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We consider a specific family of one-dimensional McKean-Vlasov stochastic differential equations with no potential term and with interaction term modeled by an odd increasing polynomial. We assume that the observed process is in stationary regime and that the sample path is continuously observed on a time interval [0, 2T ]. Due to the McKean-Vlasov structure, the drift function depends on the unknown marginal law of the process in addition to the unknown parameters present in the interaction function. This is why the exact likelihood function does not lead to computable estimators. We overcome this difficulty by a two-step approach leading to an approximate likelihood function. We then derive explicit estimators of the coefficients of the interaction term and prove their consistency and asymptotic normality with rate √ T as T grows to infinity. Examples illustrating the theory are proposed.

Introduction

We consider the parametric inference for ergodic McKean-Vlasov stochastic differential equations (SDE). These SDEs with coefficients depending both on the state of the process and on its current distribution were first described by McKean [START_REF] Mac Kean | A class of Markov processes associated with nonlinear parabolic equation[END_REF] to model plasma dynamics. They appear when describing the limit behavior of a large population of interacting particles with an interaction function between the dynamical systems. A wide field of research is devoted to developing probabilistic tools for the study of interacting particles and their limits (propagation of chaos) (see e.g. among many references [START_REF] Funaki | A certain class of diffusions processes associated with nonlinear parabolic equations[END_REF], [START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF], [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF], [START_REF] Benachour | Nonlinear self-stabilizing processes -II Convergence to invariant probability[END_REF], [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF], [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF]; [START_REF] Sznitman | Topics in propagation of chaos[END_REF] and [START_REF] Kolokoltsov | Non linear Markov processes and kinetic equations 182[END_REF] for books). In [START_REF] Herrmann | Large deviations and a Kramers'type law for self-stabilizing diffusions[END_REF], small noise properties and large deviations results for these processes are investigated.

The statistical inference for models of interacting particles has been little studied. But, these models were recently shown to describe observable dynamics in a wide variety of disciplines, where particles may represent atoms, cells, animals, neurons, people, rational agents, opinions, financial assets: see e.g. [START_REF] Benedetto | A kinetic equation for granular media[END_REF] for the modeling of granular media, [START_REF] Baladron | Mean field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons[END_REF] for neurosciences, [START_REF] Molginer | A non-local model for a swarm[END_REF], [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF] for population dynamics and ecology, [START_REF] Ball | Stochastic SIR in Structured Populations[END_REF], [START_REF] Forien | Household epidemic models and McKean-Vlasov Poisson driven SDEs[END_REF] for epidemics dynamics, [START_REF] Giesecke | Inference for large financial systems[END_REF] and the references therein for finance. Therefore, the statistical inference for models of interacting particles has become an important issue. Two axes of research can be considered: inference based on the observation of the dynamics of the N interacting particles, inference based on the limiting process (i.e. McKean-Vlasov SDE), which describes the typical behaviour of one isolated particle among others. As far as the first approach is concerned, a first result was obtained by [START_REF] Kasonga | Maximum likelihood theory for large interacting systems[END_REF] who studied parametric inference for a model with linear dependence on the parameters in the drift term. It was later extended by [START_REF] Chen | Maximum likelihood estimation of potential energy in interacting particle systems from single-trajectory data[END_REF], and by [START_REF] Bishwal | Estimation in Interacting Diffusions: Continuous and Discrete Sampling[END_REF], [START_REF] Comte | Nonparametric adaptive estimation for interacting particle systems[END_REF] for a time-dependent model. Parametric inference based on martingale estimation functions was investigated in [START_REF] Pavliotis | Eigenfunction martingale estimators for interacting particle systems and their mean field limit[END_REF], a LAN property was recently proved for these systems ( [START_REF] Della Maestra | The LAN property for McKean-Vlasov models in a mean-field regime[END_REF]); inference based on the empirical distributions of the particle system was studied in [START_REF] Giesecke | Inference for large financial systems[END_REF]. [START_REF] Della Maestra | Nonparametric estimation for interacting particle systems: McKean-Vlasov models[END_REF] are concerned with nonparametric inference for the drift term in a general model. Recently, [START_REF] Belomestny | Semiparametric estimation of McKean-Vlasov stochastic differential equations[END_REF] study the semi-parametric estimation for a drift term containing both a parametric and a nonparametric part, [START_REF] Amorino | Parameter estimation of discretely observed interacting particle systems[END_REF] the inference from discrete observations and [START_REF] Li | On the identifiability of interaction functions in systems of interacting particles[END_REF] and [START_REF] Lu | Learning Interaction Kernels in Stochastic Systems of Interacting Particles from Multiple Trajectories[END_REF] nonparametric inference from i.i.d. repetitions of interacting particle systems. However, assuming that the whole N -particle system is observed might be too demanding and unrealistic. Hence, using the convergence, as N → ∞ of the N -particle system to McKean-Vlasov SDEs ( propagation of chaos), makes worthy of interest the study of inference for these SDEs. This is the line of research developed here.

More precisely, we consider a McKean-Vlasov SDE having the specific and classical form

dX t = µ(t, X t )dt + σdW t , X 0 = η, with (1) 
µ(t, x) = V (x) -R Φ(x -y)u(t, y)dy = -Φ u(t, .)(x), u(t, y)dy = L(X t ),

where L(X t ) denotes the law of X t with density u(t, .), V : R → R, Φ : R → R, (W t ) is a standard Brownian motion, η a random variable independent of (W t ). The potential term V describes the geometry of the space. The term Φ derives from the interaction between particles in the original system of particles. These equations differ from classical SDEs because of this interaction term which contains the current distribution of the state variable. Parametric inference studies for such models have started under different asymptotic frameworks. [START_REF] Genon-Catalot | Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations[END_REF] consider the parametric inference for model (1) from a continuous observation on a fixed time interval [0, T ] of a single path and of n i.i.d paths in the asymptotic framework σ tends to 0. In [START_REF] Genon-Catalot | Parametric inference for small variance and long time horizon McKean-Vlasov diffusion models[END_REF], the parametric inference is studied from the continuous observation of a single path in the double asymptotic σ → 0 and T → +∞. [START_REF] Sharrock | Parameter Estimation for the McKean-Vlasov Stochastic Differential Equation[END_REF] study i.i.d. observations of [START_REF] Amorino | Contrast function estimation for the drift parameter of ergodic jump diffusion process[END_REF] and build an approximation of the likelihood to obtain offline and online estimations.

In this paper, we are concerned with the parametric inference based on a continuous observation of a single path of ( 1)-( 2) on a time interval [0, 2T ] with asymptotic properties as T tends to infinity. As studied in numerous papers (see e.g. [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF], [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF], [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF], [START_REF] Li | On the identifiability of interaction functions in systems of interacting particles[END_REF], [START_REF] Lu | Learning Interaction Kernels in Stochastic Systems of Interacting Particles from Multiple Trajectories[END_REF]), we consider here models with no potential term (V ≡ 0) and odd interaction term which constitute an important class of McKean-Vlasov SDEs both for theoretical properties and for applications. With a nul potential term, considering an odd interaction term ensures the existence and uniqueness of solutions to [START_REF] Amorino | Contrast function estimation for the drift parameter of ergodic jump diffusion process[END_REF] (see e.g. [START_REF] Gärtner | On the McKean-Vlasov limit for interacting diffusions[END_REF], [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF], [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF], [START_REF] Herrmann | Non uniqueness of stationary measures for self-stabilizing diffusions[END_REF], [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF]) and existence of invariant distributions for the model (see e.g. [START_REF] Benachour | Nonlinear self-stabilizing processes -II Convergence to invariant probability[END_REF], [START_REF] Veretennikov | On ergodic measures for McKean-Vlasov stochastic equations[END_REF], [START_REF] Herrmann | Non uniqueness of stationary measures for self-stabilizing diffusions[END_REF], [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF], [START_REF] Eberle | Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes[END_REF]). Statistical inference for ergodic diffusion processes has a longstanding history. Among many references, we can quote the books of [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF], [START_REF] Iacus | Simulation and inference for stochastic differential equations[END_REF], [START_REF] Kessler | Statistical methods for stochastic differential equations[END_REF], [START_REF] Höpfner | Asymptotic Statistics with a View to Stochastic Processes[END_REF]. There are also lots of papers concerning parametric or nonparametric inference for ergodic diffusions based on continuous or discrete observations: for one dimensional diffusions, e.g. [START_REF] Bibby | Martingale estimation functions for discretely observed diffusion Bernoulli[END_REF], [START_REF] Kessler | Estimation of an ergodic diffusion from discrete observations[END_REF], [START_REF] Hoffmann | Adaptive estimation in diffusion processes[END_REF], [START_REF] Dalalyan | Sharp adaptive estimation of the drift function for ergodic diffusions[END_REF], [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF], [START_REF] Comte | Drift estimation on non compact support for diffusion models[END_REF]; for multi-dimensional diffusions, e.g. [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF], [START_REF] Nickl | Nonparametric statistical inference for drift vector fields of multidimensional diffusions[END_REF]. Ergodic diffusions with jumps are considered in [START_REF] Masuda | Ergodicity and exponential beta-mixing for multidimensional diffusions with jumps[END_REF], [START_REF] Masuda | Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process[END_REF], [START_REF] Schmisser | Non-parametric adaptive estimation of the drift for a jump diffusion process[END_REF], [START_REF] Amorino | Contrast function estimation for the drift parameter of ergodic jump diffusion process[END_REF]. To our knowledge, except in [START_REF] Sharrock | Parameter Estimation for the McKean-Vlasov Stochastic Differential Equation[END_REF], the inference for McKean-Vlasov SDEs in stationary regime has not been investigated. The statistical problem is very different from the case of usual SDEs. For inference, the main difficulty lies in the presence of L(X t ) in the drift term. This is why, as in [START_REF] Belomestny | Semiparametric estimation of McKean-Vlasov stochastic differential equations[END_REF], we consider a specific family of interaction functions which are odd polynomials. More precisely, we consider the onedimensional process defined by ( 1),(2) with V ≡ 0, Φ odd and increasing and µ(t, x) = µ f (t, x) depending on an unknown parameter f , i.e.

dX t = µ f (t, X t )dt + σdW t , where (3) 
µ f (t, x) = - R Φ(f , x -y)u(t, f , y)dy = -Φ(f ,.) u(t, f , .)(x), u(t, f , y)dy = L(X t ), (4) 
(W t ) is a standard Brownian motion, σ is known and f is an unknown parameter. A solution of (3)-( 4) is a couple ((X t , u(t, f , .), t ≥ 0) composed with a process (X t ) and a family of distributions (u(t, f , x)dx) satisfying ( 3)-( 4). When defined, (X t ) is a time-inhomogeneous Markov process which admits stationary distributions.

