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Abstract—Blockchain technology aims to replace traditional
banking systems and manage the world’s economic data.
However, the long-term feasibility of blockchain technology
is hindered by the inability of existing blockchain protocols to
prune the consensus data leading to constantly growing storage
and communication requirements. Kiayias et al. have proposed
a blockchain protocol based on superblock Non-Interactive-
Proofs-of-Proof-of-Work (NIPoPoWs) as a mechanism to re-
duce the storage and communication complexity of blockchains
to O(polylog(n)). However, their protocol is only resilient to an
adversary that may control strictly less than 1/3rd of the total
computational power, which is a reduction from the security
guaranteed by Bitcoin and other existing blockchain protocols
that guarantee security against an adversary that may control
strictly less than 1/2 of the total computational power. We
present an improvement to the Kiayias et al. proposal termed
Gems-scheme, which is resilient against an adversary that may
control less than 1/2 of the total computational power while
operating in O(polylog(n)) storage and communication com-
plexity. Additionally, we present a novel proof that establishes
a lower bound of O(log(n)) on the storage and communication
complexity of any PoW-based blockchain protocol.

Index Terms—Blockchains; Cryptocurrencies; Proof-of-work;
NIPoPoWs

1. Introduction

Blockchains are proposed as the panacea for develop-
ing decentralized applications and handling decentralized
finance. Blockchain technology needs to be capable of
handling the entire world’s economic data for such lofty
ambitions to come true. Enormous amounts of financial
data are being generated continuously due to the fast speed
of commerce on a global scale. The immutable nature of
blockchain indicates that the storage requirements are con-
stantly growing, with every block being retained for eternity.

This further increases the communication requirements for
a new party to join the system as it would need to download
the entire blockchain from the network in order to start
mining1. For the blockchains to be adopted on a global
scale, optimization is crucial to reduce the storage and
communication requirements and securely prune the data.

In a blockchain system, each party must independently
maintain a copy of the blockchain to mine new blocks and
verify transactions. The data stored by a party can be divided
into two types: Application Data, which consists of all
information required to verify the validity of a transaction,
i.e., UTXO (Unspent Transaction Output), account data,
smart contract states, etc. while the Consensus Data consists
of all information required other than the application data
for the complete participation of a party to maintain its copy
of the blockchain. A new party that joins the blockchain
system must synchronize with both types of data in order
to initiate mining. In a Proof-of-Work blockchain protocol,
the consensus data can grow linearly with every new block
mined. This may cause issues with both storing the con-
sensus data and communicating the same for bootstrapping
a new party into the system. Multiple techniques exist to
optimize application data that have been well deployed in
practice. For instance, Ethereum uses snapshots that peri-
odically summarize all active data, discarding inactive data
that has been overwritten or mutated. However, compressing
consensus data is still an area of active research since the
consensus data in existing protocols increases linearly with
time.

Kiayias et al. [1] propose an elegant scheme to construct
a blockchain protocol using Non-Interactive Proofs-of-
Proof-of-Works (NIPoPoWs) that operates in O(poly log(n))
storage complexity and O(poly log(n)) communication

1. In a permissionless blockchain every party, i.e., miner and non miner
must download the full blockchain if they want to verify (non miner) and
mine new blocks (miner). The only ones that do not need to download the
full blockchain are Simplified Payment Verification (SPV) parties, but such
parties cannot check the security of the blockchain.



complexity, i.e., for a blockchain containing n blocks, any
party is only required to store consensus data corresponding
to O(poly log(n)) blocks, and for any party that wishes to
join the system, it only needs to download the consensus
data corresponding to O(poly log(n)) set of blocks to com-
mence the mining operation. To the best of our knowledge,
Kiayias et al.’s proposal [1] is state of the art in terms of the
storage and communication complexity. It promises to yield
an order of magnitude reduction in both storage and com-
munication requirements over existing blockchain protocols
such as Bitcoin and Ethereum. However, the proposal can
only guarantee tolerance against a Byzantine adversary that
may control strictly less than 1/3rd of the total computational
power, reducing security from the original Bitcoin protocol
and other blockchain protocols. In this work, we address
this issue and present Gems, which improves the Kiayias et
al.’s blockchain protocol, that can provably achieve security
against a Byzantine adversary that controls strictly less than
1/2 of the total computational power.

Kiayias et al.’s proposal [1] uses NIPoPoWs that rely
on the probability distribution of the hash values of blocks
in the blockchain and uses this a priori to sub-sample the
blocks and assume the same distribution of hash values as
the original blockchain. However, this creates a security
threat where the adversary may skew the sub-sample by
selectively “suppressing” superblocks; superblock of level ℓ
is a block whose hash is (2−ℓ·target hash). Kiayias et al.
illustrate this weakness in Lemma 6.7 and 6.8 in [1] where
the authors determine the optimal attack strategy of the
attacker to suppress the superblocks from the sub-sample.
We solve this issue by attaching weights to the superblocks
at above certain threshold level, which we call diamond
blocks. The diamond blocks have higher preference in chain
selection rule. With the modified chain selection rule, it is
improbable for an attacker controlling less than 1/2 of the
total hashing power to suppress the superblocks as shown
in Section 8. We thereby improve the security of Kiayias
et al.’s scheme to tolerate a Byzantine adversary that may
control up to 1/2 of the total hashing power.

The only major limitation of both, our solution, Gems
and Kiayias et al.’s approach is that they are only proven
to operate securely in a setting with constant difficulty.
However, we remark that there has not been any work
in the literature that tackles the problem of blockchain
compression in a setting with variable difficulty. Bünz et
al. [2] present a scheme for verifying the blockchain by an
SPV client in sublinear space and time in a setting with
variable difficulty. Our solution and Kiayias et al.’s solution
are the only solutions that achieve mining in logspace.

Our scheme that achieves optimal security while still op-
erating in O(poly log(n)) storage and communication com-
plexity leaves the open question of whether such a scheme
is optimal or if there is further room for improvement. We
progress this question by presenting a novel proof using
information theory to establish a lower bound on the limit
of blockchain compression. Therefore, we righteously claim
that a PoW-based blockchain protocol cannot operate in less
than O(log(n)) storage and communication complexity.

Contributions of this work In summary, the contributions
of this work are as follows:

• We propose Gems, a NIPoPoW protocol derived
from Kiayias et al. [1].

• We propose a novel weight assignment scheme to
superblocks for improving security guarantees in the
original proposal. (Section 7.3)

• We prove that Gems tolerates a Byzantine adversary
that may control up to 1/2 of the total hashing power
(Section 8)

• For the first time, we provide proofs of boundaries
of blockchain compression by showing that it is not
possible to compress a PoW blockchain protocol
beyond O(log(n)) storage and communication com-
plexity (Theorems 9.2 and 9.4, Section 9).

Organization of the paper Section 2 is dedicated to related
work, and Section 3 presents the assumptions on the system
in terms of communication and power of the adversary.
Section 4 provides some minimal background on permis-
sionless blockchains, and non-interactive proofs-of-proof-
of-works (NIPoPoWs). Section 5 presents the main lines
of the Kiayias et al. to compress PoW-blockchains with
NIPoPoWs. Section 6 describes the main components of
Gems, our solution towards improving the security of Ki-
ayias et al.’s proposal. Section 7 presents the weight intuition
of Gems. Section 8 analyzes the security of our solution,
Gems. In Section 9, we answer the open question raised
by Kiayias et al. by presenting a definitive lower bound on
the storage space and communication complexities for any
PoW-based blockchain protocol. Section 10 concludes and
presents some future work.

