
HAL Id: hal-03867526
https://cnrs.hal.science/hal-03867526v1

Submitted on 23 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Space-efficient representation of genomic k-mer count
tables

Yoshihiro Shibuya, Djamal Belazzougui, Gregory Kucherov

To cite this version:
Yoshihiro Shibuya, Djamal Belazzougui, Gregory Kucherov. Space-efficient representation of genomic
k-mer count tables. Algorithms for Molecular Biology, 2022, 17 (1), pp.5. �10.1186/s13015-022-00212-
0�. �hal-03867526�

https://cnrs.hal.science/hal-03867526v1
https://hal.archives-ouvertes.fr

Shibuya et al.

RESEARCH

Space-efficient representation of genomic k-mer
count tables
Yoshihiro Shibuya1, Djamal Belazzougui2 and Gregory Kucherov1,3*

*Correspondence:
gregory.kucherov@univ-eiffel.fr
1LIGM, Université Gustave Eiffel,
Marne-la-Vallée, FR
Full list of author information is
available at the end of the article

Abstract

Motivation: k-mer counting is a common task in bioinformatic pipelines, with
many dedicated tools available. Many of these tools produce in output k-mer
count tables containing both k-mers and counts, easily reaching tens of GB.
Furthermore, such tables do not support efficient random-access queries in
general.
Results: In this work, we design an efficient representation of k-mer count tables
supporting fast random-access queries. We propose to apply Compressed Static
Functions (CSFs), with space proportional to the empirical zero-order entropy of
the counts. For very skewed distributions, like those of k-mer counts in whole
genomes, the only currently available implementation of CSFs does not provide a
compact enough representation. By adding a Bloom filter to a CSF we obtain a
Bloom-enhanced CSF (BCSF) effectively overcoming this limitation.
Furthermore, by combining BCSFs with minimizer-based bucketing of k-mers, we
build even smaller representations breaking the empirical entropy lower bound, for
large enough k. We also extend these representations to the approximate case,
gaining additional space. We experimentally validate these techniques on k-mer
count tables of whole genomes (E.Coli and C.Elegans) and unassembled reads,
as well as on k-mer document frequency tables for 29 E.Coli genomes. In the
case of exact counts, our representation takes about a half of the space of the
empirical entropy, for large enough k’s.
Keywords: k-mers; counts; compression; Compressed Static Function; Bloom
filter

1 Background
Nowadays, many bioinformatics pipelines rely on k-mers to perform a multitude of
different tasks. Representing sequences as sets of words of length k generally leads
to more time-efficient algorithms than relying on traditional alignments. For these
reasons, alignment-free algorithms have started to replace their alignment-based
counterparts in a wide range of practical applications, from sequence comparison
and phylogenetic reconstruction [1, 2, 3, 4] to finding SNPs [5, 6] and other tasks.
These algorithms often require to associate some kind of information to k-mers
involved in the analysis, that is, to build maps where keys are k-mers. Typical values
to associate to k-mers are their frequencies in a particular dataset. Actual counting
can be performed by one of several available k-mer counting tools developed in
recent years [7, 8, 9, 10]. Count tables generally include both k-mers and counts
requiring considerable amounts of disk space to be stored. For example, the output
generated by KMC [7] for a human genome, with k = 32 weights in at around
28GB.

mailto:gregory.kucherov@univ-eiffel.fr

Shibuya et al. Page 2 of 16

In many applications, space can be significantly reduced by representing the map-
ping without actually storing k-mers. Having two independent data structures al-
lows for more aggressive space optimizations. For example, the original sequence
dataset can be used as the primary source of k-mers while a random-access data
structure will then allow retrieving their counts efficiently. One application of such
a data structure is the efficient representation of k-mer counts for read correction
[11]. More generally, information about k-mer counts is increasingly used in other
applications too [1, 5, 6, 12, 13, 14, 15], which can benefit from space-efficient solu-
tions.
Minimal Perfect Hash Functions (MPHFs for short) implement such an approach

