
1 
 

A New Variant Selection Criterion for Twin Variants in Titanium 
alloys (Part 1)**. 

By Christophe Schuman*, Lei Bao, Jean Sébastien Lecomte, Yudong Zhang, Jean Marc Raulot,  Marie 

Jeanne Philippe, Claude Esling 

* Dr. C. Schuman 

Laboratoire d'Étude des Microstructures et de Mécanique des Matériaux, LEM3, CNRS 7239, Université Paul Verlaine – Metz, 
Ile du Saulcy, 57045 Metz, France 
E-mail : christophe.schuman@univ-metz.fr 

 
Dr. L. Bao, J.S. Lecomte, Y. Zhang, J.M. Raulot, Prof. M.J. Philippe, C. Esling 

LEM3, CNRS 7239, Université Paul Verlaine – Metz, Ile du Saulcy, 57045 Metz, France 

 
A new selection criterion to explain the activation of the twinning variant is 
proposed  based on the calculation of the deformation energy to create a 
primary twin. The calculation takes into account the effect of the grain size 
using a Hall-Petch type relation. This criterion allows to obtain a very good 
prediction for the variant selection. The calculations are compared with the 
experimental results obtained on T40 deformed by Channel Die compression. 

 

Introduction 

Deformation twinning is one of the main deformation modes in crystalline solids particularly 

in low symmetry or multiple lattice structures [1-8]. Though extensive studies have addressed 

on the crystallography [9-11], morphology [12] and mechanical behavior [2, 13] of deformation 

twins, and numerous models for twinning have been suggested over the last few decades [14, 

15], some fundamental issues remain unclear. The nucleation and growth mechanism of twin 

lamellae, the interaction of twinning with crystal defects, and the interfacial accommodation 

between the matrix and twins [16, 17] are still poorly understood. 

In the case of titanium alloys, many authors have attempted to determine the presence of the 

different types of twins as a function of the deformation temperature or grain size [18, 19, 24] as 

well as to extract useful information for modeling [1, 20]. 

Although the twin type and the twin volume fraction can be easily determined [21], the type 

of variants present as well as the sequence in which they appear in one grain are not well 

revealed. 

mailto:christophe.schuman@univ-metz.fr


2 
 

Recently, we have developed the “interrupted in situ SEM/EBSD orientation examination 

method” to follow the microstructure and crystallographic orientation evolution during the 

mechanical deformation process. This method allows us to obtain the time resolved 

information of the appearance of the twin variants, their growth, the interaction between 

them and the interaction with the initial grain boundaries [22]. However, the variant selection 

rules and the physical mechanisms behind still remain uncovered.  

For magnesium and magnesium alloys that are also hexagonal materials but with different 

c/a ratio from that of titanium [17], Martin [26], Jonas [27] have proposed variant selection rules 

(Schmid Factor (SF), common volume) for the secondary twinning during deformation. Their 

criteria worked well for the deformed magnesium where the twins are thin. However, for 

titanium, it seems that the selection of the variants follows a different rule and should be 

clarified.  

In the present work, we experimentally investigated the deformation process of 

commercially pure titanium with interrupted in situ SEM/EBSD orientation measurements. 

Based on the experimental examination, we tried to work out the twin variant selection rule. 

This rule is not established by a mere statistical examination to have statistical representation 

but to reveal the physical and mechanical criteria (energy) of variant selection that would 

useful for the modeling of the mechanical behavior of the alloys. 

Material and Sample preparation 

The material was hot-rolled and then annealed commercial pure titanium sheet of 1.5 mm 

thickness with the composition given in table 1.  
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Figure 1:  Schematic description of the channel-die set-up used. 

 

Table 1 Chemical composition of commercially pure titanium T40 

Element H C N O Fe Ti 

Composition (ppm(wt.)) 3 52 41 1062 237 Balance 

 

A grain growth annealing was performed at 750°C for 2 hours to produce a fully 

recrystallized microstructure. After annealing, the samples were mechanically ground up to 

4000 # grit SiC paper and then electrolytically polished at 5°C and 17V for 30 seconds in a 

solution of 10 ml perchloric acid in 90 ml methanol. 

