section 2 for the definition of those functions), and
n is the size of the input.

Concerning the complexity lower bound, in 1976, the reachability problem was proved to be
ExpSpace-hard [2]. This bound used to be the best one for more than forty years until 2019
when it was improved to a Tower complexity lower bound [3], i.e. a non elementary complexity.

Contributions. In this paper we provide an Ackermannian complexity lower bound for the
reachability problem for checking programs closing the gap with the Ackermannian complexity
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upper bound solving a 45 years old open problem. Moreover, in fixed dimension 2d + 4 with
d ≥ 3, we prove that the reachability problem is hard for the complexity class Fd introduced
in [22] associated with the function Fd. As a direct corollary, we derive that the reachability
problem is not elementary in dimension 10.

This paper provides the last piece leading to the exact complexity of the reachability problem
for checking programs. As previously mentioned, it follows a long series of results. This piece
of work is not the most difficult one but it is an important one since it closes a long standing
open problem. Technically, the most difficult piece is the notion of K-amplifiers introduced in
the Tower complexity lower bound paper [3] that provides a way to postpone at the end of an
execution the tests commands of a Minsky machine (a machine like a VASS but with commands
that can test to zero some counters) with counters bounded by K.

In this paper, we provide several gadgets for proving an Fd complexity lower bound for
the reachability problem in dimension 2d + 4. Recently and independently, other gadgets for
implementing such a bound have been introduced in order to obtain the same complexity upper
bound by Wojciech Czerwiński, and  Lukasz Orlikowski [4] in dimension 6d, by myself [14] in
dimension 4d + 5, and by S lawomir Lasota [11] in dimension 3d + 2. We do not know if the
lower bound provided in this paper, i.e. Fd in dimension 2d+ 4 is optimal since the complexity
upper bound is Fd+4 in dimension d. It follows that the parameterized complexity (i.e. in fixed
dimension) of the reachability problem is still open.

We think that several different solutions to the complexity lower bound for the reachability
problem is useful not only for the confidence in the claimed result but also for future work.
In fact, the reachability problem for many extensions is open for almost all natural extensions
except for vector addition systems with hierarchical zero tests [1, 19]. Moreover, the best known
complexity lower bounds for those models only come from checking programs. Finding gadgets
that take benefits from the extra power given by the considered extensions is an open problem.

Outline. In Section 2, we recall some properties satisfied by the fast growing functions
Fd and introduce a way to compute Fd be iterating a reduction rule evalFd. In Section 3 we
introduce the model of general programs, and the subclasses of test-free models that correspond
to programs that cannot test counters to zero, and the checking programs that can only test
counters at the end. Whereas the reachability problem for test-free program is equivalent to the
so-called coverability problem for Petri nets (see [2, 18] for complexity results), the reachability
problem for checking program is equivalent to the so-called reachability problem for Petri nets.
In Section 4 we provide tools to postpone at the end of an execution test commands of a general
program. Those tools are used in Section 5 in order to simulate the bounded semantics of general
programs thanks to the so-called preamplifiers. In Section 6 we provide tools for iterating a test-
free program a fixed number of times that depends on the valuation of some counters. Those
tools are used in Section 7 to implements evalFd thanks to a test-free program. By iterating this
test-free program, we provide a way in Section 8 to implement an Ackermannian preamplifier.
Finally, in Section 9 we collect intermediate results to provide complexity lower bounds for the
reachability problem for checking programs.

2 Fast Growing Functions

We introduce the sequence (Fd)d∈N of functions Fd : N → N defined by F0(n) = n + 1, and
defined by induction on d ≥ 1 by Fd(n) = Fn+1

d−1 (n). Rather than take the original definition of
Ackermann function, we let A(n) = Fω(n) defined by Fω(n) = Fn+1(n), which behaves like the
classical function for our complexity-theoretical purpose. We introduce the function Fv : N → N

with v ∈ N
d, defined as follows for every n ∈ N:

Fv(n) = F
v[d]
d ◦ · · · ◦ F

v[1]
1 (n)
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Remark 1. We have F1(n) = 2n+ 1 and F2(n) = 2n+1(n+ 1)− 1 for every n ∈ N. The function
F3 behaves like a tower of n exponential and it is not elementary. Each function Fd is primitive
recursive and Fω is not primitive recursive.

Let us denote by 0d the zero vector of Nd, and by 1d,i the ith unit vector of Nd defined for
every 1 ≤ j ≤ d by 1d,i[j] = 1 if j = i and 1d,i[j] = 0 otherwise. The lexicographic (strict)
order <lex over N

d is defined by w <lex v if w 6= v and the maximal p ∈ {1, . . . , d} such that
w[p] 6= v[p] satisfies w[p] < v[p].

Let evalFd : Nd×N → N
d×N be the function partially defined over the pairs (v, n) ∈ N

d×N

such that v 6= 0d as follows where p is the minimal index in {1, . . . , d} such that v[p] > 0:

evalFd(v, n) =

{

(v − 1d,p, 2n + 1) if p = 1

(v − 1d,p + (n + 1)1d,p−1, n) if p > 1

Since Fp(n) = Fn+1
p−1 (n), one can easily prove (see [23] for more details) that if v 6= 0d, then the

pair (w,m) defined as evalFd(v, n) satisfies Fw(m) = Fv(n). It follows that the function that
maps (v, n) onto Fv(n) is an invariant of evalFd.

Moreover, as w <lex v, it follows that we can iterate the function evalFd on a pair (v, n)
only a finite number of times (we use the well-foundedness of the lexicographic order). Let us
introduce the function evalFmax

d : Nd × N → N
d × N defined by evalFmax

d (v, n) = evalFk
d(v, n)

where k is the maximal number of times (it can be zero) we can apply the function evalFd on
(v, n). Notice that evalFmax

d (v, n) is a pair of the form (w,m) for some pair (w,m) ∈ N
d × N.

Moreover, by maximality of k, it follows that w = 0d. Since the function (v, n) 7→ Fv(n) is
an invariant of evalFd, we deduce that F0d(m) = Fv(n). It follows that the following equality
holds (see [23] for more details):

evalFmax
d (v, n) = (0d, Fv(n))

As a direct corollary, we deduce the following lemma.

Lemma 2. We have evalFmax
d ((n + 1)1d,d, n) = (0d, Fd+1(n)) for every n ≥ 0 and d ≥ 1.

The following lemma will be useful in the sequel. In that lemma, |v| is v[1] + · · · + v[d] for
any vector v ∈ N

d.

Lemma 3. We have Fv(n) ≥ 2|v|n + |v| for every v ∈ N
d and for every n ∈ N.

Proof. Let v ∈ N
d and n ∈ N. Assume that for every w ∈ N

d such that w <lex v we have
Fw(m) ≥ 2|w|m + |w| for every m ∈ N. And let us prove that in that case Fv(n) ≥ 2n|v| + |v|
for every n ∈ N. In fact, since the lexicographic order is well-founded, by induction the proof
of the lemma reduces to that statement.

Notice that if v = 0d then Fv(n) = n and we are done. So, we can assume that v 6= 0d. In that
case, let us introduce (w,m) = evalFd(v, n). Since w <lex v, it follows that Fw(m) ≥ 2|w|m+|w|.
Since Fw(m) = Fv(n), we get Fv(n) ≥ 2|w|m + |w|. Let p ∈ {1, . . . , d} be the minimal index
such that v[p] > 0. Observe that if p = 1 then |w| = |v| − 1 and m = 2n + 1. In particular
2|w|m+ |w| ≥ 2|v|n+ |v|. If p > 1 then |w| = |v|+n and m = n. Hence 2|w|m+ |w| ≥ 2|v|n+ |v|.
We have proved that Fv(n) ≥ 2|v|n + |v| in any case.