[16, 17, 18] and have been exstensivly used in bioinformatics in recent years [19, 20].
A MPHF bijectively maps each item from a set S to an index in the range [0, |S|−1].
Any additional information can then be stored in an array indexed by the values
returned by the MPHF. However, using an external array to store counts can be sub-
optimal when count values are non-uniformly distributed, i.e. the empirical entropy
of their distribution is low. It is in fact known that k-mer counts for fully assembled
genomes follow a skewed heavy-tail distribution [21, 22]. For k large enough, counts
tend to be power-law distributed, with the majority of k-mers occurring only few
times, mostly once. Because of this, the multiset of k-mer counts will typically have
a fairly low empirical zero-order entropy and it could be effectively compressed to
save further space. However, simply compressing the count array does not maintain
queryability, which requires specialized algorithms for this task. The same consider-
ations apply to unassembled datasets as long as the empirical entropy of the multiset
of counters is low. Note also that MPHFs themselves encompass a non-negligible
space overhead even without the space for storing the values, with BBHash [19]
requiring around 3 bits/key whereas the theoretical minimum is 1.44.
Maps on static sets of keys can also be encoded using so-called Static Functions

[23, 24]. Unlike MPHFs, the actual hash function and the values are encoded into
the same structure. In particular, Compressed Static Functions (CSFs) try to ben-
efit from the compressibility of the value array and approach the number of bits
defined by the empirical entropy. This feature makes them particularly useful for
representing different k-mer annotations, such as counts or presence information
across sequences of a given sample [12, 13, 14, 15]. CSFs can be used as readily
available drop-in replacements of MPHFs since both methods assume that only
k-mers present in the datasets can be queried for their frequency. In many cases,
this is not restrictive as the “universe” of query k-mers can be effectively specified:
for example, it can be restricted to k-mers from a given genome or a pan-genome.
It is also conceivable to add an appropriate structure providing presence-absence
information, in order to benefit from the reduction of space provided by a compact
count representation.
The goal of this paper is to study data structures for storing genomic k-mer count

tables using the smallest possible space. Our first contribution is the enhancement
of CSFs with a Bloom filter to deal with datasets of very small entropy and to
achieve better space usage. We call it Bloom-enhanced CSF or BCSF for short. Our
second improvement takes advantage of the fact that similar k-mers tend to have
identical (or similar) counts (see also [12]). Following this insight, we introduce a

Shibuya et al. Page 3 of 16

minimizer-based bucketing scheme to cluster together count values of k-mers with
the same minimizer. A similar idea is used by some k-mer counting algorithms
[8, 7, 25] with the difference that in our case buckets contain counts rather than the
k-mers themselves. By choosing a representative value for each bucket, we obtain a
“bucket table” that we encode using Bloom-enhanced CSF.
We study different implementation schemes based on these ideas and compare

their space performance, as well as associated query time. Our results show that
our algorithms are useful for both low and high entropy datasets. For large enough
k (and large enough minimizers lengths), we are able to compress count values
in less space than their empirical entropy while retaining fast query times. To the
best of our knowledge, this is the first implementation proposing such a compact
representation. We also study an extension of our algorithm to the approximate
case for which we save additional space by allowing a pre-defined absolute error
over queries.

2 Technical preliminaries
Throughout the paper we consider a k-mer count table to be an associative array
f mapping a set of k-mers K, considered static, to their counts, i.e. number of
occurrences in a given dataset. ||f ||1 stands for the L1-norm of f , that is

∑
q∈K f(q).

2.1 Minimizers
Minimizers are a popular technique used in different applications involving k-mer
analysis. Given a k-mer q of length k, its minimizer of length m, with m ≤ k,
is the smallest substring of q of length m w.r.t. some order defined on m-mers.
The use of minimizers for biosequence analysis goes back to [26], whereas a similar
concept, named winnowing, was earlier applied in [27] to document search. The
guiding idea is that a minimizer can be considered as a “footprint” (hash value)
of a corresponding k-mer so that similar (e.g. neighboring in the genome) k-mers
are likely to have the same minimizer. The order of m-mers is usually defined via a
standard non-cryptographic hash function. In this case, minimizers can be seen as
a specific instance of locality-sensitive hashing, in particular of MinHash sketching
[28]. The choice of hash function is not important as long as it has good statistical
guarantees (randomness and uniformity). Note that the lexicographic ordering has
been shown to have poor statistical properties [26].
Minimizers have been successfully applied to various data-intensive sequence anal-

ysis problems in bioinformatics, such as metagenomics (Kraken [29]) or minimiz-
ing cache misses in k-mer counting (KMC [7]), or mapping and assembling long
single-molecule reads [30, 31]. Recently, there has been a series of works on both
theoretical and practical aspects of designing efficient minimizers, see e.g. [32, 33]
and references therein.