The samples were channel die compressed in two passes, first with 8 % and then 16% 

reduction. To follow the rotation of the individual grains during the deformation, a 500×300 

m2 area was carefully polished and marked out with four micro-indentations.  The 

orientation of all the grains in this polished area (about 800 grains) was measured by 

SEM/EBSD before and after each deformation step.  Fig. 1 is the sketch of the channel die 

compression. Before each compression, the two sample plates as shown in Fig. 1 were firmly 

stuck together to avoid sliding during the compression in order to maintain a good surface 

quality [22].  
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Crystallography and identification 

The grain size of the sample ranges from 150 to 250µm. It is well known that such large 

grains favour the formation of twins during deformation. We have examined more than 80 

grains in this individual follow-up and identified all the twin types, their variants and their 

order of appearance. We found only compressive twin ( 112 2  or C Type) and tension twin 

( 101 2  or T1 type) (see table 2), and we did not find T2 or  112 1  tension twin. The 

activation of these twins depends only on the initial orientation of the grain and the local 

stress tensor which is a function on the applied forces. Furthermore with the increase of the 

deformation, secondary twins appear inside primary twins: T1 tension twins inside C 

compression twins or C compression twins inside T1 tension twins. Generally these second 

generation of twins are called secondary or double twin. 

To identify the type of twin system and the active variants (Table 3) that accommodate the 

plastic deformation, trace analysis is used (Fig 2). 

 

Table 2: list of slip and twin systems in Titanium 
 

Slip/Twin 𝑏   Slip system Notation 

Basal <a>   02110002  B<a> 

Prismatic <a>  0011  0211  P<a> 

Pyramidal 1 <a>   02110111  1<a> 

Pyramidal 1 <c+a>   32110111  1<c+a> 

Pyramidal 2 <c+a>   32112211  2<c+a> 

Tension Twin --   01112110  T1 

Tension Twin --   26111211  T2 

Compression  Twin --   23112211  C 
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Table 3: list of variant for compression and tension twin 

Compression C  Tension T1 
 h k i l u v t w   h k i l u v t w 

CV1 1 1 -2 2 1 1 -2 -3  T1V1 1 0 -1 2 -1 0 1 1 

CV2 -2 1 1 2 -2 1 1 -3  T1V2 -1 1 0 2 1 -1 0 1 

CV3 -1 -1 2 2 -1 -1 2 -3  T1V3 -1 0 1 2 1 0 -1 1 

CV4 1 -2 1 2 1 -2 1 -3  T1V4 0 -1 1 2 0 1 -1 1 

CV5 2 -1 -1 2 2 -1 -1 -3  T1V5 1 -1 0 2 -1 1 0 1 

CV6 -1 2 -1 2 -1 2 -1 -3  T1V6 0 1 -1 2 0 -1 1 1 

Twinning is treated as a slip system to calculate the Schmid Factor (SF). Also the trace angles 

of all possible twin planes on the grain surface are calculated with respect to the sample 

coordinate system. Then the trace angles of the observed twin planes are measured in the 

same coordinate system and compared with the calculated ones to identify the 

corresponding active twin system and twin variant. The schematic of the position of a slip 

line (or twin line) on the sample surface is shown in Fig 2.  

 

Figure 2 : Slip (twin) line trace on the sample surface. 

The figure 3 follows step by step the onset of primary and secondary twin. The results show 

that the twin variants that appear in the grain to accommodate the deformation are seldom 
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those with the highest  SF. In fact, only less than 50% of the variants with the highest SF are 

selected. Often in the equiaxed  grains, several twin variants can appear, as shown in Fig. 3; 

whereas in those with elongated shape, only one variant appears, but it appears repeatedly, 

as shown in Fig. 4 b. This indicates that the shape of the initial grain also influences the 

selection of the variants.   

We therefore decided to measure the length of each twin variant that appears (Fig. 5) and 

also calculate the maximum (and minimum) length of all variants that may occur to analyze 

the selection of the variant in terms of absorbed energy, as explained in the following. 

