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k-mer counts are important features used by many bioinformatics pipelines. Existing k-mer counting methods focus on optimizing either time or memory usage, producing in output very large count tables explicitly representing k-mers together with their counts. Storing k-mers is not needed if the set of k-mers is known, 1 1 INTRODUCTION making it possible to only keep counters and their association to k-mers. Solutions avoiding explicit representation of k-mers include Minimal Perfect Hash Functions (MPHFs) and Count-Min sketches. We introduce Set-Min sketch -a sketching technique for representing associative maps inspired from Count-Min -and apply it to the problem of representing k-mer count tables. Set-Min is provably more accurate than both Count-Min and Max-Min -an improved variant of Count-Min for static datasets that we define here. We show that Set-Min sketch provides a very low error rate, both in terms of the probability and the size of errors, at the expense of a very moderate memory increase. On the other hand, Set-Min sketches are shown to take up to an order of magnitude less space than MPHF-based solutions, for fully assembled genomes and large k. Space-efficiency of Set-Min in this case takes advantage of the power-law distribution of k-mer counts in genomic datasets.

Introduction

Counting k-mer occurrences in genomic sequences is a rather common task in many bioinformatics pipelines. It is often the first step performed before a more complicated analysis, and its main applications go from read trimming [START_REF] Liu | Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data[END_REF] to alignment-free variant calling [START_REF] Rahman | Association mapping from sequencing reads using k-mers[END_REF][START_REF] Khorsand | Nebula: Ultra-efficient mapping-free structural variant genotyper[END_REF]. In recent years, many k-mer counting algorithms have been proposed, such as Jellyfish [START_REF] Marçais | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF], DSK [START_REF] Rizk | DSK: k-mer counting with very low memory usage[END_REF] or KMC [START_REF] Kokot | KMC 3: counting and manipulating k-mer statistics[END_REF]. Each of these methods was conceived with a particular trade-off between speed and main memory consumption. Jellyfish primarily addresses speed, whereas DSK and KMC primarily target memory efficiency. All these tools output a map associating k-mers to their counts. Such a map can require a fairly big amount of disk space, especially when large values of k are used. For example, the KMC output for a human genome with k = 32 weights in at around 28 GB. Memory efficiency remains an important issue even when outputs are compressed. One way to partially solve this issue is to only store counters, without storing k-mers themselves. This idea is supported by the fact that, in many applications, we only deal with k-mers that come from partially assembled reads or succinct representations of k-mer sets such as colored de Bruijn graphs [START_REF] Holley | Bifrost -Highly parallel construction and indexing of colored and compacted de Bruijn graphs[END_REF], or spectrum-preserving string sets [START_REF] Břinda | Simplitigs as an efficient and scalable representation of de Bruijn graphs[END_REF][START_REF] Rahman | Representation of k-mer sets using spectrumpreserving string sets[END_REF], that is, only k-mers present in the original data are queried for their frequencies.

The idea of storing only counter information and not k-mers is also supported by the observation that the number of distinct k-mer counts in genomic data is relatively small. Furthermore, it is known that k-mer counts in fully assembled genomes obey a "heavy-tail" power-law distribution1 with a relatively large absolute value of the exponent [START_REF] Csűrös | Reconsidering the significance of genomic word frequencies[END_REF][START_REF] Chor | Genomic dna k-mer spectra: models and modalities[END_REF]. For such distributions, the number of distinct k-mers makes a linear fraction of the data size, while the number of distinct k-mer counts is relatively small. For example, for a human genome and k = 27, there are about 2.5 billions distinct k-mers but only about 8,000 distinct frequency values. A heavy-tail distribution also imply that the majority of k-mers have a very small count: in the above example, 97% of k-mers are unique and 99% of k-mers have a count of at most 5. Frequent k-mers often tend to have an identical count as well, due to transposable elements: for example, k-mers specific to Alu repeats in primate genomes will likely have the same count.

Our contribution. We propose a new probabilistic data structure that we call Set-Min sketch capable to represent k-mer counts information in a small 1 INTRODUCTION space and with small errors. The sketch guarantees that the expected cumulative error obtained when querying all k-mers of the dataset can be bounded by εN where N is the number of all k-mers (i.e. essentially, the size of the dataset).

We provide a theoretical analysis in order to dimension the sketch according to the desired error bound. Set-Min sketch is a general data structure in that it can be used to efficiently represent a mapping of k-mers to any type of labels.

Nevertheless, it performs best when data is skewed and the number of possible labels is relatively small.

Applications. The problem considered in this paper is the probabilistic compression of k-mer count tables computed from fully assembled genomes, with large k values. A Set-Min sketch is able to provide a more space-efficient map than other representations with low errors when count distributions are very skewed. Set-Min sketch can have different uses.