2.2 Bloom filters
A Bloom filter is a very common probabilistic data structure that supports member-
ship queries for a given set S drawn from a large universe U , admitting a controlled
fraction of false positives. To insure a false positive rate ε, that is the probability
ε for an item from U \ S to be erroneously classified as belonging to S, a Bloom
filter B requires |S| log e log 1

ε bits, i.e. ≈ 1.44 log 1
ε bits per element of S. For a set

T ⊆ U \ S, we denote FPB(T) the set of false positives of T , of expected size ε|T |.

Shibuya et al. Page 4 of 16

2.3 Compressed static functions
A static function (SF) is a representation of a function defined on a given subset S of
a universe U such that an invocation of the function on any element from S yields the
function value, while an invocation on an element from U \S produces an arbitrary
output. The problem has been studied in several works (see references in [23, 24])
resulting in several solutions that allow function values to be retrieved without
storing elements of S themselves. One natural solution comes through MPHFs: one
can build a MPHF for S and then store function values in order in a separate array.
This solution, however, incurs an overhead associated with the MPHF, known to
be theoretically lower-bounded by about 1.44 bits per element of S.
This overhead is especially unfortunate when the distribution of values is very

skewed, in which case the value array may be compressed into a much smaller space.
Compressed Static Functions try to solve this problem by proposing a static function
representation whose size depends on the compressed value array. The latter is
usually estimated through the zero-order empirical entropy, defined by H0(f) =∑
`∈L

|f−1(`)|
|K| log(|K|

|f−1(`)|), where L is the set of all values (i.e. L = {f(t) | t ∈ K}})
and f−1(`) = {t | f(t) = `} is the set of k-mers with count `. |K| · H0(f) can
be viewed as a lower bound on the size of compressed value array, in absence of
additional assumptions. Thus, the goal of CSFs is to approach the bound of H0(f)
bits per element as closely as possible, in representing a static function f .
An overview of different algorithmic solutions for SFs and CSFs is out of scope

of this paper, we refer the reader to [23, 24] and references therein. [23] proposed
a solution for CSF taking an asymptotically optimal nH0(f) + o(nH0(f)) space
(n size of the underlying value set), however the solution is rather complex and
probably not suitable for practical implementation. As of today, to our knowl-
edge, the only practical implementation of a CSF is GV3CompressedFunction [24],
found in the Java package Sux4J (https://sux.di.unimi.it/). Although entropy-
sensitive, the method of [24], has an intrinsic limitation of using at least 1 bit per
element, due to involved coding schemes. This is a serious limitation when dealing
with very skewed distributions of values, where one value occurs predominantly
often and the empirical entropy can be much smaller than 1. This is precisely the
case for count distributions in whole genomes, one of the applications studied in
this paper.

3 Methods
3.1 Representation of low-entropy data
As mentioned earlier, Compressed Static Functions (CSF) of [24] do not properly
deal with datasets generated by low-entropy distributions, in particular with entropy
smaller than 1. This case occurs when datasets have a dominant value representing
a large fraction (say, more than a half) of all values. This is typically the case
with genomic k-mer count data, especially whole-genome data, where a very large
fraction of k-mers occur just once. For example, in E.Coli genome (≈5.5Mbp),
about 97% of all distinct 15-mers occur once, with only the remaining 3% occurring
more than once. For such datasets, the method of [24] does not approximate well
the empirical entropy, as it cannot achieve less than 1 bit per key.
Here we propose a technique to circumvent this deficiency in order to achieve, in

combination with CSFs of [24], a compression close to the empirical entropy. We

https://sux.di.unimi.it/

Shibuya et al. Page 5 of 16

start by building a Bloom filter for all k-mers whose value is not the dominant one,
and then we construct a CSF on all positives (i.e. true and false positives) of this
filter. At query time, we first check the query k-mer against the Bloom filter and,
if the answer is positive, recover its value from the CSF.
Formally, letK0 be the k-mers with the most common frequency. Let |K0| = α|K|.