3 General Programs

We introduce in the section the formal model of programs acting on counters ranging over the
natural numbers.
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Formally, an implicit infinite countable set of elements called counters is given. A config-
uration is a function ρ that maps every counter on a natural number in such a way that the
set of counters c such that ρ(c) 6= 0 is finite. We denote by 0 the configuration ρ such that
ρ(c) = 0 for every counter c. The increment, decrement and test commands of a counter c are
respectively denoted as inc(c), dec(c), and test(c). We associate with such a command cmd,

the binary relation
cmd
−−−→ over the configurations defined by α

cmd
−−−→ β if α(x) = β(x) for every

counter x 6= c, and satisfying additionally:










β(c) = α(c) + 1 if cmd is inc(c)

β(c) = α(c) − 1 if cmd is dec(c)

β(c) = 0 = α(c) if cmd is test(c)

A (general) program M is defined as an increment/decrement/test command, or induc-
tively as a loop program loop M0, a series composition M1;M2, or a non-deterministic choice
M1 or M2 where M0,M1,M2 are programs. The size of a program M is the number size(M)
defined inductively as 1 if M is a command, 1 + size(M0) if M = loop M0, and 1 + size(M1) +
size(M2) if M = M1;M2 or M = M1 or M2. The dimension of M is the cardinal of the set
of counters used by M , and formally defined as expected. We associate with every program M

the binary relation
M
−→ over the configurations defined as follows:

M
−→ =



























cmd
−−−→ if M = cmd is a command

(
M0−−→)∗ if M = loop M0

M1−−→;
M2−−→ if M = M1;M2

M1−−→ ∪
M2−−→ if M = M1 or M2

Where (→0)∗ is the reflexive and transitive closure of →0, and →1;→2 is defined by α →1;→2 β

if there exists a configuration ρ such that α →1 ρ and ρ →2 β. Series compositions and
non-deterministic choices are clearly associative with respect to the relation →. In particular

given a sequence M1, . . . ,Mn of Minsky programs, the relations
M1;...;Mn
−−−−−−→ and

M1 or ... or Mn−−−−−−−−−−→
are well defined. We denote by M (n) the series composition of M by itself n times. We
also denote by inc(c1, . . . , cn) the program inc(c1); . . . ; inc(cn), by dec(c1, . . . , cn) the program
dec(c1); . . . ;dec(cn), and similarly test(c1, . . . , cn) the program test(c1); . . . ; test(cn).

We say that a program is test-free if it does not use any test command. A checking program
is a program of the form M ; test(c1, . . . , cn) where M is a test-free program and c1, . . . , cn are
some counters.

The reachability problem for general programs asks, given a general program M , whether

there exists a configuration β such that 0
M
−→ β. This problem is undecidable [17] even in

dimension 2 but provides a way to define complexity classes beyond Elementary as recalled in
Section 9. The reachability problem for test-free programs is equivalent (i.e. inter-reducible) to
the so-called coverability problem for Petri nets (see [2, 18] for the complexity of the problem),
and the reachability problem for checking programs is equivalent (i.e. inter-reducible) to the
so-called reachability problem for Petri nets.

In this paper, we use standard notions from model theory by considering counters as vari-
ables, and configurations as valuations of the variables. It means that a configuration is used to
replace in an expression e over the counters, each occurrence of a counter c by ρ(c). We denote
by ρ(e) the expression we obtain this way. When φ is a constraint over the counters, we also
denote by ρ(φ) the constraint we obtain by considering φ as an expression over the counters.
We say that ρ satisfies φ if the constraint ρ(φ) is true. For instance we say that ρ satisfies
y = 2cx where y, c and x are counters if ρ(y) = 2ρ(c)ρ(x).
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4 Simulating Test Commands

We provide in this section the central idea for simulating test commands. Assume that B denotes
a finite set of counters. The simulation of a test command test(c) for some counter c ∈ B is
using two distinct auxiliary counters x and y not in B. During the simulation, we consider
configurations ρ satisfying y ≥ Kx where K = ρ(

∑

b∈B b). Intuitively, when the configuration
satisfies y = Kx it means that all the previous simulation of test commands were correct and
when y > Kx is means that at least one simulation was incorrect. Those simulations are
obtained by introducing the following test-free program. This program is using any implicit
enumeration b0, . . . , bd of the counters in B satisfying b0 = c. Such an enumeration naturally
depends on the counter c.

simtesty,B,x(c) =

loop

dec(b1);inc(b0);dec(y)
...
loop

dec(bd);inc(bd−1);dec(y)

loop

dec(bd−1);inc(bd);dec(y)
...
loop

dec(b0);inc(b1);dec(y)

dec(x)(2)

Intuitively this program is transferring the content of the counter bi into bi−1 thanks to the
ith loop with i ∈ {1, . . . , d}. Then the program is transferring back the contents of the counters
thanks to the last d loops. During each step of the transfer, the counter y is decremented.
Since K =

∑

b∈B b is an invariant, the counter y can be decremented by at most K in total
with the first d loops, and by K as well in total with the last d loops. It follows that y can be
decremented by at most 2K. Moreover, the only way to decrement y by exactly 2K is when
initially c = 0 and when all loops are executed the maximal number of times, meaning that the
transfers are total, and in particular that the initial and the final configurations coincide on the
counters in B. Since x is decremented by 2, it follows that if y ≥ Kx before the execution of
the program, then the same constraint holds at the end. Moreover, if additionally y = Kx at
the end, then necessarily the same constraint holds at the beginning and it means that y has
been decremented by 2K, and in particular initially c = 0 and all the transfers were performed
maximally. The following two lemmas formally proved those intuitions.

Lemma 4. Let α, β be two configurations such that α
test(c);dec(y)(2K)dec(x)(2)

−−−−−−−−−−−−−−−−→ β with c ∈ B and
such that K = α(

∑

b∈B b). Then we have:

α
simtesty,B,y(c)
−−−−−−−−−→ β

Proof. We are going to prove that there exists an execution in such a way the loops are executed
m1, . . . ,md, nd, . . . , n1 times (in that order), where mi = ni = α(bi) for every 1 ≤ i ≤ d. Notice
that the decrement commands dec(y) cannot prevent such an execution since α(y) ≥ 2K =
∑d

i=1(ni +mi). Moreover, the decrement commands dec(x)(2) are also executable at the end of
the program since α(x) ≥ 2. So, for proving the existence of an execution of the program with
the loops executed the right number of times, we can forget the decrement commands on the
counters y and x.

For the first d loops, such an execution is possible by observing that the ith loop with
i ∈ {1, . . . , d} only decrements the counter bi (recall that we forget the counter y for the

5



proof) that is untouched by the previous loops. After executing those d first loops, we get a
configuration ρ satisfying for every counter c the following equalities:

ρ(c) =























α(bi+1) if c = bi with 0 ≤ i < d

0 if c = bd

α(y) −K if c = y

α(c) otherwise

Starting form ρ, the last d loops are symmetrical to the first d loops. In particular, the same
argument as previously mentioned shows that there exists an execution from ρ that executes
the last d loops the right number of times. Now, just observe that with such an execution, we
have proved the lemma.