As Φ is odd, whatever the initial distribution, the process (X t ) solving (3)-( 4) has a constant expectation m (see Section 2). Contrary to classical SDEs, stationary distributions of model ( 3)-( 4) are not uniquely determined except if the expectation of (X t ) is specified. Under additional assumptions, stationary distributions for (3)-( 4) exist and satisfy: If E(X t ) = 0, (3)-( 4) admits a unique invariant distribution with symmetric density u 0 (f , x); if E(X t ) = m, (3)-( 4) admits a unique invariant distribution with density

u m (f , x) = u 0 (f , x -m).
When (X t ) is in stationary regime, L(X t ) does no longer depend on t and is equal to the stationary distribution u 0 (f , x)dx in centered stationary regime and to u m (f , x)dx = u 0 (f , x -m)dx in stationary regime with expectation m. In this paper, we assume that the interaction Φ satisfies

Φ(f , x) = k-1 j=0 f 2j+1 x 2j+1 , f 1 > 0, f 2j+1 ≥ 0, j = 1, . . . , k -1, where f = (f 1 , f 3 , . . . , f 2k-1 ). (5) 
Then, (X t ) satisfying ( 3)-( 4)-( 5) has stationary distributions. We first study the estimation of f when (X t ) is in centered stationary regime (X 0 ∼ u 0 (f , x)dx). Then, we study the joint estimation of (m, f ) when the process is in non centered stationary regime (X 0 ∼ u m (f , x)dx = u 0 (f , x-m)dx). Because of the specific form of the interaction function Φ (polynomial), the convolution product Φ(f , .) u 0 (f , .) (resp. Φ(f , .) u m (f , .)) is explicitly given as a function of f and the moments of the invariant distribution. This strongly simplifies the drift term. However, these moments have no explicit expression as functions of f and m. Therefore, the exact log-likelihood can be studied theoretically but does not lead to computable estimators.

Thus we first build estimators of the stationary distribution moments based on the sample path (X t , t ∈ [0, T ]). Then, to get an explicit contrast, we plug these moment estimators into the exact conditional log-likelihood of ( 3)-( 4) given X T , based on the sample (X t , t ∈ [T, 2T ]). We prove that these estimators are consistent and asymptotically Gaussian with rate √ T .

The paper is organized as follows. In Section 2, we detail the assumptions for existence and uniqueness of solutions and existence of invariant distributions. In particular, we describe these invariant distributions (Proposition 2.1). In Section 3 (resp. Section 4), we estimate f when the observed process is in centered stationary regime (resp. non centered stationary regime). We study the exact likelihood and prove that the maximum likelihood estimator is consistent and asymptotically Gaussian with rate √ T (Proposition 3.2) . However, this remains completely theoretical and the estimators are numerically intractable. Next, we study computable estimators of f for the centered process and for the non centered process. First, we rely on a two-step approach. We use the sample path on [0, T ] to estimate moments of the stationary distribution. Then, estimators are built using the resulting approximation of the likelihood on [T, 2T ]. The main results are stated in Theorem 3.1 and Theorem 4.1. Second, we also build empirical estimators based on some specific properties of model [START_REF] Baladron | Mean field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons[END_REF]. Examples illustrating the methods are given. Section 5 contains concluding remarks. Proofs are gathered in Section 6. In the Appendix (Section 7), properties of the infinitesimal generator and a central limit theorem for ergodic diffusions are recalled.

Probability preliminaries for general interaction term.

In this section, we give sufficient conditions for existence and uniqueness of a solution to (3)-( 4) and existence and uniqueness of a stationary distribution. We explain how the stationary distribution with specified expectation may be computed by an implicit fixed point equation. This is different from the case of classical SDEs. We describe the properties of (3)-(4) when the initial variable follows the stationary distribution.

Assumptions for a general interaction term Φ

The following assumptions may be found in [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF], [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF] or [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF].

• [H1] Φ is odd and increasing.

• [H2] Φ is locally Lipschitz with polynomial growth, i.e. there exist c > 0,

∈ N * such that ∀x, y ∈ R, |Φ(x) -Φ(y)| ≤ c|x -y|(1 + |x| + |y| ). • [H3] Φ is C 1 (R)
and there exists a constant λ > 0 such that ∀x, Φ (x) ≥ λ. )) is also a solution of (3)-( 4).

Proof By (3)-( 4),

E(X t ) = E(X 0 ) - t 0 ds E Φ(X s -y)u(s, y)dy).
Since Φ is odd, taking (X t ) an i.i.d. copy of (X t ), E Φ(X t -y)u(t, y)dy = EΦ(X t -X t ) = 0. Thus,

∀t, E(X t ) = E(X 0 ). (6) 
This holds whatever the initial variable. Now, considering Y t = X t -E(X 0 ) and let v(t, y)dy be the distribution of X t -E(X 0 ), we have

X t -E(X 0 ) = X 0 -E(X 0 ) - t 0 ds Φ(X s -E(X 0 ) -(y -E(X 0 )))u(s, y)dy + σW t = X 0 -E(X 0 ) - t 0 ds Φ(X s -E(X 0 ) -z)u(s, z + E(X 0 ))dz + σW t = X 0 -E(X 0 ) - t 0 ds Φ(X s -E(X 0 ) -z)v(s, z)dz + σW t .
This is why the specification of the process expectation is important especially for invariant distributions (see below). Finally, let us state another useful property associated with this equation.

Lemma 2.2. Assume [H1]-[H3]

. Consider a symmetric probability density u such that ∞ 0 y +1 u(y)dy < +∞. Then, Φ u is well-defined and

• Φ u is odd. • For all x, x 0 Φ u(y)dy ≥ λ x 2
2 + C, for some constant C.

Stationary distributions

Existence and uniqueness

By Lemma 2.2 in [START_REF] Herrmann | Non uniqueness of stationary measures for self-stabilizing diffusions[END_REF], if there exists an invariant density whose (8( + 1) 2 )-moment is finite, then it satisfies the implicit fixed point equation

u(x) = exp (-2σ -2 x 0 Φ u(y)dy) ν(u) (7) 
where, by Lemma 2.2, ν(u) below is well defined and finite,

ν(u) = R exp (-2σ -2 x 0 Φ u(y)dy)dx < +∞. (8) 
Equation [START_REF] Benedetto | A kinetic equation for granular media[END_REF] does not possess a unique solution unless its expectation is specified. In other words, it has a unique solution with a given expectation.

As an example, consider the simple case Φ(x) = x, then Φ u(x) = (x -y)u(y)dy = x -m with m = yu(y)dy. Thus,

u(x) = u m (x) ∝ exp [- 1 σ 2 (x 2 -2mx)] ∝ exp [- 1 σ 2 (x -m) 2 ].
Hence, the stationary distribution depends on the parameter m. This is consistent with the fact that equation (3) with Φ(x) = x writes

X t = X 0 - t 0 (X s -EX s )ds + σW t = X 0 - t 0 (X s -m)ds + σW t ,
where, for all t, m = EX 0 = EX t .

For this reason, many authors ( [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF], [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF], [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF]) consider equations ( 3)-( 4) under the assumption that EX t = 0 and prove the following result.

Proposition 2.1. (see [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF], [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF], [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF]). (i) Under [H1]-[H4], there exists a unique symmetric density function u(x) implicitely defined by

u(x) = 1 ν(u) exp (-2σ -2 x 0 Φ u(y)dy) (9) 
which satisfies (see [H3] for λ and Lemma 2.2):

u(x) ≤ 1 ν(u) exp [-σ -2 λx 2 ]. (10) 
(ii) If u(.) is the density of X 0 and (X t ) is the unique solution of (3)-(4), then u(.) is the density of X t , for all t ≥ 0.

(iii) For any initial law satisfying the moment condition of order 8( + 1) 2 , L(X t ) converges to the invariant symmetric law u as t tends to infinity.

Consequently, equation ( 3)-( 4) admits a unique invariant density u m (x) such that yu m (y)dy = m. This density is equal to u m (x) = u(x -m) and is thus symmetric around m. By [START_REF] Bishwal | Estimation in Interacting Diffusions: Continuous and Discrete Sampling[END_REF], u admits moments of any order.

Ergodicity

Let us now point out the following properties of the process (X t ) in stationary regime. The process defined in (3) is a time-inhomogeneous Markov process. However, when (X t ) is in stationary regime (with expectation m), (X t ) is identical to a time-homogeneous diffusion process. Indeed, assume that the initial variable η has distribution u m (x)dx then, the density u(t, y)dy of X t defined in (3)-( 4), satisfies ∀t ≥ 0, u(t, y) = u m (y), so that the following holds.

Proposition 2.2. Consider the stochastic differential equation

dY t = b(Y t )dt + σdW t , b = -Φ u m , (11) 
where u m (.) = u 0 (. -m) and u 0 is the unique symmetric solution of [START_REF] Bibby | Martingale estimation functions for discretely observed diffusion Bernoulli[END_REF]. Then (Y t ) is a positive recurrent diffusion whose stationary distribution has density u m (x).

If Y 0 ∼ u m (x)dx, it is ergodic. Moreover, -If Y 0 = X 0 , (Y t ) ≡ (X t ). -If Y 0 = X 0 = η ∼ u m (x)dx, then X t = Y t for all t ≥ 0.
Thus, when X 0 ∼ u m (x)dx, (X t ) is equal to the solution of a classical SDE in stationary regime and is ergodic. Let us stress the importance of this result. It allows to apply known results for classical ergodic SDEs. Consequently, we rely strongly on results stated in [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF] which in particular sums up properties of the infinitesimal generator of ergodic diffusions. Thus, a law of large numbers holds for (X t ). If f satisfies |f (x)|u m (x)dx < +∞, applying the ergodic theorem yields

1 T T 0 f (X s )ds → a.s. f (x)u m (x)dx. ( 12 
)
The central limit theorem associated with this result is stated and detailed in the Appendix, together with important properties of the infinitesimal generator for stationary diffusions.

Parametric inference in centered stationary regime.

From now on, we consider that (X t ) is defined by ( 3)-( 4)-( 5) and recall that σ is known.

In this section, we assume that (X t ) is in centered stationary regime. Therefore, we make here the assumptions:

• [H5] Φ(x) = Φ(f , x) = k-1 j=0 f 2j+1 x 2j+1 , f 1 > 0, f 2j+1 ≥ 0, j = 0, . . . , k -1. • [H6] X 0 = η ∼ u 0 (f , x)dx,
where u 0 (f , .) is the unique centered invariant density. Recall that u 0 (f , .) is symmetric. For V a vector or M a matrix, denote by V or M the transposed vector or matrix. We consider the estimation of the unknown parameter f = (f 1 , f 3 , . . . , f 2k-1 ) based on the continuous observation of (X t , t ≤ 2T ). We first describe some analytical properties of the drift term of (X t ), which leads to explicit expressions of µ f (t, x) in terms of moments of the stationary distribution (Section 3.1). Then, we study the theoretical likelihood (Section 3.2). Under [H5-[H6], Maximum Likelihood Estimators (MLE) exist but are intractable. Therefore, we develop in Section 3.3, a two-step approach, estimating first the empirical moments of u 0 (f , .) from the observation of (X t ) on [0, T ], and second building an approximate likelihood based on (X t ), t ∈ [T, 2T ] which relies on these moments estimators. Finally, using another specific property of (X t ), we propose in Section 3.4 another inference method, which could serve to derive preliminary estimators. Examples are finally given in Section 3.5. 3)-( 4) admits an invariant distribution which is unique when its expectation is specified. Indeed, according to Proposition 2.1, Equation ( 9) has a unique symmetric density solution that we have denoted u 0 (f , .). Note that u 0 (f , .) depends on f and σ. As σ is known, in what follows, we omit the dependence w.r.t. σ in the notations. Define, for j ≥ 0,

Analytical properties of the drift of (X t )

Under[ H5]-[H6] assumptions [H1]-[H4] are satisfied and Equation (

γ 2j (f ) = γ 2j = R x 2j u 0 (f , x)dx. ( 13 
)
Set for x ∈ R, define the vector

z k (x) = (x, x 3 . . . , x 2k-1 ) . ( 14 
) Proposition 3.1. Under [H5]-[H6], the drift µ f (t, x) = -Φ(f , .) u 0 (f , .)(x) is an odd polynomial such that µ f (t, x) = b(f , x) = k-1 i=0 b 2i+1 (f )x 2i+1 = b(f ) z k (x), where (15) b 
(f ) = (b 2i+1 (f ), i = 0, . . . , k -1) (16) b 2i+1 (f ) = - k-1 j=i 2j + 1 2(j -i) γ 2(j-i) (f )f 2j+1 , 0 ≤ i ≤ k -1
where for p ≤ n, n p is the binomial coefficient.