2. Related Work

The problem of blockchain becoming of considerable
size was initially predicted by Satoshi Nakomoto himself in
his original paper that introduced Bitcoin [3]. He offered a
simple solution of a Simplified Payment Verification (SPV)
that only requires a client to store the block headers to verify
the transactions.

Kiayias et al. [4] introduced and formalized an inter-
active proof mechanism, Proofs-of-Proof-of-Work (PoPoW)
based on superblocks that allowed a client to verify a chain
in sublinear time and communication complexity. However,
the authors later showed the existence of an attack on
the scheme and proposed a non-interactive yet polyloga-
rithmic alternative, Non-Interactive Proofs-of-Proof-of-Work
(NIPoPoWs) [1]. However, the solution did not address the
size of the blockchain that needed to be stored by any miner.
Kiayias et al. further used NIPoPoWs to develop a scheme
that also allowed the miners to operate in O(poly log(n))
storage and communication complexity while reducing the
security tolerance to a byzantine adversary that controls
strictly less than 1/3 of the total computation power and
limiting itself to operate in an environment with a fixed
difficulty [1]. In this work, we build upon their solution to
present a scheme with improved security.



All these techniques based on NIPoPoWs are com-
plementary to sharding techniques. Briefly, sharding aims
at processing transactions in parallel to scale the system
horizontally. Nodes (either correct or Byzantine) are allo-
cated into different shards, and each shard processes trans-
actions concurrently. Nodes in each shard maintain their
blockchain containing transactions submitted from users
of the sharded blockchain. A transaction may involve a
single shard (intra-shard transaction) or multiple shards
(cross-shard transaction). To process cross-shard transac-
tions, nodes in different shards may communicate with each
other. For the last few years, sharding techniques have
received much attention, and among the different existing
propositions, we can cite the following ones. Elastico [5]
is a PoW permissionless blockchain that combines both
network and transaction-sharding to scale transaction rates
almost linearly with available computational power. Om-
niledger [6] and Rapidchain [7] are among the first solu-
tions that improve blockchain performance by implementing
state-sharding, while Stakecube [8] introduces the notion of
adaptability of the number of shards to the current number
of parties in the system. More recently, some deployed so-
lutions such as TON [9] and Elrond [10] propose to support
smart contracts, while Monoxide [11] or Brokerchain [12]
propose to reduce the number of cross-shard transactions
by organizing parties as a function of their transactional
relationships. To cope with the hardness of the problem,
BrokerChain [12] proposes a state-graph partitioning algo-
rithm, executed by a single shard responsible for the re-
organization of the parties within the shards.

3. Model of the System

In this section, we formally describe the model used
in the first half of the paper. We discuss our proposal to
improve the security of Kiayias et al.’s superblock-based
NIPoPoW scheme. Our proof that provides the lower bound
on the storage and communication complexity of a PoW-
based blockchain protocol (see Section 9) is based on in-
formation theory and operates independently of the model
described in this section.

3.1. Communication Model

In this work, we consider a static setting where the
parties operate in a synchronous network. This means that
a fixed upper bound ∆ on the time it takes for a message
to be transmitted between any two parties and a fixed upper
bound Φ on the time that elapses between two consecutive
steps of a party exist and are known by all the parties of the
system. This model allows us to organize the execution of
a distributed algorithm in rounds such that in each round,
every party can send a message to each of its neighbours,
receive the messages sent during the round, and execute a
computational step based on the received messages.

Symbol Description

N Number of parties in the system
t Number of parties controlled by the adversary
T Target for the hash value of a valid block
n Total number of blocks appended

in the execution of a blockchain protocol
k Common prefix parameter
δ Size of the application data in a block
a Size of the application data in a blockchain
ℓ Level of a superblock
χ Unstable portion of the blockchain
Π NIPoPoW / Compressed Chain
f Probability that at least one honest party succeeds in

finding a PoW in one round
λ Length of the smallest execution considered to be typical
m Security parameter of the compression scheme
D Set of superblocks in the compressed chain

W (·) Weight assignment for blocks
β Parameter associated with the weight assignment

Σ(·) Returns the sum of weights of blocks
Y (S) Random variable denoting the number of blocks ap-

pended by the honest parties in a set of rounds S
Z(S) Random variable denoting the number of blocks obtained

by the adversary in a set of rounds S

Table 1: List of symbols used in the paper

3.2. Adversary Model

We assume the presence of a Byzantine or malicious
adversary that may control strictly less than 1/2 of the total
amount of computational power currently available in the
system. This model, named the ”Computational Threshold
Adversary” [13], is an alternative to the Common Threshold
Adversary Model, which bounds the total number of parties
the adversary controls relative to the total population of the
system. In this work, we limit the adversary to a probabilistic
polynomial-time Turing machine that behaves arbitrarily,
i.e., at any time, it may follow or not follow the prescribed
protocol. In particular, the adversary can broadcast arbitrary
messages to parties and may send different messages to
different parties. However, the adversary remains computa-
tionally bounded. Hence, it cannot, in a polynomial number
of steps or time or space, forge honest parties’ signatures
or break the hash function and signature scheme with all
but negligible probability. Therefore, we term our adversary
as the 1/2-bounded PPT adversary. Any party following the
prescribed protocol is called a honest party.

4. Background

A blockchain is a data structure that enables coordination
or consensus in a distributed system. In this paper, we
consider Proof-of-Work based blockchains which achieve
consensus without relying on a trusted party by requesting
the parties to contribute a limited resource such as hashing
power. We use the term “consensus” to refer to a weaker
form of consensus that is achieved by a PoW blockchain
wherein the network may reach consensus eventually, i.e.,
if no new updates are issued, the system reaches a quiescent
state where the shared state is consistent [14].



4.1. Proof-of-Work

The Proof-of-Work or PoW scheme requires each party
to generate a “proof” of investing a limited resource such
as hashing power that takes time to generate but can be
quickly verified by other parties. PoW enables consensus in
a permissionless system in which any party can join or exit
at any time without requiring permission from any other
party. This form of permissionless consensus is provably
secure against a Byzantine probabilistic polynomial-time
adversary that may control strictly less than 1/2 of the total
hashing power in a synchronous system [15].

In PoW-based blockchain, every party that wants to
insert a block into blockchain is required to provide a nonce
along with the contents of the block, hashes to a value below
a given target. The hash function H is modelled as a ran-
dom oracle that produces constant length output. Since the
distribution of hash values is stochastic, some blocks end up
with hash values significantly below the target. In particular,
blocks that hash to a value less than T/(2ℓ), where T is the
target value, are called ℓ-superblocks [16], [4], [17], [1].
Note that every ℓ-superblock is also a ℓ′-superblock for any
ℓ′ ≤ ℓ and the genesis block is considered to have a hash
value of 0x00 . . .0 and hence, is a superblock of the highest
level.

In a PoW-based blockchain protocol like Bitcoin, every
honest party tries to extend the longest chain. These parties
are rewarded only when their blocks are accepted into the
longest chain, providing the necessary incentives to extend
the longest chain.