An application of Set-Min sketches not explored here, is to act as a temporary representation while building more complex structures based on counters.

Consider, for example, the exact computation of weighted pairwise distances between all pairs of genomes in a given set. Examples of such distances are the Bray-Curtis similarity measure, see e.g. [START_REF] Adamic | Multiple comparative metagenomics using multiset k-mer counting[END_REF], or Weighted Jaccard similarity estimation [START_REF] Chum | Near Duplicate Image Detection: min-Hash and tf-idf Weighting[END_REF]. The most naive algorithm is to first produce count tables for each dataset and then compare them pairwisely to produce the desired output. Instead of storing whole tables, one can store multiple Set-Min sketches together with a presence-absence data structure, such as a Bloom filter. By doing so, the weighted comparison computation is reduced to a single pass through the presence-absence data structure with the counters of a given k-mer retrieved on-demand from the Set-Min sketches of the datasets in which the k-mer is found.

Another application is the quick sharing of counter information between different computational units in a distributed setting. Consider a situation where both a server and one of its clients have access to the same genomic representation (say, a set of contigs). Only the server can efficiently perform k-mer counting, while the client has to process incoming data based on the counts, but doen't have the computational resources to perform counting by itself. In this case, the server could send a Set-Min sketch to the other node.

One further feature of Set-Min sketches is their mergeability in case of redundant maps. In this scenario, a large map can be split into m sub-maps without the restriction of having disjoint sets of keys. Even if some maps have redundant information, i.e. share common (key,value) pairs, the Set-Min sketch built by cell-wise union of the m sketches will be equivalent to the sketch built from the whole original map. Note that Count-Min sketches are not mergeable for redundant maps but are mergeable when constituent maps have to be "added up". Set-Min sketches don't have this property. In this respect, Set-Min and Count-Min sketches may have complementary uses.

Outline of the paper. In Section 2, we start by formally introducing the relevant terminology and underlying methods. Section 3 presents the idea and algorithmic foundations of our method. Our results are presented in Section 4 while Section 5 discuss the limitations of our method and possible workarounds.

We conclude in Section 5 with a summary of the work.

Background

k-mer spectrum

A k-mer spectrum is a distribution of k-mer frequencies across all k-mers occurring in the data, showing how many k-mers support each frequency value.

For large values of k, k-mer spectra follow a power-law distribution (Csűrös 2 BACKGROUND et al., 2007;[START_REF] Chor | Genomic dna k-mer spectra: models and modalities[END_REF] characterized by a linear-like dependence when represented in log-log scale. That is, the k-mer frequency distribution fits a dependence f (t) ≈ c • t -a , where a is usually greater than 2. An example of the spectrum for the human reference genome with k equal to 32 is given in Figure 1. According to this distribution, a very large fraction of k-mers have very low frequencies, while a few k-mers have "unexpectedly" large frequencies.

Large value of a implies that there are relatively few distinct frequency values with non-zero support, whose number depends as the 1 a -power of the number of k-mers. Count-Min sketch (Cormode and Muthukrishnan, 2005a) is a method to compactly represent an associative array a of counters in an approximated way.

Count-Min and Max-Min sketches

Count-Min is especially suitable for the streaming framework, when counters associated to keys can be updated dynamically. A Count-Min sketch is an R × B matrix A of counters where each row i is associated with a hash function

h i (•).
To store counters and support their dynamic updates given in a stream, Count-Min works as follows. To process an update which is a (key,value) pair (p, ), we perform A(i, h i (p)) = A(i, h i (p)) + for each row i. The (approximate) current counter associated with a key p is retrieved as â(p) = min i {h i (p)}.

It has been shown that for a Count-Min sketch built on an associative array (vector) a, with R = ln( 1 δ ) and B = e ε for any given ε and δ, the over-estimate error of an individual counter is bounded by ε a 1 with probability at least 1 -δ, where a 1 is the L 1 -norm of a (Cormode and Muthukrishnan, 2005a). If counts follow a Zipfian rank-frequency distribution with parameter b > 1, B can be reduced to O(ε -1/b ) to guarantee the same bounds (Cormode and Muthukrishnan, 2005b). Note that b > 1 corresponds to 1 < a < 2 in the corresponding spectrum distribution [START_REF] Adamic | Multiple comparative metagenomics using multiset k-mer counting[END_REF], while k-mer spectra often fit a distribution with a ≥ 2. Count-Min sketch supports negative updates, i.e. allows < 0 in updates (p, ), provided that the cumulative value for each key stays positive. If updates are only positive, there exists a modification of Count-Min leading to a better accuracy, mentioned in [START_REF] Cormode | Count-Min Sketch[END_REF] (therein attributed to [START_REF] Estan | New directions in traffic measurement and accounting[END_REF]) as conservative update. Under this modification, updates for each row i are made according to A(i, h i (p)) = max{A(i, h i (p)), â(p) + }, where â(p) is the current Count-Min estimate of a(p). It is easily seen that under this scheme, â(p) can still only over-estimate a(p), but cannot be larger than â(p) computed by the original Count-Min. In this paper, we will deal with the static case when the value of any key is given once and never changes after that. In this framework, the conservative update strategy can be further modified by defining updates as A(i, h i (p)) = max{A(i, h i (p)), }. We call this variant of the sketch Max-Min. In the static case, Max-Min sketch improves Count-Min without any computational overhead: it simply replaces addition by max in the update rule. As with the conservative update, one can check that estimates by Max-Min can only be over-estimates which, however, don't exceed estimates by original Count-Min.