Thus, b(f ) = M k (f )f ( 17 
)
where

M k (f ) = (M k (f , i, j) 0≤i,j≤k-1 ) is the k × k upper triangular matrix given by M k (f , i, j) = 0 for i > j, M k (f , i, j) = - 2j + 1 2(j -i) γ 2(j-i) (f ) for i ≤ j. (18) 
Note that γ 0 (f

) = γ 0 = 1 so that M k (f , i, i) = -1 and that M k (f ) depends on f only through the moments (γ 0 , γ 2 (f ), . . . , γ 2(k-1) (f )).
The coefficients of b(f , x) are explicit functions of f and of the moments of u 0 (f , .). We define for

v = (v 0 , v 1 , . . . , v k-1 ) a vector of R k , denote M (v) k = (M (v) k (i, j)) 0≤i,j≤k-1 with M (v) k (i, j) = 0 for i > j, M (v) k (i, j) = - 2j + 1 2(j -i) v j-i for i ≤ j. ( 19 
) Note that M k (f ) defined in (18) satisfies M k (f ) = M (γ) k where γ = (γ 0 , γ 2 (f ), . . . , γ 2(k-1) (f )) .
Proof of Proposition 3.1. First, since u 0 (f , .) is symmetric, odd moments of u 0 (f , .) are nul. Therefore,

Φ(f , .) u 0 (f , x) = k-1 j=0 f 2j+1 (x -y) 2j+1 u 0 (f , y)dy = k-1 j=0 f 2j+1 j =0 2j + 1 2 x 2j+1-2 γ 2 (f ) = k-1 j=0 f 2j+1 j i=0 2j + 1 2(j -i) x 2i+1 γ 2(j-i) (f ) = k-1 i=0 x 2i+1 k-1 j=i 2j + 1 2(j -i) γ 2(j-i) (f )f 2j+1 . Examples 3.1. • For k = 1, b(f , x) = -f 1 x, M 1 = -[1]. • For k = 2, b(f , x) = -[(f 1 + 3γ 2 (f )f 3 )x + f 3 x 3 ], M 2 (f ) = - 1 3γ 2 (f ) 0 1 . • For k = 3, b(f , x) = -[(f 1 + 3γ 2 (f )f 3 + 5γ 4 (f )f 5 )x + (f 3 + 10γ 2 (f )f 5 )x 3 + f 5 x 5 ], M 3 (f ) = -   1 3 2 γ 2 (f ) 5 4 γ 4 (f ) 0 1 5 2 γ 2 (f ) 0 0 1   .
Remark 3.1. Computation of the stationary distribution As a consequence of Proposition 3.1, the symmetric stationary distribution u 0 (f , .) of (3)-( 4)-( 5) can be computed numerically (see e.g. [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF]). Indeed, using [START_REF] Chen | Maximum likelihood estimation of potential energy in interacting particle systems from single-trajectory data[END_REF],

u 0 (f , x) = 1 ν(f , u 0 ) exp [- 2 σ 2 F (x)]dx, ν(f , u 0 ) = exp [- 2 σ 2 F (x)]dx F (x) = k-1 i=0 x 2i+2 2i + 2 k-1 j=i 2j + 1 2(j -i) γ 2(j-i) (f )f 2j+1 = F γ (x).
Therefore, the stationary distribution only depends on its moments γ 2j (f ); j = 1, . . . , k -1.

For each f , the vector γ is the unique solution of the system:

γ 2j exp [- 2 σ 2 F γ (x)]dx = x 2j exp [- 2 σ 2 F γ (x)]dx, j = 1, . . . , k -1,
and can therefore be numerically computed. Once F γ is obtained, u 0 (f , .) may also be numerically obtained.

Theoretical likelihood inference

Let us introduce some notations for this section. Let C([0, 2T ], R) denote the space of continuous functions defined on [0, 2T ] and C 2T the associated Borel σ-algebra. The parameter set F is the subset of R k defined by

F = {f ∈ R k such that f = (f 1 , f 3 , . . . , f 2k-1 ), f 1 > 0, f 2j+1 ≥ 0, j = 0, . . . , k -1}. ( 20 
)
Let f 0 denote the true value of the parameter and P f the distribution on (C([0, 2T ], C 2T ) of (X t ) defined by ( 3)-( 4)- [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF]. Here, we look at maximum likelihood estimation based on (X t , t ∈ [0, T ]). The Girsanov formula holds and the conditional log-likelihood of (X t , t ∈ [0, T ]) given X 0 is given by, using (15):

T (f ) = σ -2 [ T 0 b(f , X s )dX s - 1 2 T 0 b 2 (f , X s )ds]. ( 21 
)
Define the estimator

f T = arg max f ∈R k T (f ). ( 22 
)
This estimator is purely theoretical as it is not given by explicit equations due to the presence of the moments of u 0 (f , .) in the drift b(f , x) (see Proposition 3.1). Note that, contrary to the MLE for classical diffusions, f T depends on σ 2 because of the presence of the moments of the stationary distribution in the drift.

Proposition 3.2. Assume [H5]-[H6]

. Then, under P f0 , the following holds:

1 T ( T (f ) -T (f 0 )) → - 1 2σ 2 (b(f , x) -b(f 0 , x)) 2 u 0 (f 0 , x)dx := - 1 2σ 2 K(f 0 , f ) a.s. The identifiability assumption {K(f 0 , f ) = 0 ⇒ f = f 0 } is satisfied.
If moreover the parameter set F is compact, the maximum likelihood estimator f T is consistent. The matrix

I(f 0 ) = ( R ∂b ∂f2i+1 (f 0 , x) ∂b ∂f2j+1 (f 0 , x)u 0 (f 0 , x)dx) 0≤i,j≤k-1 is invertible and under P f0 , √ T ( f T -f 0 ) → L N 0, σ 2 I(f 0 ) -1 .
According to Proposition 2.2, when (X t ) is in stationary regime, X t ≡ Y t defined in [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF] which is a classical ergodic diffusion. Therefore, the proof is classical. The difficulty here lies in the fact that the drift has a complex dependence with respect to the unknown parameters so that the estimator f T is numerically intractable (see e.g. Section 3.5, Example 2). In particular, the partial derivatives ∂b ∂f2i+1 (f , x),

∂ 2 b
∂f2i+1∂f2j+1 (f , x) are non linear w.r.t. f as b(f , x) includes in its definition f and the moments γ 2i (f ) of u 0 (f , x) which depend on f . Thus the partial derivatives also depend on the partial derivatives of γ 2i (f ) w.r.t. f .

Explicit estimators using empirical moments.

We assume here that the sample path (X t ) is continuously observed throughout the time interval [0, 2T ]. We use the first half of the sample path, (X t , t ∈ [0, T ]), to build empirical estimators of the moments of u 0 (f , .), and the second half, (X t , t ∈ [T, 2T ]), to define a contrast in order to estimate the coefficients b 2i+1 in the drift b(f , x). Finally, we deduce estimators for the parameter f .

Estimation of the moments of the stationary distribution based on

(X t , t ∈ [0, T ])
Let us consider the empirical estimators of the moments of u 0 (f , .) built using the sample path (X t , t ∈ [0, T ]), defined by

γ 2j (T ) = 1 T T 0 X 2j s ds, j ≥ 1 (we set γ 0 (T ) = γ 0 = 1). (23) 
The following holds. 

P f , for ≥ 1, γ 2 (T ) → a.s. γ 2 (f ) = x 2 u 0 (f , x)dx. Moreover, √ T ( γ 2 (T ) -γ 2 (f )) = σ √ T T 0 g (f , X s )dW s + o P (1), ( 24 
)
where for

1 ≤ ≤ k -1, g (f , x) = -2σ -2 [u 0 (f , x)] -1 x -∞ (y 2 -γ 2 (f ))u 0 (f , y)dy (25) 
satisfies (g (f , x)) 2 u 0 (f , x)dx < +∞. Consequently, for all k, the vector (

√ T ( γ 2 (T ) -γ 2 (f )), = 0, 1, . . . , k -1) converges in distribution, under P f , to N k-1 (0, σ 2 V (f )) with V (f ) = (V i,j (f )) 0≤i,j≤k-1 and V i,j (f ) = g i (f , x)g j (f , x)u 0 (f , x)dx.
Remark 3.2. The results of Proposition 3.3 relies on the property that, for all , the function -(x 2γ 2 (f )) belongs to the range of L, generator of (Y t ) defined in [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF]. For this, we use a result stated in [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF] for SDEs having locally Lipschitz coefficients with linear growth. But the only requirement of the proof is that the SDE admits a unique strong solution and an invariant distribution. Therefore, it applies here. This point is detailed in Section 7.

3.3.2. Estimation of b(f ) = (b 2i+1 (f ), i = 0, • • • , k -1)
The drift function b(f , x) of (X t ) is as an odd polynomial of degree 2k -1 w.r.t. x (see [START_REF] Comte | Nonparametric adaptive estimation for interacting particle systems[END_REF]):

dX t = b(f , X t )dt + σdW t , b(f , x) = k-1 i=0 b 2i+1 (f )x 2i+1 , X 0 ∼ u 0 (f , x)dx.
The vector b(f ) = (b 2i+1 (f ), i = 0, . . . , k -1) is given in Proposition 3.1. Consider the contrast function which is the log-likelihood given X T of the process (X t , t ∈ [T, 2T ]),

U T (b(f )) = 1 σ 2 2T T [ k-1 i=0 b 2i+1 (f )X 2i+1 s ]dX s - 1 2 2T T [ k-1 i=0 b 2i+1 (f )X 2i+1 s ] 2 ds . (26) 
We define the estimator b(f

) T of b(f ) by maximizing U T with respect to b(f ) = (b 2i+1 (f ), i = 0, . . . , k-1) .
For this, we set, using ( 14),

Z T = 2T T z k (X s )dX s . (27) 
Then, b(f

) T satisfies Z T = Ψ T b(f ) T , (28) 
where

Ψ T = 2T T z k (X s )[z k (X s )] ds = 2T T X 2i+2j+2 s ds 0≤i,j≤k-1 . ( 29 
)
Let us define, using [START_REF] Chen | Maximum likelihood estimation of potential energy in interacting particle systems from single-trajectory data[END_REF],

Ψ(f ) = (γ 2(i+j+1) (f )) 0≤i,j≤k-1 . (30) 
Proposition 3.4. Assume [H5]-[H6]. Under P f0 , the matrix Ψ T /T converges a.s. to Ψ(f 0 ). The matrix

Ψ(f 0 ) is invertible, b(f ) T = [Ψ T ] -1 Z T converges a.s. to b(f 0 ) and √ T ( b(f ) T -b(f 0 )) converges in distribution to the Gaussian law N k (0, σ 2 Ψ(f 0 ) -1 ).

