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Abstract 

Characterization of chemical heterogeneities such as microsegregation resulting from solidification of 

metallic alloys is most often performed by EDS or WDS microanalysis with spot measurements 

located at corners of a regular grid. Rather than attempting a theoretical treatment of the statistics 

of such analyses, the quality of the procedure has been investigated by implementing 

“measurement” grids on numerical images that mimic solidification structures. Microstructures 

either with no geometrical constraints (uniform distribution of the solid nuclei) or with limited 

constraints that give some periodicity have been investigated. Systematic analysis of the effect of the 

location and size of the “measurement” grid enlightens the procedures which should be followed to 

minimize bias. 
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1. Introduction 

Chemical heterogeneities build-up during casting and solidification of metallic alloys. They mainly 

result from limited cooling rate which inhibits solid-state diffusion, although solute redistribution at 

dendrite tips as well as kinetics undercooling of eutectics may also affect them [1]. These so-called 

microsegregations are of first importance for net-shape castings, as well as for semi-finished parts or 

for weldings (see for instance [2] for a review).  

The first obvious evidence of microsegregation is the presence of a second (eutectic) phase in alloys 

which should be single phase according to the phase diagram. Thus, the first attempts of quantifying 

the level of heterogeneities in a cast alloy were performed by measuring the amount of eutectic or 

second phase [3]. The development of microprobe analysis led to the definition of segregation 

indexes which are still in use [4]. However, the capabilities of microanalysers to be automated 

suggested performing extensive analyses that may give information not only on the second phase(s) 

but also on the matrix. This is particularly important when interest is put not only on solidification 

but also on subsequent solid-state transformations [5,6].  

The most usual way of characterizing microsegregation is to perform successive measurements in 

spot mode (say with a probe diameter of 1 _m) at regular intervals along lines or grids. This method 

was first proposed by Flemings [4] using a nonautomatic microprobe, then extended by Feest and 

Doherty [7] when automatic stages became available. Since then, numerous studies made use of this 

method. However, although automatic, it remains time consuming and data collection does 

therefore generally not exceed 400–600 measurements obtained through overnight sessions using 

either wavelength dispersive spectrometry (WDS) or energy dispersive spectrometry (EDS) analysis. 

Such a number is usually implicitly considered as ‘sufficient’ if dealing with the estimation of second 

phase(s) amount, while the statistical confidence ranges are rarely discussed when concerned with 

the estimation and comparison of chemical composition distribution(s). As a matter of fact, this latter 
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analysis is difficult since the measurement points are in most cases correlated due to the fact that 

lines or grids usually scan a small area with respect to the characteristic size of the solidification 

microstructure. To the best of knowledge of the authors, the problem of statistic validity of 

experimental composition distributions obtained by this method has been considered only by 

Gungor [8], who attempted to apply classical statistics, and by Yang et al. [9], who discussed their 

experimental results with regard to random sampling data recorded on highly regular simulated 

structures. 

Through an approach of the latter type, the present paper points out the statistical bias which can 

result from chemical analyses along regular grids and proposes some rules to minimize them. Firstly, 

different algorithms will be used to simulate more or less ‘realistic’ chemical composition maps 

(images) with a composition distribution based on a classical solidification model. Then, results of 

‘grid’ analyses performed with different ‘experimental’ (sub-sampling) conditions will be compared 

to this reference distribution and the differences will be stressed. The discussion will lastly propose 

some ways of optimizing the analysis procedure. In this preliminary work, only 2D images and binary 

alloys from a simple eutectic system are considered. 

2. Simulation of “chemical” images 

2D composition images of a binary alloy were created by firstly implementing seeds of solid, then 

making them grow into a matrix representing the liquid. Solidification was assumed to follow Scheil’s 

model according to which the composition 𝜔𝑠(all compositions given as weight content) of the solid 

which deposits in case of single-phase precipitation is given as 

 
𝜔𝑠 = 𝑘 𝜔0(1 − 𝑓𝑠)𝑘−1 (1) 

where 𝜔0 is the nominal solute content of the alloy, fs the actual solid fraction and k is the solute 

partition coefficient between solid and liquid (𝑘 = 𝜔𝑠 𝜔0⁄ ), assumed to remain constant over the 

whole solidification range. Solidification ends on a eutectic with an average homogeneous 

composition given by the phase diagram. The data used in the following were inspired by the Al–Cu 

phase diagram and we set 𝜔0 = 0.04, k = 0.17 and 𝜔𝑒𝑢𝑡  = 0.33. According to the Scheil’s model, the 

expected weight fraction of eutectic is feut ≈8%. It will be considered that solid and liquid phases have 

the same density so that weight and volume fractions are equal. The maximum solubility of Cu in the 

matrix is obtained when the eutectic is reached, it is k𝜔𝑒𝑢𝑡  = 0.056. 
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Fig. 1. Schematic showing how are implemented the boxes and the areas for seeding in the case of 
non-random patterns. Dots represent the location of the first point for analysis with a grid having a 
step equal to the box size (see text). 