4.2. Bitcoin

Bitcoin builds a robust blockchain using the PoW
scheme that enables storing transactions required for the
activity of a secure cryptocurrency. A robust blockchain
protocol must ensure that the following properties with
overwhelming probability [15]:

1) Safety with parameter k ∈ N: If a valid transaction
block appears in a block that is at least k blocks
away from the end of the blockchain of an honest
party, then this transaction will appear at the same
position at all honest parties’ blockchain.

2) Liveness with parameters k ∈ N: if a valid trans-
action is received by all honest parties, then this
transaction will appear in a block at least k blocks
away from the end of the blockchain of all honest
parties.

4.3. Application and Consensus Data

In a blockchain system, each party must independently
maintain a copy of the blockchain in order to mine new
blocks and verify transactions. The data stored by a party
can be divided into two types:

Definition 4.1 (Application Data). The application data
consists of all information required to verify the validity of

a transaction, i.e., the unspent transaction outputs (UTXOs),
account data, smart contract states, etc.

Definition 4.2 (Consensus Data). The consensus data con-
sists of all information required apart from the application
data for the complete participation of a party. In a PoW-
based blockchain, this involves all the block headers in the
chain.

A new honest party that joins the blockchain system
must synchronise with both types of data to initiate the
mining process. In a PoW-based blockchain protocol, the
consensus data grows linearly with every new appended
block. This causes issues with both storing the consensus
data and communicating the full blockchain when bootstrap-
ping a new party. To address these issues, Non-Interactive
Proofs-of-Proof-of-Works (NIPoPoW) allows us to store and
communicate the PoW in a compressed form.

4.4. Superblock NIPoPoWs

Superblock Non-Interactive Proofs-of-Proof-of-Works
(NIPoPoWs) compress the PoW by subsampling the block
headers [4]. The working principle behind this compression
lies in the assumption that a sub-sample of the block headers
can be sufficient to estimate the size of the original dis-
tribution of block headers. NIPoPoWs rely on designating
some of the blocks in a blockchain as “superblocks” [16],
[17], [1]. The key idea is to sub-sample the blocks in the
blockchain such that the sub-sampled chain represents the
original chain; any difference in the original blockchain
results in different sub-sampled blockchains. In more detail,
in a typical execution of the PoW blockchain, on average,
1/2ℓ of the blocks are ℓ-superblocks. NIPoPoW samples the
ℓ-superblocks to prove that the original blockchain contained
2ℓ blocks. In order to convince honest parties, the NIPoPoW
contains a constant number of superblocks at each level.
The idea behind NIPoPoW is that the security properties
associated with the entire blockchain are also associated
with superblocks at each level. Hence, the longest chain can
be proven with only the superblocks from the blockchain.

The scheme requires every block header to store pointers
to the last superblock at every level in order to ensure
that the subsampled blocks also form a valid chain. A
chain of n blocks will contain superblocks at O(log(n))
levels, as illustrated in Figure 1. Hence, the space and
communication complexity of Kiayias et al.’s proposal [4]
is O(poly log(n)). In Section 9, we show that any such
compression needs at least O(log(n)) blocks.

The proposal by Kiayias et al. [1] offers the best-
known compression of PoW blockchains so far. It uses
NIPoPoWs to present a blockchain protocol that achieves
O(poly log(n)c+ kδ+ a) storage and communication costs
while allowing parties to mine new blocks based on this
compressed blockchain, where k is the common prefix pa-
rameter, δ is the size of application data per block, and a is
the size of application data in the blockchain. However, their
solution reduces the security of the protocol by guaranteeing
resilience to only a 1/3rd Byzantine adversary. Improving
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(c) View of the same section of blockchain after a period of
time upon compression.

Figure 1: Illustration of Kiayias et al.’s [1] compression
scheme.

these security guarantees in NIPoPow (specifically Kiayias
et al.’s one) is the primary focus of the work. We first briefly
discuss Kiayias et al.’s approach.

5. Kiayias et al.’s Scheme

Any scheme for operating and compressing blockchains
requires to design (i) a chain compression algorithm and
(ii) a compressed chain comparison algorithm to determine
which compressed chain to be retained in the case of forks.
Both algorithms rely on the notion of a superblock that has
been defined as follows.

Definition 5.1 (ℓ-superblock ([1])). A block that hashes to
a value less than T · 2−ℓ is said to be a ℓ-superblock.

5.1. Chain Compression Algorithm

The chain compression algorithm requires each block
header to maintain pointers to the last superblock at every
level to form an interlinked blockchain. The algorithm works
by only keeping sufficient superblocks at every level and
discarding the rest of them. These samples evolve with time,
i.e., a superblock once selected may be discarded later, but
vice-versa does not hold.

The Kiayias et al.’s chain compression algorithm
(from [1], Algorithm 1) is parameterized by a security
parameter m and the common prefix parameter k. The
algorithm compresses the blockchain except for the k most
recent unstable blocks. The compression works as follows:
For the highest level ℓ that contains more than 2m blocks,
keep all the blocks but for every level µ below ℓ, only keep
the last 2m blocks and all the blocks after the mth block
at the µ + 1 level. Π is used to represent an instance of
NIPoPoW proof.

5.2. Compressed Chain Comparison Algorithm

Any new party that seeks to join the network and starts
mining new blocks must first synchronize with other parties
in the network by identifying the longest chain. Given mul-
tiple compressed chains, the compressed chain comparison
algorithm identifies the one with the “largest” PoW. Let
Π1,Π2, . . . ,Πn be the different compressed blockchains that
a new party receives. The party first applies the compression
algorithm to every compressed blockchain to make the com-
parison fair. To compare any two compressed blockchains
Π and Π′, the compression algorithm selects the minimum
level µ that contains a block present in both Π and Π′.
If no such block is found, it necessarily implies that the
greatest level (compression level ℓ) in the two compressed
blockchains is not the same, and thus simply, the algorithm
selects the one with the greatest level. If block b is found in
both Π and Π′ at the same level µ, then the blockchain with
the greatest number of blocks after b wins the comparison.

5.3. Succinctness

An informal argument for the succinctness of the pro-
tocol follows from the fact that for a blockchain contain-
ing n blocks, the number of levels will be in O(log(n)).
At each level, the compressed blockchain may contain at
most 4m blocks with overwhelming probability. Therefore,
with overwhelming probability, the number of blocks in the
compressed blockchain will be in O(4m log(n)). A detailed
formal proof is presented in Section 8.

5.4. Security

The high-level intuition behind the security of Kiayias et
al.’s proposal [1] is that the common prefix property which
states that any block sufficiently deep in the blockchain is
guaranteed to remain in the blockchain held by the honest
parties, holds true not only for the whole compressed chain
but also at every level of the compressed chain. So the
adversary cannot possibly produce a blockchain that forks
superblocks at a higher level. So we may safely accept
the chain having the greatest number of superblocks at the
level where we find the fork. However, the common prefix
property of Kiayias et al.’s proposal [1] only holds true if the
adversary cannot possibly produce a blockchain containing a
larger number of ℓ-superblocks than what the honest parties
can do. Since the security of the protocol relies heavily on
these superblocks, it can be shown that the optimal attack
for the adversary would be to “suppress” these superblocks.
Lemma 6.7 of [1] shows that an adversary with at least
1/3rd of the total hashing power could possibly suppress all
the superblocks. Hence, their protocol can be proven to be
secure only if the adversary is allowed to control less than
1/3rd of the total hashing power, which is a reduction from
the security guaranteed by Bitcoin [15]. In the following
section, we describe how we fix this reduction in security to
achieve the same security guarantees as the vanilla Bitcoin
protocol.



