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Abstract: We consider a specific family of one-dimensional McKean-Vlasov stochastic differential
equations with no potential term and with interaction term modeled by an odd increasing poly-
nomial. We assume that the observed process is in stationary regime and that the sample path is
continuously observed on a time interval [0, 2T ]. Due to the McKean-Vlasov structure, the drift
function depends on the unknown marginal law of the process in addition to the unknown param-
eters present in the interaction function. This is why the exact likelihood function does not lead to
computable estimators. We overcome this difficulty by a two-step approach leading to an approx-
imate likelihood function. We then derive explicit estimators of the coefficients of the interaction
term and prove their consistency and asymptotic normality with rate

√
T as T grows to infinity.

Examples illustrating the theory are proposed.
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1. Introduction

We consider the parametric inference for ergodic McKean-Vlasov stochastic differential equations (SDE).
These SDEs with coefficients depending both on the state of the process and on its current distribution
were first described by McKean [41] to model plasma dynamics. They appear when describing the limit
behavior of a large population of interacting particles with an interaction function between the dynamical
systems.
A wide field of research is devoted to developing probabilistic tools for the study of interacting particles
and their limits (propagation of chaos) (see e.g. among many references [23], [45], [5], [6], [42], [12]; [51]
and [37] for books). In [29], small noise properties and large deviations results for these processes are
investigated.

The statistical inference for models of interacting particles has been little studied. But, these models
were recently shown to describe observable dynamics in a wide variety of disciplines, where particles may
represent atoms, cells, animals, neurons, people, rational agents, opinions, financial assets: see e.g. [7] for
the modeling of granular media, [3] for neurosciences, [46], [11] for population dynamics and ecology, [4],
[22] for epidemics dynamics, [28] and the references therein for finance. Therefore, the statistical inference
for models of interacting particles has become an important issue.
Two axes of research can be considered: inference based on the observation of the dynamics of the N
interacting particles, inference based on the limiting process (i.e. McKean-Vlasov SDE), which describes
the typical behaviour of one isolated particle among others. As far as the first approach is concerned, a
first result was obtained by [34] who studied parametric inference for a model with linear dependence on
the parameters in the drift term. It was later extended by [13], and by [10], [15] for a time-dependent
model. Parametric inference based on martingale estimation functions was investigated in [48], a LAN
property was recently proved for these systems ([20]); inference based on the empirical distributions of
the particle system was studied in [28]. [19] are concerned with nonparametric inference for the drift term
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in a general model. Recently, [8] study the semi-parametric estimation for a drift term containing both
a parametric and a nonparametric part, [2] the inference from discrete observations and [39] and [40]
nonparametric inference from i.i.d. repetitions of interacting particle systems.
However, assuming that the whole N -particle system is observed might be too demanding and unrealistic.
Hence, using the convergence, as N →∞ of the N - particle system to McKean-Vlasov SDEs ( propagation
of chaos), makes worthy of interest the study of inference for these SDEs. This is the line of research
developed here.

More precisely, we consider a McKean-Vlasov SDE having the specific and classical form

dXt = µ(t,Xt)dt+ σdWt, X0 = η, with (1)

µ(t, x) = V (x)−
∫
R

Φ(x− y)u(t, y)dy = −Φ ? u(t, .)(x), u(t, y)dy = L(Xt), (2)

where L(Xt) denotes the law of Xt with density u(t, .), V : R → R, Φ : R → R, (Wt) is a standard
Brownian motion, η a random variable independent of (Wt). The potential term V describes the geometry
of the space. The term Φ derives from the interaction between particles in the original system of particles.
These equations differ from classical SDEs because of this interaction term which contains the current
distribution of the state variable. Parametric inference studies for such models have started under different
asymptotic frameworks. [26] consider the parametric inference for model (1) from a continuous observation
on a fixed time interval [0, T ] of a single path and of n i.i.d paths in the asymptotic framework σ tends
to 0. In [27], the parametric inference is studied from the continuous observation of a single path in the
double asymptotic σ → 0 and T → +∞. [50] study i.i.d. observations of (1) and build an approximation
of the likelihood to obtain offline and online estimations.
In this paper, we are concerned with the parametric inference based on a continuous observation of a single
path of (1)-(2) on a time interval [0, 2T ] with asymptotic properties as T tends to infinity. As studied
in numerous papers (see e.g. [5], [12], [42], [39], [40]), we consider here models with no potential term
(V ≡ 0) and odd interaction term which constitute an important class of McKean-Vlasov SDEs both for
theoretical properties and for applications. With a nul potential term, considering an odd interaction term
ensures the existence and uniqueness of solutions to (1) (see e.g. [24], [5], [42], [30], [12]) and existence of
invariant distributions for the model (see e.g. [6], [52], [30], [12], [21]).

Statistical inference for ergodic diffusion processes has a longstanding history. Among many references,
we can quote the books of [38], [33], [36], [32]. There are also lots of papers concerning parametric
or nonparametric inference for ergodic diffusions based on continuous or discrete observations: for one
dimensional diffusions, e.g. [9], [35], [31], [17], [16], [14]; for multi-dimensional diffusions, e.g. [18], [47].
Ergodic diffusions with jumps are considered in [43], [44], [49], [1].
To our knowledge, except in [50], the inference for McKean-Vlasov SDEs in stationary regime has not
been investigated. The statistical problem is very different from the case of usual SDEs. For inference,
the main difficulty lies in the presence of L(Xt) in the drift term. This is why, as in [8], we consider a
specific family of interaction functions which are odd polynomials. More precisely, we consider the one-
dimensional process defined by (1),(2) with V ≡ 0, Φ odd and increasing and µ(t, x) = µf (t, x) depending
on an unknown parameter f , i.e.

dXt = µf (t,Xt)dt+ σdWt, where (3)

µf (t, x) = −
∫
R

Φ(f , x− y)u(t, f , y)dy = −Φ(f ,.) ? u(t, f , .)(x), u(t, f , y)dy = L(Xt), (4)

(Wt) is a standard Brownian motion, σ is known and f is an unknown parameter. A solution of (3)-(4)
is a couple ((Xt, u(t, f , .), t ≥ 0) composed with a process (Xt) and a family of distributions (u(t, f , x)dx)
satisfying (3)-(4). When defined, (Xt) is a time-inhomogeneous Markov process which admits stationary
distributions.
As Φ is odd, whatever the initial distribution, the process (Xt) solving (3)-(4) has a constant expectation
m (see Section 2). Contrary to classical SDEs, stationary distributions of model (3)-(4) are not uniquely
determined except if the expectation of (Xt) is specified. Under additional assumptions, stationary dis-
tributions for (3)-(4) exist and satisfy: If E(Xt) = 0, (3)-(4) admits a unique invariant distribution with
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symmetric density u0(f , x); if E(Xt) = m, (3)-(4) admits a unique invariant distribution with density
um(f , x) = u0(f , x−m).

When (Xt) is in stationary regime, L(Xt) does no longer depend on t and is equal to the stationary
distribution u0(f , x)dx in centered stationary regime and to um(f , x)dx = u0(f , x −m)dx in stationary
regime with expectation m.
In this paper, we assume that the interaction Φ satisfies

Φ(f , x) =

k−1∑
j=0

f2j+1x
2j+1, f1 > 0, f2j+1 ≥ 0, j = 1, . . . , k − 1, where f = (f1, f3, . . . , f2k−1). (5)

Then, (Xt) satisfying (3)-(4)-(5) has stationary distributions. We first study the estimation of f when
(Xt) is in centered stationary regime (X0 ∼ u0(f , x)dx). Then, we study the joint estimation of (m, f)
when the process is in non centered stationary regime (X0 ∼ um(f , x)dx = u0(f , x−m)dx). Because of the
specific form of the interaction function Φ (polynomial), the convolution product Φ(f , .) ? u0(f , .) (resp.
Φ(f , .) ?um(f , .)) is explicitly given as a function of f and the moments of the invariant distribution. This
strongly simplifies the drift term. However, these moments have no explicit expression as functions of f
and m. Therefore, the exact log-likelihood can be studied theoretically but does not lead to computable
estimators.
Thus we first build estimators of the stationary distribution moments based on the sample path (Xt, t ∈
[0, T ]). Then, to get an explicit contrast, we plug these moment estimators into the exact conditional
log-likelihood of (3)-(4) given XT , based on the sample (Xt, t ∈ [T, 2T ]). We prove that these estimators
are consistent and asymptotically Gaussian with rate

√
T .

The paper is organized as follows. In Section 2, we detail the assumptions for existence and uniqueness
of solutions and existence of invariant distributions. In particular, we describe these invariant distributions
(Proposition 2.1). In Section 3 (resp. Section 4), we estimate f when the observed process is in centered
stationary regime (resp. non centered stationary regime). We study the exact likelihood and prove that
the maximum likelihood estimator is consistent and asymptotically Gaussian with rate

√
T (Proposition

3.2) . However, this remains completely theoretical and the estimators are numerically intractable. Next,
we study computable estimators of f for the centered process and for the non centered process. First, we
rely on a two-step approach. We use the sample path on [0, T ] to estimate moments of the stationary
distribution. Then, estimators are built using the resulting approximation of the likelihood on [T, 2T ].
The main results are stated in Theorem 3.1 and Theorem 4.1. Second, we also build empirical estimators
based on some specific properties of model (3). Examples illustrating the methods are given. Section 5
contains concluding remarks. Proofs are gathered in Section 6. In the Appendix (Section 7), properties
of the infinitesimal generator and a central limit theorem for ergodic diffusions are recalled.

2. Probability preliminaries for general interaction term.

In this section, we give sufficient conditions for existence and uniqueness of a solution to (3)-(4) and
existence and uniqueness of a stationary distribution. We explain how the stationary distribution with
specified expectation may be computed by an implicit fixed point equation. This is different from the case
of classical SDEs. We describe the properties of (3)-(4) when the initial variable follows the stationary
distribution.

2.1. Assumptions for a general interaction term Φ

The following assumptions may be found in [5], [42] or [12].

• [H1] Φ is odd and increasing.
• [H2] Φ is locally Lipschitz with polynomial growth, i.e. there exist c > 0, ` ∈ N∗ such that ∀x, y ∈
R, |Φ(x)− Φ(y)| ≤ c|x− y|(1 + |x|` + |y|`).



/Inference for ergodic McKean-Vlasov SDE 4

• [H3] Φ is C1(R) and there exists a constant λ > 0 such that ∀x, Φ′(x) ≥ λ.
• [H4] Φ′ has ` polynomial growth: ∃C > 0, ` ∈ N?, ∀x ∈ R, |Φ′(x)| ≤ C(1 + |x|`).