Minimal Perfect Hashing

Minimal Perfect Hash Functions (MPHFs) are bijective functions between keys of a set S and integers in the range [0, |S| -1]. By using hash values as indexes for an external array, it is possible to associate any type of information to the k-mers. The construction of MPHFs can be hyper-graph peeling-based [START_REF] Yu | Memory-efficient and Ultra-fast Network Lookup and Forwarding using Othello Hashing[END_REF][START_REF] Esposito | RecSplit: Minimal Perfect Hashing via Recursive Splitting[END_REF] or array-based [START_REF] Müller | Retrieval and Perfect Hashing Using Fingerprinting[END_REF]. The first family of algorithms leads to smaller MPHFs, close to theoretical space lower bound of 1.44 bits per key, while array-based MPHFs are conceptually simpler and have practical implementations for k-mer sets, such as BBHash [START_REF] Limasset | Fast and scalable minimal perfect hashing for massive key sets[END_REF].

Methods

Set-Min sketch in a nutshell

Assume we are given a set K of keys with associated values taken from a set L with |L| |K|. In our case, K is the set of k-mers occurring in the dataset and L includes their frequencies, although our method will hold for any set of labels L. We want to compactly implement the associative map of (key,value) pairs.

A Set-Min sketch is an R × B matrix M where each bucket is treated as a set, initially empty. Similar to the Count-Min sketch, rows in the matrix correspond to hash functions h i , 0 ≤ i ≤ R -1, that we assume pairwise independent.

At construction time, the key of each (key,value) pair (p, ) is hashed by the hash functions to retrieve its buckets and the value is inserted into each set. Formally, we update

M (i, h i (p)) = M (i, h i (p)) ∪ { } for each row i.
To retrieve the value associated with a key p, we compute the intersection of the corresponding sets, that is ∩ 0≤i≤R-1 h i (p). If the intersection is a singleton, the value is returned. If the intersection is empty, p is not present in the map. If the intersection contains more than one value, we have a collision.

Dealing with collisions

Intersect:

> Final answer: In case of collision, the choice is guided by the number of k-mers supporting each label of the intersection: the label with the smallest support is returned
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(see Figure 2). The rationale for this is that the label with the smallest support has the smallest probability to appear "by chance", as labels with larger support occur in more buckets and are therefore more likely to occur in the intersection by chance. Thus, the algorithm compares spectrum values for all values of the intersection, and returns the label with the smallest value (ties are broken randomly). If the spectrum is monotonically decreasing (as it is usually the case for large k, see Figure 1), then the label returned is simply the largest one among those in the intersection.

In this work, we assume that only k-mers present in the dataset can be queried. In this case, a query can no longer result in an empty intersection. We further optimize by not storing in the sketch the label 1 with the largest support.

For large k, 1 is usually 1 which is the frequency of the largest fraction of k-mers. 1 is retrieved implicitly: when the intersection is empty, 1 is returned.

This optimization allows us to save space and will be further discussed later.

Note that, with these modification, an error may occur even if the resulting intersection is a singleton but the right label is actually 1 .

We now show that with Set-Min sketch, we can bound the total absolute error over all k-mers of the dataset. Consider a sketch S built on a map assigning to each k-mer p ∈ K a value (label) p ∈ L which is the frequency of p in the dataset. We denote by c the number of k-mers with frequency ∈ L (spectrum value).

Consider

D = p∈K | ˆ p -p | (1)
where ˆ p is the label of p returned by the sketch. Our goal is to dimension R and B such that D ≤ ε a 1 , where a 1 is the total number of k-mers in the dataset (roughly, the dataset size) and 0 < ≤ 1.