6. Gems Blockchain: Main components

The notion of unsuppressible blocks is fundamental
to guarantee the quality of the compressed chain, i.e.,
to ensure that the distribution of superblocks within the
Bitcoin blockchain has not been adversarially biased in
the compressed chain. Kiayias’ proposal uses the default
chain selection rule that is oblivious to the presence of
superblocks, and thus it is possible for an adversary to
“suppress” superblocks by forking the chain, biasing the
superblock distribution accordingly. Thus Kiayias et al.’s
proposal security heavily depends on the superblocks that
the adversary can suppress: if the adversary owns at least
1/3rd of the hashing power, it can possibly suppress all
the superblocks mined by honest parties. With Gems we
improve the security of their proposal by hindering the
suppression of superblocks. We assign different weights to
the blocks as per their superblock level so that they are
given preference in the chain selection rule. By adding
greater preference for superblocks, we improve the security
by making it difficult for the adversary to selectively fork
the superblocks.

Concretely, and as will be detailed in Section 7.3, we
designate a small fraction of the superblocks with level
ℓ ≥ β as ℓ−diamond blocks and assign a weight W (ℓ) to
them such that the probability that an adversary controlling
up to 1/2 of the total hashing power can suppress a ℓ-
diamond block becomes negligible. The system parameter β
quantifies the trade-off between storage and communication
costs and increasing weights. The intuition comes from the
fact that an adversary that does not control the majority
of the total hashing power cannot produce a blockchain
that has more weight than the blockchain containing a ℓ-
diamond block without including another ℓ-diamond block.
Figure 2 illustrates such a scenario where the adversary
cannot impose its own blockchain unless it mines a ℓ-
diamond block that counts for a weight equal to W (ℓ).
Notation In this work, we borrow the notation and the
mathematical framework introduced by Kiayias et al. in [1].
C[i] denotes a block in the chain C with zero-based indexing,
while C[i : j] denotes the blocks from the index i (inclusive)
to j (exclusive), omitting any of the two implies taking all
the blocks that follow. A negative i or j means to take blocks
from the end of the chain instead of from the beginning, so
C[−1] is the tip of the chain. If i and j are replaced by
blocks A and Z instead of block indices, we write CA : Z
to designate blocks of C from block A (inclusive) to block
Z (exclusive), and again any end can be omitted. C ↑µ refers
to only the subsequence of µ-superblocks in the entire chain
C. By definition of µ-superblocks, (C ↑µ) ↑µ+i= C ↑µ+i.

6.1. Chain Compression Algorithm

We modify the chain compression algorithm of Kiayias
et al. [1] to exploit the presence of diamond blocks. Pseudo-
code of the algorithm is presented in Algorithm 1. D refers
to the set of superblocks that are retained after compression,
indexed by their superblock level. The unstable part of the

1 1

W(ℓ) 1

1 1 1 1

Set of rounds S

6

W(ℓ) + 3

Figure 2: Adversary trying to suppress a superblock by
forking the chain

compressed chain is modified so as to take advantage of
diamond blocks (see Line 14). Our modification is minor;
however, the security analysis of the same is non-trivial.

Algorithm 1 Chain compression algorithm for transitioning
a full miner to a logspace miner. Given a full chain, it
compresses it into logspace state.

1: function DISSOLVE m,k(C)
2: C∗ ← C[: −k]
3: D ← ∅
4: if |C∗| ≥ 2m then
5: ℓ← max {µ : |C∗ ↑µ| ≥ 2m}
6: D[ℓ]← C∗ ↑ℓ
7: for µ← ℓ− 1 down to 0 do
8: b← C∗ ↑µ+1 [−m]
9: D[µ]← C∗ ↑µ [−2m :] ∪ C∗ ↑µ {b :}

10: end for
11: else
12: D[0]← C∗
13: end if
14: χ← C{C ↑β [−k] :}
15: return (D, ℓ, χ)
16: end function
17: function COMPRESS m,k(C)
18: (D, ℓ, χ)← Dissolve m,k(C)
19: π ← ⋃ℓ

µ=0D[µ]
20: return πχ
21: end function

6.2. Compressed Chain Comparison Algorithm

We formally describe our compressed chain comparison
rule: Given multiple compressed chains, Π1,Π2, . . . ,Πn,
pairwise compare each chain to obtain the chain that cap-
tures the most proof-of-work. After having performed a
syntactic validity check (Lines 1-7) on two compressed
chains Πi and Πj , first, separate the last k blocks as χi and
χj from the rest of the chains as Di and Dj respectively.
Note that the Dissolve function is invoked with compressed
chains and not full chains. If Di = Dj then select the chain
having greater weight among χi or χj else compare Di

and Dj in the same manner as Kiayias et al.’s proposal. We
describe the pseudo-code of our chain selection algorithm in
Algorithm 2. It is important to notice that our modification
applies solely to the case where the provided stable portions



of the compressed chain D are identical. In that case we
compare the unstable portions of the chains χ and χ′ using
their weights (Lines 17-21).

Algorithm 2 The compressed chain comparison algorithm.

1: function maxvalidm,k (Π,Π
′)

2: if Π is not valid then
3: return Π′

4: end if
5: if Π′ is not valid then
6: return Π
7: end if
8: (χ, ℓ,D)← Dissolve m,k(Π)
9: (χ′, ℓ′,D′)← Dissolve m,k (Π

′)
10: M ← {µ ∈ N : D[µ] ∩ D′[µ] ̸= ∅}
11: if M = ∅ then
12: if ℓ′ > ℓ then
13: return Π′

14: end if
15: return Π
16: end if
17: µ← max(minM,β)
18: b← (D[µ] ∩ D′[µ]) [−1]
19: if |D′[µ]{b :}| > |D[µ]{b :}| then
20: return Π′

21: else if |D′[µ]{b :}| < |D[µ]{b :}| then
22: return Π
23: else if Σ(χ′) > Σ(χ) then
24: return Π′

25: else
26: return Π
27: end if
28: end function

7. Gems: Weight intuition

In this section, we lay down the pre-requisites required
for analysing the safety and liveness guarantees of Gems.
Prior to presenting our proofs, we briefly describe the Bit-
coin Backbone Protocol [15] that provides the framework
for both Kiayias et al.’s analysis [1] and Gems’ one.

7.1. The Bitcoin Backbone Protocol Analysis

The Bitcoin Backbone Protocol analysis by Garay et
al. [15] provides bounds for the Safety and Liveness Proper-
ties of the Bitcoin Protocol (see Section 4.2) by modelling
it as a synchronous system along with introducing useful
mathematical tools to develop additional proofs for the
blockchain.