Note that, under [H2], for all x, |Φ(x)| ≤ c|x|(1 + |x|`). Therefore, there exists c1 > 0 such that |Φ(x)| ≤
c1(1 + |x|`+1) and this implies∫

|Φ(x− y)|u(t, y)dy) ≤ c1(1 + 2`|x|`+1 + 2`
∫
|y|`+1u(t, y)dy).

So Φ ? u(t, .) is well defined as soon as u(t, .) has a moment of order `+ 1.

Under [H1]-[H2], if EX2(`+1)2

0 < +∞, equation (3) admits a unique strong solution. If EX2n
0 < +∞,

then supt≥0 EX2n
t < +∞ (see Theorem 3.1 and Proposition 3.10 in [5], Theorem 2.13 in [29].

Now the fact that there is no potential term and that Φ is odd has the following consequence.

Lemma 2.1. Assume [H1]-[H3]. Let (Xt, u(t, .)) be a solution of (3)-(4). Then, for all t, EXt = EX0.
Moreover, setting Yt = Xt − E(X0) and v(t, .) = L(Yt), (Yt, v(t, .)) is also a solution of (3)-(4).

Proof By (3)-(4),

E(Xt) = E(X0)−
∫ t

0

dsE
∫

Φ(Xs − y)u(s, y)dy).

Since Φ is odd, taking (Xt) an i.i.d. copy of (Xt), E
∫

Φ(Xt − y)u(t, y)dy = EΦ(Xt −Xt) = 0. Thus,

∀t, E(Xt) = E(X0). (6)

This holds whatever the initial variable.
Now, considering Yt = Xt − E(X0) and let v(t, y)dy be the distribution of Xt − E(X0), we have

Xt − E(X0) = X0 − E(X0)−
∫ t

0

ds

∫
Φ(Xs − E(X0)− (y − E(X0)))u(s, y)dy + σWt

= X0 − E(X0)−
∫ t

0

ds

∫
Φ(Xs − E(X0)− z)u(s, z + E(X0))dz + σWt

= X0 − E(X0)−
∫ t

0

ds

∫
Φ(Xs − E(X0)− z)v(s, z)dz + σWt. �

This is why the specification of the process expectation is important especially for invariant distributions
(see below).
Finally, let us state another useful property associated with this equation.

Lemma 2.2. Assume [H1]-[H3]. Consider a symmetric probability density u such that
∫∞

0
y`+1u(y)dy <

+∞. Then, Φ ? u is well-defined and

• Φ ? u is odd.
• For all x,

∫ x
0

Φ ? u(y)dy ≥ λx
2

2 + C, for some constant C.

2.2. Stationary distributions

2.2.1. Existence and uniqueness

By Lemma 2.2 in [30], if there exists an invariant density whose (8(` + 1)2)-moment is finite, then it
satisfies the implicit fixed point equation

u(x) =
exp (−2σ−2

∫ x
0

Φ ? u(y)dy)

ν(u)
(7)
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where, by Lemma 2.2, ν(u) below is well defined and finite,

ν(u) =

∫
R

exp (−2σ−2

∫ x

0

Φ ? u(y)dy)dx < +∞. (8)

Equation (7) does not possess a unique solution unless its expectation is specified. In other words, it has
a unique solution with a given expectation.
As an example, consider the simple case Φ(x) = x, then Φ ? u(x) =

∫
(x − y)u(y)dy = x − m with

m =
∫
yu(y)dy. Thus,

u(x) = um(x) ∝ exp [− 1

σ2
(x2 − 2mx)] ∝ exp [− 1

σ2
(x−m)2].

Hence, the stationary distribution depends on the parameter m. This is consistent with the fact that
equation (3) with Φ(x) = x writes

Xt = X0 −
∫ t

0

(Xs − EXs)ds+ σWt = X0 −
∫ t

0

(Xs −m)ds+ σWt, where, for all t,m = EX0 = EXt.

For this reason, many authors ([12], [5], [42]) consider equations (3)-(4) under the assumption that
EXt = 0 and prove the following result.

Proposition 2.1. (see [12], [5], [42]).
(i) Under [H1]-[H4], there exists a unique symmetric density function u(x) implicitely defined by

u(x) =
1

ν(u)
exp (−2σ−2

∫ x

0

Φ ? u(y)dy) (9)

which satisfies (see [H3] for λ and Lemma 2.2):

u(x) ≤ 1

ν(u)
exp [−σ−2λx2]. (10)

(ii) If u(.) is the density of X0 and (Xt) is the unique solution of (3)-(4), then u(.) is the density of Xt,
for all t ≥ 0.
(iii) For any initial law satisfying the moment condition of order 8(` + 1)2, L(Xt) converges to the in-
variant symmetric law u as t tends to infinity.

Consequently, equation (3)-(4) admits a unique invariant density um(x) such that
∫
yum(y)dy = m.

This density is equal to um(x) = u(x−m) and is thus symmetric around m. By (10), u admits moments
of any order.

2.2.2. Ergodicity

Let us now point out the following properties of the process (Xt) in stationary regime. The process
defined in (3) is a time-inhomogeneous Markov process. However, when (Xt) is in stationary regime
(with expectation m), (Xt) is identical to a time-homogeneous diffusion process.
Indeed, assume that the initial variable η has distribution um(x)dx then, the density u(t, y)dy of Xt

defined in (3)-(4), satisfies
∀t ≥ 0, u(t, y) = um(y),

so that the following holds.
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Proposition 2.2. Consider the stochastic differential equation

dYt = b(Yt)dt+ σdWt, b = −Φ ? um, (11)

where um(.) = u0(.−m) and u0 is the unique symmetric solution of (9).
Then (Yt) is a positive recurrent diffusion whose stationary distribution has density um(x).
If Y0 ∼ um(x)dx, it is ergodic. Moreover,
- If Y0 6= X0, (Yt) 6≡ (Xt).
- If Y0 = X0 = η ∼ um(x)dx, then Xt = Yt for all t ≥ 0.

Thus, when X0 ∼ um(x)dx, (Xt) is equal to the solution of a classical SDE in stationary regime and is
ergodic. Let us stress the importance of this result. It allows to apply known results for classical ergodic
SDEs. Consequently, we rely strongly on results stated in [25] which in particular sums up properties of
the infinitesimal generator of ergodic diffusions. Thus, a law of large numbers holds for (Xt).
If f satisfies

∫
|f(x)|um(x)dx < +∞, applying the ergodic theorem yields

1

T

∫ T

0

f(Xs)ds→a.s.

∫
f(x)um(x)dx. (12)

The central limit theorem associated with this result is stated and detailed in the Appendix, together
with important properties of the infinitesimal generator for stationary diffusions.

3. Parametric inference in centered stationary regime.

From now on, we consider that (Xt) is defined by (3)-(4)-(5) and recall that σ is known.
In this section, we assume that (Xt) is in centered stationary regime. Therefore, we make here the
assumptions:

• [H5] Φ(x) = Φ(f , x) =
∑k−1
j=0 f2j+1x

2j+1, f1 > 0, f2j+1 ≥ 0, j = 0, . . . , k − 1.
• [H6] X0 = η ∼ u0(f , x)dx,

where u0(f , .) is the unique centered invariant density. Recall that u0(f , .) is symmetric. For V a vector
or M a matrix, denote by V ′ or M ′ the transposed vector or matrix.
We consider the estimation of the unknown parameter f = (f1, f3, . . . , f2k−1)′ based on the continuous
observation of (Xt, t ≤ 2T ).
We first describe some analytical properties of the drift term of (Xt), which leads to explicit expres-
sions of µf (t, x) in terms of moments of the stationary distribution (Section 3.1). Then, we study the
theoretical likelihood (Section 3.2). Under [H5-[H6], Maximum Likelihood Estimators (MLE) exist but
are intractable. Therefore, we develop in Section 3.3, a two-step approach, estimating first the empirical
moments of u0(f , .) from the observation of (Xt) on [0, T ], and second building an approximate likelihood
based on (Xt), t ∈ [T, 2T ] which relies on these moments estimators. Finally, using another specific prop-
erty of (Xt), we propose in Section 3.4 another inference method, which could serve to derive preliminary
estimators. Examples are finally given in Section 3.5.

3.1. Analytical properties of the drift of (Xt)

Under[ H5]-[H6] assumptions [H1]-[H4] are satisfied and Equation (3)-(4) admits an invariant distribution
which is unique when its expectation is specified. Indeed, according to Proposition 2.1, Equation (9) has
a unique symmetric density solution that we have denoted u0(f , .). Note that u0(f , .) depends on f and
σ. As σ is known, in what follows, we omit the dependence w.r.t. σ in the notations. Define, for j ≥ 0,

γ2j(f) = γ2j =

∫
R
x2ju0(f , x)dx. (13)
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Set for x ∈ R, define the vector
zk(x) = (x, x3 . . . , x2k−1)′. (14)

Proposition 3.1. Under [H5]-[H6], the drift µf (t, x) = −Φ(f , .) ? u0(f , .)(x) is an odd polynomial such
that

µf (t, x) = b(f , x) =

k−1∑
i=0

b2i+1(f)x2i+1 = b(f)′zk(x), where (15)

b(f) = (b2i+1(f), i = 0, . . . , k − 1)′ (16)

b2i+1(f) = −
k−1∑
j=i

(
2j + 1

2(j − i)

)
γ2(j−i)(f)f2j+1, 0 ≤ i ≤ k − 1

where for p ≤ n,
(
n
p

)
is the binomial coefficient.

Thus,
b(f) = Mk(f)f (17)

where Mk(f) = (Mk(f , i, j)0≤i,j≤k−1) is the k × k upper triangular matrix given by

Mk(f , i, j) = 0 for i > j,Mk(f , i, j) = −
(

2j + 1

2(j − i)

)
γ2(j−i)(f) for i ≤ j. (18)

Note that γ0(f) = γ0 = 1 so that Mk(f , i, i) = −1 and that Mk(f) depends on f only through the
moments (γ0, γ2(f), . . . , γ2(k−1)(f)).
The coefficients of b(f , x) are explicit functions of f and of the moments of u0(f , .). We define for v =

(v0, v1, . . . , vk−1)′ a vector of Rk, denote M
(v)
k = (M

(v)
k (i, j))0≤i,j≤k−1 with

M
(v)
k (i, j) = 0 for i > j, M

(v)
k (i, j) = −

(
2j + 1

2(j − i)

)
vj−i for i ≤ j. (19)

Note that Mk(f) defined in (18) satisfies Mk(f) = M
(γ)
k where γ = (γ0, γ2(f), . . . , γ2(k−1)(f))′.