 

 

 

a) Orientation of the 
matrix :(80.0, 9.7, 39.8) 

b) Several Variants appear in the 
grain. They appear one after 
another. 

c) Tension Twin: T1V4. 
Orientation of the 
matrix:(69.9, 74.6, 54.9) 

 
Figure 3: Micrographies of the same equiaxed grain at different stages of deformation. 

 
 
 

   

a) Orientation of the 
matrix :(143.4, 85.5, 11.1) 

b) Tension twin : T1V6 c) Compression twin: CV4, 
CV2 ; CV3 ; CV6  
Orientation of the matrix :(56.3, 
162.5, 3.7) 

Figure  4: a) initial grain;  b) with one variant after 8 % deformation ; c) same grain after 16% 
deformation, with multiple variants 
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Deformation Energy 

A variant will be activated if the energy of deformation which is used to create the twin was 

sufficient and the internal energy of the material decreases with this operation. 

We have considered here that the material is an ideal (i.e., no strain hardening) rigid- plastic 

body to calculate the energy of deformation.  Because the elastic energy is restored when the 

twin is created, we restrict to the plastic energy of deformation which is calculated by the 

equation: 

ijijTwinW  '
 

(1) 

Where 'ij is the critical resolved shear stress required (=shear stress  in twin frame 

expressed in sample frame) to activate the twinning system and ij is the corresponding 

twinning deformation. In the case of channel die compression, the deformation is equivalent 

to in-plane compression and the compressive force is applied in the sample normal direction 

(the third axis). In a grain, the stress applied to a twinning system is composed of the 

macroscopic applied stress and an additional local stress resulting from the interaction of the 

Figure 5: Sketch of a grain with orientation (x,y,z) and maximal length of the different variant. 
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considered grain with the neighboring grains. Since we restrict to relatively small 

deformation degrees, we neglect the local stress resulting from the interaction with the 

neighboring grains. The stress applied to a twinning system is thus restricted to the 

macroscopic compressive stress 33, which corresponds to the Sachs (or static model) 

hypothesis. The twinning system will be active when the resolved shear stress reaches the 

corresponding critical value'33. When the twinning system is active, the corresponding 

deformation energy expressed in the macroscopic coordinate system is given by the above 

Eq. (1).  

We introduce the grain size effect by expressing the critical resolved shear stress according to 

a Hall Petch (HP) type equation: 

L

k
 0               (2) 

with 0 and k constants, 0 representing the stress when the length of the grain is infinite. L is 

the free path of the twin before encountering an obstacle (grain boundary, precipitate or 

other twins). Then the deformation energy can be expressed as: 

33330

330 )(





L

k

L

k
W





        (3) 

In Eq. (3), 0 and k are unknowns. Taking into account that twinning is activated when the 

size of a grain exceeds a certain value below which only crystal glide can be activated, we 

can deduce that the second term of the equation is dominant. Rearranging Eq. (3) we obtain: 

Lk

W 33330 



(4) 
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In the right hand term of Eq. (4), 33 and L , are accessible to the experiment. In the following 

we will mainly focus on this term, 
L

33
. Clearly, the length (L) of the free path of a twin 

lamella in a grain can be visualized with its boundary traces on the sample observation 

plane. The maximum longitudinal length of the twin lamella appearing on the sample 

observation plane is determined as L for each twin variant, as illustrated in Fig. 5. In the 

present work, the 
L

33
term is calculated in the sample coordinate system. For simplicity, the 

displacement gradient tensor 

𝑒𝑖𝑗 =
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        (5) 

 

where u, v and w are the displacement components and  x, y, and z are the coordinates in the 

sample system, was first expressed in an orthonormal reference frame defined by the related 

twinning elements. The unit vector normal to the twinning plane, the unit vector normal to 

the shear plane and the unit vector in the twinning direction define this reference frame. In 

this frame the displacement gradient tensor has a particularly simple form: 

𝑒𝑖𝑗 =  
0 0 𝑠
0 0 0
0 0 0

 