Garay et al. [15] propose a model in which each party is
allowed to make q queries to a cryptographic hash function
in every round and the parties can communicate via broad-
cast messages. The adversary controls up to t parties. For
this reason, the adversary can query the cryptographic hash
function up to t× q times per round.
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Figure 3: Probability of typical execution with respect to λ

7.1.1. Typical Execution Constraints. Since the mining
of blocks is a probabilistic process, it can often happen that
the adversary luckily manages to mine more blocks than the
honest network for a short period. However, since in Bitcoin,
the adversary controls less than 1/2 of the hashing power,
in the long run, the honest parties should be able to mine
more blocks than the adversary. So they consider executions
with at least λ consecutive rounds so that during such long
enough executions, the honest parties mine more blocks than
the adversary with a probability of at least 1 − e−Ω(ϵ2λf),
where λ satisfies λ ≥ 2/f , f being the probability that at
least one honest party succeeds in finding a PoW in one
round [15], and ϵ ∈ (0, 1). Figure 3 shows the value λ0 =
5000 where the probability of typical execution is strictly
larger than 0.95. For any set S of rounds, let Y (S) and
Z(S) be two random variables defined as follows:

• Y (S) represents the number of rounds in S in which
the honest parties produced exactly one block.

• Z(S) represents the number of blocks produced by
the adversary in the set of rounds S.

Additionally, δ is the advantage of honest parties, and we
have δ ≤ 1 − t/(N − t), where N represents the number
of mining parties, out of which t are controlled by the
adversary. Both δ and f relate as 3(f + ϵ) < δ < 1.

Lemma 7.1 ([15], Lemma 11). The following holds for any
set S of at least λ consecutive rounds in a typical execution.

(a) (1− δ

3
)f |S| < (1− ϵ)f(1− f)|S| < Y (S),

(b) Z(S) <
t

n− t

f

1− f
|S|+ ϵf |S| ≤ (1− 2

δ

3
)f |S|,

(c) Z(S) < Y (S).

Theorem 7.2 ([15], Theorem 10). A typical execution
guarantees that for any S such that |S| ≥ λ, Z(S) <(
1− 2δ

3

)
f |S|.

7.2. Warm-up: Assigning common weight to su-
perblocks

This section shows that attaching a large enough weight
to blocks essentially makes them “unsuppressible”. Prior to
discussing how blocks are assigned weight, we present a



series of lemmas that demonstrate the positive effect of
attaching weights to blocks on their security. In the next
section, we shall generalize these results to devise a weight
assignment specific to each level of superblocks.

Lemma 7.3 provides an upper-bound on the number of
blocks mined by the adversary in a non-typical execution.

Lemma 7.3. For any set S of consecutive rounds such that
|S| ≤ λ, Z(S) <

(
1− 2δ

3

)
fλ.

Proof. We prove this lemma by contradiction. Let U be
a typical execution with |U | = λ, and let S ⊂ U , i.e.,
|S| < λ. Suppose by contradiction that Z(S) ≥

(
1− 2δ

3

)
fλ.

By Lemma 7.1, we have

Z(U) <
(
1− 2δ

3

)
f |U |.

By definition of execution U , we have

Z(U) = Z(S) + Z(U \ S)
≥ Z(S).

By assumption of the proof, we get

Z(U) ≥
(
1− 2δ

3

)
fλ

=
(
1− 2δ

3

)
f |U |.

However, from Lemma 7.1 we have for any set of consec-
utive rounds S′ with |S′| ≥ λ, Z(S′) <

(
1 − 2δ

3

)
f |S′|.

Hence, execution U cannot be a typical execution, which
contradicts the assumption, and completes the proof of the
lemma.

Lemma 7.4. If S is a sequence of consecutive rounds, then,
Y (S \ {r}) ≥ Y (S)− 1 for any round r ∈ S.

Proof. The set S \{r} only discards the round r which can
contribute a maximum of one uniquely successful round in
Y (S).

Y (S) = Y (S \ {r}) + Y ({r}),
and thus

Y (S \ {r}) = Y (S)− Y ({r})
≥ Y (S)− 1,

as by definition Y ({r}) ≤ 1.

Lemma 7.5 provides an upper bound on the number of
blocks the adversary can successfully mined in addition to
the ones mined by the honest parties.

Lemma 7.5. For any sequence S of rounds, |S| ≥ 1, and
for any round r ∈ S, we have

max
∀ S

(
Z(S)− Y (S \ {r})

)
<

(
1− δ

3

)
fλ.

Proof. Let us consider two cases:
Case I: |S| < λ.

From Lemma 7.3, Z(S) <
(
1 − 2δ

3

)
fλ. By definition,

Y (S) ≥ 0. Hence,
(
Z(S)− Y (S \ {r}) <

(
1− δ

3

)
fλ.

Case II: |S| ≥ λ.
From the conditions of typical executions we know that for
|S| ≥ λ, Z(S) <

(
1− δ

3

)
f |S| and by Lemmas 7.4 and 7.1,

we have Y (S \ {r}) ≥
(
1− δ

3

)
f |S| − 1. Thus,

Z(S)− Y (S \ {r}) ≤
(
1− 2δ

3

)
f |S| −

(
1− δ

3

)
f |S|+ 1

≤ 1− δ

3
f |S|.

By definition of λ, i.e., λ ≥ 2/f , we thus have

1− δ

3
f |S| <

(
1− δ

3

)
fλ.

Thus, across both cases, the maximum value that the expres-
sion can take is

(
1− δ

3

)
fλ. This completes the proof.

From Lemma 7.5, we can infer the minimum weight
value blocks must be assigned to so that the adversary
will not possibly be able to suppress them. Our security
measure uses the upper-bound so obtained to assign weight
to the super-blocks that exceeds the upper-bound making
it improbable for the adversary to suppress these blocks.
Furthermore, by adopting a similar approach as the one
of Kiayias et al. [1], we generalize our results by using
the notion of block property satisfying a predicate Q on
its hash output h ∈ {0, 1}k. A Q-block is a block whose
hash h satisfies predicate Q, i.e., Q(h) = true. Probability
ξQ quantifies the probability that a block satisfies predicate
Q, i.e., ξQ = P {Q(h)|h ≤ T}, where T is the mining
difficulty.

Theorem 7.6 (Q-blocks are unsuppressible). If a Q-block
is attached a weight w with w ≥

(
1 − 2δ

3

)
fλ, then for

any blockchain C adopted by an honest party such that
C contains a Q-block b satisfying predicate Q, then with
overwhelming probability, the adversary cannot replace C
by another blockchain C′ such that |C| = |C′| and C′ does
not contain a Q-block b′.

Proof. Any block mined by the honest parties has a proba-
bility ξQ to satisfy predicate Q. Let w be the weight attached
to any such Q-blocks. Consider the case where the adversary
tries to produce a blockchain C′ alternative to blockchain C
produced by the honest parties such that C contains a Q-
block b but C′ does not contain any Q-blocks. The adversary
can suppress Q-block b mined in round r if for any S the
following holds.

w + Y (S \ {r}) ≤ Z(S)(1− ξQ). (1)

So, if we want to prevent Q-block b from being suppressed,
we must have that

w ≥ max
∀ S

(
Z(S)− Y (S \ {r})

)
. (2)

From Lemma 7.5, we get

w ≥
(
1− 2δ

3

)
fλ, (3)



which completes the proof of the theorem.

Notice that assigning all the Q-blocks with a unique
weight w allows us to secure a given set of blocks. In
Section 7.3 we propose a block weight assignment for each
ℓ-superblock level, ∀ ℓ ≥ 0.