Lemma 5. Let α, β be two configurations such that α
simtesty,B,x(c)
−−−−−−−−−→ β and let K = α(

∑

b∈B b).
Then β(

∑

b∈B b) = K and if α satisfies y ≥ Kx then β satisfies the same constraint. Moreover
if additionally β satisfies y = Kx then α satisfies the same constraint and:

α
test(c);dec(y)(2K)dec(x)(2)

−−−−−−−−−−−−−−−−→ β

Proof. Let us denote by m1, . . . ,md, nd, . . . , n1 the number of times loops of the program are
executed (in that order). Observe that the ith loop with i ∈ {1, . . . , d} decrements the counter
bi, and that counter is untouched by the previous loops. It follows that there exists a sequence
r1, . . . , rd of natural numbers such that mi = α(bi) − ri for every i ∈ {1, . . . , d}. We derive the
following equality by observing that

∑d
i=0 α(bi) = K:

d
∑

i=1

mi = K − α(b0) −
d

∑

i=1

ri

Let us denote by ρ the configuration we obtain just after executing those d first loops. Since
∑d

i=0 bi is an invariant of every line of the program, we get β(
∑d

i=0 bi) = K and ρ(
∑d

i=0 bi) = K.
Now, observe that the argument used in the previous paragraph holds for the last d loops. It
follows that there exists a sequence s1, . . . , sd of natural numbers such that ni = ρ(bi−1) − si
for every 1 ≤ i ≤ d, and we derive the following equality:

d
∑

i=1

ni = K − ρ(bd) −
d

∑

i=1

si

From β(y) = α(y) −
∑d

i=1(mi +ni) and β(x) = α(x) − 2, we deduce the following equalities:

β(y −Kx) = α(y −Kx) + 2K −
n
∑

i=1

(mi + ni)

= α(y −Kx) + α(b0) + ρ(bd) +

d
∑

i=1

(ri + si)

Now, assume that α satisfies y ≥ Kx. From the previous equality, we deduce that β(y−Kx)
is a sum of natural numbers. In particular β satisfies y ≥ Kx. If additionally β satisfies y = Kx

the previous equality shows that α(y − Kx) = 0, α(b0) = 0, ρ(bd) = 0, and ri = si = 0 for
every 1 ≤ i ≤ d. From ri = 0 for every 1 ≤ i ≤ d, it follows that mi = α(ci) for every
1 ≤ i ≤ d. We deduce that ρ(bi) = α(bi+1) for every 0 ≤ i < d. Now, from si = 0 for every
1 ≤ i ≤ d, we deduce that ni = α(bi+1) for every 1 ≤ i ≤ d. In particular β(bi) = α(bi) for
every 0 ≤ i ≤ d. Finally, just observe that from

∑d
i=1 mi = K and

∑d
i=1 ni = K, we deduce

that β(y) = α(y) − 2K. We have proved the lemma.
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5 Bounded Semantics and Preamplifiers

We introduce in this section the K-bounded semantics of general programs, where K is a
natural number. Intuitively this semantics is obtained by bounding the sum of the counters by
K. We also introduce the notion of K-preamplifiers that provides a way to simulate the K-
bounded semantics of general programs thanks to checking programs equipped with the classical
(unbounded) semantics.

More formally, we say that a configuration ρ is K-bounded for some K ∈ N if
∑

c ρ(c) ≤ K.

Denoting by Conf≤K the set of K-bounded configurations, we define the binary relation
M
−→≤K

over Conf≤K where M is a general program inductively as follows:

M
−→≤K =



























(
cmd
−−−→) ∩ (Conf≤K × Conf≤K) if M = cmd is a command

(
M0−−→≤K)∗ ∩ (Conf≤K × Conf≤K) if M = loop M0

M1−−→≤K ;
M2−−→≤K if M = M1;M2

M1−−→≤K ∪
M2−−→≤K if M = M1 or M2

Intuitively α
M
−→≤K β for two configurations α, β if, and only if, there exists an execution

of M such that every visited configuration including α and β, during the computation is K-

bounded. The relation
M
−→≤K is called the K-bounded semantics of M .

The K-bounded semantics can be simulated by checking programs thanks to the so-called
K-preamplifiers. A K-preamplifier [3] for a triple of counters (x, y, b) is a checking program A

such that:

• For every configuration β such that 0
A
−→ β we have y ≥ bx and β(c) = 0 for every counter

c 6∈ {x, y, b}. Moreover, if β satisfies y = bx then β(b) = K.

• For every ℓ ≥ 1 there exists a configuration β satisfying 0
A
−→ β, y = bx, and x = ℓ.

Remark 6. A K-amplifier [3] for a triple of counters (x, y, b) is a checking program A such

that for any configuration β, we have 0
A
−→ β if, and only if, there exists ℓ > 0 such that

β(x, y, b) = (ℓ,Kℓ,K) and such that β(c) = 0 for any counter c 6∈ {x, y, b}. From a K-
preamplifier, one can compute a K-amplifier by introducing some additional counters. We do
not introduce K-amplifiers in this paper in order to reduce the number of counters used by the
simulation.

Given a K-preamplifier A and a general program M of dimension d, we can compute in time
size(A) + O(d size(M)) a checking program A ⊲M such that for any configuration β, we have

0
M
−→≤K β, if, and only if, 0

A⊲M
−−−→ β. It follows that K-preamplifiers provide a way to postpone

at the end of an execution test commands of general programs equipped with the K-bounded
semantics. The size of A⊲M is size(A) + O(d size(M)). Concerning the dimension of A⊲M ,
let us first classify the counters used by A. We say that a counter c used by the preamplifier A

is unsafe (for the simulation), if it belongs to {x, y, b} or if it occurs in a test command at the
end of A, and let us say it is safe if it is not unsafe. Then denoting by u and s respectively the
number of unsafe and safe counters of A, the dimension of A⊲M is equal to u + max(s, d).

The checking program A⊲M is obtained as follows. By renaming the counters of A, we can
assume without loss of generality that the unsafe counters of A are disjoint from the counters
used by M . Moreover, with such a renaming we can additionally assume that the cardinal
of the safe counters of A union the counters used by M is max(s, d). We assume that A is
a checking program of the form A′; test(c1, . . . , cn) where A′ is a test-free program. We can
assume that b is not in {c1, . . . , cn} since otherwise K = 0 and in this case A can by replaced
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by the 0-preamplifier loop inc(x). We denote by B the counters used by M union {b}. By
adding a test command test(c) for some counter c used by M , we can assume that M starts
with a test command (notice that if M is not using any counter, then M is the empty program
and the construction A⊲M can be defined as M).

We introduce the test-free program M ′ obtained from M by replacing each increment com-
mand inc(c) by inc(c);dec(b), each decrement command dec(c) by dec(c); inc(b), and each
test command test(c) by simtestx,B,y(c). The checking program A ⊲ M is then defined as
follows:

A⊲M =

A’
M’
loop

dec(b)

test(x, y, b, c1, . . . , cn)

For every configuration β, we have 0
M
−→≤K β if, and only if, 0

A⊲M
−−−→ β. A formal proof for

a variant construction of A⊲M (that cannot reuse safe counters of A, that introduces several
additional test commands, and that uses additional counters) is given in [3]. In the next two
paragraphs, we just recall briefly the key ingredients used for the formal proof.