      (6) 

With  𝑠 =
 𝛾2−3 

𝛾 3
 for the (10-12) twin and 𝑠 =

2 𝛾2−2 

3𝛾
 for the (11-22) twin where 𝛾 = 𝑐

𝑎  ratio of 

titanium 
[9]

, the displacement gradient tensor for the two types of twins can be obtained as: 

Compression (11-22) Tension (10-12) 
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Through coordinate transformation, this displacement gradient tensor can be expressed in 

the crystal coordinate system (here we choose the orthonormal reference system set to the 

hexagonal crystal basis and the setting follows the Channel 5 convention, i.e. e2//a2 and 

e3//c). With the Euler angles measured by SEM/EBSD that represent a set of rotations from 

the sample coordinate system to the orthonormal crystal basis, this tensor can be further 

transformed into the macroscopic sample coordinate system. If G is the coordinate 

transformation matrix from the macroscopic sample coordinate system to the orthonormal 

twin reference system, the displacement gradient tensor with respect to the sample 

coordinate system can be expressed as: 

(𝑒
𝑖𝑗
𝑠𝑎𝑚𝑝𝑙𝑒  𝑓𝑟𝑎𝑚𝑒) = 𝐺 (𝑒𝑖𝑗

𝑐𝑟𝑦𝑠𝑡𝑎𝑙  𝑓𝑟𝑎𝑚𝑒
)𝐺−1   (8) 

Thus the deformation tensor in the macroscopic sample coordinate system can be obtained 

as the symmetrized displacement gradient: 

𝜀𝑖𝑗 =
1

2
 𝑒𝑖𝑗 + 𝑒𝑗𝑖     (9) 

With Eq. (9), the energy term 
L

33
 in Eq. (4) can thus be calculated.  

Results  

The energy term 
L

33
 in Eq. (4) has been calculated for all the examined grains. We detail 

two cases of primary twinning, one with tension twin (T1) and the other with compression 

twin (C), and shown in Table 5.  The examples for secondary twinning are shown in Table 6. 
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It should be noted that in a primary tension twin, only secondary compression twin can form 

and vice versa. In the table, the orientation of the grain is given by the Euler angles (1, , 2) 

with respect to the macroscopic sample coordinate system are measured by EBSD/SEM. 

With the experimental orientation, the SF, the 33 and the  
𝜀33

 𝐿
  are calculated for all the twin 

variants (either tension or compression type). The  
𝜀33

 𝐿
   is calculated using the corresponding 

measured grain diameter of the experimentally observed active variant is highlighted in 

yellow in all the tables . The maximum SF of the variants is in red. It is seen that the activated 

variants are not those with the highest SF but the ones with highest absolute value of  
𝜀33

 𝐿
. The 

variant which has the highest local stress will consume the most energy to be activated. 

These results indicate that the SF as the variant selection criterion gives 45% to 50% correct 

prediction, whereas taking account of the mean free path gives 85%. When the initial grain is 

equiaxed, the free path of each variant can vary to a large extent, as shown in Fig. 3. In such a 

case, the activated variant is the one that has the lowest  
𝜀33

 𝐿
 (in fact, the highest absolute 

ratio).  
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Table5: Results for primary twin 

C twin 
Orientation of grain:{111.5, 20.5, 34.9} Orientation of grain:{92.4, 23.5, 35.4} 

SF 33 Length(µm) ε33 / 𝐿 SF 33 Length(µm) ε33 / 𝐿 

CV1 
-0.479 -0.104 85 -11.3 -0.465 -0.101 115 -9.5 

CV2 
-0.383 -0.084 70 -10.0 -0.305 -0.067 81 -7.4 

CV3 
-0.222 -0.048 95 -5.0 -0.152 -0.033 120 -3.0 

CV4 
-0.242 -0.053 90 -5.6 -0.260 -0.057 105 -5.5 

CV5 
-0.407 -0.089 70 -10.6 -0.431 -0.094 75 -10.8 

CV6 
-0.475 -0.103 75 -11.9 -0.448 -0.098 85 -10.6 

         