7.3. Gems’ Block Weight Assignment

The superblock-based NIPoPoW scheme involves differ-
ent levels of superblocks capturing their underlying distri-
bution. The block weight assignment policy assigns unitary
weights to the large majority of superblocks, and non-unitary
ones to a small fraction of superblocks that we termed ℓ-
diamond blocks. We propose the following weight assign-
ment with the system parameter β assumed to be known by
all the parties in advance.

Definition 7.1. Gems’ blocks weight assignment

Wβ(ℓ) =

{ 1 ℓ < β

(1 + ϵ)
(∑ℓ−1

i=0
Wβ(i)

2i

)(
1− δ

3

)
fλ ℓ ≥ β

Definition 7.2 (ℓ-diamond-block). We define a ℓ-diamond-
block as a block that contains a hash whose value is less
than T · 2−ℓ where ℓ ≥ β.

In the following section, we show that our proposed
block weight assignment ensures security and liveness
against a Byzantine adversary that controls up to 1/2 of
the total hashing power.

8. Analysis

In this section, we show that our approach provides
security against an adversary that controls up to 1/2 of
the total hashing power which is an improvement over the
Kiayias et al.’s proposal that can only guarantee security
against an adversary that controls at most 1/3rd of the total
hashing power.

8.1. Notation

Let Σ(S) be the function that returns the total weight
of all the blocks appended to the blockchain in a set of
rounds S. Similarly, let ΣY (S) and ΣZ(S) be the func-
tions that respectively represent the weights of the uniquely
successful honest blocks and adversarial ones in S rounds.
Let Σℓ

Z(S) be the function that returns the total weight
of adversarial superblocks at level ℓ and Σℓ−

Z (S) be the
function that returns the weight of adversarial blocks in S
rounds considering only blocks with level strictly less than
ℓ. Σℓ

Y (S) and Σℓ−

Y (S) are similarly defined but for uniquely
successful honest blocks.

By extension, random variable Yℓ(S), for any ℓ ≥ 0,
represents the number of uniquely successful ℓ-superblocks
mined in S rounds. The following lemma uses Chernoff
Bounds to provide lower bounds on the number of su-
perblocks in a set of rounds S.

Lemma 8.1. (1−ϵ)Y (S)
2ℓ
≤ Yℓ(S) for any set S of consecu-

tive rounds such that |S| ≥ λ, ϵ ∈ (0, 1], with overwhelming
probability.

Proof. Let xj be the random variable that is equal to 1 if
the jth block appended to the blockchain in the set of rounds
S is a ℓ superblock, and is equal to 0 otherwise. We have,

xj =

{
1, with probability 1/2ℓ

0, otherwise with probability 1− 1/2ℓ.

}
We have E[xj ] = 1/2ℓ. Let µ be the expectation of random
variable Yℓ(S). We have

µ = E[Yℓ(S)] =
Y (S)

2ℓ
.

From Chernoff Bounds,

P {Yℓ(S) ≥ (1− ϵ)µ} ≥ 1− e−
2ϵ2µ2

Y (S) ,

which proves that (1− ϵ)Y (S)
2ℓ
≤ Yℓ(S) with overwhelming

probability.

Lemma 8.2. Zℓ(S) ≤ (1+ϵ)Z(S)
2ℓ

for any set S of consecu-
tive rounds such that |S| ≥ λ, ϵ ∈ (0, 1] with overwhelming
probability.

Proof. Let xj be the random variable that is equal to 1 if
the jth block block appended to the blockchain in the set of
rounds S is a ℓ superblock, and is equal to 0 otherwise. We
have,

xj =

{
1, with probability 1/2ℓ

0, otherwise with probability 1− 1/2ℓ.

}
By definition of xj , E[xj ] = 1/2ℓ. Let µ be the expec-

tation of random variable Zℓ(S). We have

µ = E[Zℓ(S)] =
Z(S)

2ℓ

Then from Chernoff Bounds,

P {Zℓ(S) ≤ (1 + ϵ)µ} ≥ 1− e−
2ϵ2µ2

Z(S) ,

which proves that Zℓ(S) ≤ (1+ ϵ)Z(S)
2ℓ

with overwhelming
probability.

The following lemma from [1] ensures that in a typical
execution, the honest parties not only produce a greater
number of blocks than what the adversary does, but also
a greater number of superblocks. Lemma 8.4 further proves
that the advantage of honest parties also applies to weights.

Lemma 8.3 ([1] Lemma 1(d)). Yℓ(S) > Zℓ(S) for any set
S of consecutive rounds such that |S| ≥ λ and ℓ ∈ Z+.

Lemma 8.4. ΣY (S) > ΣZ(S) for any set S of consecutive
rounds such that |S| ≥ λ.



Proof. By definition of ΣY (S) we have,

ΣY (S) =

∞∑
i=0

Σi
Y (S)

=

∞∑
i=0

Wβ(i) · Yi(S)

≥
∞∑
i=0

Wβ(i) · Zi(S) (from Lemma 8.3)

≥ ΣZ(S),

A block mined by honest parties and belonging to the
chain currently adopted by honest parties will be forked by
the adversary iff the adversary is capable of providing a
chain whose total weight is larger than the one adopted by
the honest parties. Lemma 8.5 captures this condition.

Lemma 8.5. If r is a uniquely successful round and the cor-
responding block does not belong to the chain of an honest
party at a later round, then there is a set of consecutive
rounds S such that r ∈ S and ΣY (S) ≤ ΣZ(S).

Proof. Let C be the chain of the honest party that was
uniquely successful at round r and u be the depth of the
corresponding block. Let r′ be the first round after r in
which an honest party has a chain C′ which does not contain
the block at depth u. Let r∗ be the round in which the last
block common to both C and C′ was mined. Now for the set
S = {i : r∗ < i < r′}, we have ΣY (S) ≤ ΣZ(S). Indeed, if
this is not the case, one of the honest parties adopted a chain
that was not the heaviest chain available which contradicts
our assumption that the party was honest. This completes
the proof.

The following lemma is analogous to Lemma 7.3 and
provides an upper-bound on the weight of blocks mined by
the adversary.

Lemma 8.6. Σℓ−

Z (S) < (1 + ϵ)
(∑l−1

i=0
Wβ(i)

2i

)(
1 − δ

3

)
fλ

for any set of rounds S such that |S| ≤ λ.

Proof. Let xj be the random variable that denotes whether
the jth block is a ℓ superblock. Then,

Σℓ
Z(S) = Wβ(ℓ)

j=Z(S)∑
j=0

xj


where xj =

{
1, with probability 1/2ℓ

0, otherwise with probability 1− 1/2ℓ.

}
We have E[xj ] = 1/2ℓ. Let µ be the expectation of random
variable Σℓ

Z(S). We have

µ = E[Σℓ
Z(S)] = Wβ(ℓ)

Z(S)

2ℓ
.

Then from Chernoff Bounds,

P
{
Σℓ

Z(S) < (1 + ϵ)µ
}
≥ 1− e−

2ϵ2µ2

Z(S) .

Now, let S ⊆ U such that |U | = λ. By definition of function
Σ(), we have Σℓ

Z(S) ≤ Σℓ
Z(U),thus

P

{
Σℓ

Z(U) < Wβ(ℓ)
(3− δ)λ

3

1

2ℓ

}
≥ 1−e−

(
2ϵ2(3−δ)λ

3

)
( 1

2ℓ
).