Querying p returns an incorrect frequency m = p iff m occurs in the intersection and c m < c p . The probability of this event is

1 -1 - 1 B cm R ≈ 1 -e -cm B R (2)
and the expectation of the error when querying p is then

cm<c p m∈L |m -p | 1 -e -cm B R . (3) 
Summing up over all k-mers, we obtain

E[D] = ∈L c cm<c m∈L |m -| 1 -e -cm B R . (4) 
The total number of k-mers is

a 1 = ∈L c . Given 0 < ε ≤ 1, our goal is to choose B and R in order to ensure ∈L c cm<c m∈L |m -| 1 -e -cm B R < ε ∈L c .
(5)

Assuming that k is sufficiently large and the spectrum is monotonically decreasing, i.e. c m < c iff m > . ( 5) then rewrites to

∈L c m> m∈L (m -) 1 -e -cm B R < ε ≥1 c . ( 6 
)
Assume now that the spectrum follows a power-law with large exponent, that is, c = C • -a for some a > 2. Note that under this assumption, the number of unique k-mers is c 1 = C, and the number of all k-mers is

≥1 c = C • ≥1 1 a-1 ≤ C • a -1 a -2 , since ζ(s) = i≥1 1 i s ≤ s s-1 for s > 1.
We then have the following result.

Theorem 1. Given 0 < ε ≤ 1, if B > C and R, B satisfy R • log B C > log 1 ε , (7) 
then ( 6) holds.

Proof. Our goal is to estimate

∈L c m> m∈L (m -) 1 -e -cm B R , (8) 
where c = C • -a . We assume B > C and approximate 1-e -cm B ≈ cm B = C B m -a . We further lower-approximate (8) by replacing sums by integrals, thus obtaining

∞ 1 C • -a ∞ (m -) C B m -a R dm d . ( 9 
)
Routine computation of the integral yields

C C B R 1 (aR -2)(aR -1)(aR + a + 3) . ( 10 
)
The inequality of the Theorem becomes

C B R 1 (aR -2)(aR -1)(aR + a + 3) < ε a -1 a -2 . ( 11 
)
The Theorem follows.

The theorem allows us to dimension the Set-Min sketch. For example, one can set B = αC for some constant α > 1 and R = log α 1 ε .

Algorithm 1: Heuristic to compute R and B Data:

{c } ∈L , a 1 = ∈L c , ε Result: R and B R ← 1; B ← 1.44 × c max ; T ← ε a 1 ; E ← E(D) (computed by (4)); while E > T do R ← R + 1; E ← E(D); end M ← R × B; while E < T do R ← R -1; B ← M R ; E ← E(D); end R ← R + 1; B ← M R ;

Computing tighter sketch dimensions

Theorem 1 provides a way to dimension a Set-Min sketch, provided that the spectrum follows a power-law distribution with a sufficiently large parameter a. In order to validate these estimates experimentally, and, at the same time, obtain a tool for computing tighter values B and R for arbitrary spectra, we implemented a simple heuristic hill climbing algorithm to compute those values by directly solving equation 5.

Algorithm 1, given below, starts with R = 1 and some initial value of B and then iteratively increments R and recomputes (4) until equation ( 5) holds true. In the implementation, B is initially set to 1.44 × c max , where c max is the largest spectrum value. After such a value of R is found, the algorithm starts decrementing R while incrementing B to maintain the total space RB constant as long as (5) holds. The final R and B are thus the last which satisfied (5) in the decrementing loop. Note that, for both loops, there is a value of R for which

RESULTS

the exit condition is satisfied. The rationale for this step is to have as small R as possible in order to reduce the query time, while maintaining the total space.

Results

We The other two contain unassembled reads:

USAI Sakai strain at 5x coverage from AFproject, SRR low-coverage human data SRR622461 from the 1000 Genomes Project4 

Table 1 summarizes the characteristics of each data set for each value of k in our analysis. Observe that, while the number of distinct k-mers is comparable to the total number of k-mers (data size), the number of distinct k-mer counts is small. This is in accordance with the power-law distribution discussed in Section 2.1.

Set-Min vs Count-Min sketch

Table 2 compares Set-Min sketch to Count-Min sketch. Dimensions R and B

were computed using Algorithm 1 to insure bound (5) to hold for ε = 0.01.

Dimensions of Count-Min sketch were set to be the same. Value 1 is the most common count in all reported datasets and it was not inserted into Count-Min sketch in order to make the comparison againts Set-Min as fair as possible. Zero values are thus interpreted as the non-inserted count.

For ease of comparison, column T reports the threshold ε a 1 given to Algorithm 1. Columns E s and E c report the actual total sum of errors for Set-Min and Count-Min, respectively. In all reported cases E s < T , as expected.

The total error of Count-Min, E c is, most of the time, one order of magnitude larger than E s . For SRR with k = 15, it even exceeds the total number of k-mers a 1 in the dataset.

The average error of Set-Min is, in most cases, very close to 1, which suggests that the overwhelming majority of collisions occur between successive counts such as 1 and 2 -the most abundant ones in the spectra considered here. The average error of Count-Min is bigger but of the same order of magnitude, except for small k and unassembled datasets.