Proof of Proposition 3.1. First, since u0(f , .) is symmetric, odd moments of u0(f , .) are nul. Therefore,

Φ(f , .) ? u0(f , x) =

k−1∑
j=0

f2j+1

∫
(x− y)2j+1u0(f , y)dy =

k−1∑
j=0

f2j+1

j∑
`=0

(
2j + 1

2`

)
x2j+1−2`γ2`(f)

=

k−1∑
j=0

f2j+1

j∑
i=0

(
2j + 1

2(j − i)

)
x2i+1γ2(j−i)(f) =

k−1∑
i=0

x2i+1
k−1∑
j=i

(
2j + 1

2(j − i)

)
γ2(j−i)(f)f2j+1. �

Examples 3.1. • For k = 1, b(f , x) = −f1x, M1 = −[1].

• For k = 2, b(f , x) = −[(f1 + 3γ2(f)f3)x+ f3x
3], M2(f) = −

(
1 3γ2(f)
0 1

)
.

• For k = 3, b(f , x) = −[(f1 + 3γ2(f)f3 + 5γ4(f)f5)x+ (f3 + 10γ2(f)f5)x3 + f5x
5],

M3(f) = −

1
(

3
2

)
γ2(f)

(
5
4

)
γ4(f)

0 1
(

5
2

)
γ2(f)

0 0 1

 .
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Remark 3.1. Computation of the stationary distribution
As a consequence of Proposition 3.1, the symmetric stationary distribution u0(f , .) of (3)-(4)-(5) can be
computed numerically (see e.g. [5]). Indeed, using (13),

u0(f , x) =
1

ν(f , u0)
exp [− 2

σ2
F (x)]dx, ν(f , u0) =

∫
exp [− 2

σ2
F (x)]dx

F (x) =

k−1∑
i=0

x2i+2

2i+ 2

k−1∑
j=i

(
2j + 1

2(j − i)

)
γ2(j−i)(f)f2j+1 = Fγ(x).

Therefore, the stationary distribution only depends on its moments γ2j(f); j = 1, . . . , k − 1.
For each f , the vector γ is the unique solution of the system:

γ2j

∫
exp [− 2

σ2
Fγ(x)]dx =

∫
x2j exp [− 2

σ2
Fγ(x)]dx, j = 1, . . . , k − 1,

and can therefore be numerically computed. Once Fγ is obtained, u0(f , .) may also be numerically obtained.

3.2. Theoretical likelihood inference

Let us introduce some notations for this section. Let C([0, 2T ],R) denote the space of continuous functions
defined on [0, 2T ] and C2T the associated Borel σ-algebra. The parameter set F is the subset of Rk defined
by

F = {f ∈ Rk such that f ′ = (f1, f3, . . . , f2k−1), f1 > 0, f2j+1 ≥ 0, j = 0, . . . , k − 1}. (20)

Let f0 denote the true value of the parameter and Pf the distribution on (C([0, 2T ], C2T ) of (Xt) defined
by (3)-(4)-(5). Here, we look at maximum likelihood estimation based on (Xt, t ∈ [0, T ]). The Girsanov
formula holds and the conditional log-likelihood of (Xt, t ∈ [0, T ]) given X0 is given by, using (15):

`T (f) = σ−2[

∫ T

0

b(f , Xs)dXs −
1

2

∫ T

0

b2(f , Xs)ds]. (21)

Define the estimator ̂̂
fT = arg max

f∈Rk
`T (f). (22)

This estimator is purely theoretical as it is not given by explicit equations due to the presence of the
moments of u0(f , .) in the drift b(f , x) (see Proposition 3.1). Note that, contrary to the MLE for classical

diffusions,
̂̂
fT depends on σ2 because of the presence of the moments of the stationary distribution in the

drift.

Proposition 3.2. Assume [H5]-[H6]. Then, under Pf0 , the following holds:

1

T
(`T (f)− `T (f0))→ − 1

2σ2

∫
(b(f , x)− b(f0, x))2u0(f0, x)dx := − 1

2σ2
K(f0, f) a.s.

The identifiability assumption {K(f0, f) = 0⇒ f = f0} is satisfied.

If moreover the parameter set F is compact, the maximum likelihood estimator
̂̂
fT is consistent.

The matrix I(f0) = (
∫
R

∂b
∂f2i+1

(f0, x) ∂b
∂f2j+1

(f0, x)u0(f0, x)dx)0≤i,j≤k−1 is invertible and under Pf0 ,

√
T (
̂̂
fT − f0)→L N

(
0, σ2I(f0)−1

)
.

According to Proposition 2.2, when (Xt) is in stationary regime, Xt ≡ Yt defined in (11) which is
a classical ergodic diffusion. Therefore, the proof is classical. The difficulty here lies in the fact that
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the drift has a complex dependence with respect to the unknown parameters so that the estimator
̂̂
fT is

numerically intractable (see e.g. Section 3.5, Example 2). In particular, the partial derivatives ∂b
∂f2i+1

(f , x),

∂2b
∂f2i+1∂f2j+1

(f , x) are non linear w.r.t. f as b(f , x) includes in its definition f and the moments γ2i(f) of

u0(f , x) which depend on f . Thus the partial derivatives also depend on the partial derivatives of γ2i(f)
w.r.t. f .

3.3. Explicit estimators using empirical moments.

We assume here that the sample path (Xt) is continuously observed throughout the time interval [0, 2T ].
We use the first half of the sample path, (Xt, t ∈ [0, T ]), to build empirical estimators of the moments
of u0(f , .), and the second half, (Xt, t ∈ [T, 2T ]), to define a contrast in order to estimate the coefficients
b2i+1 in the drift b(f , x). Finally, we deduce estimators for the parameter f .

3.3.1. Estimation of the moments of the stationary distribution based on (Xt, t ∈ [0, T ])

Let us consider the empirical estimators of the moments of u0(f , .) built using the sample path (Xt, t ∈
[0, T ]), defined by

γ̂2j(T ) =
1

T

∫ T

0

X2j
s ds, j ≥ 1 (we set γ̂0(T ) = γ0 = 1). (23)

The following holds.

Proposition 3.3. Assume [H5] and [H6]. As T tends to infinity, under Pf , for ` ≥ 1, γ̂2`(T ) →a.s.

γ2`(f) =
∫
x2`u0(f , x)dx. Moreover,

√
T (γ̂2`(T )− γ2`(f)) =

σ√
T

∫ T

0

g′`(f , Xs)dWs + oP (1), (24)

where for 1 ≤ ` ≤ k − 1,

g′`(f , x) = −2σ−2[u0(f , x)]−1

∫ x

−∞
(y2` − γ2`(f))u0(f , y)dy (25)

satisfies
∫

(g′`(f , x))2u0(f , x)dx < +∞. Consequently, for all k, the vector (
√
T (γ̂2`(T ) − γ2`(f)), ` =

0, 1, . . . , k − 1) converges in distribution, under Pf , to
Nk−1(0, σ2V (f)) with V (f) = (Vi,j(f))0≤i,j≤k−1 and Vi,j(f) =

∫
g′i(f , x)g′j(f , x)u0(f , x)dx.

Remark 3.2. The results of Proposition 3.3 relies on the property that, for all `, the function −(x2` −
γ2`(f)) belongs to the range of L, generator of (Yt) defined in (11). For this, we use a result stated in [25]
for SDEs having locally Lipschitz coefficients with linear growth. But the only requirement of the proof is
that the SDE admits a unique strong solution and an invariant distribution. Therefore, it applies here.
This point is detailed in Section 7.

3.3.2. Estimation of b(f) = (b2i+1(f), i = 0, · · · , k − 1)′

The drift function b(f , x) of (Xt) is as an odd polynomial of degree 2k − 1 w.r.t. x (see (15)):

dXt = b(f , Xt)dt+ σdWt, b(f , x) =

k−1∑
i=0

b2i+1(f)x2i+1, X0 ∼ u0(f , x)dx.
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The vector b(f) = (b2i+1(f), i = 0, . . . , k − 1)′ is given in Proposition 3.1. Consider the contrast function
which is the log-likelihood given XT of the process (Xt, t ∈ [T, 2T ]),

UT (b(f)) =
1

σ2

(∫ 2T

T

[

k−1∑
i=0

b2i+1(f)X2i+1
s ]dXs −

1

2

∫ 2T

T

[

k−1∑
i=0

b2i+1(f)X2i+1
s ]2ds

)
. (26)

We define the estimator b̂(f)T of b(f) by maximizing UT with respect to b(f) = (b2i+1(f), i = 0, . . . , k−1)′.
For this, we set, using (14),

ZT =

∫ 2T

T

zk(Xs)dXs. (27)

Then, b̂(f)T satisfies

ZT = ΨT b̂(f)T , (28)

where

ΨT =

∫ 2T

T

zk(Xs)[zk(Xs)]
′ds =

(∫ 2T

T

X2i+2j+2
s ds

)
0≤i,j≤k−1

. (29)

Let us define, using (13),
Ψ(f) = (γ2(i+j+1)(f))0≤i,j≤k−1. (30)

Proposition 3.4. Assume [H5]-[H6]. Under Pf0 , the matrix ΨT /T converges a.s. to Ψ(f0). The matrix

Ψ(f0) is invertible, b̂(f)T = [ΨT ]−1ZT converges a.s. to b(f0) and
√
T (b̂(f)T − b(f0)) converges in

distribution to the Gaussian law Nk(0, σ2Ψ(f0)−1).

3.3.3. Estimation of f

Let us come back to the estimation of f . For this, we rely on relations (16)-(17) (see Proposition 3.1)

which links f to b(f): b(f) = Mk(f)f . It suggests to consider the matrix M̂k using (19) where the unknown
moments of u0(f , .) are replaced by their consistent estimators built on the observation of (Xt) on [0, T ]
given above:

M̂k = M
(γ̂0(T ),γ̂2(T ),...,γ̂2(k−1)(T ))

k = (M̂k(i, j))0≤i,j≤k−1, with (31)

M̂k(i, j) = −
(

2j + 1

2(j − i)

)
γ̂2(j−i)(T )1i≤j . (32)

It follows from Proposition 3.3 that M̂k converges a.s. to Mk(f) and that the whole vector
√
T ((M̂k(i, j)−

Mk(f , i, j))0≤i,j≤k) is asymptotically Gaussian.

This justifies the definition of f̂T by (see (28)):

f̂T = (M̂k)−1b̂(f)T = (M̂k)−1Ψ−1
T ZT = (ΨT M̂k)−1ZT . (33)

Let us stress that, as for the theoretical maximum likelihood estimator (22), this new estimator does not
depend on σ.