Therefore, Σℓ
Z(S) ≤ Σℓ

Z(U) < Wβ(ℓ)
(3−δ)λ

3
1
2ℓ

with over-
whelming probability.

Σℓ−

Z (S) =

ℓ−1∑
i=0

Σℓ
Z(S) < (1+ϵ)

(
l−1∑
i=0

Wβ(i)

2i

)(
1− δ

3

)
fλ,

which completes the proof.

Theorem 8.7 states that the proposed block weight assign-
ment from Section 7.3 prevents the adversary from suppress-
ing diamond blocks. The proof of the theorem is analogous
to the proof of Theorem 7.6.

Theorem 8.7 (ℓ-diamond blocks unsuppressibility). If ℓ-
diamond blocksare attached a weight Wβ(ℓ), then for any
chain C adopted by an honest party such that C contains
a ℓ-diamond block, then with overwhelming probability, the
adversary cannot replace C by another chain C′ such that
|C| = |C′| and C′ does not contain any ℓ-diamond block.

Proof. Let us assume by contradiction that the adversary has
replaced chain C with chain C′ such that C′ does not contain
any diamond blocks. From Lemma 8.5, it must exist S such
that ΣY (S) ≤ Σℓ−

Z (S). Let us consider two cases:
Case I: |S| ≤ λ.
From Lemma 8.6, the maximum value Σℓ−

Z (S) can take is
(1+ϵ)

(∑l−1
i=0

Wβ(i)
2i

)(
1− 2δ

3

)
fλ for |S| ≤ λ. By definition,

we have ΣY (S) ≥ Wβ(ℓ) > (1 + ϵ)
(∑l−1

i=0
Wβ(i)

2i

)(
1 −

2δ
3

)
fλ. Hence, no such S can exist.

Case II: |S| > λ.
Consider the set of rounds S \ {r} where r is the round
during which bℓ is mined. We have

ΣY (S \ {r}) = ΣY (S)−Wβ(ℓ),

and by definition of Wβ(ℓ), we have

Σℓ−

Z (S \ {r}) ≥ Σℓ−

Z (S)− (1 + ϵ)
( ℓ−2∑

i=0

Wβ(i)

2i

)(
1− δ

3

)
fλ.

Now, from case (c) of Lemma 7.1, we get

ΣY (S \ {r}) ≥ Σℓ−

Z (S \ {r}) (since |S| − 1 ≥ λ)

ΣY (S)−Wβ(ℓ) ≥ Σℓ−

Z (S)−(1+ϵ)
( ℓ−2∑

i=0

Wβ(i)

2i

)(
1− δ

3

)
fλ.



Replacing Wβ(ℓ) by its value, we get

ΣY (S) ≥ Σℓ−

Z (S) + (1 + ϵ)
( ℓ−1∑

i=0

Wβ(i)

2i

)(
1− δ

3

)
fλ

− (1 + ϵ)
( ℓ−2∑

i=0

Wβ(i)

2i

)(
1− δ

3

)
fλ

≥ Σℓ−

Z (S) +
Wβ(l − 1)

2l−1
(1 + ϵ)

(
1− δ

3

)
fλ.

Thus, we cannot find a set of rounds S such that ΣY (S) ≤
Σℓ−

Z (S). Our assumption that the adversary can replace the
chain C with a chain C ′ that does not contain a block bℓ is
wrong.

8.2. Safety Property

We now show that our ℓ-diamond -based approach guar-
antees safety against an adversary that controls up to 1/2 of
the total hashing power.

8.2.1. The Common Prefix Property. The common pre-
fix property states that once a block b has been inserted
more than k blocks deep into the blockchain, every honest
blockchain will contain block b in its chain. This property
ensures safety since once a transaction is in a block that
becomes a part of the common prefix, it is guaranteed to
remain in the blockchain of all honest parties.

Lemma 8.8 (ℓ-diamond block common-prefix). Assume
t <

(
1
2 − δ

)
N with δ > 3(ϵ + f) and a typical execution.

Suppose that at round r of a typical execution an honest
party receives two chains, C and C′ where C′ \ (C ∩ C′)
has at least λf blocks at a level ℓ ≥ β, then C has more
ℓ-diamond blocks than C′.
Proof. If the honest blockchain C contains a ℓ-diamond
block, the adversary cannot fork the ℓ-diamond block with a
chain C′ that does not contain a ℓ-diamond block in a typical
execution. Let us assume that C ′ has more ℓ-diamond blocks
than C has. This implies that Yℓ(S) > Zℓ(S) for some set
of rounds S which cannot be possible in a typical execution
as shown in Lemma 8.3. Therefore, our assumption was
incorrect and C will have more ℓ-diamond blocks than C ′

has.

Theorem 8.9. Consider an arbitrary 1/2-bounded PPT
adversary in a typical execution. Let Π be a proof gen-
erated by an honest party at round r using Algorithm 1
with chain C as parameter. Let Π′ be an arbitrary proof
generated by the adversary at round r. Let Π∗ be the
proof accepted by an honest party using Algorithm 2. Then
|Π∗ {(Π∗ ∩ C) [−1] :}| ≥ |C {(Π∗ ∩ C) [−1] :}| with over-
whelming probability.

Proof. Let C′ = Π′. We need to show that, either Π will be
the proof accepted by the verifier, or Π∗ is a proof extending
the honest chain that is longer at level 0, as mandated by
the theorem statement.

Let us consider first the case where the lowest level µ
containing a common ℓ-diamond block at the same position
of Algorithm 2 exists. When µ = 0, Algorithm 2 determines
the chain with the greater weight and correctly accepts the
corresponding proof. That is, Algorithm 2 will either choose
Π∗ = Π or Π∗ = Π′. If Π∗ = Π′, the algorithm will choose
the adversarial proof Π′ which contains an unstable portion
χ′ that extends the honest chain’s unstable portion χ at level
0 (up to k blocks long) with a longer alternative. This is the
only case in which Π′ can win. For the other cases, we will
now argue that the adversary cannot win.

Let us now focus on the case 0 < µ ≤ ℓ. Note that,
since D[µ − 1] ∩ D′[µ − 1] = ∅ (by the minimality of
µ), both superchains must have at least m blocks after
their common block b. The diamond-block common-prefix
Lemma (Lemma 8.8) implies that Π is accepted.

Next, consider the case where no such µ exists. Clearly,
ℓ ̸= ℓ′ (otherwise D[ℓ] ∩ D′[ℓ′] would contain the genesis
block) and we need to argue that ℓ > ℓ′. Assume by
contradiction that ℓ < ℓ′ and consider the statement of
the diamond-block common-prefix Lemma (Lemma 8.8).
Together with ℓ < ℓ′, it implies that C ′ has fewer than m ℓ-
diamond blocks after the common block with C (since C has
fewer ℓ-diamond blocks than C ′ in total, it must also have
fewer on its fork; and they must necessary share a common
block, since both must begin with the genesis block). But
then, both C and C ′ have fewer than m ℓ-diamond blocks
after their common block. Since D[ℓ] ∩ D′[ℓ] = ∅ by
assumption, this cannot be the case, which completes the
proof of the lemma.