For one direction, assume that 0
M
−→≤K β for some configuration β and let us consider an

execution of M from 0 to β such that every visited configuration including β is K-bounded.
Denoting by m the number of times this execution is using a test command, we introduce ℓ = 2m.
Since M starts with a test command, it follows that ℓ > 0. We consider an execution of A′

that leads to a configuration ρ such that ρ(x, y, b) = (ℓ,Kℓ,K) and ρ(c) = 0 for every counter
c 6∈ {x, y, b}. Observe that ρ satisfies K = ρ(

∑

c∈B c). From the execution of M , we derive
an execution of M ′ from ρ to a configuration δ satisfying δ(x) = 0, δ(y) = 0, and δ(c) = β(c)
for every counter c used by M . In fact, every time a test command test(c) is executed, it is
simulated by simtestx,B,y(c) using Lemma 4 that decrements x by 2, and y by 2K. Finally,
from δ we iterate the last loop exactly δ(b) times in such a way we get the configuration β.
This configuration can then execute the last test commands of A⊲M .

For the other direction, assume that 0
A⊲M
−−−→ β for some configuration β and let us consider

an execution of A⊲M witnessing that property. In A⊲M the test-free program A′ is executed
first and the test commands test(c1, . . . , cn) of A are postponed at the end of A⊲M . Since those
tested counters are no longer used in between, the execution of A′ can only produce from the
zero configuration a configuration ρ satisfying y ≥ bx and ρ(c) = 0 for every counter c 6∈ {x, y, b}.
We denote by δ the configuration obtained from ρ after executing M ′. Let K ′ = ρ(b). Assume
by contradiction that ρ satisfies the strict constraint y > K ′x. Lemma 5 shows that δ satisfies
the same strict inequality. In particular β(y) = δ(y) > 0 and the last test command test(y)
fails on β. We get a contradiction. It follows that δ satisfies the equality y = bx and since
A is a K-preamplifier, we get K ′ = K in that case. Lemma 5 shows that δ satisfies y ≥ Kx.
Moreover, since β(y) = β(x) = 0 we deduce that δ satisfies the equality y = Kx. From Lemma 5
we deduce that every execution of simtestx,B,y(c) in M ′ has the same effect as the execution of

test(c);dec(y)(2K);dec(x)(2). From the execution of M ′ we deduce that α
M
−→≤K β.

It follows that the K-bounded semantics of general programs can be simulated by checking
programs of small size as soon as there exists small size K-preamplifiers.

6 Loop at Most

In this section we present a way to iterate test-free programs a numbers of times that depends
on the valuation of some counters. Given two distinct counters c and c′, and a test-free program
M , we introduce the following test-free program:
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Loop at most c + c′ times M =

loop

dec(c);inc(c′)

loop

dec(c′);inc(c);M

Let us denote by C the counter expression c + c′. In the following lemmas, we assume that
M is any test-free program that does not use the counters c and c′.

Lemma 7. For every configuration α, β, we have:

α
Loop at most c+ c′ times M
−−−−−−−−−−−−−−−−−−→ β

if, and only if, there exists n, ℓ ∈ N such that n ≤ α(c), ℓ ≤ n + α(c′), and such that:

α
(dec(c);inc(c′))(n);(dec(c′);inc(c);M)(ℓ)
−−−−−−−−−−−−−−−−−−−−−−−−→ β

In particular ℓ ≤ α(C). If this inequality is an equality then β(c) = α(C) and β(c′) = 0.

Proof. We denote by N and Nn,ℓ the following test-free programs where n, ℓ ∈ N:

N =

1: loop

2: dec(c);inc(c′)

3: loop

4: dec(c′);inc(c);M

Nn,ℓ =
(dec(c); inc(c′))(n)

(dec(c′); inc(c);M)(ℓ)

Let α, β be two configurations such that α
N
−→ β. We fix some execution witnessing that

property. Let n be the number of times line 2 is executed and ℓ be the number of times
line 4 is executed. Since each execution of line 2 decrements c, we deduce that after executing
the first loop we get a configuration ρ satisfying ρ(c) = α(c) − n and ρ(c′) = α(c′) + n. In
particular n ≤ α(c). Symmetrically, since each execution of line 4 decrements c′, we deduce
that β(c′) = ρ(c′) − ℓ = α(c′) + n − ℓ and β(c) = ρ(c) + ℓ = α(c) − n + ℓ. In particular

ℓ ≤ n + α(c′). Observe that α
Nn,ℓ
−−−→ β. Moreover, we have ℓ ≤ α(c). Observe that if ℓ = α(C),

then from β(c′) = α(c′) + n − ℓ we get β(c′) = n − α(c). In particular n ≥ α(c) and with
n ≤ α(c) we get n = α(c). We deduce that β(c) = α(C) and β(c′) = 0.

Conversely, let α, β be two configurations such that α
Nn,ℓ
−−−→ β for two natural numbers

n, ℓ ∈ N such that n ≤ α(c) and ℓ ≤ n+α(c′). Just observe that from the execution witnessing

α
Nn,ℓ
−−−→ β, we deduce an execution witnessing α

N
−→ β by executing the first loop n times and

the second loop ℓ times.

Lemma 8. For every configuration α, β, we have:

α
Loop at most c+ c′ times (inc(c);M)
−−−−−−−−−−−−−−−−−−−−−−−−→ β

if, and only if, there exists n, ℓ ∈ N such that n ≤ α(c), ℓ ≤ n + α(c′), and such that:

α
(dec(c);inc(c′))(n);(dec(c′);inc(c)(2);M)(ℓ)
−−−−−−−−−−−−−−−−−−−−−−−−−−→ β

In particular ℓ ≤ α(C) and β(C) ≤ 2α(C). If one of those two inequalities is an equality then
ℓ = α(C), β(c) = 2α(C), and β(c′) = 0.
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Proof. The proof is very similar to the proof of Lemma 7.

Lemma 9. For every configuration α, β, we have:

α
Loop at most c + c′ times (dec(c′);M)
−−−−−−−−−−−−−−−−−−−−−−−−→ β

if, and only if, there exists n, ℓ ∈ N such that n ≤ α(c), ℓ ≤ n+α(c′)
2 , and such that:

α
(dec(c);inc(c′))(n);(dec(c′);inc(c);dec(c′);M)(ℓ)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ β

In particular ℓ ≤ α(C)
2 . If this inequality is an equality then β(c) = α(C)

2 , and β(c′) = 0.

Proof. We denote by N and Nn,ℓ the following test-free programs where n, ℓ ∈ N:

N =

1: loop

2: dec(c);inc(c′)

3: loop

4: dec(c′);inc(c);dec(c′);M

Nn,ℓ =
(dec(c); inc(c′))(n)

(dec(c′); inc(c);dec(c′);M)(ℓ)

Let α, β be two configurations such that α
N
−→ β. We fix some execution witnessing that

property. Let n be the number of times line 2 is executed and ℓ be the number of times line 4 is
executed. Since each execution of line 2 decrements c, we deduce that after executing the first
loop we get a configuration ρ satisfying ρ(c) = α(c) − n and ρ(c′) = α(c′) + n. In particular
n ≤ α(c). Symmetrically, since each execution of line 4 decrements c′ two times, we deduce that

β(c′) = ρ(c′)− 2ℓ = α(c′) +n− 2ℓ and β(c) = ρ(c) + ℓ = α(c)−n+ ℓ. In particular ℓ ≤ n+α(c′)
2 .