The algorithms used to built 2D composition images were designed with the APHELION software 

from ADCIS (Caen, France). Fully random to highly regular distributions of solid cells have been 

generated, in order to simulate different types of solidification structures. In a first step, (n+2)×(n + 2) 

‘solid’ seeds (i.e. single pixels) were implemented in a square image of N(1+2/n)×N(1+2/n) pixels, set 

as grey-tone image coded with 256 grey levels (from 0 to 255). Hereafter, this image will be 

referenced as ‘simulation image’. After the generation of the image has been carried out as detailed 

below, only the inner part of this image of size N×N pixels was considered, giving what will be 

referenced as ‘composition image’ below. This procedure was necessary to avoid any bias resulting 

from border effects. Random structures were realized by implementing (n+2)×(n+2) solid seeds at 

random in the image, following a uniform Poisson process. Non-random structures were obtained by 

dividing the images in (n+2)×(n + 2) boxes and implementing one solid seed in the central part of 

each box, as illustrated in Fig. 1. More and more regular patterns were created by decreasing the size 

LC of this central part from the size L of the box to a lower value. Perfectly periodic images are 

obtained when the central part restricts to the central pixel of each box. 

After implementation, the (n+2)×(n + 2) seeds were made to grow (i.e. neighbour pixels were 

attributed to the solid phase) by step-by-step Euclidian dilations with a circle of size one pixel. At 

each dilation step, the new solid fraction fs was measured within a mask of size N×N corresponding 

to the area covered by the future composition image. From this measure, the solute content of the 

solid layer generated in the next dilation step can be calculated using Eq. (1). This growth procedure 

was repeated until the solid fraction was equal or higher than (1−feut). The eutectic composition was 

then attributed to all the remaining (non-transformed) pixels. Several images were generated for 

each set of structure parameters. 

Although APHELION software allows working with greytone images coded with real values of 

composition, we chose to use images in which the grey levels were coded in integer values ranging 

from Gmin =1 to Gmax = 150 for the pro-eutectic solid and equal to 250 for the eutectic phase. The 

main advantage of this coding convention is to allow using the same composition analysis algorithms 

(see next paragraph), whatever the solidification model used to generate the images. This required 



4/12 
 

to convert the solute content 𝜔𝑠 of the proeutectic solid in a grey level G = A𝜔𝑠 + B, where A and B 

are constants calculated as  

 

 

(2) 

For the binary system treated in the present study, A = 30.223 and B =−19.552. It is worthwhile to 

note that the precision loss due to real-to-integer conversion is low with regard to the precision of 

composition measurement. Indeed, in our case the sampling in 150 levels of compositions ranging 

from k𝜔0 = 0.0068 to k𝜔𝑒𝑢𝑡 = 0.0561 corresponds to a composition resolution of about 4×10−4, that 

is much lower than the resolution of EDS or WDS techniques. 
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Fig. 2. Examples of images generated with 12×12 seeds implemented with constraints (a: LC/L = 
0.4; b: LC/L = 0.9) or at random (image c). After generation, the boundary of the images was 
withdrawn to avoid any border effect (see text). For better illustration, the grey scale of the 
images has been changed from linear to logarithmic. 
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Fig. 2 shows examples of composition images 1000×1000 pixels in size obtained with n = 10. Images a 

and b correspond to LC/L equal to 0.4 and 0.9, respectively, image c relates to a random 

implementation. Fig. 3a shows the comparison of grey level cumulative distribution associated with 

three different semiregular images of Fig. 2b type. These distributions (which will be called 

composition profiles afterwards) appeared to be similar for the three images, indicating that the 

ratio between image size and cell density was appropriate. Fig. 3b shows the comparison of four 

composition profiles measured for one perfectly periodic image and one image of each three types 

illustrated in Fig. 2. Once again, these compositions are superimposed, indicating that the different 

generation algorithms did not introduce significant bias with respect to the reference composition 

profile. 