Based on the safety theorem, we devise a transaction
acceptance rule that can provide assurance of safety to any
client that wishes to accept a transaction.

Transaction Acceptance Rule In Gems, one can safely
accept a transaction once it has been validated by k ≥ λf
blocks at any level ℓ ≥ β based on Lemma 8.8. However,
this discrete rule can be extended to have a conditional
acceptance rule based on the probability of double spending.

8.3. Liveness

We now state the liveness property of our scheme. The
following theorem proves that our scheme achieves the same
liveness guarantee as that of the original Bitcoin protocol as
shown by Garay et al. [15].

Theorem 8.10. If all honest parties try to insert a transac-
tion in a blockchain for u consecutive rounds, the transac-
tion shall be accepted by any honest party by the end of the
last round of the set of rounds u with probability at least
1− e−Ω(βu)

The theorem can be easily proved using the Chain
Growth Lemma from [15] which states that the longest chain
will have atleast (1− ϵ)f |S| blocks in |S| rounds and using
Chernoff bounds to bound the probability of obtaining ℓ-
diamond blocks.



9. Limits of Blockchain Compression

Kiayias et al. present a novel scheme for compressing
a PoW-based blockchain using NIPoPoWs and manage to
compress the blockchain in O(poly log(n)) storage and
communication complexity. Their proposal leaves an open
question on whether Kiayias et al.’s technique is optimal
or there may exist even better techniques to compress
blockchains in lesser storage space or communication re-
quirements. We present a lower bound on the storage and
communication complexity for any PoW-based blockchain
protocol.

Unlike the proofs presented in the previous sections,
this proof is based on information theory and operates
independently of the previously described communication
and adversary model.

9.1. Model

In order to derive a result for any general PoW-based
blockchain protocol, we need to work with a model that can
accomodate blockchain protocols that have very different
design schemes than the Bitcoin protocol. A generalised
version of a blockchain is known as a block-DAG in which
blocks are arranged in the form of a Directed Acyclic
Graph (DAG). Let us assume we have a blockchain B
in which the blocks are organised as a Directed Acyclic
Graph. B is said to be valid if ∀b ∈ B, predecessors of
b also lie in B except for the genesis block that has no
predecessors.
Additionally, there is at least one Byzantine adversary in
the system along with at least two honest parties.

We provide the parties with the following abstract func-
tionalities:

• Topological Sort S(B). The topological sort func-
tionality takes in a valid block-DAG B and returns a
list L of blocks in B such that ∀i ∈ [n], B \L[1 : i]
is also a valid block-DAG, where n is the number
of blocks in B.

• PoPoW P(B). The Proof-of-Proof-of-Work function-
ality takes in a block-DAG B and returns a PoPoW
P(B) such that P(B) ̸= P(B′) ∀ B′ ⊊ B. We assume
the functionality is guaranteed to provide a PoPoW
for any valid blockchain.

• Compress C(B). The Compress functionality takes
in a block-DAG B and returns an output of at most
ℓ bits.

• Equivalent PoPoW U(C(B)). This functionality pro-
duces a PoPoW from a compressed block-DAG such
that

U(C(B)) = P(B).

9.2. Communication Complexity

The communication complexity refers to the number of
bits required to transmit a PoPoW to an uninitiated party. We

start by showing a property of topological sort that claims
the subsets of the block-DAG by removing the blocks from
the end can be nested like a russian doll in the following
lemma.

Lemma 9.1. B \ L[1 : i] ⊊ B \ L[1 : j] ∀j < i

Proof.

(B \ L[1 : j]) \ (B \ L[1 : i]) = L[j : i]

Now we come to the key theorem proving the lower
limit of the communication complexity.

Theorem 9.2. The PoPoW P(B) must contain at least
⌊log2(n)⌋ bits where n is the number of blocks in B.

Proof. Let us assume that there exists a PoPoW P that
produces an output of at most l bits, where l < ⌊log2(n)⌋.

Consider an adversary that obtains an ordering of
blocks L via the functionality S and produces n PoPoWs
P1, P2, . . . , Pn corresponding to B \ L[1 : i] ∀i ∈ [n].

From Lemma 9.1,

(B \ L[1 : n]) ⊊ (B \ L[1 : n− 1]) ⊊ . . . ⊊ (B \ L[1 : 1])

By definition, Pi ̸= Pj ∀i ̸= j, therefore each PoPoW Pi

needs to be mapped to a distinct sequence of l bits.
However, there are only 2l < n sequences possible.

Therefore, by the Pigeonhole Principle at least two Pi, Pj

must be mapped to the same sequence of bits.
Since, we reach a contradiction, our assumption that

there exists a P that produces an output of at most l bits,
where l < ⌊log2(n)⌋ is incorrect.

9.3. Storage Complexity

The storage complexity refers to number of bits required
to store a blockchain B such that a party can transmit a valid
PoPoW P = P(B) to another party.

Lemma 9.3. For two blockchains Bi and Bj , Bi ⊊ Bj =⇒
C(Bi) ̸= C(Bj).
Proof. Let us assume that there are two parties that have
Bi and Bj such that Bi ⊊ Bj and C(Bi) = C(Bj) = s. By
definition of PoPoW,

P(Bi) = U(s) = U(s) = P(Bj).
Hence, we reach our contradiction.

Theorem 9.4. A party that can transmit a valid PoPoW for
a blockchain B must store at least ⌊log2(n)⌋ bits where the
n is the number of blocks in B.

Proof. Let us assume that the Compress functionality allow
a party that can store the blockchain B in l bits, where
l is less than ⌊log2(n)⌋. Consider the list L produced via
topological sort,

From Lemma 9.1,

(B \ L[1 : n]) ⊊ (B \ L[1 : n− 1]) ⊊ . . . ⊊ (B \ L[1 : 1])



From Lemma 9.3, we know that ∀B′ ⊊ B, C(B′) ̸=
C(B).

There are at least n subsets of B that must be mapped to
a unique sequence of l-bits. However, there are only 2l < n
sequences in the codomain of C. Hence, by the Pigeonhole
Principle, at least two subsets must be mapped to the same
output.

Hence, we reach a contradiction.

10. Discussion and Future Work

In this paper, we have presented an improved scheme
to compress PoW-based blockchains based on Kiayias et
al.’s proposal that achieves optimal security in a Byzan-
tine adversary, i.e., an adversary that controls strictly less
than 1/2 of the total computational power. We have proved
the security of our scheme using the same mathematical
framework introduced by Kiayias et al. [1]. We also have
established a lower bound on the storage and communication
complexity for the blockchain protocol.

Future Work

Bünz et al. [2] present a bribing attack against su-
perblocks used in NIPoPoWs in a model with the rational
majority. We leave it to future work to determine an appro-
priate reward scheme to make the blockchain protocol in-
centive compatible. Secondly, superblock-based NIPoPoWs
have only been shown to work in a setting with constant dif-
ficulty, and therefore, we leave it to future work to determine
a scheme that works in a setting with variable difficulty. To
the best of our knowledge, the lower bound presented in this
paper is lower than what is achieved by our solution and
any other solution to compress blockchains. This indicates
that no optimal blockchain compression scheme has been
discovered yet. We leave it for future work to either find
an optimal blockchain compression scheme or improve the
lower bound to O(poly log(n)).
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