Observe that α
Nn,ℓ
−−−→ β. Moreover, we have ℓ ≤ α(C)

2 . Observe that if ℓ = α(C)
2 , then from

β(c′) = α(c′) + n − 2ℓ we get β(c′) = n − α(c). In particular n ≥ α(c) and with n ≤ α(c) we

get n = α(c). We deduce that β(c) = α(C)
2 and β(c′) = 0.

Conversely, let α, β be two configurations such that α
Nn,ℓ
−−−→ β for two natural numbers

n, ℓ ∈ N such that n ≤ α(c) and ℓ ≤ n+α(c′)
2 . Just observe that from the execution witnessing

α
Nn,ℓ
−−−→ β, we deduce an execution witnessing α

N
−→ β by executing the first loop n times and

the second loop ℓ times.

Lemma 10. For every configuration α, β, we have:

α
Loop at most c+ c′ times (dec(c′); inc(c);M)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ β

if, and only if, there exists n, ℓ ∈ N such that n ≤ α(c), ℓ ≤ n+α(c′)
2 , and such that:

α
(dec(c);inc(c′))(n);((dec(c′);inc(c))(2);M)(ℓ)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ β

In particular ℓ ≤ α(C)
2 . If this inequality is an equality then β(c) = α(C), and β(c′) = 0.

Proof. The proof is very similar to the proof of Lemma 9.

10



7 Implementing evalFd

In this section, we introduce a test-free program evalFd that implements the function evalFd.
This program is using counters x, x′, x1, . . . , xd+1, y, b, b

′, c0, c
′
0, c1, . . . , cd. We say that a config-

uration ρ is good if it satisfies x′ = y = b′ = c′0 = 0, x > 0, b = 2c0 , x1 = 2c0x and xi = 2ci−1xi−1

for every i ∈ {2, . . . , d + 1}. We say that a good configuration ρ encodes a pair (v, n) ∈ N
d ×N

if ρ(c1, . . . , cd) = v and ρ(c0) = n.

Remark 11. The counters x and x′ should have been denoted as x0 and x′0 to simplify a little
bit the definition of good configurations. However, since those two counters appear many times
in the sequel, we prefer the notation without indexes. Moreover, this notation match the one
used for preamplifiers. In fact, in the next section we introduce an Ackermannian preamplifier
for the triple of counters (x, y, b) without any variable renaming.

We introduce the counter expressions C0, X and B defined as c0 + c′0, x + x′, and b + b′

respectively.

Intuitively, when the computation of evalFd is correct from a good configuration that en-
codes a pair (v, n) with v 6= 0d then the computation terminates on a good configuration that
encodes evalFd(v, n). When the computation is incorrect, we obtain a so-called bad configura-
tion. Moreover, from a bad configuration any computation of evalFd leads to a bad configu-
ration. Formally, we say that a configuration is i-bad for some i ∈ {2, . . . , d + 1} if it satisfies
x + x′ > 0, xi + y > 2ci−1(xi−1 + y), and xj + y = 2cj−1(xj−1 + y) for every j ∈ {i + 1, . . . , d + 1}.
A configuration is 1-bad if is satisfies x′ = y = 0, x > 0, b + b′ < 2c0+c′0 , x1 = 2c0+c′0x, and
xj = 2cj−1xj−1 for every j ∈ {2, . . . , d + 1}. We say that a configuration α is bad if it is i-bad
for some i. A configuration that is good or bad is said to be conform. We associate to any
conform configuration α its index of badness index(α) defined by index(α) = i if α is i-bad,
and by index(α) = 0 if α is good. Intuitively, from any conform configuration α, the computa-
tion of evalFd can only produce conform configurations β such that index(β) ≥ index(α). In
particular, if β is good, then α is good as well.

The program evalFd is defined as a non-deterministic choice of programs evalFd,p with
p ∈ {1, . . . , d}. Intuitively from a good configuration α that encodes a pair (v, n) with v 6= 0d,
the computation of evalFd,p can lead to a good configuration only if p is the minimal index
such that v[p] > 0. In that case the good configuration produced at the end of the computation
encodes evalFd(v, n).

We introduce the following test-free program for p ∈ {1, . . . , d}. The first loop at line 2
intuitively transfer min x1, . . . , xd into y. Thanks to Lemma 7, the second loop at line 6 transfer
back from y the value of X. Notice that xp is incremented twice during each iteration of the
loop. The loop at line 6 is interpreted thanks to Lemma 7 if p > 1 and Lemma 8 if p = 1 as
a loop that is iterated C0 times, the loop at line 8 is interpreted thanks to Lemma 9 as a loop
that is iterated X times and that divides X by 2, and finally the loop at line 10 is interpreted
thanks to Lemma 7 as a loop that is iterated B times.
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evalFd,p =

1: dec(cp);inc(cp−1)
2: loop

3: dec(x1, . . . , xd+1);inc(y)

4: loop at most x + x′ times

5: dec(y);inc(xp);inc(x1, . . . , xd+1)

6: loop at most c0 + c′0 times

7: inc(cp−1)
8: loop at most x + x′ times

9: dec(x′)
10: loop at most b + b′ times

11: dec(y);inc(xp);inc(xp, . . . , xd+1)

12: updateBd,p

Where updateBd,p is the empty program if p > 1 and the following one if p = 1. Notice

that the loop at line 2 can be interpreted thanks to Lemma 10 as a loop that is iterated C0
2

times, and the loop at line 4 is interpreted thanks to Lemma 8 as a loop that multiply by 2 the
value of B.

updateBd,1 =

1: inc(c0)
2: loop at most c0 + c′0 times

3: dec(c′0);inc(c0)
4: loop at most b + b′ times

5: inc(b)

6: dec(c0)

We first provide two lemmas describing the behaviour of updateBd,1.

Lemma 12. Assume that α
updateBd,1
−−−−−−−→ β for any two configurations α, β. Then β(C0) = α(C0)

and we have:
β(B) ≤ α(2

C0+1
2 B) (1)

If the previous inequality is an equality and α(B) > 0 then β satisfies b′ = 0 and c′0 = 0.

Proof. Let s be the number of times line 3 is executed. Lemma 10 shows that s ≤ 1+α(C0)
2 (the

1 in the expression comes form the increment command at line 6). Let ρj−1 for j ∈ {1, . . . , s}
be the configuration just before executing that line the jth time. We also denote by ρs the
configuration just before the execution of line 6. Lemma 8 shows that ρj(B) ≤ ρj−1(B) for
every j ∈ {1, . . . , s}. We deduce that the inequality (1) holds. If this inequality is an equality

and α(B) > 0, then s = 1+α(C0)
2 . Lemma 10 shows that β(c′0) = 0. Notice that since the

inequality (1) is an equality, then the inequality ρj(B) ≤ 2ρj−1(B) is also an equality for every
j ∈ {1, . . . , k}. In particular ρk(b′) = 0 from Lemma 8. It follows that β(b′) = 0.