Estimation of f

Let us come back to the estimation of f . For this, we rely on relations ( 16)- [START_REF] Dalalyan | Sharp adaptive estimation of the drift function for ergodic diffusions[END_REF] (see Proposition 3.1) which links f to b(f ): b(f ) = M k (f )f . It suggests to consider the matrix M k using [START_REF] Della Maestra | Nonparametric estimation for interacting particle systems: McKean-Vlasov models[END_REF] where the unknown moments of u 0 (f , .) are replaced by their consistent estimators built on the observation of (X t ) on [0, T ] given above:

M k = M ( γ0(T ), γ2(T ),..., γ 2(k-1) (T )) k = ( M k (i, j)) 0≤i,j≤k-1 , with (31) 
M k (i, j) = - 2j + 1 2(j -i) γ 2(j-i) (T )1 i≤j . (32) 
It follows from Proposition 3.3 that M k converges a.s. to M k (f ) and that the whole vector

√ T (( M k (i, j)- M k (f , i, j)) 0≤i,j≤k
) is asymptotically Gaussian. This justifies the definition of f T by (see [START_REF] Giesecke | Inference for large financial systems[END_REF]):

f T = ( M k ) -1 b(f ) T = ( M k ) -1 Ψ -1 T Z T = (Ψ T M k ) -1 Z T . (33) 
Let us stress that, as for the theoretical maximum likelihood estimator [START_REF] Forien | Household epidemic models and McKean-Vlasov Poisson driven SDEs[END_REF], this new estimator does not depend on σ.

Theorem 3.1. Under the assumptions [H5]-[H6], the estimator f T is consistent and satisfies

√ T ( f T -f ) → L N k (0, σ 2 Σ(f )) with Σ(f ) = Σ 1 (f ) + Σ 2 (f ) (34) Σ 1 (f ) = M -1 k (f )Ψ -1 (f )(M -1 k (f )) ; Σ 2 (f ) = β(f , x)β (f , x)u 0 (f , x)dx (35) 
with, using definitions (18), ( 19) and (30),

β(f , x) = M k (f ) -1 M (v(f ,x)) k f with v(f , x) = 0, g 1 (f , x), . . . , g k-1 (f , x) . ( 36 
)
By Proposition 3.4, b(f ) T converges a.s. to b(f ) and, by Proposition 3.3, M k to M k (f ) so that f T is consistent. For the asymptotic normality, two terms appear. Heuristically, the first term Σ 1 (f ) derives from the change of variable b(f ) → f and the second one Σ 2 (f ) from the estimation of the moments of u 0 (f , .) and the plug-in device in the estimation. The proof, detailed in the appendix, relies on the decomposition in the two main terms

Ψ(f )M k (f ) √ T ( f T -f ) = σ √ T 2T T z k (X s )dW s -Ψ(f ) √ T ( M k -M k (f ))f + o P (1). According to Proposition 3.3, √ T ( M k (i, j) -M k (f , i, j)) = -σ √ T 2j+1 2(j-i) T 0 g 2(j-i) (f , X s )dW s + o P (1)
, the second term depends on (X t , t ≤ T ) while the first term depends on (X t , T ≤ t ≤ 2T ). These two terms are conditionally independent and lead to the two quantities appearing in Σ(f ).

Another inference method.

We assume that the observation is (X t , t ∈ [0, T ]). This method is based on a special property of model ( 3)-( 4)- [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF]. There is an explicit relation linking the vector f and the vector (γ 2i (f ), i = 0, . . . , k -1) . Indeed, writing the Ito formula yields

X 2 t = X 2 0 +2 t 0 X 2 -1 s   - k-1 j=0 f 2j+1 ( j m=0 2j + 1 2m X 2j+1-2m s γ 2m (f ))ds + σdW s   +σ 2 (2 -1) t 0 X 2 -2 s ds.
Taking expectations and using that the process is in centered stationary regime yields

∀t ≥ 0, 0 = -2 t k-1 j=0 j m=0 2j + 1 2m γ 2m (f )γ 2(j+ -m) (f ) f 2j+1 + σ 2 (2 -1)tγ 2 -2 (f ).
We set:

B(f ) := (σ 2 (2 -1)γ 2 -2 (f ), = 1, . . . , k) , and (37) 
Γ(f ) = (Γ j (f )) 1≤ ≤k,0≤j≤k-1 with Γ ,j (f ) = 2 j m=0 2j + 1 2m γ 2m (f )γ 2(j+ -m) (f ). (38) 
Then, B(f ) = Γ(f )f . The matrix Γ(f ) is necessarily invertible. Substituting in [START_REF] Kolokoltsov | Non linear Markov processes and kinetic equations 182[END_REF] and ( 38) each moment by its empirical estimator (23) yields the two estimators B T , Γ T of B(f ) and Γ(f ) and the relation defining the moment estimator of f :

f T = ( Γ T ) -1 B T . (39) 
Proposition 3.5 states that it is consistent and asymptotically Gaussian. Let us stress that, contrary to the estimator f T , the estimator f T has the same drawback as the MLE [START_REF] Forien | Household epidemic models and McKean-Vlasov Poisson driven SDEs[END_REF]: it explicitely depends on σ 2 and thus requires its precise knowledge. 

Examples

We illustrate the previous theory on several examples.

Example 1: Φ(f , x) = f x, f > 0.
The centered stationary distribution is the Gaussian law u 0 (f, x)dx = N (0, σ 2 /2f ). Equation (3) writes

dX t = -f (X t -y)u(f, y)dydt + σdW t = -f X t dt + σdW t .
The estimators f T and f T are equal to:

f T = - T 0 X s dX s T 0 X 2 s ds , f T = - 2T T X s dX s 2T T X 2 s ds .
As T -1 T 0 X 2 s ds converges a.s. to σ 2 /2f , we obtain the classical result that

√ T ( f T -f ) converges in distribution to N (0, 2f ). With the notations of Theorem 3.1, Σ 1 (f ) = 2f /σ 2 , Σ 2 (f ) = 0. We have also that √ T ( f T -f
) converges to the same limiting distribution. The second method estimator, based on the relation γ 2 (f ) = σ 2 /2f , is given by:

f T = σ 2 T 2 T 0 X 2 s ds . The generator L of (X t ) is Lg = σ 2 2 g -f xg . The equation Lg 2 (x) = (σ 2 /2f
) -x 2 admits an explicit solution g 2 such that g 2 (x) = x/f . Thus,

T -1/2 T 0 (X 2 s -(σ 2 /2f ))ds converges in distribution to N (0, σ 2 V ) with V = (x/f ) 2 u 0 (f, x)dx = σ 2 2f 3 . This yields that √ T (f T -f ) converges in distribution to N (0, 2f
). In this special example, f T and f T have the same asymptotic distribution. Note that f T can be computed without knowing σ 2 which is preferable.

Example 2: Φ(f, x) = f x 3 , f > 0.
The function Φ(f, x) = f x 3 does not satisfy all our (sufficient) assumptions but the existence and uniqueness of an invariant density can be checked directly. The stationary density u 0 (f, .) is unique and defined by the implicit equation [START_REF] Bibby | Martingale estimation functions for discretely observed diffusion Bernoulli[END_REF]. As u 0 (f, .) is symmetric, (x -y) 3 u 0 (f, y)dy = x 3 + 3xγ 2 (f ). Therefore, equation (3) starting with X 0 ∼ u 0 (f, x)dx, writes:

dX t = -f (X 3 t + 3X t γ 2 (f ))dt + σdW t , X 0 ∼ u 0 (f, x)dx. (40) 
where

u 0 (f, x) = exp -σ -2 f ( x 4 2 + 3x 2 γ 2 (f )) /ν(u 0 (f, .))
and γ 2 (f ) is implicitly given as the unique solution (see [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF] and Remark 3.1) of

R x 2 exp -σ -2 f ( x 4 2 + 3x 2 γ 2 (f )) dx = γ 2 (f ) R exp -σ -2 f ( x 4 2 + 3x 2 γ 2 (f )) dx. (41) 
Let us start with the exact maximum likelihood estimator. It is defined as the solution of T ( f T )) = 0, i.e.

T 0

[X 3 t + 3X t (γ 2 ( f T ) + f T γ 2 ( f T ))]dX t = -f T T 0 (X 3 t + 3X t γ 2 ( f T ))(X 3 t + 3X t (γ 2 ( f T ) + f T γ 2 ( f T ))dt.
Differentiating (41) w.r.t. f allows to obtain an expression of γ 2 (f ) as a function of (f, γ 2 (f ), γ 4 (f ), γ 6 (f ).

But this does not help in obtaining an explicit equation f T . This illustrates the fact that the exact MLE is intractable.