Theorem 3.1. Under the assumptions [H5]-[H6], the estimator f̂T is consistent and satisfies

√
T (f̂T − f)→L Nk(0, σ2Σ(f)) with Σ(f) = Σ1(f) + Σ2(f) (34)

Σ1(f) = M−1
k (f)Ψ−1(f)(M−1

k (f))′; Σ2(f) =

∫
β(f , x)β′(f , x)u0(f , x)dx (35)

with, using definitions (18), (19) and (30),

β(f , x) = Mk(f)−1M
(v(f ,x))
k f with v(f , x) =

(
0, g′1(f , x), . . . , g′k−1(f , x)

)
. (36)
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By Proposition 3.4, b̂(f)T converges a.s. to b(f) and, by Proposition 3.3, M̂k to Mk(f) so that f̂T is
consistent. For the asymptotic normality, two terms appear. Heuristically, the first term Σ1(f) derives
from the change of variable b(f) → f and the second one Σ2(f) from the estimation of the moments
of u0(f , .) and the plug-in device in the estimation. The proof, detailed in the appendix, relies on the
decomposition in the two main terms

Ψ(f)Mk(f)
√
T (f̂T − f) =

σ√
T

∫ 2T

T

zk(Xs)dWs −Ψ(f)
√
T (M̂k −Mk(f))f + oP (1).

According to Proposition 3.3,
√
T (M̂k(i, j) −Mk(f , i, j)) = − σ√

T

(
2j+1

2(j−i)
) ∫ T

0
g′2(j−i)(f , Xs)dWs + oP (1),

the second term depends on (Xt, t ≤ T ) while the first term depends on (Xt, T ≤ t ≤ 2T ). These two
terms are conditionally independent and lead to the two quantities appearing in Σ(f).

3.4. Another inference method.

We assume that the observation is (Xt, t ∈ [0, T ]). This method is based on a special property of model
(3)-(4)-(5). There is an explicit relation linking the vector f and the vector (γ2i(f), i = 0, . . . , k − 1)′.
Indeed, writing the Ito formula yields

X2`
t = X2`

0 +2`

∫ t

0

X2`−1
s

− k−1∑
j=0

f2j+1(

j∑
m=0

(
2j + 1

2m

)
X2j+1−2m
s γ2m(f))ds+ σdWs

+σ2`(2`−1)

∫ t

0

X2`−2
s ds.

Taking expectations and using that the process is in centered stationary regime yields

∀t ≥ 0, 0 = −2`t

k−1∑
j=0

(
j∑

m=0

(
2j + 1

2m

)
γ2m(f)γ2(j+`−m)(f)

)
f2j+1 + σ2`(2`− 1)tγ2`−2(f).

We set:
B(f) := (σ2(2`− 1)γ2`−2(f), ` = 1, . . . , k)′, and (37)

Γ(f) = (Γ`j(f))1≤`≤k,0≤j≤k−1 with Γ`,j(f) = 2

j∑
m=0

(
2j + 1

2m

)
γ2m(f)γ2(j+`−m)(f). (38)

Then, B(f) = Γ(f)f . The matrix Γ(f) is necessarily invertible.
Substituting in (37) and (38) each moment by its empirical estimator (23) yields the two estimators

B̂T , Γ̂T of B(f) and Γ(f) and the relation defining the moment estimator of f :

fT = (Γ̂T )−1B̂T . (39)

Proposition 3.5 states that it is consistent and asymptotically Gaussian. Let us stress that, contrary to
the estimator f̂T , the estimator fT has the same drawback as the MLE (22): it explicitely depends on σ2

and thus requires its precise knowledge.

Proposition 3.5. Assume [H5]-[H6]. The estimator defined by (39) is consistent and such that
√
T (fT −

f) converges in distribution to N (0,K) where K has an intricate expression detailed in the proof (see
(65)).

3.5. Examples

We illustrate the previous theory on several examples.
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Example 1: Φ(f , x) = fx, f > 0.
The centered stationary distribution is the Gaussian law u0(f, x)dx = N (0, σ2/2f). Equation (3) writes

dXt = −f
∫

(Xt − y)u(f, y)dydt+ σdWt = −fXtdt+ σdWt. The estimators
̂̂
fT and f̂T are equal to:

̂̂
fT = −

∫ T
0
XsdXs∫ T

0
X2
sds

, f̂T = −
∫ 2T

T
XsdXs∫ 2T

T
X2
sds

.

As T−1
∫ T

0
X2
sds converges a.s. to σ2/2f , we obtain the classical result that

√
T (
̂̂
fT − f) converges in

distribution to N (0, 2f). With the notations of Theorem 3.1, Σ1(f) = 2f/σ2,Σ2(f) = 0. We have also

that
√
T (f̂T − f) converges to the same limiting distribution.

The second method estimator, based on the relation γ2(f) = σ2/2f , is given by:

fT =
σ2T

2
∫ T

0
X2
sds

.

The generator L of (Xt) is Lg = σ2

2 g
′′ − fxg′. The equation Lg2(x) = (σ2/2f) − x2 admits an explicit

solution g2 such that g′2(x) = x/f . Thus,

T−1/2
∫ T

0
(X2

s − (σ2/2f))ds converges in distribution to N (0, σ2V ) with V =

∫
(x/f)2u0(f, x)dx =

σ2

2f3
.

This yields that
√
T (fT−f) converges in distribution toN (0, 2f). In this special example, f̂T and fT have

the same asymptotic distribution. Note that f̂T can be computed without knowing σ2 which is preferable.

Example 2: Φ(f, x) = fx3, f > 0.
The function Φ(f, x) = fx3 does not satisfy all our (sufficient) assumptions but the existence and unique-
ness of an invariant density can be checked directly. The stationary density u0(f, .) is unique and defined
by the implicit equation (9). As u0(f, .) is symmetric,

∫
(x − y)3u0(f, y)dy = x3 + 3xγ2(f). Therefore,

equation (3) starting with X0 ∼ u0(f, x)dx, writes:

dXt = −f(X3
t + 3Xt γ2(f))dt+ σdWt, X0 ∼ u0(f, x)dx. (40)

where

u0(f, x) = exp

[
−σ−2f(

x4

2
+ 3x2γ2(f))

]
/ν(u0(f, .))

and γ2(f) is implicitly given as the unique solution (see [5] and Remark 3.1) of∫
R
x2 exp

[
−σ−2f(

x4

2
+ 3x2γ2(f))

]
dx = γ2(f)

∫
R

exp

[
−σ−2f(

x4

2
+ 3x2γ2(f))

]
dx. (41)

Let us start with the exact maximum likelihood estimator. It is defined as the solution of `′T (
̂̂
fT )) = 0,

i.e.

∫ T

0

[X3
t + 3Xt(γ2(

̂̂
fT ) +

̂̂
fT γ

′
2(
̂̂
fT ))]dXt = −̂̂fT ∫ T

0

(X3
t + 3Xtγ2(

̂̂
fT ))(X3

t + 3Xt(γ2(
̂̂
fT ) +

̂̂
fT γ

′
2(
̂̂
fT ))dt.

Differentiating (41) w.r.t. f allows to obtain an expression of γ′2(f) as a function of (f, γ2(f), γ4(f), γ6(f).

But this does not help in obtaining an explicit equation
̂̂
fT . This illustrates the fact that the exact MLE

is intractable.
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Let us now look at the maximum contrast estimator of f based on (Xt, t ∈ [0, 2T ]). We are not in the
framework of Theorem 3.1 since f1 = 0. But we can compute explicitly the estimator of f and get using
(23)

f̂T = −
∫ 2T

T
(X3

t + 3Xtγ̂2(T ))dXt∫ 2T

T
(X3

t + 3Xtγ̂2(T ))2dt
:= −NT

DT
.

Define the two quantities a(f) and c(f),

a(f) = γ6(f) + 9γ3
2(f) + 6γ2(f)γ4(f); c(f) = 3(γ4(f) + 3γ2

2(f)). (42)

As T →∞, DT

T →
∫
R(x3 + 3xγ2(f))2u0(f, x)dx = a(f). We write

√
T (f̂T −f) = −σT

−1/2

DT /T

∫ 2T

T

(X3
t +3Xtγ̂2(T ))dWt+f

√
T (γ2(f)− γ̂2(T ))

∫ 2T

T
3Xt(X

3
t + 3Xtγ̂2(T ))dt/T

DT /T
.

We have that 1
T

∫ 2T

T
3Xt(X

3
t + 3Xtγ̂2(T ))dt→ c(f) and

1√
T

∫ 2T

T

(X3
t + 3Xtγ̂2(T ))dWt =

1√
T

∫ 2T

T

(X3
t + 3Xtγ2(f))dWt + oP (1).

Thus,

√
T (f̂T − f) = − σ

a(f)

1√
T

∫ 2T

T

(X3
t + 3Xtγ2(f))dWt +

√
T (γ2(f)− γ̂2(T ))

c(f)

a(f)
f + oP (1).

Now, using (25),

√
T (f̂T − f) =

σ
√

2√
2T

∫ 2T

0

(
1

a(f)
(X3

t + 3Xtγ2(f))1[T,2T ](t) + f
c(f)

a(f)
g′1(Xt)1[0,T ](t)

)
dWt + oP (1).

Using the notations of Theorem 3.1, Σ1(f) =
1

a(f)
, Σ2(f) = f2 c2(f)

a2(f)

∫
(g′1(x))2u0(f, x)dx,

√
T (f̂T − f)→L N

(
0, σ2(Σ1(f) + Σ2(f))

)
.

Let us now look at the second method for f . The Ito formula yields:

EX2
t = EX2

0 − 2f

∫ t

0

E(Xs(X
3
s + 3Xsγ2(f)))ds+ σ2t.

By the strict stationarity, we get: f(2γ4(f) + 6γ2
2(f)) = σ2. Thus, we can define an estimator of f by

fT =
σ2

2γ̂4(T ) + 6(γ̂2(T ))2
= F (γ̂2(T ), γ̂4(T )) with F (x, y) =

σ2

2(3x2 + y)
.

Therefore DF (x, y) = σ2

2(3x2+y)2

(
−6x
−1

)
so that DF (γ2(f), γ4(f)) = − 2f2

σ2

(
6γ2(f)

1

)
.

The Delta method yields
√
T (fT − f) = (DF (γ2(f), γ4(f)))′

√
T

(
γ̂2(T )− γ2(f)
γ̂4(T )− γ4(f)

)
+ oP (1).

By Proposition 3.3,
√
T (γ̂2(T )−γ2(f), γ̂4(T )−γ4(f)) is asymptotically Gaussian with explicit covariance

matrix, so that
√
T (fT − f)→ N (0,K) with K = 4σ−2f4

∫
(6γ2(f)g′1(x) + g′2(x))2u0(f, x)dx.
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Example 3: Φ(f , x) = f1x+ f3x
3, f1 > 0, f3 ≥ 0 (k = 2).