T1 twin 
Orientation of grain:{142.7, 85.9, 12.4} Orientation of grain:{54.5, 80.8, 7.6} 

SF 33 Length(µm) ε33 / 𝐿 SF 33 Length(µm) ε33/ 𝐿 

T1V1 
-0.022 -0.004 145 -0.3 -0.002 0.000 165 0.0 

T1V2 
-0.272 -0.048 145 -4.0 -0.303 -0.053 130 -4.7 

T1V3 
-0.019 -0.003 165 -0.3 -0.006 0.001 155 0.1 

T1V4 
-0.442 -0.077 140 -6.5 -0.390 -0.068 115 -6.36 

T1V5 
-0.263 -0.046 145 -3.8 -0.281 -0.049 140 -4.2 

T1V6 
-0.454 -0.079 130 -7.0 -0.415 -0.073 130 -6.37 

Figure 6 shows precisely this effect of domains, in a simpler manner. Each domain will 

finally have its own dimensions so that new variants could be activated through this size 

effect (table 7). 

In the case of an elongated grain shape, one variant can repeatedly appear several times, as 

shown in Fig. 7. Although the appearance of the twin changes the dimension of the grain, the 

size of the free path of this twin remains unchanged, i. e. the favorable orientation (high 

absolute value of the factor  
𝜀33

 𝐿
) of this variant remains, therefore it appears repeatedly. With 
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the increase of the deformation, each twin lamella thickness and finally the whole grain is 

twinned out.  

Table 6: Results for secondary twin 

Primary twin is Tension twin T1, secondary twin is compression twin C 

T1C 

twin 

Orientation of grain:{64.4, 161.1, 11.7} Orientation of grain:{162.4, 20.9, 38.9} 

SF 33 Length(µm) ε33/ 𝐿 SF 33 Length(µm) ε33/ 𝐿 

CV1 -0.295 -0.064 125 -5.7 -0.478 -0.104 180 -7.77 

CV2 -0.357 -0.078 128 -6.9 -0.370 -0.081 135 -6.94 

CV3 -0.471 -0.103 110 -9.8 -0.209 -0.046 155 -3.67 

CV4 -0.488 -0.106 160 -8.4 -0.247 -0.054 105 -5.25 

CV5 -0.441 -0.096 110 -9.2 -0.414 -0.09 105 -8.82 

CV6 -0.229 -0.05 180 -3.7 -0.471 -0.103 115 -9.57 

         

Primary twin is Compression Twin C, secondary twin is Tension twin T1 

CT1 

twin 

Orientation of grain:{144.6, 82.2, 12.8} Orientation of grain:{32.4, 77, 39.1} 

SF 33 Length(µm) ε33/ 𝐿 SF 33 Length(µm) ε33/ 𝐿 

T1V1 -0.017 -0.003 50 -0.4 -0.175 -0.031 15 -7.9 

T1V2 -0.263 -0.046 20 -10.3 -0.042 -0.007 15 -1.9 

T1V3 -0.012 -0.002 20 -0.5 -0.151 -0.026 25 -5.3 

T1V4 -0.426 -0.075 25 -14.9 -0.417 -0.073 35 -12.3 

T1V5 -0.246 -0.043 35 -7.3 -0.028 -0.005 10 -1.6 

T1V6 -0.448 -0.078 30 -14.3 -0.455 -0.08 50 -11.3 
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Table 7:Domain effect on selection variant (fig 6) 

 

Orientation of grain:{65.3, 173, 49.2} 

(Grain initial) 

Orientation of grain:{65.3, 173, 49.2} 

(Domain 2) 