Let us now look at the maximum contrast estimator of f based on (X t , t ∈ [0, 2T ]). We are not in the framework of Theorem 3.1 since f 1 = 0. But we can compute explicitly the estimator of f and get using ( 23)

f T = - 2T T (X 3 t + 3X t γ 2 (T ))dX t 2T T (X 3 t + 3X t γ 2 (T )) 2 dt := - N T D T .
Define the two quantities a(f ) and c(f ),

a(f ) = γ 6 (f ) + 9γ 3 2 (f ) + 6γ 2 (f )γ 4 (f ); c(f ) = 3(γ 4 (f ) + 3γ 2 2 (f )). ( 42 
)
As

T → ∞, D T T → R (x 3 + 3xγ 2 (f )) 2 u 0 (f, x)dx = a(f ). We write √ T ( f T -f ) = - σT -1/2 D T /T 2T T (X 3 t + 3X t γ 2 (T ))dW t + f √ T (γ 2 (f ) -γ 2 (T )) 2T T 3X t (X 3 t + 3X t γ 2 (T ))dt/T D T /T .
We have that 1

T 2T T 3X t (X 3 t + 3X t γ 2 (T ))dt → c(f ) and 1 √ T 2T T (X 3 t + 3X t γ 2 (T ))dW t = 1 √ T 2T T (X 3 t + 3X t γ 2 (f ))dW t + o P (1).
Thus,

√ T ( f T -f ) = - σ a(f ) 1 √ T 2T T (X 3 t + 3X t γ 2 (f ))dW t + √ T (γ 2 (f ) -γ 2 (T )) c(f ) a(f ) f + o P (1). Now, using (25), √ T ( f T -f ) = σ √ 2 √ 2T 2T 0 1 a(f ) (X 3 t + 3X t γ 2 (f ))1 [T,2T ] (t) + f c(f ) a(f ) g 1 (X t )1 [0,T ] (t) dW t + o P (1).
Using the notations of Theorem 3.1, Σ

1 (f ) = 1 a(f ) , Σ 2 (f ) = f 2 c 2 (f ) a 2 (f ) (g 1 (x)) 2 u 0 (f, x)dx, √ T ( f T -f ) → L N 0, σ 2 (Σ 1 (f ) + Σ 2 (f )) .
Let us now look at the second method for f . The Ito formula yields:

EX 2 t = EX 2 0 -2f t 0 E(X s (X 3 s + 3X s γ 2 (f )))ds + σ 2 t.
By the strict stationarity, we get: f (2γ 4 (f ) + 6γ 2 2 (f )) = σ 2 . Thus, we can define an estimator of f by

f T = σ 2 2 γ 4 (T ) + 6( γ 2 (T )) 2 = F ( γ 2 (T ), γ 4 (T )) with F (x, y) = σ 2 2(3x 2 + y) . Therefore DF (x, y) = σ 2 2(3x 2 +y) 2 -6x -1 so that DF (γ 2 (f ), γ 4 (f )) = -2f 2 σ 2 6γ 2 (f ) 1 .
The Delta method yields

√ T (f T -f ) = (DF (γ 2 (f ), γ 4 (f ))) √ T γ 2 (T ) -γ 2 (f ) γ 4 (T ) -γ 4 (f ) + o P (1). By Proposition 3.3, √ T ( γ 2 (T ) -γ 2 (f ), γ 4 (T ) -γ 4 (f )) is asymptotically Gaussian with explicit covariance matrix, so that √ T (f T -f ) → N (0, K) with K = 4σ -2 f 4 (6γ 2 (f )g 1 (x) + g 2 (x)) 2 u 0 (f, x)dx. Example 3: Φ(f , x) = f 1 x + f 3 x 3 , f 1 > 0, f 3 ≥ 0 (k = 2). We have that b(f , x) = -(f 1 x + f 3 (x 3 + 3xγ 2 (f ))) = -((f 1 + 3γ 2 (f )f 3 )x + f 3 x 3 ), and b 1 (f ) b 3 (f ) = M 2 (f ) f 1 f 3 , M 2 (f ) = - 1 3γ 2 (f ) 0 1 .
This yields

f T,1 f T,3 = - 1 -3 γ 2 (T ) 0 1 Ψ -1 T 2T T X s dX s 2T T X 3 s dX s where Ψ T = 2T T X 2 s ds 2T T X 4 s ds 2T T X 4 s ds 2T T X 6 s ds .
According to Theorem 3.1, the asymptotic variance of

√ T ( f T -f ) is σ 2 (Σ 1 (f ) + Σ 2 (f ))
where

Σ 1 (f ) = M -1 2 (f )Ψ -1 (f )(M -1 2 (f )) and Σ 2 (f ) = β(f , x)β (f , x)u 0 (f , x)dx, with Ψ(f ) = γ 2 (f ) γ 4 (f ) γ 4 (f ) γ 6 (f ) , β(x) = β(f , x) = M 2 (f ) -1 M (0,g 1 (x)) 2 f . Therefore we get that Σ 1 (f ) = (γ 2 (f )γ 6 (f ) -γ 2 4 (f )) -1 γ 6 + 6γ 2 γ 4 + 9γ 3 2 -γ 4 -3γ 2 2 -γ 4 -3γ 2 2 γ 2 . Now, for v(x) = (0, g 1 (f , x)), M (v(x)) 2 = - 0 3g 1 (f , x) 0 0 , so that β(f , x) = 3f 3 g 1 (f , x) 0 and Σ 2 (f ) = 9f 2 3 (g 1 (f , x)) 2 u 0 (f , x)dx 0 0 0 .
Consider now the inference method of Section 3.4. Applying the Ito formula to X 2 t andX 4 t yields that f satisfies

Γ(f ) f = σ 2 2 3σ 2 2 γ 2 (f ) , with Γ(f ) = Γ(γ 2 (f ), γ 4 (f ), γ 6 (f )) = γ 2 (f ) 3γ 2 2 (f ) + γ 4 (f ) γ 4 (f ) 3γ 2 (f )γ 4 (f ) + γ 6 (f )
.

The matrix Γ(f ) is non singular since its determinant is detΓ(f

) = γ 2 (f )γ 6 (f ) -γ 2 4 (f ) > 0. We obtain f = [Γ(f )] -1 σ 2 2 3σ 2 2 γ 2 (f ) = F (γ 2 (f ), γ 4 (f ), γ 6 (f ))
where F is the explicit function, setting

x i = γ 2i , F (x 1 , x 2 , x 3 ) = σ 2 2(x 1 x 3 -x 2 2 ) 3x 1 x 2 + x 3 -(3x 2 1 + x 2 ) -x 2 x 1 1 3x 1 = σ 2 2(x 1 x 3 -x 2 2 ) x 3 -9x 3 1 3x 2 1 -x 2 . Define fT = [Γ( γ 2 (T ), γ 4 (T ), γ 6 (T )] -1 σ 2 2 3σ 2 2 γ 2 (T )
. Then, fT = F ( γ 2 (T ), γ 4 (T ), γ 6 (T )). Let DF (x 1 , x 2 , x 3 ) denote the 3 × 2 matrix of the differential of F . Then the Delta method yields that

√ T ( fT -f ) = (DF (γ 2 (f ), γ 4 (f ), γ 6 (f ))) √ T   γ 2 (T ) -γ 2 (f ) γ 4 (T ) -γ 4 (f ) γ 6 (T ) -γ 6 (f )   + o P (1). Therefore √ T ( fT -f ) is asymptotically Gaussian with 2 × 2 covariance matrix σ 2 (DF (γ 2 (f ), γ 4 (f ), γ 6 (f ))) V (f )DF (γ 2 (f ), γ 4 (f ), γ 6 (f )).

Parametric inference in non centered stationary regime.

In this section, we assume that the process ( 3)-( 4)-( 5) is in non centered stationary regime. Thus, we assume [H5] and

• [H7] X 0 ∼ u m (f , .) = u 0 (f , . -m),
i.e. we observe the process such that:

dX t = -Φ L(X t )(X t -y)dy dt + σdW t , X 0 = η ∼ u m (f , x)dx, (43) 
where u m (f , .) = u 0 (f , . -m) and u 0 (f , .) is the unique symmetric solution of ( 9). Hence, for all t ≥ 0, L(X t ) = u m (f , x)dx, so that

dX t = b(f , m, X t ) dt + σdW t , X 0 = η ∼ u m (f , x)dx, b(f , m, x) = -Φ u m (f , .)(x)
In this case, E(X t ) = m for all t and m must be estimated in addition to f . Now, we have, using [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF],

b(f , m, x) = -Φ(x -m -(y -m))u m (f , y)dy = -Φ u 0 (f , .)(x -m) = b(f , x -m). (44) 
Hence, the drift term b(f , m, x) satisfies, using Proposition 3.1 and ( 16)

b(f , m, x) = b(f , x -m) = k-1 i=0 b 2i+1 (f )(x -m) 2i+1 (45) 

Estimation of the moments of u m

Define the centered moments of (X t ), for j ≥ 0

γ 2 (f , m) = R (x -m) 2 u m (f , x)dx. ( 46 
)
Since u m (f , x) = u 0 (f , x -m), we have, using [START_REF] Chen | Maximum likelihood estimation of potential energy in interacting particle systems from single-trajectory data[END_REF],

γ 2 (f , m) = γ 2 (f ).
As m is unknown, we also need an estimator for it. We define

m = T -1 T 0 X s ds and γ 2 (T ) = T -1 T 0 (X s -m) 2 ds, ≥ 0. ( 47 
)
The following holds. 

γ 2 (T ) → a.s. γ 2 (f ) = x 2 u 0 (f , x)dx. Moreover, √ T ( m -m) = σ √ T T 0 h 0 (X s -m)dW s + o P (1), ( 48 
) √ T ( γ 2 (T ) -γ 2 (f )) = σ √ T T 0 h (X s -m)dW s + o P (1), ( 49 
)
where (see [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF])

h 0 (x) = - 2 σ 2 u 0 (f , x) x -∞ v u 0 (f , v)dv, h (x) = g (x) = - 2 σ 2 u 0 (f , x) x -∞ (v 2 -γ 2 (f ))u 0 (f , v)dv
satisfy for all , (h (x)) 2 u 0 (f , x)dx < +∞. Consequently, for all k, the vector

( √ T ( m-m), √ T ( γ 2 (T )- γ 2 (f )), = 1, . . . , k -1) converges in distribution to N k 0, σ 2 ( h i (v)h j (v)u 0 (f , v)dv) 0≤i,j≤k-1

Explicit estimators of (m, f )

We consider the contrast, using (47) ,

Λ T (b(f )) = 2T T b(f , X s -m)dX s - 1 2 2T T b 2 (f , X s -m)ds. ( 50 
)
As previously, we proceed in two steps. First we define b(f ) T the estimator of b(f ) by

Ψ T b(f ) T = Z T (51) 
with (see ( 14) and ( 33))

Z T = 2T T z k (X s -m)dX s , Ψ T = ( 2T T (X s -m) 2i+2j+2 ds) 0≤i,j≤k-1 . ( 52 
)
Now, define the estimator f T by b(f

) T = M k f T , M k = M ( γ 2 (T ), =0,...,k-1) k . ( 53 
) Theorem 4.1. Assume [H5] and [H7]. • The estimator f T is consistent and √ T ( f T -f ) converges in distribution to N k (0, σ 2 Σ(f )) with Σ(f ) defined in (34). • The joint asymptotic distribution of ( m, f T ) is as follows √ T m -m f T -f → L N 1+k 0, σ 2 [h 0 (x)] 2 u 0 (f , x)dx h 0 (x)[β(x)] u 0 (f , x)dx h 0 (x)β(x)u 0 (f , x)dx Σ(f ) ,
where h 0 is defined in Proposition 4.1, β = β(f , .) is defined in [START_REF] Kessler | Statistical methods for stochastic differential equations[END_REF] and Σ(f ) is defined in [START_REF] Kasonga | Maximum likelihood theory for large interacting systems[END_REF].

It is interesting to note that f T and f T have the same asymptotic distribution.

Example 1. Consider the Ornstein-Uhlenbeck process in non centered stationary regime:

dX t = -f (X t - m)dt + σdW t with stationary distribution equal to u m (f, x)dx = N (m, σ 2 /2f
). The MLE based on (X t , t ∈ [0, T ]) can be computed in this model:

f T = - T 0 (X t -m T )dX t T 0 (X t -m T ) 2 dt , m T = X T -X 0 T f T + 1 T T 0 X s ds, I(f ) = f 2 0 0 σ 2 /(2f ) . The asymptotic distribution of √ T ( m T -m, f T -f ) is the Gaussian law N 2 (0, σ 2 I -1 (f )).
The maximum contrast estimator is given by:

f T = - 2T T (X t -m)dX t 2T T (X t -m) 2 dt , m = 1 T T 0 X s ds.
We have

M 1 = -1, Ψ(f ) = σ 2 /2f , Σ 1 (f ) = 2f /σ 2 , Σ 2 (f ) = 0.
The contrast estimator has the same asymptotic distribution as the exact MLE.