RESULTS

Table 1: Data sheet for the data sets used in our study. Columns T k and D k report the total number (in millions) of k-mers and the number of distinct k-mers, respectively. D c reports the number of distinct k-mer counts. C k reports the number (in millions) of distinct k-mers with a count value different from the most common one (which is 1 in all reported cases). On the other hand, the fraction of k-mers producing an error is in striking contrast: in case of Set-Min, about only 1-3% of distinct k-mers produce an error, while for Count-Min, this fraction is much larger. This shows that Count-Min cannot be used when most of k-mer counts are expected to be retrieved precisely, for comparable sketch sizes.

Type Name T k [M] k D k [M] D c C k [M]
Table 2: Set-Min compared to Count-Min. T is the reference upper bound on the sum of errors equal to ε a 1 (right-hand side of ( 5)). E s and E c are the sum of errors for Set-Min and Count-Min respectively. N s and N c are the percentages (rounded to integers) of distinct k-mers producing an error, for Set-Min and Count-Min, respectively. A s and A c are respective average errors, with average taken over the number of distinct k-mers resulting in an error in the respective sketch. 

Name k R B T E s E c N s N c A s A c SAI 11 

Set-Min vs Max-Min sketch

We compared Set-Min to Max-Min -an optimized version of Count-Min (see Sect. 2.2). Note that in the case when the k-mer spectrum is strictly decreasing for increasing k-mer counts, the maximum count corresponds to the one with the smallest support. In the general case, we use a variant when, instead of directly comparing count values, counts are ordered according to the support size. That is, updates are performed by keeping the label with the minimum number of k-mers in the k-mer spectrum, and a query returns the label with the smallest such number.

Table 3 compares Set-Min with Max-Min. As expected from theoretical considerations, the performance of Max-Min in terms of the average error and the sum of errors is better than for regular Count-Min, but worse than for Set-Min. The same behaviour is observed for the number of k-mers having an erroneously estimated frequency. Therefore, Max-Min falls in-between Set-Min and Count-Min, providing a simple and inexpensive practical method to enhance the latter, without reaching the accuracy of the former.

Altogether, Table 3 shows that the performance of Max-Min is closer to Count-Min than to Set-Min. This is because, by keeping the maximum element in each bucket, we are reducing each set of Set-Min to a single element opening the possibility of increased collisions by potentially sharing a given maximum element between unrelated k-mers. The intersection operation performed by Set-Min during query is thus strictly necessary, to guarantee the desired error bounds.

Set-Min sketch vs KMC output

Not surprisingly, Set-Min achieves better memory consumptions than KMC in all our tests (columns M kmc and M s of Table 4). Values of R and B do not change from Table 2. The compression rate is variable: from a small factor to two orders of magnitude. The best compression is achieved for larger values of k and assembled genomes. The former is primarily explained by the decreasing number of distinct counts, due to the power-law behaviour. As for the difference between assembled genomes and sequencing data, we will discuss it in more details in Section 5. 

Set-Min sketch vs MPHFs

Table 4 also reports the space usage for BBHash to obtain the best memoryoptimized hash functions. Column M bbhash is the space (in bytes) required by the hash function only, while M bball is the space required by the hash function plus the external array of frequencies.

As in the previous case, Set-Min sketch is more memory-efficient when k is large, taking about an order of magnitude less memory than a MPHF. For small values of k, BBHash takes slightly less space and, being exact, may therefore be the preferable choice. However, one should keep in mind that MPHF does not support updates, while a Set-Min sketch is updatable to a certain extent with new (k-mer,count) pairs, and also mergeable with another possibly redundant map.

The behaviour of the unassembled datasets is of particular interest. Even for large k's, MPHF appears to be a better choice for this type of data. The causes of this phenomenon and possible solutions are discussed in Section 5. Set-Min average query time performance is 50% slower than Count-Min (and by extention of Max-Min) and comparable to those of BBHash, when data is very skewed. Following the previous trend, Set-Min sketches appear to be the slowest method for small values of k and for unassembled reads.

Time measurements
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Discussion

Unassembled datasets

As seen in Table 4, for the unassembled datasets, Set-Min sketch does not seem to have an advantage in memory usage, even for large k's. We found 

)). Frequencies of these "erroneous" k-mers do not have the same statistical behaviour as bona fide k-mers, in particular first spectrum values do not decay at the same rate as the rest of the spectrum. Figure 5 shows the spectrum of the unassembled SRR datasets. One can observe a slower decay behaviour for a few first spectrum values. In this situation, additional rows are needed just to make the sketch able to distinguish, with required precision, between small frequency values. Note that in practice, distinguishing between small frequencies is often irrelevant. For example, many read assemblers simply discard low-frequency reads as a way to de-noise the data. In the case of Set-Min, it is possible to collapse together the first m columns of the spectrum by assigning to all k-mers in this subset the same frequency. This would considerably reduce the sketch size. Formally, error guarantee (5) would not hold anymore, but most of newly introduced errors would be small (typically, equal to 1) and would occur for low counts only.