We have that b(f , x) = −(f1x+ f3(x3 + 3xγ2(f))) = −((f1 + 3γ2(f)f3)x+ f3x
3), and(

b1(f)
b3(f)

)
= M2(f)

(
f1

f3

)
, M2(f) = −

(
1 3γ2(f)
0 1

)
.

This yields(
f̂T,1
f̂T,3

)
= −

(
1 −3γ̂2(T )
0 1

)
Ψ−1
T

(∫ 2T

T
XsdXs∫ 2T

T
X3
sdXs

)
where ΨT =

(∫ 2T

T
X2
sds

∫ 2T

T
X4
sds∫ 2T

T
X4
sds

∫ 2T

T
X6
sds

)
.

According to Theorem 3.1, the asymptotic variance of
√
T (f̂T − f) is σ2(Σ1(f) + Σ2(f)) where

Σ1(f) = M−1
2 (f)Ψ−1(f)(M−1

2 (f))′ and Σ2(f) =

∫
β(f , x)β′(f , x)u0(f , x)dx,

with

Ψ(f) =

(
γ2(f) γ4(f)
γ4(f) γ6(f)

)
, β(x) = β(f , x) = M2(f)−1M

(0,g′1(x))
2 f .

Therefore we get that Σ1(f) = (γ2(f)γ6(f)− γ2
4(f))−1

(
γ6 + 6γ2γ4 + 9γ3

2 −γ4 − 3γ2
2

−γ4 − 3γ2
2 γ2

)
.

Now, for v(x) = (0, g′1(f , x)), M
(v(x))
2 = −

(
0 3g′1(f , x)
0 0

)
, so that

β(f , x) =

(
3f3g

′
1(f , x)
0

)
and Σ2(f) = 9f2

3

(∫
(g′1(f , x))2u0(f , x)dx 0

0 0

)
.

Consider now the inference method of Section 3.4. Applying the Ito formula to X2
t andX

4
t yields that

f satisfies

Γ(f) f =

(
σ2

2
3σ2

2 γ2(f)

)
, with Γ(f) = Γ(γ2(f), γ4(f), γ6(f)) =

(
γ2(f) 3γ2

2(f) + γ4(f)
γ4(f) 3γ2(f)γ4(f) + γ6(f)

)
.

The matrix Γ(f) is non singular since its determinant is detΓ(f) = γ2(f)γ6(f)− γ2
4(f) > 0. We obtain

f = [Γ(f)]−1

(
σ2

2
3σ2

2 γ2(f)

)
= F (γ2(f), γ4(f), γ6(f))

where F is the explicit function, setting xi = γ2i,

F (x1, x2, x3) =
σ2

2(x1x3 − x2
2)

(
3x1x2 + x3 −(3x2

1 + x2)
−x2 x1

)(
1

3x1

)
=

σ2

2(x1x3 − x2
2)

(
x3 − 9x3

1

3x2
1 − x2

)
.

Define f̄T = [Γ(γ̂2(T ), γ̂4(T ), γ̂6(T )]−1

(
σ2

2
3σ2

2 γ̂2(T )

)
. Then, f̄T = F (γ̂2(T ), γ̂4(T ), γ̂6(T )). LetDF (x1, x2, x3)

denote the 3× 2 matrix of the differential of F . Then the Delta method yields that

√
T (f̄T − f) = (DF (γ2(f), γ4(f), γ6(f)))′

√
T

γ̂2(T )− γ2(f)
γ̂4(T )− γ4(f)
γ̂6(T )− γ6(f)

+ oP (1).

Therefore
√
T (f̄T − f) is asymptotically Gaussian with 2× 2 covariance matrix

σ2(DF (γ2(f), γ4(f), γ6(f)))′V (f)DF (γ2(f), γ4(f), γ6(f)).
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4. Parametric inference in non centered stationary regime.

In this section, we assume that the process (3)-(4)-(5) is in non centered stationary regime. Thus, we
assume [H5] and

• [H7] X0 ∼ um(f , .) = u0(f , .−m),

i.e. we observe the process such that:

dXt = −
∫

Φ ? L(Xt)(Xt − y)dy dt+ σdWt, X0 = η ∼ um(f , x)dx, (43)

where um(f , .) = u0(f , . −m) and u0(f , .) is the unique symmetric solution of (9). Hence, for all t ≥ 0,
L(Xt) = um(f , x)dx, so that

dXt = b(f ,m,Xt) dt+ σdWt, X0 = η ∼ um(f , x)dx, b(f ,m, x) = −Φ ? um(f , .)(x)

In this case, E(Xt) = m for all t and m must be estimated in addition to f . Now, we have, using (16),

b(f ,m, x) = −
∫

Φ(x−m− (y −m))um(f , y)dy = −Φ ? u0(f , .)(x−m) = b(f , x−m). (44)

Hence, the drift term b(f ,m, x) satisfies, using Proposition 3.1 and (16)

b(f ,m, x) = b(f , x−m) =

k−1∑
i=0

b2i+1(f)(x−m)2i+1 (45)

4.1. Estimation of the moments of um

Define the centered moments of (Xt), for j ≥ 0

γ2`(f ,m) =

∫
R

(x−m)2`um(f , x)dx. (46)

Since um(f , x) = u0(f , x−m), we have, using (13), γ2`(f ,m) = γ2`(f).
As m is unknown, we also need an estimator for it. We define

m̂ = T−1

∫ T

0

Xsds and γ̃2`(T ) = T−1

∫ T

0

(Xs − m̂)2`ds, ` ≥ 0. (47)

The following holds.

Proposition 4.1. Assume [H5] and [H7]. As T → ∞, m̂ →a.s. m and for ` ≥ 1, γ̃2`(T ) →a.s. γ2`(f) =∫
x2`u0(f , x)dx. Moreover,

√
T (m̂−m) =

σ√
T

∫ T

0

h′0(Xs −m)dWs + oP (1), (48)

√
T (γ̃2`(T )− γ2`(f)) =

σ√
T

∫ T

0

h′`(Xs −m)dWs + oP (1), (49)

where (see (25))

h′0(x) = − 2

σ2u0(f , x)

∫ x

−∞
v u0(f , v)dv, h′`(x) = g′`(x) = − 2

σ2u0(f , x)

∫ x

−∞
(v2` − γ2`(f))u0(f , v)dv

satisfy for all `,
∫

(h′`(x))2u0(f , x)dx < +∞. Consequently, for all k, the vector (
√
T (m̂−m),

√
T (γ̃2`(T )−

γ2`(f)), ` = 1, . . . , k − 1) converges in distribution to Nk
(

0, σ2(

∫
h′i(v)h′j(v)u0(f , v)dv)0≤i,j≤k−1

)
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4.2. Explicit estimators of (m, f)

We consider the contrast, using (47) ,

ΛT (b(f)) =

∫ 2T

T

b(f , Xs − m̂)dXs −
1

2

∫ 2T

T

b2(f , Xs − m̂)ds. (50)

As previously, we proceed in two steps. First we define b̃(f)T the estimator of b(f) by

Ψ̃T b̃(f)T = Z̃T (51)

with (see (14) and (33))

Z̃T =

∫ 2T

T

zk(Xs − m̂)dXs, Ψ̃T = (

∫ 2T

T

(Xs − m̂)2i+2j+2ds)0≤i,j≤k−1. (52)

Now, define the estimator f̃T by

b̃(f)T = M̃k f̃T , M̃k = M
(γ̃2`(T ),`=0,...,k−1)
k . (53)

Theorem 4.1. Assume [H5] and [H7].

• The estimator f̃T is consistent and
√
T (f̃T − f) converges in distribution to Nk(0, σ2Σ(f)) with Σ(f)

defined in (34).

• The joint asymptotic distribution of (m̂, f̃T ) is as follows

√
T

(
m̂−m
f̃T − f

)
→L N1+k

(
0, σ2

( ∫
[h′0(x)]2u0(f , x)dx

∫
h′0(x)[β(x)]′u0(f , x)dx∫

h′0(x)β(x)u0(f , x)dx Σ(f)

))
,

where h′0 is defined in Proposition 4.1, β = β(f , .) is defined in (36) and Σ(f) is defined in (34).

It is interesting to note that f̃T and f̂T have the same asymptotic distribution.

Example 1. Consider the Ornstein-Uhlenbeck process in non centered stationary regime: dXt = −f(Xt−
m)dt + σdWt with stationary distribution equal to um(f, x)dx = N (m,σ2/2f). The MLE based on
(Xt, t ∈ [0, T ]) can be computed in this model:

̂̂
fT = −

∫ T
0

(Xt − ̂̂mT )dXt∫ T
0

(Xt − ̂̂mT )2dt
, ̂̂mT =

XT −X0

T
̂̂
fT

+
1

T

∫ T

0

Xsds, I(f) =

(
f2 0
0 σ2/(2f)

)
.

The asymptotic distribution of
√
T ( ̂̂mT −m,

̂̂
fT −f) is the Gaussian law N2(0, σ2I−1(f)). The maximum

contrast estimator is given by:

f̃T = −
∫ 2T

T
(Xt − m̂)dXt∫ 2T

T
(Xt − m̂)2dt

, m̂ =
1

T

∫ T

0

Xsds.

We have M1 = −1, Ψ(f) = σ2/2f , Σ1(f) = 2f/σ2, Σ2(f) = 0. The contrast estimator has the same
asymptotic distribution as the exact MLE.

5. Concluding remarks

In this paper, we study the estimation of an unknown parameter f = (f2j+1, j = 0, . . . , k − 1)′ in the
interaction term Φ(f , x) from the continuous observation of the McKean-Vlasov process

dXt = −Φ(f , .) ? L(Xt)(Xt) dt+ σdWt (54)
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with Φ(f , x) =
∑k−1
j=0 f2j+1x

2j+1, f1 > 0, f2j+1 ≥ 0, j = 1, . . . , k− 1, throughout the time interval [0, 2T ].
Here L(Xt) represents the law of Xt. The interaction term Φ(f , x) is an odd increasing polynomial with
known degree 2k − 1 so that Φ(f , .) ? L(Xt) only depends on f and the moments of L(Xt). Contrary to
SDEs, stationary distributions of model (54) are uniquely determined only if the expectation of (Xt) is
specified. We assume here that (Xt) is in stationary regime with given expectation. Hence its moments
do not depend on t. The exact log-likelihood can be studied theoretically (Proposition 3.2) but does
not lead to computable estimators. This is why we use a two-step procedure. First we build estimators
of the stationary distribution moments based on the sample path (Xt, t ∈ [0, T ]). Then, to build an
explicit contrast, we plug these moment estimators into the exact conditional log-likelihood given XT

of (54), based on the sample path (Xt, t ∈ [T, 2T ]). We prove that these estimators are consistent and
asymptotically Gaussian with rate

√
T .