Concluding remarks

In this paper, we study the estimation of an unknown parameter f = (f 2j+1 , j = 0, . . . , k -1) in the interaction term Φ(f , x) from the continuous observation of the McKean-Vlasov process

dX t = -Φ(f , .) L(X t )(X t ) dt + σdW t (54) with Φ(f , x) = k-1 j=0 f 2j+1 x 2j+1 , f 1 > 0, f 2j+1 ≥ 0, j = 1, . . . , k -1, throughout the time interval [0, 2T ].
Here L(X t ) represents the law of X t . The interaction term Φ(f , x) is an odd increasing polynomial with known degree 2k -1 so that Φ(f , .) L(X t ) only depends on f and the moments of L(X t ). Contrary to SDEs, stationary distributions of model ( 54) are uniquely determined only if the expectation of (X t ) is specified. We assume here that (X t ) is in stationary regime with given expectation. Hence its moments do not depend on t. The exact log-likelihood can be studied theoretically (Proposition 3.2) but does not lead to computable estimators. This is why we use a two-step procedure. First we build estimators of the stationary distribution moments based on the sample path (X t , t ∈ [0, T ]). Then, to build an explicit contrast, we plug these moment estimators into the exact conditional log-likelihood given X T of (54), based on the sample path (X t , t ∈ [T, 2T ]). We prove that these estimators are consistent and asymptotically Gaussian with rate √ T . In here, we assume that the degree of the interaction function Φ is known. When it is unknown, the question of estimating this degree is of interest but beyond the scope of this paper.

Extension of this approach to multidimensional models McKean-Vlasov SDEs is possible. Indeed, following [START_REF] Herrmann | Large deviations and a Kramers'type law for self-stabilizing diffusions[END_REF], we may consider an interaction of the form Φ(x) = x

x ϕ( x ) with ϕ :

R + → R + such that ϕ(r) = k-1 j=0 f 2j+1 r 2j+1 with f 1 > 0, f 2j+1 ≥ 0, j = 1, . . . k -1. In this case, Φ = ∇W , with W (x) = 1 2 k-1 j=0 1 2j+1 f 2j+1 x 2j .
The process admits a unique stationary distribution u m with given expectation m (see e.g. [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF]) and Φ u m only depends on moments of u m .

Extensions of this work naturally comprise the introduction of an additional potential term V (α, x) in the drift of equation ( 54) and a more general form of the interaction Φ(β, .) with unknown parameters α, β.

In practice, only discretizations of the sample path are generally available. This study could be extended to take into account discrete observations.

Proofs

Proof of Lemma 2.2. Since u admits a + 1-th order moment, Φ u is well-defined. As Φ is odd and u is symmetric, we have:

Φ u(-x) = Φ(-x -y)u(y)dy = -Φ(x + y)u(y)dy = -Φ(x -y)u(-y)dy = -Φ(x -y)u(y)dy = -Φ u(x). Let W (x) = x 0 Φ(y)dy. Then, W u(x) = W (x -y)u(y)dy satisfies (W u) (x) = Φ u(x) so that W u(x) = x 0 Φ u(y)dy + W u(0). Now, let x ≥ 0, we have W (x) = Φ (x) ≥ λ, thus W (x) ≥ λx + W (0) = λx. This implies, W (x) ≥ λx 2
2 + W (0) and thus, as yu(y)dy = 0,

W u(x) ≥ [ λ(x -y) 2 2 + W (0)]u(y)dy = λx 2 2 + λ 2 y 2 u(y)dy + W (0). Consequently, x 0 Φ u(y)dy ≥ λx 2 2 + λ 2 y 2 u(y)dy + W (0) -W u(0) = λx 2 2 + C.

As

x 0 Φ u(y)dy is symmetric, the result holds for all x.

Proof of Proposition 2.2. The result for (Y t ) is standard. By computing the scale and the speed density, we obtain that (Y t ) is positive recurrent and admits u m as invariant density (see e.g. [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF]). When Y 0 = η ∼ u m , by the uniqueness of solution, we obtain that Y t ≡ X t for all t ≥ 0.

Proof of Proposition 3.2. Recall that X t ≡ Y t (see Proposition 2.2). We have, applying the ergodic theorem, as u 0 (f 0 , .) has moments of any order by ( 10),

1 T ( T (f ) -T (f 0 )) → P f 0 - 1 2 (b(f , x) -b(f 0 , x)) 2 u 0 (f 0 , x)dx = - 1 2σ 2 K(f 0 , f ) a.s.. Now, K(f 0 , f ) = 0 is equivalent to "for all x, b(f , x) = b(f 0 , x)", as u(f 0 , .
) is positive and continuous on R. This in turn implies that u(f , .) ≡ u(f 0 , .), as two diffusions with the same drift and diffusion coefficients have the same invariant density, and

M k (f )f = M k (f 0 )f 0 (see Proposition 3.1). As u(f , .) ≡ u(f 0 , .), their moments are identical, i.e. γ 2 (f ) = γ 2 (f 0 ) for all . Thus, M k (f ) = M k (f 0 ). As M k (f 0 ) is invertible, we conclude f = f 0 .
Now, the proof of consistency of the maximum likelihood estimator standardly follows. Next,

σ 2 ∂ T ∂f 2i+1 (f ) = T 0 ∂b ∂f 2i+1 (f , X s )dX s - T 0 ∂b ∂f 2i+1 (f , X s )b(f , X s )ds = σ T 0 ∂b ∂f 2i+1 (f , X s )dW s σ 2 ∂ 2 T ∂f 2i+1 ∂f 2i +1 (f ) = T 0 ∂ 2 b ∂f 2i+1 ∂f 2i +1 (f , X s )(dX s -b(f , X s )ds) - T 0 ( ∂b ∂f 2i+1 (f , X s ) ∂b ∂f 2i +1 (f , X s ))ds = σ T 0 ∂ 2 b ∂f 2i+1 ∂f 2i +1 (f , X s )dW s - T 0 ( ∂b ∂f 2i+1 (f , X s ) ∂b ∂f 2i +1 (f , X s ))ds. The functions x → ∂b ∂f 2i+1 (f , x), x → ∂ 2 b ∂f 2i+1 ∂f 2i +1
(f , x) are polynomial and thus integrable with respect to u 0 (f , .). Under P f , by the ergodic theorem and the central limit theorem for stochastic integrals, for all i, i ,

σ 2 √ T ( ∂ T ∂f 2i+1 (f ), i = 0, . . . k -1) → L N (0, σ 2 I(f )), ( 1 
T T 0 ∂ 2 b ∂f 2i+1 ∂f 2i +1 (f , X s )dW s ) i,i → 0, ( σ 2 T ∂ 2 T ∂f 2i+1 ∂f 2i +1 (f )) i,i → -I(f ),
where

I(f ) = ( [ ∂b ∂f 2i+1 (f , x)] ∂b ∂f 2i +1 (f , x)]u 0 (f , x)dx) 0≤i,i ≤k-1 .
For any vector a = (a

1 . . . a k ) , a I(f )a = [ k-1 i=0 a i ∂b ∂f2i+1 (f , x)] 2 u 0 (f , x
)dx > 0 as the function under the integral is a polynomial and u 0 (f , x) is positive for all x. By standard methods, we can prove that the maximum likelihood f T associated with [START_REF] Eberle | Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes[END_REF] satisfies that, under

P f0 , √ T ( f T -f 0 ) → L N (0, σ 2 I -1 (f 0 )).
Proof of Proposition 3.3. We rely on results of [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF] recalled in Section 7 (Proposition 7.1). These results concern the infinitesimal generator L of D of (11) here for m = 0. The definitions of L, D are given in (74)-( 75)) (see Appendix). For g an element of D, we have by the Ito formula,

- T 0 Lg(X s )ds = -[g(X T ) -g(X 0 )] + σ T 0 g (X s )dW s ,
where Lg(x) = b(f , x)g (x) + σ 2 2 g (x). By Proposition 7.1, the range of D is exactly the set of functions h ∈ L 2 (u 0 (f , x)dx) such that h(x)u 0 (f , x)dx = 0. Therefore, let g (f , .) be any element of D such that Lg (f , x) = -(x 2 -γ 2 (f )). We have (see (78))

g (f , x) = g (x) = -2σ -2 u -1 0 (f , x) x -∞ (y 2 -γ 2 )u 0 (f , y)dy. (55) 
As, by the definition of D, g belongs to L 2 (u 0 (x)dx), and (X t ) is stationary with marginal distribution u 0 (x)dx,

E(g (X T ) -g (X 0 )) 2 ≤ 4 g 2 (x)u 0 (f , x)dx. (56) 
Thus,

√ T ( γ 2 (T ) -γ 2 ) = - 1 √ T T 0 Lg (X s )ds = σ √ T T 0 g (X s )dW s - 1 √ T (g (X T ) -g (X 0 )) = σ √ T 2T 0 1 [0,T ] (s)g (X s )dW s + o P (1), (57) 
by ( 56). Proposition 7.1, for all , (g (x)) 2 u 0 (f , x)dx < +∞ so that V (f ) is well defined. So the vector

T 1/2 ( γ 2 (T ) -γ 2 ) =1,...,k converges in distribution to N k (0, σ 2 V (f )) with V (f ) = (V i,j (f )) 0≤i,j≤k-1 and V i,j (f ) = g i (x)g j (x)u 0 (f , x)dx.
Proof of Proposition 3.4. This result is classical. By the ergodic theorem applied to (X t ≡ Y t ), we have that Ψ T /T converges a.s. to Ψ(f ). For any vector a = (a 0 , . . . , a k-1 ),

a Ψ(f )a = R ( k-1 =0 a x 2 +1 ) 2 u 0 (f , x)dx > 0,
as the integrand is a polynomial and u is R-supported. Thus, Ψ(f ) is positive definite. We write:

2T T X 2i+1 s dX s = 2T T X 2i+1 s k-1 j=0 b 2j+1 (f )X 2j+1 s ds + σ 2T T X 2i+1 s dW s .
Thus, for large enough T , (see ( 14))

( 1 T Ψ T ) -1 1 T Z T = b(f ) T = b(f ) + ( 1 T Ψ T ) -1 σ T 2T T z k (X s )dW s
As Ψ T /T converges a.s. to Ψ(f ), the vector of stochastic integrals σ

T 2T T z k (X s )dW s converges a.s. to 0. Moreover, σ √ T 2T T z k (X s )dW s converges in distribution to N k (0, σ 2 Ψ(f )). Consequently, b(f ) T converges to b(f ) and √ T ( b(f ) T -b) converges in distribution to the Gaussian law N k (0, σ 2 Ψ -1 (f )).
Proof of Theorem 3.1. For the proof, we set [START_REF] Giesecke | Inference for large financial systems[END_REF]). We have

Ψ(f ) = Ψ, M k (f ) = M k , u 0 (f , .) = u 0 (.), γ 2 (f ) = γ 2 , V = V (f ) and b T = b(f ) T . The relation b T = M k f T implies Z T = Ψ T M k f T (see
Z T = Ψ T b + σ 2T T z k (X s )dW s , Ψ T M k f T = Ψ T M k f + Ψ T M k ( f T -f ) + Ψ T ( M k -M k )f + Ψ T ( M k -M k )( f T -f ).
Therefore, noting that Ψ T M k f = Ψ T b, we obtain:

1 T Ψ T M k √ T ( f T -f ) = σ √ T 2T T z(X s )dW s -Ψ √ T ( M k -M k )f -R T (58) = ΨM k √ T ( f T -f ) + S T , with (59) 
R T = ( 1 T Ψ T -Ψ) √ T ( M k -M k )f + 1 T Ψ T √ T ( M k -M k )( f T -f ), (60) 
S T = √ T ( 1 T Ψ T -Ψ)M k ( f T -f ). (61) 
Finally,

ΨM k √ T ( f T -f ) = σ √ T 2T T z(X s )dW s -Ψ √ T ( M k -M k )f -R T -S T .
It is the sum of two main terms and two remainders. The second term √ T ( M k -M k ) depends on the observation (X t , t ∈ [0, T ]) while the first one depends on the sample path (X t , t ∈ [T, 2T ]).