Lemma 13. Let α be any configuration satisfying α(C0) is odd. Then α
updateBd,1
−−−−−−−→ β where β

is the configuration defined for every counter c as follows:

β(c) =































α(C0) if c = c0

0 if c = c′0

α(2
C0+1

2 B) if c = b

0 if c = b′

α(c) otherwise

Proof. Just observe that we can apply Lemma 10 and Lemma 8.
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Lemma 14. Let α be a conform configuration and β be any configuration such that α
evalFd,p
−−−−−→ β

with p ∈ {1, . . . , d}. Then β is conform and index(β) ≥ index(α). In particular, if β is good
then α is good. In that case, α satisfies b divides x, denoting by (v, n) the pair encoded by
α then v 6= 0d, p is the minimal index such that v[p] > 0, evalFd(v, n) is encoded by β, and
β(xd+1) = α(xd+1).

Proof. Let r, s, k,m and n be the number of times lines 3, 5, 7, 9, and 11 are executed re-
spectively. Observe that r ≤ min{α(x1), . . . , α(xd+1)} since every time line 3 is executed, the
counters x1, . . . , xd+1 are decremented, s ≤ α(X) thanks to Lemma 7, k ≤ α(C0), thanks to
Lemma 7 if p > 1 and Lemma 8 if p = 1 (in fact in that case cp−1 = c0), and n ≤ α(B)m thanks
to Lemma 7.

Let us prove that β(X) > 0. Observe that α(X) > 0 since α is conform. Moreover, line 9 is
the unique line that may prevent β(X) > 0 holding. However, each time this line is executed, by
definition of loop at most, notice that x is incremented just before. It follows that β(X) > 0.

For each j ∈ {1, . . . , k}, let mj be the number of times line 9 is executed during the jth
execution of the loop at line 6. We denote by αj−1 the configuration just before the jth
execution of line 9, and by αk the configuration just before executing updateBd,p. Notice that
α0(X) = α(X), 2mj ≤ αj−1(X), and αj(X) = αj−1(X) − mj for every j ∈ {1, . . . , k}. Let us
denote by hj the natural number such that αj−1(X) = 2mj +hj. By induction on i ∈ {0, . . . , k},
we get the following equality:

i
∑

j=1

mj = α(X)[1 − 2−i] −

i
∑

j=1

2j−i−1hj

In particular with i = k, since m =
∑k

j=1mj, we get the following equality by introducing the

non negative rational number h =
∑k

j=1 2j−k−1hj :

2α(C0)m = −2α(C0)h−
1

2k
α(X)(2α(C0) − 2k) + α((2C0 − 1)X) (2)

Assume first that α is i-bad for some i ∈ {p + 2, . . . , d + 1}. In that case α satisfies
xi + y > 2ci−1(xi−1 + y), and xj + y = 2cj−1(xj−1 + y) for every j ∈ {i+ 1, . . . , d+ 1}. Notice that
β also satisfies the same constraints since xj + y for j ∈ {i, . . . , d + 1}, and cj for j ∈ {i, . . . , d}
are invariant. Hence β is i-bad in that case.

So we can assume that α is not i-bad for every i ∈ {p + 2, . . . , d + 1}. Since α is conform,
we deduce that α satisfies xp+1 + y ≥ 2cp(xp + y), and xj + y = 2cj−1(xj−1 + y) for every
j ∈ {p + 2, . . . , d + 1}. Since xj + y for j ∈ {p + 1, . . . , d + 1}, and cj for j ∈ {p + 1, . . . , d} are
invariant, we deduce that β satisfies xj + y = 2cj−1(xj−1 + y) for every j ∈ {p + 2, . . . , d + 1}.

Observe that we have the following equalities:

β(xp+1 + y) = α(xp+1 + y)

β(cp) = α(cp) − 1

β(xp + y) = α(xp + y) + s + n

β(y) = α(y) + r − (s + n)

From those equalities, we derive:

β(xp+1 + y − 2cp(xp + y)) = α(xp+1 + y− 2cp(xp + y))

+ 2α(cp)−1(α(xp) − r)

+ 2α(cp)−1β(y)
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Notice that the right hand-side of the last equality is a sum of three natural numbers. It means
that if one of those numbers is strictly positive, then β is (p + 1)-bad. So, we can assume that
those three numbers are zero. It means that α and β satisfies xp+1 + y = 2cp(xp + y), r = α(xp),
and β(y) = 0. In particular α is not (p + 1)-bad.

Assume by contradiction that α is i-bad for some i ∈ {2, . . . , p}. It means that α satisfies
xi +y > 2ci−1(xi−1 +y) and xj +y = 2cj−1(xj−1 +y) for every j ∈ {i+1, . . . , d+1}. In particular
α satisfies xi > xi−1 and xj ≥ xj−1 for every j ∈ {i + 1, . . . , d}. We deduce that α satisfies
xi < xp. It follows that r ≤ min{α(x1), . . . , α(xd+1)} < α(xp) = r and we get a contradiction.

Since α is not i-bad for every i ∈ {2, . . . , d+ 1}, we deduce that α is 1-bad or good. In both
cases, α satisfies x′ = y = 0, B ≤ 2C0 , x1 = 2C0x, and xi = 2ci−1xi−1 for every i ∈ {2, . . . , d + 1}.
In particular α(xd+1) ≥ · · · ≥ α(x) > 0. Notice that from α(y) = 0 and β(y) = 0, we deduce
from β(y) = α(y) + r − (s + n) that r = s + n.

Assume by contradiction that α(ci−1) > 0 for some i ∈ {2, . . . , p}. Since α satisfies
xi = 2ci−1xi−1, ci−1 > 0, and xi−1 > 0, we deduce that α(xi) > α(xi−1). In particular,
α(xp) ≥ α(xi) > α(xi−1). Like in the previous paragraph we get a contradiction with r ≤
min{α(x1), . . . , α(xd+1)} < α(xp) = r. Therefore α(ci−1) = 0 for every i ∈ {2, . . . , p}. We
deduce that α(x1) = · · · = α(xp). It follows from r = α(xp) and r = s + n that α(x1) = s + n.

Observe that we have (by developing the equalities and replacing 2α(C0)m by using the
equality 2):

n = −(α(B)m− n) − α(2B0 − B)m− 2α(C0)h−
1

2k
α(X)(2α(C0) − 2k) + α((2C0 − 1)X))

s = −(α(X) − s) + α(X)

It follows that we have (we use the fact that α(x1 − 2C0X) = 0):

0 = α(x1) − (s + n) =(α(B)m− n)

+ (2α(C0) − α(B))m

+ (α(X) − s)

+ 2α(C0)h

+
1

2k
α(X)(2α(C0) − 2k)

Since each term of the right hand side of the previous equality are non negative, we deduce
that all the terms are zero. It means that n = α(B)m, (2α(C0) − α(B))m = 0, s = α(X),
h = 0, 2α(C0) = 2k (for the last equality, we use α(X) > 0). Since k ≤ α(C0) we derive from
2α(C0) = 2k that k = α(C0). By replacing h by 0, and k by α(C0) in equation 2, we derive
m = α((1 − 2−C0)X).

Assume that α is 1-bad. In that case α(B) < 2α(C0). It follows from (2α(C0) − α(B))m = 0
that m = 0. From m = α((1− 2−C0)X) and α(X) > 0 we get α(C0) = 0. So, from α(B) < 2α(C0)

we get α(B) = 0. Observe that in that case β is 1-bad (the case p = 1 is obtained thanks to
Lemma 12). So, we can now assume that α is not 1-bad.