To check the above, we constructed a Set-Min sketch for SRR with dimensions (R, B) = (4, 3310557), merging together the first five columns of the sorted spectrum and assigning count 5 to all merged k-mers. While the final sum of errors was well above the theoretical limit (10 9 against 7 • 10 6 ), the maximum and average error were respectively 55 and 2.8. In many applications this error level could be acceptable.

Presence-absence information

As introduced in Section 3.2, in this work we assumed that only k-mers present in the dataset can be queried. This assumption allowed us to discard the largest value of the spectrum corresponding to unique k-mers, thereby saving space.

Set-Min sketches can seamlessly work without this assumption, but the space required for storing k-mer counters may not be competitive to other solutions.

An alternative could be to build an additional data structure, such as a Bloom filter, representing presence-absence information for the set of k-mers having the largest count. This allows the discrimination between k-mers absent in the dataset from those present but non-represented in the sketch.

Another scenario occurs when working with multiple datasets of very high similarity, such as a large collection of bacterial strains or a collection of RNA-seq data [START_REF] Solomon | Fast Search of Thousands of Short-Read Sequencing Experiments[END_REF][START_REF] Yu | SeqOthello: querying RNA-seq experiments at scale[END_REF]. In this case, it might be beneficial to build a Bloom filter for the k-mers present in the union of the datasets, and maintain multiple Set-Min sketches to represent k-mer counts in each dataset.

Note that Set-Min sketches can also be helpful for long-term storage and transmission of the k-mer composition of a dataset augmented with count information. The k-mers of the dataset can be reassembled into simplitigs [START_REF] Břinda | Simplitigs as an efficient and scalable representation of de Bruijn graphs[END_REF] with a Set-Min sketch storing the (approximated) frequencies. The full count table can be restored from the simplitigs and the sketch.

Conclusions

We presented Set-Min sketch -a novel sketching method inspired by the Count-Min sketch. Its primary use is to associate keys to labels without explicitly storing the former. In this paper, we demonstrated the performance of Set-Min sketch for storing k-mer counts information, where the distribution of labels (k-mer counts) follows a power-law distribution. Under this assumption, we proposed simple bounds for a Set-Min sketch that guarantee the total error sum to be within an ε fraction of the total number of k-mers in the dataset.

We showed that Set-Min sketch allows us to save space compared to the raw output of the popular KMC k-mer counting tool when applied to labels following a skewed distribution, at the price of a very modest error rate. This saving is especially important in the case of whole-genome data and large values of k, where it can achieve a two orders of magnitude reduction in memory usage.

Set-Min has been shown to be more space efficient than the MPHF-based soluton for large values of k. For smaller k's, however, MPHFs provide an implementation with comparable memory consumption. Finally, when compared to Count-Min and Max-Min sketches of comparable dimensions, our sketch achieves better point-query errors thanks to the distribution-aware dimensioning performed on the k-mer spectrum, and the reliance on already computed count tables as input.

Figure 1 :

 1 Figure 1: k-mer spectrum of the human genome for k = 32 in log-log scale.

Figure 2 :

 2 Figure 2: Example of collision resolution in case of multiple items occurring in the intersection. The brown label is returned because it is more rare compared to the blue one.

  implemented Set-Min in a software tool named fress, available at https:// github.com/yhhshb/fress. The fress pipeline compares Set-Min with Count-Min and MPHF implementations. BBHash (Limasset et al., 2017) (https:// github.com/rizkg/BBHash) is the only external library required, as Count-Min is implemented within fress. Rather than storing a set in each bucket of the sketch, fress only stores an index to an array of involved sets. Note that the current version of fress does not include any complex optimisation, such as multi-threading or bit-packing of the final matrix. Sorted spectra and lists of involved sets are explicitly stored in text format. We tested Set-Min on six data sets of different size and complexity. Four of them are fully assembled genomes: SAI Sakai strain of Escherichia Coli taken from (Yi and Jin, 2013) (NCBI accession number B000007), MNO genome of Drosophila melanogaster from FlyBase 2 , RAI genome of Gossypium Raimondii (Hatje and Kollmar, 2012) downloadable from AFproject(Zielezinski et al., 2019), GRC human reference genome assembly GRCh38 3 .