To study √ T ( M k -M k ), we use the fact that the vector of centered and normalized moments

T 1/2 (( γ 2 (T )- γ 2 ) =1,...,k converges in distribution to N k (0, σ 2 V ) with V = (V ij ) 0≤i,j≤k-1 and V ij = g i (x)g j (x)u(x)dx (Proposition 3.3). Consequently, as we have √ T ( M k -M k ) = O P (1), (Ψ T /T ) -Ψ = o P (1), f -f = o P (1)
, we concude that the remainder term R T = o P (1). We can treat analogously each term of √ T ((Ψ T /T ) -Ψ) and prove that √ T ((Ψ T /T ) -Ψ) = O P (1). Consequently, S T = o P (1). Therefore, from (58) and (59),

√ T ( f T -f ) = σ √ T 2T T M -1 k Ψ -1 z k (X s )dW s -M -1 k √ T ( M k -M k )f + o P (1) = σ √ T 2T 0 1 [T,2T ] (s)α(f , X s ) -1 [0,T ] (s)β(f , X s ) dW s + o P (1), (62) 
where

α (f , x) = k-1 u=0 [M -1 k ] u k-1 j=0 [Ψ -1 ] uj x 2j+1 = [M -1 k Ψ -1 z k (x)] , (63) 
β (f , x) = k-1 j=0 [M -1 k ] j k-1 v=j 2v + 1 v -j g v-j (x)f 2v+1 1 j≤v = [M -1 k M (g (x)) k f ] , and (64) 
M (g (x)) k is the matrix M (v) k
for v = (g 0 (x), . . . , g k-1 (x)) (with g 0 = 0). Finally, applying the ergodic theorem for stochastic integrals yields

√ T ( f -f ) → L N k (0, σ 2 Σ(f )) where Σ(f ) = Σ 1 (f ) + Σ 2 (f ) with Σ 1 (f ) = α(f , x)[α(f , x)] u 0 (f , x)dx = M -1 k (f )Ψ -1 (f )(M -1 k (f )) and Σ 2 (f ) = β(f , x)[β(f , x)] u 0 (f , x)dx.
Proof of Proposition 3.5. Define D k = diag((2 -1), = 1, . . . , k) the diagonal matrix with diagonal element (2 -1). We have

B(f ) = σ 2 D k v(f ) with v(f ) = (1 γ 2 (f ) . . . γ 2(k-1) (f )) . Thus B T = σ 2 D k v T with v T = (1 γ 2 (T ) . . . γ 2(k-1) (T )) .
Analogously, Γ T is a function of the vector v T which is much more intricate (see [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF]). Therefore, f T = ( Γ T ) -1 B T = F ( v T ) is also an explicit function of the vector v(f ), still intricate. From Proposition 3.3, we have that

√ T ( v T -v(f )) converges in distribution to N k (0, σ 2 V (f )) with V (f ) = 0 0 0 V (f )
.

The classical Delta method can be applied and yields that

√ T (f T -f ) = √ T (F ( v T ) -F (v(f ))) → L N k (0, K), K = σ 2 DF (v(f ))V (f )(DF (v(f ))) , (65) 
where DF (x) is the differential matrix of F at point x (DF (x) = ( ∂Fi ∂xj (x)).

Proof of Proposition 4.1. This proposition is analogous to Proposition 3.3. For simplicity, set u 0 (f , .) = u, u m (f , .) = u m , γ 2 (f ) = γ 2 . By the ergodic theorem m = T -1 T 0 X s ds → xu m (x)dx = m. For γ 2 (T ), we write:

γ 2 (T ) = 1 T T 0 (X s -m + m -m) 2 ds = 1 T T 0 (X s -m) 2 ds + (m -m) 2 k=1 2 k 1 T T 0 (X s -m) 2 -k ds(m -m) k-1 .
The first term of the sum converges to (x -m)

2 u m (x)dx = (x -m) 2 u(x -m)dx = x 2 u(x)dx = γ 2 .
The second term tends to 0 as m -m tends to 0 and is multiplied by a factor tending to a limit. We rely again on the results of Proposition 7.1. The infinitesimal generator L m of ( 43) is given by

L m g(x) = σ 2 2u(x -m) (g u(. -m)) (x).
Thus, the equality

g(X T ) -g(X 0 ) = T 0 L m g(X s )ds + σ T 0 g (X s )dW s implies, as (X t ) is stationary, - 1 √ T T 0 L m g(X s )ds = σ √ T T 0 g (X s )dW s + o P (1).
For f a u m square integrable function, the solution of

L m g = -(f -f (x)u m (x)dx) is g (x) = - 2 σ 2 u(x -m) x-m -∞ u(v) f (m + v) -f (m + y)u(y)dy dv. For f (x) = x, we get g (x) = - 2 σ 2 u(x-m) x-m -∞ vu(v)dv := h 0 (x -m). Thus, √ T ( m -m) = σ √ T T 0 h 0 (X s -m)dW s + o P (1). ( 66 
) For f (x) = (x -m) 2 , we get g (x) = - 2 σ 2 u(x-m) x-m -∞ (v 2 -γ 2 )u(v)dv = g (x -m) := h (x -m) (see (55)). Therefore, 1 √ T T 0 (X s -m) 2 -γ 2 ds = σ √ T T 0 h (X s -m)dW s + o P (1), (67) 
where, by Proposition 7.1, all the integrals (h (x))

2 u 0 (x)dx = (h (x -m)) 2 u(x -m)dx < +∞. Now, splitting X s -m = X s -m + m -m yields, √ T ( γ 2 (T ) -γ 2 ) = 1 √ T T 0 (X s -m) 2 -γ 2 ds + √ T (m -m) 2 1 1 T T 0 (X s -m) 2 -1 ds + √ T (m -m) 2 2 k=2 2 k (m -m) k-2 1 T T 0 (X s -m) 2 -k ds.
For the second term, note that 1

T T 0 (X s -m) 2 -1 ds → (x -m) 2 -1 u m (x)dx = x 2 -1 u 0 (
x)dx = 0 as u 0 is symmetric and 2 -1 is odd. Therefore, the second term is o P (1) as well as the third term. Therefore, we have obtained [START_REF] Pavliotis | Eigenfunction martingale estimators for interacting particle systems and their mean field limit[END_REF] and [START_REF] Schmisser | Non-parametric adaptive estimation of the drift for a jump diffusion process[END_REF]. The convergence in distribution result follows.

Proof of Theorem 4.1 . Here again, we set Ψ(f ) = Ψ, M k (f ) = M k . We proceed as in Proposition 3.4 and Theorem 3.1. First, we prove, using (52),

Ψ T T → a.s. Ψ and √ T ( Ψ T T -Ψ) = O P (1) and (68) 
V T = √ T Z T T - Ψ T T b → L N (0, σ 2 Ψ). (69) 
From these two results, as b(f 51)), we deduce:

) T := b T = ( Ψ T T ) -1 Z T T (see (
√ T ( b T -b) = ( Ψ T T ) -1 V T → L N (0, σ 2 Ψ -1 ). ( 70 
)
Proof of (68): We have:

[ Ψ T T ] ij = 1 T 2T T (X s -m + m -m) 2(i+j)+2 ds = 1 T 2T T (X s -m) 2(i+j)+2 ds +(m -m) 2(i+j)+2 r=1 2(i + j) + 2 r (m -m) r-1 1 T 2T T (X s -m) 2(i+j)+2-r ds, where 1 T 2T T (X s -m) 2(i+j)+2-r ds → (x -m) 2(i+j)+2-r u m (x)dx = x 2(i+j)+2-r u 0 (x)dx and m -m = o P (1). Thus, [ Ψ T T ] ij = 1 T 2T T (X s -m) 2(i+j)+2 ds + o P (1) → a.s. (x -m) 2(i+j)+2 u m (x)dx = γ 2(i+j)+2 = Ψ ij . Next, √ T ([ Ψ T T ] ij -γ 2(i+j)+2 ) = √ T ( 1 T 2T T (X s -m) 2(i+j)+2 ds -γ 2(i+j)+2 ) + √ T (m -m) 2(i + j) + 2 1 1 T 2T T (X s -m) 2(i+j)+1 ds + √ T (m -m) 2 2(i+j)+2 r=2 2(i + j) + 2 r (m -m) r-1 1 T 2T T (X s -m) 2(i+j)+2-r ds, As 2(i + j) + 1 is odd, 1 T 2T T (X s -m) 2(i+j)+1 ds → a.s. (x -m) 2(i+j)+1 u m (x)dx = 0. Thus, the second term above is √ T (m -m) × o a.s. (1) = O P (1). The third term is 1 √ T T (m -m) 2 × O P (1) = o P (1).
For the first term, we prove as in Proposition 4.1 that

√ T ( 1 T 2T T (X s -m) 2(i+j)+2 ds -γ 2(i+j)+2 ) = σ √ T 2T T h i+j+1 (X s -m)dW s + o P (1) → L N (0, σ 2 [h i+j+1 (x)] 2 u(x)dx).
The proof of (68) is complete.