SF 33 Length(µm) ε33/ 𝐿 SF 33 Length(µm) ε33/ 𝐿 

CV1 
-0.386 -0.084 110 -8.03 -0.386 -0.084 55 -11.36 

CV2 
-0.461 -0.1 70 -12.00 -0.461 -0.1 70 -12.00 

CV3 
-0.489 -0.107 110 -10.17 -0.489 -0.107 55 -14.38 

CV4 
-0.475 -0.104 80 -11.59 -0.475 -0.104 50 -14.66 

CV5 
-0.426 -0.093 70 -11.11 -0.426 -0.093 70 -11.11 

CV6 
-0.407 -0.089 85 -9.63 -0.407 -0.089 50 -12.56 

Once growth achieved, only new twins will appear (compression if tension has been the 

primary twin and vice versa). For a given orientation, the selection of variants always 

follows the 
𝜀33

 𝐿
  criterion. Different types of variant selection can occur in the new grain (fig 

7c) but it can always be explained by introducing the concept of domain. 

   

a) Orientation of the 

matrix:(65.3, 173, 49.2) 

b) Compressive twins:CV2 and 

CV4 

c) Domains after the first 

twin CV2 

In red domain 1, in yellow 

domain 2 and the twin which 

is the domain 3. 

Figure 6: Domain effect on selection variant. 
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a) Orientation Matrix :(54.5, 

80.8, 7.6) 

b)Tension twin : T1V4 and 

T1V6  

 

c) Orientation Matrix :(162.4, 

20.9, 38.9) 

Compression twin : CV6 and 

CV1 

Figure 7:  Long grain a) initial ; b) after 8 % of deformation and c) after 16% 

 

Discussion 

The above results demonstrate that the selection of twin variants is strongly dependent on 

the energy consumed to activate the twin, the mean free path that the twin covers and the 

shape of the initial grain. Once a twin forms in a grain, it cuts the grain and thus inevitably 

changes the dimensions of this grain, subdividing the initial grain into three domains. The 

twin can be regarded as a new grain with its own dimension and crystallographic 

orientation. Each time when a twin forms, the size of the parent grain is modified and thus 

the apparent stress on each possible twin variant will change according to the HP law. As a 

result, variants which did not have a sufficient level of stress through the SF can nevertheless 

be active in a newly created domain, despite the orientation of the initial grain not having 

changed. This explains why in equiaxed grains, several variants can appear. However, in the 

elongated grains, although the activation of the twin variant changes the dimension of the 

grain, it does not change the length of the free path of this variant. Thus this variant can form 

repeatedly as long as it does not create conditions more favorable for another variant. In such 

conditions, the twins activated can continue to grow until the whole grain is twinned out.  
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A twin can thus be regarded as a new grain, which is a slightly different point of view than 

that of secondary twin. Generally, this new grain presents an elongated shape (at least at the 

early stage of its formation). Thus there will generally be, one activated variant in this 

existing twin. In fact, this notion strongly depends on the size of the twin, since, it was seen 

that when a grain is fully consumed by twinning there can be several variants thereafter. 

When several twin variants, that do not cross the grain right through, form in one grain, the 

grain is divided into domains. A domain is thus limited by twin boundaries and grain 

boundaries. Each domain has its own crystallographic orientation (generally that of the 

matrix) and its own dimensions. 

Currently, it is not possible to have an absolute prediction because interactions between 

neighbors  (local field stresses and deformations) is not taken into account. This effect (of 

neighbors) is visible in Figure 3b, where the variant CV1 came at the top left of the grain. In 

addition, we have a surface vision of a volume phenomenon. Similarly the comparison with 

experimental measurement is only on a surface (2D) but the twins  growth in the volume of 

the grain (in 3D)  

Conclusion 

With the experimental examination, an energetic twin variant selection rule in titanium 

during deformation has been proposed. The prediction is correct in 85% of the cases, 

whereas that according to Schmid factor only in 50%.  

For the time being, this rule has been verified with the (1012) and (1122) twins that are 

frequent in titanium and titanium alloys. For (1121) twin, if the constants used in the Hall-

Petch relation are determined, this rule can also be applied. The rule can be used to calculate 

the energy consumption for twin formation, i.e. the internal energy consumed to form a 
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twin. The choice of a slip or twinning system is only based on an energy criterion. The 

system used will be that which will make it possible to lower as much as possible the internal 

energy of the material. 