Figure 4 :

 4 Figure 4: Average query time of Set-Min, Count-Min and BBHash.

Figure 5 :

 5 Figure 5: Spectrum in log-log scale of SRR unassembled data sets for k = 32.

  4 1.04 • 10 6 5.50 • 10 4 5.00 • 10 4 1.39 • 10 6 USAI 11 5 4.58 • 10 5 2.57 • 10 5 1.99 • 10 5 7.44 • 10 7 2.6 99 2.46 24.6 USAI 15 4 4.79 • 10 6 2.49 • 10 5 2.45 • 10 5 8.01 • 10 6 1.9 33 1.31 2.53 USAI 21 5 3.99 • 10 6 2.38 • 10 5 2.00 • 10 5 7.91 • 10 6 1.6 34 1.21 2.35 MNO 15 5 1.79 • 10 7 1.43 • 10 6 1.39 • 10 6 8.35 • 10 6 .69 • 10 6 1.43 • 10 6 1.41 • 10 6 2.26 • 10 7 1.1 12 1.03 1.61 MNO 27 5 3.72 • 10 6 1.43 • 10 6 1.11 • 10 6 2.28 • 10 7 0.9 12 1.01 1.48 MNO 32 5 3.81 • 10 6 1.42 • 10 6 1.11 • 10 6 2.10 • 10 7

			1.8 26 1.15 2.24
	SAI	15 5 2.13 • 10 5 5.50 • 10 4 4.66 • 10 4 2.38 • 10 5	0.9	4 1.01	1.1
	SAI	21 5 1.20 • 10 5 5.50 • 10 4 5.29 • 10 4 4.57 • 10 5	0.9	7 1.05 1.18
			1.4	7	1	1.25
	MNO 21 4 40.9 12 1.01 1.44
	RAI	15 4 8.36 • 10 7 7.27 • 10 6 5.65 • 10 6 1.50 • 10 8	2.1 27 1.08 2.25
	RAI	21 4 8.47 • 10 7 7.27 • 10 6 5.73 • 10 6 4.09 • 10 7	1	6 1.01	1.3
	RAI	27 4 7.14 • 10 7 7.27 • 10 6 6.49 • 10 6 3.56 • 10 7	1.1	5 1.01 1.22
	RAI	32 4 6.38 • 10 7 7.27 • 10 6 6.87 • 10 6 3.15 • 10 7	1.1	4 1.01 1.17
	GRC 15 3 2.26 • 10 8 2.93 • 10 7 2.78 • 10 7 1.36 • 10 9	2.9 52 1.78 4.74
	GRC 21 4 1.42 • 10 8 2.93 • 10 7 2.60 • 10 7 1.65 • 10 8	1.1	6 1.01 1.23
	GRC 27 4 1.07 • 10 8 2.93 • 10 7 2.82 • 10 7 1.91 • 10 8	1.1	6 1.01 1.25
	GRC 32 4 9.84 • 10 7 2.93 • 10 7 2.92 • 10 7 1.85 • 10 8	1.1	6 1.01 1.22
	SRR 15 4 1.17 • 10 8 7.90 • 10 7 4.93 • 10 7 1.34 • 10 10 3.3 96	2.2 20.68
	SRR 21 3 2.39 • 10 9 7.35 • 10 7 7.09 • 10 7 5.63 • 10 8	1.8	9 1.11 1.68
	SRR 27 4 1.78 • 10 9 6.80 • 10 7 4.92 • 10 7 4.58 • 10 8	1.3	8 1.04 1.53
	SRR 32 4 1.72 • 10 9 6.34 • 10 7 4.95 • 10 7 4.01 • 10 8	1.3	7 1.03 1.48

Table 3 :

 3 Set-Min compared to Max-Min sketch. Columns E c , N c , A c are replaced by E m , N m , A m with the same meaning as theirTable 2 counterparts. USAI 11 2.57 • 10 5 1.99 • 10 5 1.24 • 10 7 2.6 63.5 2.46 6.4 USAI 15 2.49 • 10 5 2.45 • 10 5 1.72 • 10 6 1.9 13.3 1.31 1.33 USAI 21 2.38 • 10 5 2.00 • 10 5 1.76 • 10 6 1.6 14.2 1.21 1.24 MNO 15 1.43 • 10 6 1.39 • 10 6 5.74 • 10 6 1.4 5.6 1 1.02 MNO 21 1.43 • 10 6 1.41 • 10 6 1.78 • 10 7 1.1 11.2 1.03 1.31 MNO 27 1.43 • 10 6 1.11 • 10 6 1.78 • 10 7 0.9 12.1 1.01 1.2 MNO 32 1.42 • 10 6 1.11 • 10 6 1.65 • 10 7 0.9 11.3 1.01 1.17 RAI 15 7.27 • 10 6 5.65 • 10 6 5.81 • 10 7 2.1 16.8 1.08 1.38 RAI 21 7.27 • 10 6 5.73 • 10 6 3.05 • 10 7 GRC 15 2.93 • 10 7 2.78 • 10 7 4.07 • 10 8 2.9 27.8 1.78 2.67 GRC 21 2.93 • 10 7 2.60 • 10 7 1.38 • 10 8 1.1 5.5 1.01 1.08 GRC 27 2.93 • 10 7 2.82 • 10 7 1.62 • 10 8