In here, we assume that the degree of the interaction function Φ is known. When it is unknown, the
question of estimating this degree is of interest but beyond the scope of this paper.

Extension of this approach to multidimensional models McKean-Vlasov SDEs is possible. Indeed,
following [29], we may consider an interaction of the form Φ(x) = x

‖x‖ϕ(‖x‖) with ϕ : R+ → R+ such

that ϕ(r) =
∑k−1
j=0 f2j+1r

2j+1 with f1 > 0, f2j+1 ≥ 0, j = 1, . . . k − 1. In this case, Φ = ∇W , with

W (x) = 1
2

∑k−1
j=0

1
2j+1f2j+1‖x‖2j . The process admits a unique stationary distribution um with given

expectation m (see e.g. [42]) and Φ ? um only depends on moments of um.
Extensions of this work naturally comprise the introduction of an additional potential term V (α, x) in

the drift of equation (54) and a more general form of the interaction Φ(β, .) with unknown parameters
α, β.

In practice, only discretizations of the sample path are generally available. This study could be ex-
tended to take into account discrete observations.

6. Proofs

Proof of Lemma 2.2. Since u admits a `+ 1-th order moment, Φ ? u is well-defined. As Φ is odd and
u is symmetric, we have:

Φ ? u(−x) =

∫
Φ(−x− y)u(y)dy = −

∫
Φ(x+ y)u(y)dy

= −
∫

Φ(x− y)u(−y)dy = −
∫

Φ(x− y)u(y)dy = −Φ ? u(x).

Let W (x) =
∫ x

0
Φ(y)dy. Then, W ? u(x) =

∫
W (x − y)u(y)dy satisfies (W ? u)′(x) = Φ ? u(x) so that

W ? u(x) =
∫ x

0
Φ ? u(y)dy +W ? u(0).

Now, let x ≥ 0, we have W ′′(x) = Φ′(x) ≥ λ, thus W ′(x) ≥ λx + W ′(0) = λx. This implies, W (x) ≥
λx2

2 +W (0) and thus, as
∫
yu(y)dy = 0,

W ? u(x) ≥
∫

[
λ(x− y)2

2
+W (0)]u(y)dy =

λx2

2
+
λ

2

∫
y2u(y)dy +W (0).

Consequently, ∫ x

0

Φ ? u(y)dy ≥ λx2

2
+
λ

2

∫
y2u(y)dy +W (0)−W ? u(0) =

λx2

2
+ C.

As
∫ x

0
Φ ? u(y)dy is symmetric, the result holds for all x. �

Proof of Proposition 2.2. The result for (Yt) is standard. By computing the scale and the speed den-
sity, we obtain that (Yt) is positive recurrent and admits um as invariant density (see e.g. [38]). When
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Y0 = η ∼ um, by the uniqueness of solution, we obtain that Yt ≡ Xt for all t ≥ 0. �

Proof of Proposition 3.2. Recall that Xt ≡ Yt (see Proposition 2.2). We have, applying the ergodic
theorem, as u0(f0, .) has moments of any order by (10),

1

T
(`T (f)− `T (f0))→Pf0

−1

2

∫
(b(f , x)− b(f0, x))2u0(f0, x)dx = − 1

2σ2
K(f0, f) a.s..

Now, K(f0, f) = 0 is equivalent to ”for all x, b(f , x) = b(f0, x)”, as u(f0, .) is positive and continuous on R.
This in turn implies that u(f , .) ≡ u(f0, .), as two diffusions with the same drift and diffusion coefficients
have the same invariant density, and Mk(f)f = Mk(f0)f0 (see Proposition 3.1). As u(f , .) ≡ u(f0, .), their
moments are identical, i.e. γ2`(f) = γ2`(f0) for all `. Thus, Mk(f) = Mk(f0). As Mk(f0) is invertible, we
conclude f = f0.
Now, the proof of consistency of the maximum likelihood estimator standardly follows.

Next,

σ2 ∂`T
∂f2i+1

(f) =

∫ T

0

∂b

∂f2i+1
(f , Xs)dXs −

∫ T

0

∂b

∂f2i+1
(f , Xs)b(f , Xs)ds

= σ

∫ T

0

∂b

∂f2i+1
(f , Xs)dWs

σ2 ∂2`T
∂f2i+1∂f2i′+1

(f) =

∫ T

0

∂2b

∂f2i+1∂f2i′+1
(f , Xs)(dXs − b(f , Xs)ds)

−
∫ T

0

(
∂b

∂f2i+1
(f , Xs)

∂b

∂f2i′+1
(f , Xs))ds

= σ

∫ T

0

∂2b

∂f2i+1∂f2i′+1
(f , Xs)dWs −

∫ T

0

(
∂b

∂f2i+1
(f , Xs)

∂b

∂f2i′+1
(f , Xs))ds.

The functions x→ ∂b

∂f2i+1
(f , x), x→ ∂2b

∂f2i+1∂f2i′+1
(f , x) are polynomial and thus integrable with respect

to u0(f , .). Under Pf , by the ergodic theorem and the central limit theorem for stochastic integrals, for
all i, i′,

σ2

√
T

(
∂`T
∂f2i+1

(f), i = 0, . . . k − 1)′ →L N (0, σ2I(f)),

(
1

T

∫ T

0

∂2b

∂f2i+1∂f2i′+1
(f , Xs)dWs)i,i′ → 0, (

σ2

T

∂2`T
∂f2i+1∂f2i′+1

(f))i,i′ → −I(f),

where I(f) = (

∫
[
∂b

∂f2i+1
(f , x)]

∂b

∂f2i′+1
(f , x)]u0(f , x)dx)0≤i,i′≤k−1.

For any vector a = (a1 . . . ak)′, a′I(f)a =
∫

[
∑k−1
i=0 ai

∂b
∂f2i+1

(f , x)]2u0(f , x)dx > 0 as the function under the

integral is a polynomial and u0(f , x) is positive for all x. By standard methods, we can prove that the

maximum likelihood
̂̂
fT associated with (21) satisfies that, under Pf0 ,

√
T (
̂̂
fT − f0)→L N (0, σ2I−1(f0)).

�

Proof of Proposition 3.3. We rely on results of [25] recalled in Section 7 (Proposition 7.1). These
results concern the infinitesimal generator L of D of (11) here for m = 0. The definitions of L,D are
given in (74)-(75)) (see Appendix). For g an element of D, we have by the Ito formula,

−
∫ T

0

Lg(Xs)ds = −[g(XT )− g(X0)] + σ

∫ T

0

g′(Xs)dWs,
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where Lg(x) = b(f , x)g′(x) + σ2

2 g
′′(x). By Proposition 7.1, the range of D is exactly the set of functions

h ∈ L2(u0(f , x)dx) such that
∫
h(x)u0(f , x)dx = 0. Therefore, let g`(f , .) be any element of D such that

Lg`(f , x) = −(x2` − γ2`(f)). We have (see (78))

g′`(f , x) = g′`(x) = −2σ−2u−1
0 (f , x)

∫ x

−∞
(y2` − γ2`)u0(f , y)dy. (55)

As, by the definition of D, g` belongs to L2(u0(x)dx), and (Xt) is stationary with marginal distribution
u0(x)dx,

E(g`(XT )− g`(X0))2 ≤ 4

∫
g2
` (x)u0(f , x)dx. (56)

Thus,

√
T (γ̂2`(T )− γ2`) = − 1√

T

∫ T

0

Lg`(Xs)ds =
σ√
T

∫ T

0

g′`(Xs)dWs −
1√
T

(g`(XT )− g`(X0))

=
σ√
T

∫ 2T

0

1[0,T ](s)g
′
`(Xs)dWs + oP (1), (57)

by (56). Proposition 7.1, for all `,
∫

(g′`(x))2u0(f , x)dx < +∞ so that V (f) is well defined. So the vector
T 1/2(γ̂2`(T )− γ2`)

′
`=1,...,k converges in distribution to Nk(0, σ2V (f)) with V (f) = (Vi,j(f))0≤i,j≤k−1 and

Vi,j(f) =
∫
g′i(x)g′j(x)u0(f , x)dx.

Proof of Proposition 3.4. This result is classical. By the ergodic theorem applied to (Xt ≡ Yt), we
have that ΨT /T converges a.s. to Ψ(f). For any vector a′ = (a0, . . . , ak−1),

a′Ψ(f)a =

∫
R

(

k−1∑
`=0

a`x
2`+1)2u0(f , x)dx > 0,

as the integrand is a polynomial and u is R-supported. Thus, Ψ(f) is positive definite.
We write: ∫ 2T

T

X2i+1
s dXs =

∫ 2T

T

X2i+1
s

k−1∑
j=0

b2j+1(f)X2j+1
s ds+ σ

∫ 2T

T

X2i+1
s dWs.

Thus, for large enough T , (see (14))

(
1

T
ΨT )−1 1

T
ZT = b̂(f)T = b(f) + (

1

T
ΨT )−1 σ

T

∫ 2T

T

zk(Xs)dWs

As ΨT /T converges a.s. to Ψ(f), the vector of stochastic integrals σ
T

∫ 2T

T
zk(Xs)dWs converges a.s. to 0.

Moreover, σ√
T

∫ 2T

T
zk(Xs)dWs converges in distribution to Nk(0, σ2Ψ(f)). Consequently, b̂(f)T converges

to b(f) and
√
T (b̂(f)T − b) converges in distribution to the Gaussian law Nk(0, σ2Ψ−1(f)). �

Proof of Theorem 3.1. For the proof, we set Ψ(f) = Ψ, Mk(f) = Mk, u0(f , .) = u0(.), γ2`(f) = γ2`,

V = V (f) and b̂T = b̂(f)T . The relation b̂T = M̂k f̂T implies ZT = ΨT M̂k f̂T (see (28)). We have

ZT = ΨTb + σ

∫ 2T

T

zk(Xs)dWs,

ΨT M̂k f̂T = ΨTMkf + ΨTMk(f̂T − f) + ΨT (M̂k −Mk)f + ΨT (M̂k −Mk)(f̂T − f).
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Therefore, noting that ΨTMkf = ΨTb, we obtain:

1

T
ΨTMk

√
T (f̂T − f) =

σ√
T

∫ 2T

T

z(Xs)dWs −Ψ
√
T (M̂k −Mk)f −RT (58)

= ΨMk

√
T (f̂T − f) + ST , with (59)

RT = (
1

T
ΨT −Ψ)

√
T (M̂k −Mk)f +

1

T
ΨT

√
T (M̂k −Mk)(f̂T − f), (60)

ST =
√
T (

1

T
ΨT −Ψ)Mk(f̂T − f). (61)

Finally,

ΨMk

√
T (f̂T − f) =

σ√
T

∫ 2T

T

z(Xs)dWs −Ψ
√
T (M̂k −Mk)f −RT − ST .