Since α is conform and not bad, we deduce that α is good. Hence α satisfies x′ = c′0 = b′ =
y = 0 and b = 2c0 . It follows from n = α(B)m that n = α((2C0−1)X). Let ρ be the configuration
we obtain just before executing updateBd,p. Since h = 0, then hk = 0. It follows that ρ(x′) = 0.
As s = α(X), Lemma 7 shows that ρ(x′) = 0. Moreover, as n = α(B)m, Lemma 7 shows that
ρ(b′) = 0. It follows that ρ(x) = α(x) −m = α(2−c0x). Notice that ρ(xi) with i ∈ {1, . . . , p− 1}
is equal to α(xi) − r + s = s = α(x). We also have ρ(xp) = α(xp) − r + 2s + 2n = 2α(xp).
Notice that ρ(xi) with i ∈ {p + 1, . . . , d + 1} is equal to α(xi) since xi + y is an invariant and
α(y) = ρ(y) = 0.
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It follows that for every counter c, we have:

ρ(c) =



















































0 if c ∈ {x′, c′0, b
′, y}

α(2−c0x) if c = x

α(x) if c = xi with i ∈ {1, . . . , p− 1}

2α(xp) if c = xp

α(cp) − 1 if c = cp

α(1 + cp−1 + c0) if c = cp−1

α(c) otherwise

Notice that if p > 1 then α(cp−1) = 0 and β = ρ. In that case β is good and satisfies the lemma.
If p = 1, notice that ρ(c0) = 1 + 2α(c0). From Lemma 12 we deduce that β is either 1-bad

or good depending depending if the inequality of that lemma is strict or an equality. Notice
that if the inequality is an equality, the configuration β is good and it encodes evalFd(v, n).

Lemma 15. Let α be a good configuration satisfying b divides x and that encodes a pair (v, n)
with v 6= 0d, and let p is the minimal index such that v[p] > 0. There exists a good configuration

β that encodes evalFd(v, n) satisfying β(xd+1) = α(xd+1), and such that α
evalFd,p
−−−−−→ β.

Proof. We are going to prove that there exists an execution of evalFd,p from α such that lines 3,
5, 7 are executed r, s, k times with:

r = α(x1)

s = α(x)

k = α(c0)

We also introduce the configurations that will appear along the execution of loop at line 6.
To do so, we introduce the configurations α0, . . . , αk defined as follows for every counter c and
for every j ∈ {0, . . . , k}:

αj(c) = α









































































































































x
2j

if c = x

x if c = xi with i ∈ {1, . . . , p − 1}

2bx + 2x(1 − 2c0−j) if c = xp

xi + x(1 − 2c0−j) if c = xi with i ∈ {p + 1, . . . , d + 1}

x(2c0−j − 1) if c = y

cp − 1 if c = cp

cp−1 + 1 + j if c = cp−1 and p > 1

c0 − j if c = c′0

j if c = c0 and p > 1

1 + 2j if c = c0 and p = 1

c otherwise















































Since α is good, it follows that α(xi) ≥ r for every i ∈ {1, . . . , d + 1}, and r ≥ α(x). In
particular line 3 and 5 can be effectively executed r and s times respectively. Notice that α0

is the configuration we obtain after executing those two loops and the hidden first loop of the
loop at most at line 6 exactly α(x) times.

We introduce the test-free program N corresponding to the subprogram between line 7 and
line 11 (including those those lines) and prefixed by dec(c′0); inc(c0). Let us prove by induction
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on j ∈ {1, . . . , k} that αj−1
N
−→ αj. To do so, we are going to prove that there exists an execution

of N such that lines 9, 11 are executed mj, nj times with:

mj = αj−1(
x

2
)

nj = αj−1(mjb)

Notice that those three numbers are natural numbers since 2k divides α(x). This execution is
obtained thanks to Lemma 7 applied on line 11 in order to execute maximally the corresponding

loop, and by applying Lemma 9 applied on line 9. We have proved that αj−1
M
−→ αj . In partic-

ular, by executing k times loop 6, we get the configuration αk. Notice that this configuration
satisfies for every counter c:

αk(c) = α































































































x
b

if c = x

x if c = xi with i ∈ {1, . . . , p− 1}

2bx if c = xp

xi if c = xi with i ∈ {p + 1, . . . , d + 1}

0 if c = y

cp − 1 if c = cp

cp−1 + 1 + c0 if c = cp−1

c otherwise

































In particular, by executing updateBd,1 following Lemma 13 (if p = 1), we get from αk a
configuration β satisfying the lemma.

Since the test-free program evalFd is defined as evalFd,1 or · · · or evalFd,d, we deduce
from Lemma 14 and Lemma 15 the following two corollaries.

Corollary 16. Let α be a conform configuration and β be any configuration such that α
evalFd−−−−→

β. Then β is conform and index(β) ≥ index(α). In particular, if β is good then α is good.
In that case, α satisfies b divides x, denoting by (v, n) the pair encoded by α then v 6= 0d,
evalFd(v, n) is encoded by β, and β(xd+1) = α(xd+1).

Corollary 17. Let α be a good configuration satisfying b divides x and that encodes a pair
(v, n) with v 6= 0d. There exists a good configuration β that encodes evalFd(v, n) satisfying

β(xd+1) = α(xd+1), and such that α
evalFd−−−−→ β.

8 Ackermannian Preamplifiers

In this section we prove that the following checking program is a K-preamplifier for K = 2Fd+1(n)

of size O(d4n).

Ackd,n =

1: inc(c0)(n); inc(cd)(n+1)

2: inc(x); inc(x1, . . . , xd)(2
n); inc(xd+1)(2

2n+1)

3: loop

4: inc(x); inc(x1, . . . , xd)(2
n); inc(xd+1)(2

2n+1)

5: loop

6: evalFd

7: loop

8: inc(y);dec(x1, . . . , xd+1)

9: loop

10: dec(c0)

11: test(xd+1, b
′, c′0, c0, . . . , cd)
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Lemma 18. The checking program Ackd,n is a K-preamplifier for K = 2Fd+1(n).

Proof. Let ℓ ≥ 1 and let β be the configuration satisfying β(x, y, b) = (ℓ,Kℓ,K) and β(c) = 0

for every counter c 6∈ {x, y, b}. Let us prove that 0
Ackd,n
−−−−→ β.

To do so, we consider an execution of Ackd,n defined as follows. We execute the first loop
2Fd+1(n)−2n−1ℓ − 1 times (recall that Fd+1(n) ≥ 2n + 1). Just after this loop we get a good
configuration ρ0 that encodes ((0, . . . , 0, n), n + 1) and such that ρ0(xd+1) = Kℓ. Then we
iterate evalFd as many times as possible following Lemma 15. This way we get a sequence
ρ0, . . . , ρk of good configurations such that ρj(xd+1) = 2Fd+1(n)ℓ and such that ρj encodes the

pair (vj , nj) defined as (vj , nj) = evalFj
d((n+ 1)1d,d, n). Since Fvj (nj) does not depend on j, we

deduce that Fvj (nj) = Fv0(n0) = Fn+1
d (n) = Fd+1(n).

Since ρk is a good configuration, it follows that ρk satisfies b = 2c0 and xd+1 = 2cd+···+c0x.
As ρk encodes (vj , nj), we deduce that ρk(b) = 2nj and ρk(x) = 2Fd+1(n)−nj−|vj |ℓ.