	Name	k	T	E s	E m	N s N m	A s	A m
	SAI	11 5.50 • 10 4 5.00 • 10 4 4.15 • 10 5 1.8 13.5 1.15 1.29
	SAI	15 5.50 • 10 4 4.66 • 10 4 2.13 • 10 5 0.9	4	1.01 1.01
	SAI	21 5.50 • 10 4 5.29 • 10 4 4.02 • 10 5 0.9	7.2 1.05 1.06
						1	5.2 1.01 1.07
	RAI	27 7.27 • 10 6 6.49 • 10 6 2.84 • 10 7 1.1	4.5 1.01 1.05
	RAI	32 7.27 • 10 6 6.87 • 10 6 2.61 • 10 7 1.1	4	1.01 1.03
						1.1	6	1.01 1.09
	GRC 32 2.93 • 10 7 2.92 • 10 7 1.58 • 10 8 1.1	5.7 1.01 1.08
	SRR 15 7.90 • 10 7 4.93 • 10 7 3.31 • 10 9 3.3 61.8 2.2 7.92
	SRR 21 7.35 • 10 7 7.09 • 10 7 2.42 • 10 8 1.8	5.9 1.11 1.13
	SRR 27 6.80 • 10 7 4.92 • 10 7 2.05 • 10 8 1.3	5.2 1.04 1.06
	SRR 32 6.34 • 10 7 4.95 • 10 7 1.89 • 10 8 1.3	4.9 1.03 1.04

Table 4 :

 4 Set-Min ( = 0.01) compared to KMC and BBHash (run with γ = 1). All memory is reported in bytes. Column M kmc , M s , M bball are the memory taken by a fully functional map between k-mers and their frequencies when applying KMC, Set-Min sketch and BBHash, respectively. M bbhash is the memory of the hash function produced by BBHash without the external array of frequencies. SRR 21 2.91 • 10 10 1.61 • 10 10 1.48 • 10 9 1.10 • 10 10 SRR 27 3.73 • 10 10 1.60 • 10 10 1.48 • 10 9 1.08 • 10 10 SRR 32 4.07 • 10 10 1.46 • 10 10 1.57 • 10 9 1.04 • 10 10

	Name	k	M kmc	M s	M bbhash	M bball
	SAI	11 1.21 • 10 7	5.75 • 10 6	9.13 • 10 5 3.00 • 10 6
	SAI	15 3.80 • 10 7	1.20 • 10 6	2.06 • 10 6 5.99 • 10 6
	SAI	21 4.77 • 10 7	6.77 • 10 5	2.03 • 10 6 6.00 • 10 6
	USAI 11 1.54 • 10 7	1.49 • 10 7	1.17 • 10 6 4.61 • 10 6
	USAI 15 6.95 • 10 7	2.87 • 10 7	3.72 • 10 6 1.35 • 10 7
	USAI 21 8.53 • 10 7	3.00 • 10 7	3.91 • 10 6 1.39 • 10 7
	MNO 15 7.08 • 10 8	1.68 • 10 8	3.87 • 10 2.15 • 10 8
	MNO 21 9.80 • 10 8	3.55 • 10 7	4.66 • 10 7 2.45 • 10 8
	MNO 27 1.24 • 10 9	3.75 • 10 7	4.73 • 10 7 2.48 • 10 8
	MNO 32 1.37 • 10 9	3.84 • 10 7	4.90 • 10 7 2.36 • 10 8
	RAI	15 1.76 • 10 9	7.54 • 10 8	9.59 • 10 7 5.98 • 10 8
	RAI	21 4.37 • 10 9	6.78 • 10 8	2.16 • 10 8 1.24 • 10 9
	RAI	27 6.04 • 10 9	5.36 • 10 8	2.37 • 10 8 1.29 • 10 9
	RAI	32 6.96 • 10 9	4.79 • 10 8	2.70 • 10 8 1.38 • 10 9
	GRC 15 3.83 • 10 9	1.70 • 10 9	2.09 • 10 8 1.65 • 10 9
	GRC 21 1.86 • 10 10 1.28 • 10 9	9.32 • 10 8 6.46 • 10 9
	GRC 27 2.48 • 10 10 9.66 • 10 8	9.86 • 10 8 6.57 • 10 9
	GRC 32 2.82 • 10 10 8.38 • 10 8	1.08 • 10 9 6.54 • 10 9
	SRR 15 4.73 • 10 9	2.00 • 10 9	2.59 • 10 8 2.12 • 10 9

Here we assume k to be sufficiently large, typically k > log 4 L, where L is the data size.

http://flybase.org

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_ GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_ analysis_set.fna.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461_1.fastq.gz . Only the file SRR622461_1 is used in this study.
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