It is the sum of two main terms and two remainders. The second term
√
T (M̂k −Mk) depends on the

observation (Xt, t ∈ [0, T ]) while the first one depends on the sample path (Xt, t ∈ [T, 2T ]).

To study
√
T (M̂k−Mk), we use the fact that the vector of centered and normalized moments T 1/2((γ̂2`(T )−

γ2`)
′
`=1,...,k converges in distribution to Nk(0, σ2V ) with V = (Vij)0≤i,j≤k−1 and Vij =

∫
g′i(x)g′j(x)u(x)dx

(Proposition 3.3).

Consequently, as we have
√
T (M̂k −Mk) = OP (1), (ΨT /T )−Ψ = oP (1), f̂ − f = oP (1), we concude that

the remainder term RT = oP (1).
We can treat analogously each term of

√
T ((ΨT /T ) − Ψ) and prove that

√
T ((ΨT /T ) − Ψ) = OP (1).

Consequently, ST = oP (1).
Therefore, from (58) and (59),

√
T (f̂T − f) =

σ√
T

∫ 2T

T

M−1
k Ψ−1zk(Xs)dWs −M−1

k

√
T (M̂k −Mk)f + oP (1)

=
σ√
T

∫ 2T

0

(
1[T,2T ](s)α(f , Xs)− 1[0,T ](s)β(f , Xs)

)
dWs + oP (1), (62)

where

α`(f , x) =

k−1∑
u=0

[M−1
k ]`u

k−1∑
j=0

[Ψ−1]ujx
2j+1 = [M−1

k Ψ−1zk(x)]` , (63)

β`(f , x) =

k−1∑
j=0

[M−1
k ]`j

k−1∑
v=j

(
2v + 1

v − j

)
g′v−j(x)f2v+11j≤v = [M−1

k M
(g′(x))
k f ]`, and (64)

M
(g′(x))
k is the matrix M

(v)
k for v = (g′0(x), . . . , g′k−1(x))′ (with g′0 = 0). Finally, applying the ergodic

theorem for stochastic integrals yields

√
T (f̂ − f)→L Nk(0, σ2Σ(f)) where Σ(f) = Σ1(f) + Σ2(f)

with

Σ1(f) =

∫
α(f , x)[α(f , x)]′u0(f , x)dx = M−1

k (f)Ψ−1(f)(M−1
k (f))′

and Σ2(f) =
∫
β(f , x)[β(f , x)]′u0(f , x)dx.

�
Proof of Proposition 3.5. Define Dk = diag((2`− 1), ` = 1, . . . , k) the diagonal matrix with diagonal

element (2` − 1). We have B(f) = σ2Dkv(f) with v(f) = (1 γ2(f) . . . γ2(k−1)(f))′. Thus B̂T = σ2Dkv̂T
with v̂T = (1 γ̂2(T ) . . . γ̂2(k−1)(T ))′.
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Analogously, Γ̂T is a function of the vector v̂T which is much more intricate (see (38)). Therefore, fT =

(Γ̂T )−1B̂T = F (v̂T ) is also an explicit function of the vector v(f), still intricate. From Proposition 3.3,
we have that

√
T (v̂T − v(f)) converges in distribution to Nk(0, σ2V (f)) with

V (f) =

(
0 0
0 V (f)

)
.

The classical Delta method can be applied and yields that

√
T (fT − f) =

√
T (F (v̂T )− F (v(f)))→L Nk(0,K), K = σ2DF (v(f))V (f)(DF (v(f)))′, (65)

where DF (x) is the differential matrix of F at point x (DF (x) = (∂Fi

∂xj
(x)). �

Proof of Proposition 4.1. This proposition is analogous to Proposition 3.3.

For simplicity, set u0(f , .) = u, um(f , .) = um, γ2`(f) = γ2`. By the ergodic theorem m̂ = T−1
∫ T

0
Xsds→∫

xum(x)dx = m. For γ̃2`(T ), we write:

γ̃2`(T ) =
1

T

∫ T

0

(Xs −m+m− m̂)2`ds =
1

T

∫ T

0

(Xs −m)2`ds

+ (m− m̂)

2∑̀
k=1

(
2`

k

)
1

T

∫ T

0

(Xs −m)2`−kds(m− m̂)k−1.

The first term of the sum converges to
∫

(x−m)2`um(x)dx =
∫

(x−m)2`u(x−m)dx =
∫
x2`u(x)dx = γ2`.

The second term tends to 0 as m̂−m tends to 0 and is multiplied by a factor tending to a limit.
We rely again on the results of Proposition 7.1. The infinitesimal generator Lm of (43) is given by

Lmg(x) =
σ2

2u(x−m)
(g′u(.−m))′(x).

Thus, the equality

g(XT )− g(X0) =

∫ T

0

Lmg(Xs)ds+ σ

∫ T

0

g′(Xs)dWs

implies, as (Xt) is stationary,

− 1√
T

∫ T

0

Lmg(Xs)ds =
σ√
T

∫ T

0

g′(Xs)dWs + oP (1).

For f a um square integrable function, the solution of Lmg = −(f −
∫
f(x)um(x)dx) is

g′(x) = − 2

σ2u(x−m)

∫ x−m

−∞
u(v)

(
f(m+ v)−

∫
f(m+ y)u(y)dy

)
dv.

For f(x) = x, we get g′(x) = − 2
σ2u(x−m)

∫ x−m
−∞ vu(v)dv := h′0(x−m). Thus,

√
T (m̂−m) =

σ√
T

∫ T

0

h′0(Xs −m)dWs + oP (1). (66)

For f(x) = (x−m)2`, we get g′(x) = − 2
σ2u(x−m)

∫ x−m
−∞ (v2` − γ2`)u(v)dv = g′`(x−m) := h′`(x−m) (see

(55)).
Therefore,

1√
T

∫ T

0

(
(Xs −m)2` − γ2`

)
ds =

σ√
T

∫ T

0

h′`(Xs −m)dWs + oP (1), (67)



/Inference for ergodic McKean-Vlasov SDE 22

where, by Proposition 7.1, all the integrals
∫

(h′`(x))2u0(x)dx =
∫

(h′`(x−m))2u(x−m)dx < +∞. Now,
splitting Xs − m̂ = Xs −m+m− m̂ yields,

√
T (γ̃2`(T )− γ2`) =

1√
T

∫ T

0

(
(Xs −m)2` − γ2`

)
ds+

√
T (m− m̂)

(
2`

1

)
1

T

∫ T

0

(Xs −m)2`−1ds

+
√
T (m− m̂)2

2∑̀
k=2

(
2`

k

)
(m− m̂)k−2 1

T

∫ T

0

(Xs −m)2`−kds.

For the second term, note that 1
T

∫ T
0

(Xs − m)2`−1ds →
∫

(x − m)2`−1um(x)dx =
∫
x2`−1u0(x)dx = 0

as u0 is symmetric and 2` − 1 is odd. Therefore, the second term is oP (1) as well as the third term.
Therefore, we have obtained (48) and (49). The convergence in distribution result follows. �

Proof of Theorem 4.1 . Here again, we set Ψ(f) = Ψ, Mk(f) = Mk. We proceed as in Proposition 3.4
and Theorem 3.1. First, we prove, using (52),

Ψ̃T

T
→a.s. Ψ and

√
T (

Ψ̃T

T
−Ψ) = OP (1) and (68)

VT =
√
T

(
Z̃T
T
− Ψ̃T

T
b

)
→L N (0, σ2Ψ). (69)

From these two results, as b̃(f)T := b̃T = ( Ψ̃T

T )−1 Z̃T

T (see (51)), we deduce:

√
T (b̃T − b) = (

Ψ̃T

T
)−1VT →L N (0, σ2Ψ−1). (70)

Proof of (68): We have:

[
Ψ̃T

T
]ij =

1

T

∫ 2T

T

(Xs −m+m− m̂)2(i+j)+2ds =
1

T

∫ 2T

T

(Xs −m)2(i+j)+2ds

+(m− m̂)

2(i+j)+2∑
r=1

(
2(i+ j) + 2

r

)
(m− m̂)r−1 1

T

∫ 2T

T

(Xs −m)2(i+j)+2−rds,

where 1
T

∫ 2T

T
(Xs −m)2(i+j)+2−rds→

∫
(x−m)2(i+j)+2−rum(x)dx =

∫
x2(i+j)+2−ru0(x)dx and m− m̂ =

oP (1). Thus,

[
Ψ̃T

T
]ij =

1

T

∫ 2T

T

(Xs −m)2(i+j)+2ds+ oP (1)→a.s.

∫
(x−m)2(i+j)+2um(x)dx = γ2(i+j)+2 = Ψij .

Next,

√
T ([

Ψ̃T

T
]ij − γ2(i+j)+2) =

√
T (

1

T

∫ 2T

T

(Xs −m)2(i+j)+2ds− γ2(i+j)+2)

+
√
T (m− m̂)

(
2(i+ j) + 2

1

)
1

T

∫ 2T

T

(Xs −m)2(i+j)+1ds

+
√
T (m− m̂)2

2(i+j)+2∑
r=2

(
2(i+ j) + 2

r

)
(m− m̂)r−1 1

T

∫ 2T

T

(Xs −m)2(i+j)+2−rds,

As 2(i+ j) + 1 is odd, 1
T

∫ 2T

T
(Xs −m)2(i+j)+1ds →a.s.

∫
(x−m)2(i+j)+1um(x)dx = 0. Thus, the second

term above is
√
T (m− m̂)× oa.s.(1) = OP (1). The third term is 1√

T
T (m− m̂)2 ×OP (1) = oP (1).
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For the first term, we prove as in Proposition 4.1 that

√
T (

1

T

∫ 2T

T

(Xs −m)2(i+j)+2ds− γ2(i+j)+2) =
σ√
T

∫ 2T

T

h′i+j+1(Xs −m)dWs + oP (1)

→L N (0, σ2

∫
[h′i+j+1(x)]2u(x)dx).

The proof of (68) is complete.