We have proved the following equality:

ρk(
x

b
) = 2Fvk

(nk)−2nk−|vk|

Lemma 3 shows that if vk 6= 0d then ρk satisfies b divides x. In particular from the good config-
uration ρk we can execute evalFd one more time following Lemma 15 and get a contradiction
with the maximality of k. It follows that vk = 0d. From Fvk(nk) = Fd+1(n), we deduce that
nk = Fd+1(n). Hence ρk(b) = K.

Since vk = 0d and ρk is a good configuration, we deduce that ρk satisfies xd+1 = · · · = x1.
It follows that ρk(xi) = Kℓ for every i ∈ {1, . . . , d + 1}. Based on this observation, from ρk we
can execute the third loop Kℓ times. Then we execute the last loop ρk(c0) times. This way, we
get the configuration β.

Finally, let us consider a configuration β such that 0
Ackd,n
−−−−→ β and let us prove that β

satisfies y ≥ bx and β(c) = 0 for every counter c 6∈ {x, y, b}. Moreover, if the inequality is an
equality then let us prove that β(b) = K.

We denote by ρ0 the configuration we obtain after executing the first loop. Let k be the
number of times the second loop is executed and let us denote by ρj the configuration we obtain
after the jth execution of the second loop for j ∈ {1, . . . , k}. Lemma 14 shows that ρj is
conform.

Assume by contradiction that ρk is i-bad for i ∈ {2, . . . , d + 1}. In that case ρk satisfies
xi + y > 2ci−1(xi−1 + y) and xj + y = 2cj (xj−1 + y) for every j ∈ {i + 1, . . . , d + 1}. In particular
ρk(xd+1) > ρk(xi−1). It follows that whatever the number of time the third loop is executed,
the configuration β satisfy β(xd+1) > β(xi−1) and the last test command test(xd+1) fails. We
get a contradiction. It follows that ρk is 1-bad or good.

Now, assume that ρk is 1-bad. In that case ρk satisfies x′ = y = 0, x > 0, b + b′ < 2c0+c′0 ,
x1 = 2c0+c′0x and xi = 2ci−1xi−1 for every i ∈ {2, . . . , d+1}. Since the execution from ρk to β only
modify y, x1, . . . , xd+1, c0, then β and ρk coincides on the other counters. Since β successfully
execute the last test commands, we deduce that ρk satisfies b′ = c′0 = c1 = · · · = cd = 0.
It follows that ρk satisfies xd+1 = · · · = x1. Since β(xd+1) = 0, it means that third loop was
executed ρk(xd+1) times. We deduce that β(xi) = 0 for every i ∈ {1, . . . , d}. It follows that β

satisfies y > bx and β(c) = 0 for every counter c 6∈ {x, y, b}.
Finally, assume that ρk is good. From Lemma 14 we deduce that ρj is good for every

j ∈ {1, . . . , k} and denoting by (vj , nj) the pair encoded by ρj we have (vj , nj) = evalFj
d(v0, n0).

In particular Fvj (nj) = Fd+1(n). Since ρk is good it satisfies x′ = y = b′ = c′0 = 0, x > 0,
b = 2c0 , x1 = 2c0x and xi = 2ci−1xi−1 for every i ∈ {2, . . . , d + 1}. Since the execution from
ρk to β only modify y, x1, . . . , xd+1, c0, then β and ρk coincides on the other counters. Since
β successfully execute the last test commands, we deduce that ρk satisfies c1 = · · · = cd = 0.
It follows that vk = 0d and from Fvk(nk) = Fd+1(n) we get nk = Fd+1(n). Since ρk satisfies
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b = 2c0 we deduce that ρk(b) = K. Since ρk satisfies xd+1 = · · · = x1 and β(xd+1) = 0, it means
that third loop was executed ρk(xd+1) times. We deduce that β(xi) = 0 for every i ∈ {1, . . . , d}.
We have proved that β satisfies y = bx, ρk(b) = K, and ρk(c) = 0 for every counter c 6∈ {x, y, b}.

Therefore Ackd,n is a K-preamplifier.

Corollary 19. We can compute in time O(nd4n) a K-preamplifier of size O(nd4n) with K =
2Fd+1(n) using 2d + 6 counters such that d of them are safe.

Proof. The checking program Ackd,n is a K-preamplifier of size O(d4n) computable in time
O(d4d) using 2d + 8 counters such that x′, x1, . . . , xd are safe counters. Notice that the counter
cd is first initialized to n and then during an execution it is only decremented. It follows that
its value can be encoded in the control structure of the program, i.e. by unfolding the program
n times. Moreover, notice that during the execution, the value of xd + y can only increase.
It follows that the counter xd can be removed as well by observing that its value (for good
configuration) is in fact equals to xd+12−cd and the value of cd is hard coded in the control
structure. This way, we get a K-preamplifier satisfying the lemma.

9 Complexity Classes Beyond Elementary

The reachability problem for general programs equipped with the bounded semantics provides
a way to define complexity classes beyond Elementary. In fact, following [22], the problem
that asks, given a 2-dimensional general program M of size n, whether there exists β such that

0
M
−→≤K β with K = 2Fd(n) is Fd-complete for every d ≥ 3. We deduce as a direct corollary the

following theorem.

Theorem 20. The reachability problem for (2d + 4)-dimensional checking programs is Fd-hard
for any d ≥ 3. In particular the reachability problem for 10-dimensional checking programs is
not Elementary.

Proof. Given a 2-dimensional program M , let n = size(M). Corollary 19 shows that we can
compute in time O(nd4n) a K-preamplifier A of size O(nd4n) with K = 2Fd(n) using 2(d−1)+6
counters such that d− 1 of them are safe. Now recall that the checking program N defined as
A ⊲ M is computable in time size(A) + O(size(M)). It follows that N is computable in time
O(nd4n). Moreover, as the number of safe counters of A is larger than or equal to 2, we deduce
that the dimension of N is bounded by 2d+4. Finally, just observe that for every configuration

β we have 0
M
−→≤K β if, and only if, 0

N
−→ β.

Theorem 21 is nearly optimal since in [13] it is proved that the reachability problem for
d-dimensional checking programs is in Fd+4.

Finally, let us recall [22] that the problem that asks, given a 2-dimensional general program

M of size n, whether there exists a configuration β such that 0
M
−→≤K β with K = 2Fω(n) is

Fω-complete. We deduce as a direct corollary the following theorem.

Theorem 21. The reachability problem for checking programs is Fω-hard.

Proof. Given a 2-dimensional program M , let n = size(M). Corollary 19 shows that we can
compute in time O(n24n) a K-preamplifier A of size O(n24n) with K = 2Fn+1(n) = 2Fω(n).
Now recall that the checking program N defined as A ⊲ M is computable in time size(A) +
O(size(M)). It follows that N is computable in time O(n24n). Finally, just observe that for

every configuration β we have 0
M
−→≤K β if, and only if, 0

N
−→ β.

Theorem 21 is optimal since in [13] it is proved that the reachability problem for checking
programs is in Fω.
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10 Conclusion

This paper proves that the reachability problem for checking programs is Ackermannian-complete.
It also reduces the gap for the parameterized complexity of the reachability problem in fixed
dimension. In order to close this gap, we see two possible research directions:

• Either we find a primitive recursive algorithm computing from d, n ∈ N a K-preamplifier
for K = Fd(n) with a dimension d + O(1),

• Or we find a new algorithm for deciding the reachability problem with a complexity upper
bound in F d

2
+O(1).
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