Calculations by ab-initio and EAM methods are undertaken to determine twinning energies. 

These calculations already led to results in the case of crystallographic slip [25]. 

Taking account of the grain size seems to be one of the essential keys to explain the variant 

selection. More precisely, it will introduce the concepts of domain, free path and that of new 

grain. Thus, a twin will be regarded as a – new - grain characterized by its size and 

crystallographic orientation. Accordingly, the concept of secondary twinning could be 

reconsidered. 

**Acknowledgement: 

This work was supported by the Federation of Research for Aeronautic and Space 

(Fédération de Recherche pour l’Aéronautique et l’Espace Thème Matériaux pour 

l’Aéronautique et l’Espace : project OPTIMIST (optimisation de la mise en forme d’alliage 

de titane)). 

  



18 
 

Appendix 

 

𝐗 =  

𝑛1 𝑝1 𝑚1

𝑛2 𝑝2 𝑚2

𝑛3 𝑝3 𝑚3

                                                      (1)  

where the basis vector SPN (Shear Plane Normal) can be obtained by the vector cross 

product of SD (Shear Direction) and HPN (Habit Plane Normal) [26].  

p = n × m =   

𝑛1

𝑛2

𝑛3

 ×  

𝑚1

𝑚2

𝑚3

 =  

𝑚3𝑛2 −𝑚2𝑛3

𝑚1𝑛3 −𝑚3𝑛1

𝑚2𝑛1 −𝑚1𝑛2

                        (2) 

 

By definition, twinned crystals can be obtained by a 180° rotation around either K1 plane 

normal (Type I) or η1 (Type II) of the matrix, shown in Fig. 5.  Thus the coordinate 

transformation between the two crystal bases can be described with following rotation 

matrix.  

 𝐑 𝐫𝟏𝐫𝟐𝐫𝟑 
𝛉 =  

𝑟1
2 1− 𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜃 𝑟1𝑟2 1 − 𝑐𝑜𝑠𝜃 − 𝑟3𝑠𝑖𝑛𝜃 𝑟1𝑟3 1− 𝑐𝑜𝑠𝜃 + 𝑟2𝑠𝑖𝑛𝜃

𝑟2𝑟1 1− 𝑐𝑜𝑠𝜃 + 𝑟3𝑠𝑖𝑛𝜃 𝑟2
2 1− 𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜃 𝑟2𝑟3 1− 𝑐𝑜𝑠𝜃 − 𝑟1𝑠𝑖𝑛𝜃

𝑟3𝑟1 1− 𝑐𝑜𝑠𝜃 − 𝑟2𝑠𝑖𝑛𝜃 𝑟3𝑟2 1 − 𝑐𝑜𝑠𝜃 + 𝑟1𝑠𝑖𝑛𝜃 𝑟3
2 1− 𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜃

        (3)    

Where is the rotation  angle and r (r1, r2, r3) the rotation axis. In our case, 180°; the 

rotation axis is the unit vector normal to K1, as below:   

 𝐑𝐧
𝜃=𝜋 =  

2𝑛1
2 − 1 2𝑛1𝑛2 2𝑛1𝑛3

2𝑛1𝑛2 2𝑛2
2 − 1 2𝑛2𝑛3

2𝑛1𝑛3 2𝑛2𝑛3 2𝑛3
2 − 1

                                     (4)  

With following matrix multiplication we obtain the tensor displacement (𝑒𝑖𝑗
𝑡 ) in the crystal 

basis. 

E=X 𝑒𝑖𝑗
𝑡  X-1                                                                                      (5) 
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Or for secondary twin                    E=RX 𝑒𝑖𝑗
𝑡  X-1 R-1                                                                          (6) 

where 

 𝑒𝑖𝑗
𝑡  =  

0 0 s
0 0 0
0 0 0

                                                               (7) 

which is the tensor displacement in the twin reference frame.  

Eq. (5) expresses the tensor displacement of the primary twin in the crystal basis of the 

parent matrix and Eq. (6) expresses the tensor displacement of the secondary twin in the 

crystal basis of the parent matrix.  
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