Proof of (69): We write:

1 T Z T,i = 1 T 2T T (X s -m) 2i+1 dX s = 1 T 2T T (X s -m) 2i+1 b(X s -m, f )ds + T 2,i + T 3,i = k-1 j=0 b 2j+1 1 T 2T T (X s -m) 2i+2j+1 ds + T 2,i + T 3,i = [ ψ T T b] i + T 2,i + T 3,i ,
where

T 2,i = 1 T 2T T (X s -m) 2i+1 (b(f , X s -m) -b(f , X s -m))ds, (71) 
T 3,i = σ T 2T T (X s -m) 2i+1 dW s . (72) 
We have

T 2,i = ( m -m) k-1 j=0 b 2j+1 2j =0 T 2,i,j, , T 2,i,j, = 1 T 2T T (X s -m) 2i+1+ (X s -m) 2j-ds. Now, T 2,i,j, = 1 T 2T T (X s -m + m -m) 2i+1+ (X s -m) 2j-ds = 1 T 2T T 2i+1+ r=0 2i + 1 + r (m -m) r (X s -m) 2i+1+2j-r ds = 1 T 2T T (X s -m) 2i+1+2j ds + (m -m) 2i+1+ r=1 2i + 1 + r (m -m) r-1 1 T 2T T (X s -m) 2i+1+2j-r ds = o P (1).
Indeed, 1 T 2T T (X s -m) 2i+1+2j ds → 0 since 2i + 2j + 1 is odd. And the second term tends to 0. Thus, for

i = 0, 1, . . . , k -1 √ T T 2,i = √ T ( m -m) × o P (1) = o P (1). (73) Now, √ T T 3 is a martingale such that < √ T T 3 > T = σ 2 Ψ T /T → σ 2 Ψ. Therefore, √ T T 3 converges in distribution to N (0, σ 2 Ψ). Finally, we have obtained √ T Z T T -Ψ T T b = √ T T 3 + o P (1)
. The proof of (69) is achieved and (70) follows. Now, we can complete the proof of Theorem 4.1. On one hand, we have the relation (see (72)-( 73)):

√ T Z T T = Ψ T T b + √ T T 3 + o P (1).
On the other hand, we have:

Ψ T M k f T = Ψ T M k f + Ψ T M k ( f T -f ) + Ψ T ( M k -M k )f + Ψ T ( M k -M k )( f T -f ). Note that b = M k f and Z T = Ψ T b T = Ψ T M k f T .
Therefore, we obtain the relation:

Ψ T T M k √ T ( f T -f ) = σ √ T 2T T (X s -m) 2i+1 dW s i=0,...,k-1 + o P (1) - Ψ T T √ T ( M k -M k )f - Ψ T T √ T ( M k -M k )( f T -f ).
This yields:

ΨM k √ T ( f T -f ) = σ √ T 2T T z(X s -m)dW s -Ψ √ T ( M k -M k )f -R T -S T + K T + o P (1), 
where

R T = ( Ψ T T -Ψ) √ T ( M k -M k )f + Ψ T T √ T ( M k -M k )( f T -f ), S T = √ T ( Ψ T T -Ψ)M k ( f T -f ), K T = σ √ T 2T T [z(X s -m) -z(X s -m)]dW s .
As previously, we prove that R T = o P (1), S T = o P (1) using Proposition 4.1. We have to look at K T . We have:

K T,i = σ(m -m) 1 √ T 2T T 2i =0 (X s -m + m -m) 2i-(X s -m) dW s = σ(m -m) 2i =0 2i- j=0 (m -m) j 2i - j 1 √ T 2T T (X s -m) 2i-j dW s .
Each term 1 √ T 2T T (X s -m) 2i-j dW s converges in distribution while m -m tends to 0. So K T,i = o P (1) for i = 0, . . . , k -1. Now, the term √ T ( M k -M k )f can be treated as previously in Theorem 33 and we can write: with α(x) = α(f , x), β(x) = β(f , x) defined in (63) and (64). Therefore, √ T ( f T -f ) converges in distribution to N (0, σ 2 Σ(f )) with Σ(f ) defined in [START_REF] Kasonga | Maximum likelihood theory for large interacting systems[END_REF].

√ T ( f T -f ) = σ √ T (ΨM k ) -1 2T T z k (X s -m)dW s - √ T M -1 k ( M k -M k )f + o P (1) = σ √ T 2T 0 ΨM k ) -1 z k (X s -m)
The result concerning the joint distribution follows from ( 48) and (58).

Appendix

We now state the central limit theorem associated with [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF], describe the properties of the infinitesimal generator of [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF] and the conditions for ρ-mixing (see e.g. [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF] and references therein). Let (Y t ) be the solution of [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF] and denote by L the infinitesimal generator of the SDE [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF], Proposition 7.1 requires some comments. Its first part ((76)-( 77) ) is classical. However, the last part, i.e. that (76)-(77) hold for all f ∈ L 2 (u m (x)dx), is less known and not obvious. This ensures that, for all h ∈ L 2 (u m (x)dx), such that h(x)u m (x)dx = 0, there exists g ∈ D such that Lg = h. In particular, this holds true for h = f c and in Theorem 3.1, for f c (x) = x 2 -γ 2 . This is obtained as follows. First, Range D = {h ∈ L 2 (u m (x)dx), h(x)u m (x)dx = 0} if and only if L has a spectral gap which holds true if the process is ρ-mixing. In [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF], a necessary and sufficient condition for ρ-mixing is proved for one-dimensional ergodic diffusions. In Proposition 7.1, we check that this condition holds for [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF].

Lg
Using (74), equation Lg = f c = f -R f (y)u m (y)dy can be solved. Only g is needed for σ 2 (f c ). Using (74), as is finite for all f ∈ L 2 (u m (x)dx). Note that the fact that (79) is finite is not obvious as u -1 m (x)dx = +∞. However, as +∞ -∞ f c (y)u m (y)dy = 0, the convergence of (79) is possible but the exact proof is not immediate. Corollary 7.1. Let h 1 , . . . , h p be functions belonging to Range(D). Define V (h i , h j ) = σ 2 R g hi (x)g hj (x)u m (x)dx so that σ 2 (h i ) = V (h i , h i ). The vector 1 √ T ( T 0 h i (Y s )ds, i = 1, . . . , p) → L N p (0, V ) with V = (V (h i , h j ), 1 ≤ i, j ≤ p).

Proof of Proposition 7.1.

1. The result is given in Theorem 2.2 in [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF] . 2. We always have that Range(D) ⊂ {h ∈ L 2 (u m (x)dx), h(x)u m (x)dx = 0}.

This inclusion is an equality if and only if the process is ρ-mixing. Let γ(x) = -2σ -1 (Φ u m ) (x). We can check that lim Thus, by Proposition 2.8 of the latter paper, as the limits above exist and are finite, (X t ) is ρmixing. The ρ-mixing property is equivalent to the fact that 0 is a simple eigenvalue and an isolated point of the spectrum of L. This implies that Range(D) = {h ∈ L 2 (u m (x)dx), h(x)u m (x)dx = 0}. These results Proposition 2.8 in [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF] are stated for SDEs with locally Lipschitz coefficients having linear growth, which were standard assumptions for classical SDEs and, therefore it was simpler to state the results under these assumptions. Here, this assumption is not satisfied by (Y t ) defined in [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF]. However, this assumption is not mandatory. The only requirement is that the SDE admits a unique strong solution and an invariant distribution. Indeed, the proof of Proposition 2.8 of [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF] does not use this assumption (see the Appendix p.1074-1077). Therefore, we can apply Theorem 2.2 in [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF] to [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF], although the drift term does not satisfy the linear growth assumption. Therefore, (76)-(77) hold for all f ∈ L 2 (u m (x)dx).

Proof of Corollary 7.1. The proof follows by application of the Cramér-Wold device.

Proposition 3 . 3 .

 33 Assume [H5] and [H6]. As T tends to infinity, under

Proposition 3 . 5 .

 35 Assume [H5]-[H6]. The estimator defined by (39) is consistent and such that √ T (f Tf ) converges in distribution to N (0, K) where K has an intricate expression detailed in the proof (see (65)).

Proposition 4 . 1 .

 41 Assume [H5] and [H7]. As T → ∞, m → a.s. m and for ≥ 1,

1 [

 1 1 [T,2T ] (s) + 1 [0,T ] (s)β(X s -m) dW s + o P T,2T ] (s)α(X s -m) -1 [0,T ] (s)β(X s -m) dW s + o P (1),

  = (σ 2 /2)g -Φ u m (.)g = σ 2 2u m (w) (g u m ) .(74)The operator L acting on L 2 (u m (x)dx) has domain D given byD = {g ∈ L 2 (u m (x)dx), g absolutely continuous, Lg ∈ L 2 (u m (x)dx), lim |x|→∞ g (x)u m (x) = 0}. (75)For all g ∈ D, Lg(x)u m (x)dx = 0.Proposition 7.1. Let f ∈ L 2 (u m (x)dx), set f c = f -R f (x)u m (x)dx and denote by ., . um the scalar product of L 2 (u m (x)dx).

1 . 2 R

 12 If f c ∈ Range(D), where Range(D) = L(D) is the image of D by L, then, as T tends to infinity, the solution (Y t ) of (11) satisfies1 √ T T 0 f c (Y s )ds → L N (0, σ 2 (f c )) (76)whereσ 2 (f c ) = -2 f c , g um and g is any element of D satisfying Lg = f c . Moreover, Y s )ds → σ 2 (f c ). (77)The following relation holds:σ 2 (f c ) = -2 f c , g um = -2 Lg, g um = σ (g (x)) 2 u m (x)dx < +∞ 2.In model[START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF], Range(D) = {h ∈ L 2 (u m (x)dx), h(x)u m (x)dx = 0}. Therefore, (76)-(77) hold for all f ∈ L 2 (u m (x)dx).

+∞- 2 R

 2 ∞ f c (y)u m (y)dy = 0, we haveg fc (x) = g (x) = 2σ -2 u -1 m (x) x -∞ f c (y)u m (y)dy = -2σ -2 u -1 m (x) +∞ x f c (y)u m (y)dy. (78)By Proposition 7.1, the integralσ 2 (f c ) = σ (g (x)) 2 u m (x)dx = 4σ -2 R u -1 m (x) x -∞ f c (y)u m (y)dy 2 dx(79)

x→+∞ γ - 1

 1 (x) = 0, lim x→-∞ γ -1 (x) = 0. (80)

  • [H4] Φ has polynomial growth: ∃C > 0, ∈ N , ∀x ∈ R, |Φ (x)| ≤ C(1 + |x| ).Then, for all t, EX t = EX 0 . Moreover, setting Y t = X t -E(X 0 ) and v(t, .) = L(Y t ), (Y t , v(t, .

	Note that, under [H2], for all x, |Φ(x)| ≤ c|x|(1 + |x| ). Therefore, there exists c 1 > 0 such that |Φ(x)| ≤
	c 1 (1 + |x| +1 ) and this implies	
	|Φ(x -y)|u(t, y)dy) ≤ c 1 (1 + 2 |x| +1 + 2	|y| +1 u(t, y)dy).
	So Φ u(t, .) is well defined as soon as u(t, .) has a moment of order + 1.
	Under [H1]-[H2], if EX 0 2( +1) 2 then sup t≥0 EX 2n t < +∞ (see Theorem 3.1 and Proposition 3.10 in [5], Theorem 2.13 in [29]. < +∞, equation (3) admits a unique strong solution. If EX 2n 0 < +∞,
	Now the fact that there is no potential term and that Φ is odd has the following consequence.
	Lemma 2.1. Assume [H1]-[H3]. Let (X t , u(t, .)) be a solution of (3)-(4).