3. “Chemical analysis” of the images 

Different algorithms were developed to simulate the procedure of chemical analysis, either along a 

regular square grid or by random sampling over the composition image. As the typical scale of 

solidification structures is several tens of micrometers while the usual diameter of microprobe spots 

is about 1 m, it is reasonable to consider the grey level associated with one pixel in one 1000×1000 

image as representative of the experimental composition, if neglecting the bias related to the 

measurement technique. Thus, simulation of a spot analysis is equivalent to a sub-sampling over the 

composition images. Square grid sampling was simulated by picking up the values of P×P pixels 

separated by a distance L (in pixels too), while an equivalent random sampling was obtained by 

picking up P2 pixels selected in the image through a uniform random process. 

It is expected that the composition profiles obtained by picking up values on non-random images 

using a regular grid would be biased when the step of the grid equals the size of the box (or in other 

words the average or apparent wavelength of the microstructure). To illustrate this, a regular grid of 

M=10×10 measurement points was implemented with the first point located on the diagonal of the 

first box, at coordinates (given in pixel number) successively set to (0, 0), (10, 10), (20, 20), (30, 30), 

(40, 40) and (50, 50), the latter position corresponding to the centre of the first box (see Fig. 1). Fig. 

4a and b compares the composition profiles thus obtained on two non-random images, with LC/L, 

respectively, equal to 0.4 and 0.9, with the reference profile corresponding to the whole images 

shown with solid line. 
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Fig. 3. (a) Composition profiles obtained on three images of the type Fig. 2b, plotted as grey level 
vs. cumulative fraction of points (i.e. the number of pixels having a grey level lower than a given 
value divided by the total number of pixels of the image). (b) Comparison of the composition 
profiles obtained on one of the three types of images shown in Fig. 2 and on one regular image. 

As the position of the starting point moves from the corner of the box to its centre, the apparent 

fraction of eutectic decreases and the composition profiles shifts to higher value of the cumulative 

fraction. As can be seen when comparing Fig. 4a–b, this effect is stronger the higher the structuring 

of the image. 

4. Discussion 

Solute distributions can also be arranged in classes for statistical analysis as proposed by Gungor [8] 

who used six classes to sort 300 measurement points in the case of (Al) primary phase of a Al–4.5% 

Cu alloy. This is equivalent to a partitioning of the material in sub-phases with a volume fraction 

estimated as 𝑉𝑗
∗ = 𝑉𝑗 𝑃2⁄ , where Pj is the number of measurement points falling in class j and P2 is 

the total number of measurement points. The variance of the maximum likelihood estimate of 

volume fraction 𝑉𝑗
∗ of sub-phase j used by Gungor was expressed as 𝑉𝑎𝑟 (𝑉𝑗

∗) = 𝑉𝑗 𝑃2⁄ , following an 
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analysis proposed by Hilliard and Cahn [10] under the assumption of small value of Vj and of a 

sampling grid coarse enough so that there was no correlation between two successive measurement 

points. Note that without the first assumption, Var (𝑉𝑗
∗) is simply equal to 𝑉𝑗 (1 − 𝑉𝑗) 𝑃2⁄ , which is 

the variance of a binomial distribution. When the grid is not coarse enough, or when its periodicity 

interferes with a wavelength inherent to the microstructure, correlation may show up as was 

illustrated in Fig. 4. In such cases, a classical statistic analysis of experimental data can evidently give 

biased estimations, leading to wrongly reject a distribution model. For instance, for the data 

represented in Fig. 4, the variance of the eutectic fraction estimated from 100 measurement points 

should be 7.4×10−4, leading to a standard deviation of about 3%. It is seen in this figure that the 

variations of the eutectic fraction from one distribution to another may be much higher than this 

value in the case of a non-random structure. This can also occur if the grid is not coarse enough. To 

avoid this bias, it may appear more appropriate to use a random implementation of the 

measurement points as previously done by a few authors [9,11,12]. Hilliard and Cahn [10] showed 

that this choice is associated with an increase of the measurement uncertainty; the variance of 

estimation of area fractions is increased by an additive term related to the fact that a random point 

process can never ensure that all points are uncorrelated. 

However, most micro-analysers only allow regular grids to be computed. The periodicity and the 

large scale of solidification structures lead to suspect that there is no minimal grid size value over 

which it can be ensured that no bias will be introduced by sampling. However, it may be possible that 

exists a value of the ratio between the characteristic size of the solidification microstructure and grid 

step size minimizing this bias. 