Proof of (69): We write:

1

T
Z̃T,i =

1

T

∫ 2T

T

(Xs − m̂)2i+1dXs =
1

T

∫ 2T

T

(Xs − m̂)2i+1b(Xs − m̂, f)ds+ T2,i + T3,i

=

k−1∑
j=0

b2j+1
1

T

∫ 2T

T

(Xs − m̂)2i+2j+1ds+ T2,i + T3,i = [
ψ̃T
T

b]i + T2,i + T3,i,

where

T2,i =
1

T

∫ 2T

T

(Xs − m̂)2i+1(b(f , Xs −m)− b(f , Xs − m̂))ds, (71)

T3,i =
σ

T

∫ 2T

T

(Xs − m̂)2i+1dWs. (72)

We have

T2,i = (m̂−m)

k−1∑
j=0

b2j+1

2j∑
`=0

T2,i,j,`, T2,i,j,` =
1

T

∫ 2T

T

(Xs − m̂)2i+1+`(Xs −m)2j−`ds.

Now,

T2,i,j,` =
1

T

∫ 2T

T

(Xs −m+m− m̂)2i+1+`(Xs −m)2j−`ds

=
1

T

∫ 2T

T

2i+1+`∑
r=0

(
2i+ 1 + `

r

)
(m− m̂)r(Xs −m)2i+1+2j−rds

=
1

T

∫ 2T

T

(Xs −m)2i+1+2jds

+ (m− m̂)

2i+1+`∑
r=1

(
2i+ 1 + `

r

)
(m− m̂)r−1 1

T

∫ 2T

T

(Xs −m)2i+1+2j−rds

= oP (1).

Indeed, 1
T

∫ 2T

T
(Xs−m)2i+1+2jds→ 0 since 2i+ 2j+ 1 is odd. And the second term tends to 0. Thus, for

i = 0, 1, . . . , k − 1 √
T T2,i =

√
T (m̂−m)× oP (1) = oP (1). (73)

Now,
√
T T3 is a martingale such that <

√
T T3 >T= σ2Ψ̃T /T → σ2Ψ. Therefore,

√
T T3 converges in

distribution to N (0, σ2Ψ).

Finally, we have obtained
√
T
(
Z̃T

T −
Ψ̃T

T b
)

=
√
T T3 + oP (1). The proof of (69) is achieved and (70)

follows.
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Now, we can complete the proof of Theorem 4.1. On one hand, we have the relation (see (72)-(73)):

√
T
Z̃T
T

=
Ψ̃T

T
b +
√
T T3 + oP (1).

On the other hand, we have:

Ψ̃T M̃k f̃T = Ψ̃TMkf + Ψ̃TMk(f̃T − f) + Ψ̃T (M̃k −Mk)f + Ψ̃T (M̃k −Mk)(f̃T − f).

Note that b = Mkf and Z̃T = Ψ̃T b̃T = Ψ̃T M̃k f̃T . Therefore, we obtain the relation:

Ψ̃T

T
Mk

√
T (f̃T − f) =

σ√
T

(∫ 2T

T

(Xs − m̂)2i+1dWs

)
i=0,...,k−1

+ oP (1)

− Ψ̃T

T

√
T (M̃k −Mk)f − Ψ̃T

T

√
T (M̃k −Mk)(f̃T − f).

This yields:

ΨMk

√
T (f̃T − f) =

σ√
T

∫ 2T

T

z(Xs −m)dWs −Ψ
√
T (M̃k −Mk)f

− R̃T − S̃T +KT + oP (1),

where

R̃T = (
Ψ̃T

T
−Ψ)

√
T (M̃k −Mk)f +

Ψ̃T

T

√
T (M̃k −Mk)(f̃T − f),

S̃T =
√
T (

Ψ̃T

T
−Ψ)Mk(f̃T − f),

KT =
σ√
T

∫ 2T

T

[z(Xs − m̂)− z(Xs −m)]dWs.

As previously, we prove that R̃T = oP (1), S̃T = oP (1) using Proposition 4.1. We have to look at KT . We
have:

KT,i = σ(m− m̂)
1√
T

∫ 2T

T

2i∑
`=0

(Xs −m+m− m̂)2i−`(Xs −m)`dWs

= σ(m− m̂)

2i∑
`=0

2i−∑̀
j=0

(m− m̂)j
(

2i− `
j

)
1√
T

∫ 2T

T

(Xs −m)2i−jdWs.

Each term 1√
T

∫ 2T

T
(Xs −m)2i−jdWs converges in distribution while m− m̂ tends to 0. So KT,i = oP (1)

for i = 0, . . . , k − 1. Now, the term
√
T (M̃k −Mk)f can be treated as previously in Theorem 33 and we

can write:

√
T (f̃T − f) =

σ√
T

(ΨMk)−1

∫ 2T

T

zk(Xs −m)dWs −
√
TM−1

k (M̃k −Mk)f + oP (1)

=
σ√
T

∫ 2T

0

(
ΨMk)−1zk(Xs −m)1[T,2T ](s) + 1[0,T ](s)β(Xs −m)

)
dWs + oP (1)

=
σ√
T

∫ 2T

0

(
1[T,2T ](s)α(Xs −m)− 1[0,T ](s)β(Xs −m)

)
dWs + oP (1),

with α(x) = α(f , x), β(x) = β(f , x) defined in (63) and (64). Therefore,
√
T (f̃T − f) converges in distri-

bution to N (0, σ2Σ(f)) with Σ(f) defined in (34).
The result concerning the joint distribution follows from (48) and (58).�
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7. Appendix

We now state the central limit theorem associated with (12), describe the properties of the infinitesimal
generator of (11) and the conditions for ρ-mixing (see e.g. [25] and references therein).
Let (Yt) be the solution of (11) and denote by L the infinitesimal generator of the SDE (11),

Lg = (σ2/2)g′′ − Φ ? um(.)g′ =
σ2

2um(w)
(g′um)

′
. (74)

The operator L acting on L2(um(x)dx) has domain D given by

D = {g ∈ L2(um(x)dx), g′ absolutely continuous, Lg ∈ L2(um(x)dx), lim
|x|→∞

g′(x)um(x) = 0}. (75)

For all g ∈ D,
∫
Lg(x)um(x)dx = 0.

Proposition 7.1. Let f ∈ L2(um(x)dx), set fc = f −
∫
R f(x)um(x)dx and denote by 〈., .〉um

the scalar
product of L2(um(x)dx).

1. If fc ∈ Range(D), where Range(D) = L(D) is the image of D by L, then, as T tends to infinity, the
solution (Yt) of (11) satisfies

1√
T

∫ T

0

fc(Ys)ds→L N (0, σ2(fc)) (76)

where σ2(fc) = −2〈fc, g〉um
and g is any element of D satisfying Lg = fc. Moreover,

Var

(
1√
T

∫ T

0

fc(Ys)ds

)
→ σ2(fc). (77)

The following relation holds:

σ2(fc) = −2〈fc, g〉um
= −2〈Lg, g〉um

= σ2

∫
R

(g′(x))2um(x)dx < +∞

2. In model (11), Range(D) = {h ∈ L2(um(x)dx),
∫
h(x)um(x)dx = 0}. Therefore, (76)-(77) hold for

all f ∈ L2(um(x)dx).

Proposition 7.1 requires some comments. Its first part ((76)-(77) ) is classical. However, the last part,
i.e. that (76)-(77) hold for all f ∈ L2(um(x)dx), is less known and not obvious. This ensures that, for all
h ∈ L2(um(x)dx), such that

∫
h(x)um(x)dx = 0, there exists g ∈ D such that Lg = h. In particular, this

holds true for h = fc and in Theorem 3.1, for fc(x) = x2` − γ2`.
This is obtained as follows. First, Range D = {h ∈ L2(um(x)dx),

∫
h(x)um(x)dx = 0} if and only if L has

a spectral gap which holds true if the process is ρ-mixing. In [25], a necessary and sufficient condition for
ρ-mixing is proved for one-dimensional ergodic diffusions. In Proposition 7.1, we check that this condition
holds for (11).

Using (74), equation Lg = fc = f −
∫
R f(y)um(y)dy can be solved. Only g′ is needed for σ2(fc). Using

(74), as
∫ +∞
−∞ fc(y)um(y)dy = 0, we have

g′fc(x) = g′(x) = 2σ−2u−1
m (x)

∫ x

−∞
fc(y)um(y)dy = −2σ−2u−1

m (x)

∫ +∞

x

fc(y)um(y)dy. (78)

By Proposition 7.1, the integral

σ2(fc) = σ2

∫
R

(g′(x))2um(x)dx = 4σ−2

∫
R
u−1
m (x)

(∫ x

−∞
fc(y)um(y)dy

)2

dx (79)

is finite for all f ∈ L2(um(x)dx).

Note that the fact that (79) is finite is not obvious as
∫
u−1
m (x)dx = +∞. However, as

∫ +∞
−∞ fc(y)um(y)dy =

0, the convergence of (79) is possible but the exact proof is not immediate.
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Corollary 7.1. Let h1, . . . , hp be functions belonging to Range(D). Define

V (hi, hj) = σ2

∫
R
g′hi

(x)g′hj
(x)um(x)dx

so that σ2(hi) = V (hi, hi). The vector 1√
T

(
∫ T

0
hi(Ys)ds, i = 1, . . . , p)′ →L Np(0, V ) with V = (V (hi, hj), 1 ≤

i, j ≤ p).

Proof of Proposition 7.1.

1. The result is given in Theorem 2.2 in [25] .
2. We always have that Range(D) ⊂ {h ∈ L2(um(x)dx),

∫
h(x)um(x)dx = 0}.

This inclusion is an equality if and only if the process is ρ-mixing. Let γ(x) = −2σ−1(Φ ? um)′(x).
We can check that

lim
x→+∞

γ−1(x) = 0, lim
x→−∞

γ−1(x) = 0. (80)

Thus, by Proposition 2.8 of the latter paper, as the limits above exist and are finite, (Xt) is ρ-
mixing. The ρ-mixing property is equivalent to the fact that 0 is a simple eigenvalue and an isolated
point of the spectrum of L. This implies that Range(D) = {h ∈ L2(um(x)dx),

∫
h(x)um(x)dx = 0}.

These results Proposition 2.8 in [25] are stated for SDEs with locally Lipschitz coefficients having
linear growth, which were standard assumptions for classical SDEs and, therefore it was simpler to
state the results under these assumptions. Here, this assumption is not satisfied by (Yt) defined in
(11). However, this assumption is not mandatory. The only requirement is that the SDE admits a
unique strong solution and an invariant distribution. Indeed, the proof of Proposition 2.8 of [25]
does not use this assumption (see the Appendix p.1074-1077). Therefore, we can apply Theorem
2.2 in [25] to (11), although the drift term does not satisfy the linear growth assumption.
Therefore, (76)-(77) hold for all f ∈ L2(um(x)dx).

�

Proof of Corollary 7.1. The proof follows by application of the Cramér-Wold device. �
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