From the above analysis, a procedure for the determination of chemical composition distribution 

through spot analysis may be suggested. The first step will be to evaluate the characteristic distance 

over which correlations exist, the so-called range of the image. It is very often possible to obtain an 

image of the area to be analysed, through light or electronic microscopy. It can also often be 

assumed that the grey tones of this image are related to the local chemical compositions, thought 

not necessarily in a linear manner (if it would be the case, the time consuming chemical analysis 

would not be necessary!). It should be noted however that the case where the variation is not 

monotonous is out of the scope of this paper. Such an image can be used to evaluate the range of 

the microstructure through an appropriate statistic approach such as the variogram function. More 

details on this powerful statistic tool can be found elsewhere (for instance in [13]). In case of a grey-

tone image I, the variogram γ(I,  h), where  h is a translation vector between pixels, is measured as  

 

where G(x) and G(x + ℎ⃗ ) are grey-tone values of a couple of pixels separated by ℎ⃗  and 𝑁ℎ⃗⃗  is the 

number of couples available in the image. In case of an anisotropic microstructure, the variogram 

should be recorded in various directions and the largest range should be considered. 

To illustrate the approach, we now considered the different simulated composition images discussed 

before as grey-tones images and calculated their variogram function along the horizontal axis. Fig. 5 

shows the evolution of 𝛾(𝐼, ℎ⃗ ) versus ‖ℎ⃗ ‖ for different types of structures. It can be seen that the 

variogram function stabilises around an asymptote in the case of random structures, while more or 

less marked oscillations appear when some periodicity exists in the composition image. When 

dealing with real microstructures, we propose that the strategy to adopt for chemical analysis will 
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depend on the evolution of the experimental variogram. If it stabilises rapidly, i.e. for a range rather 

small as compared with the size of the scanned region, the best procedure consists to choose a 

regular point grid analysis with a grid step larger than this range. In such a case, the measurement 

points are uncorrelated and the classical tools for statistical analysis can be used. For instance, the 

variance of estimation of the volume fraction of a phase X (eutectic phase or regions within a given 

composition class) is obtained as Var(𝑉𝑗
∗) =  𝑉𝑗 (1 − 𝑉𝑗) 𝑃2⁄ . If the variogram does not stabilise over 

the scanned distance or if it does so at a distance which is too large to allow for a statistically 

pertinent grid analysis over the available region of interest, two strategies can be used: (i) a random 

point analysis, which requires to be able to control the stage displacement software and which is 

probably also more time consuming than a regular grid analysis; (ii) a regular “fine” grid analysis. In 

this latter case, a Khi-2 analysis to be published elsewhere shows that the optimum grid step size 

would likely be equal to DV(p+1/P), where DV is the distance of the first minimum on the variogram 

curve (along x or y), P is the number of grid points along x- or y-axis, and p is an integer chosen to 

explore the largest region as possible. Whatever the procedure, the variance of estimation will be 

larger than in the uncorrelated case and will depend on the ratio of the variogram range over 

number of solidification cells. 
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Fig. 4. Comparison of the composition profiles obtained from points on a regular grid compared to 
the whole distribution shown with solid lines: (a) image made with LC/L = 0.4; (b) image made with 
LC/L = 0.9. The grid had a step equal to the size of the box and started at points located between 
the corner and the centre of the first box (see Fig. 1). 

 

 



11/12 
 

 
Fig. 5. Evolution of the variogram function γ(I,  h) vs. || h||, for different types of microstructures 
(illustrated on the right side) and denoted vor, reg−, reg+ and period from the less to the more 
regular one. 

5. Conclusion 

The above analysis gives hints on how to characterize chemical heterogeneities by means of point 

counting. Emphasis was put on the fact that statistically significant procedures may differ, depending 

on the ratio between the characteristic distance of the heterogeneities under investigation and the 

size of the scanned area. Whilst this analysis was illustrated on simulated images, there are a number 

of complicating features in case of actual analysis which should be investigated further. In the above 

analysis, itwas assumed that measurements are not biased, while actual counting may be biased in 

several ways. For example, measurements made on multi-phase areas (e.g. eutectic) or close to a 

phase interface will certainly not give significant estimates. Such a bias may be easily circumvented in 

the case of a monotonous evolution of the composition with solid fraction. 

On the contrary, analysis of data on multi-phase material with non monotonous change of the solid 

composition should need further assumptions. The physical noise associated with X-ray emission may 

also lead to part of the data being sorted in a wrong class. This has been shown to be one good 

reason for the negative curvature at low solid fraction on the curves composition versus solid 

fraction [14], thought variation in the size of the microstructure is also expected to lead to a similar 

effect when solid state back diffusion is not negligible [15]. Both of these effects could be easily 

studied on images simulated as in the present study and then appropriately modified. 
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