Assume that our Bloom filter implementation takes CBF log 1
ε bits per key and our

CSF implementation takes CCSF bits per key. For the purpose of explanation, we
will specify both CBF and CCSF at the end of this section.
We store keys K\K0 in a Bloom filter B and build a CSF for (K\K0)∪FPB(K0).

The total space is

CBF (1− α)|K| log 1
ε

+ CCSF |K|((1− α) + εα). (1)

The Bloom filter enables space saving only if α is sufficiently large. To decide if
we need a Bloom filter, we have to verify if the inequality

CBF (1− α)|K| log 1
ε

+ CCSF |K|((1− α) + εα) < CCSF |K|. (2)

holds for some ε < 1. Note again that CCSF on the left and right sides are not exactly
the same in reality, however assuming them the same is not reductive because of
specificities of the CSF implementation we use. We will elaborate further on this
later on. Then (2) rewrites to

CBF
CCSF

1− α
α

log 1
ε

+ ε < 1. (3)

Using simple calculus, we obtain that if CBF

CCSF

1−α
α > ln 2 (that is, CBF

CCSF

1−α
α log e >

1), then (3) never holds for 0 < ε < 1. The left-hand side of (3) reaches its minimum
for

ε0 = CBF
CCSF

1− α
α

log e, (4)

and this minimum is smaller than 1 if ε0 < 1. We conclude that in order to decide
if a Bloom filter enables space saving, we have to check the value ε0. If ε0 ≥ 1, we
do not need a Bloom filter, otherwise we need one with ε = ε0. This shows that a
Bloom filter is needed whenever

α >
CBF log e

CCSF + CBF log e (5)

For CBF = CCSF , this gives α > 0.59.
In order to apply equation (4), we need estimates of CBF and CCSF , that is,

estimates of the number of bits per element taken by our implementations of Bloom
filter and CSF. For CBF , we have CBF = 1.44 corresponding to the theoretical
coefficient of Bloom filters. On the other hand, we experimentally estimated CCSF

Shibuya et al. Page 6 of 16

associated with the implementation we use as a function of the empirical entropy
H0, giving:

CCSF =

0.22H2
0 + 0.18H0 + 1.16, if H0 < 2

1.1H0 + 0.2, otherwise.
(6)

In the rest of the paper we use the term Bloom-enhanced Compressed Static Func-
tion, BCSF for short, to speak about CSF possibly augmented by a prior Bloom
filter, as described in this section. Algorithm 1 summarizes the computation of the
BCSF data structure.

Data: A count table T
Result: A BCSF for T
Compute R, the spectrum of T ;
Let K0 ⊆ K be the set k-mers with the most common frequency in R;
Compute α = |K0|/|K|;
Compute ε by using equation 4;
if ε < 1 then

C = K \K0;
Initialise a Bloom Filter B of d|C| log(e) log2(1

ε
)e bits;

Insert C into B;
Compute E = FPB(K0);
S = C ∪ E;

else
S = K

end
Construct CSF for S;

Algorithm 1: BCSF construction

3.2 Minimizer bucketing
A key idea to reduce the computational burden of counting k-mers, is to use min-
imizers to bucket k-mers and split the counting process across multiple tables (cf
e.g. [7]). Here we use the same principle to bucket count values instead of k-mers
themselves. Let Mm(K) = {µm(q) | q ∈ K} be the set of minimizers of all k-mers of
K of a given length m < k. We map the input set K onto the (smaller) setMm(K).
To each minimizer s ∈ Mm(K), corresponds the bucket {f(q) | q ∈ K,µm(q) = s}.
We call a minimizer and the corresponding bucket ambiguous if this set contains
more than one value. The guiding idea is to replace f by a mapping g of Mm(K)
to N. Querying value f(q) for a k-mer q ∈ K will reduce to first querying g(µm(q))
and then possibly “correcting” the retrieved value. In other words, for each bucket,
we replace its set of counts with one representative value and we split the query into
two operations: retrieving the representative from the buckets and correcting to re-
construct the original value. The rationale is that k-mers having the same minimizer
tend to have the same count allowing multiple values to be dealt with by a single
bucket. We consider two implementations which differ on how the representatives
are chosen and how corrections are applied.
Our first implementation is named AMB (from AMBiguity). An extended ver-

sion of AMB (explained below) is presented in Algorithm 3. For non-ambiguous
minimizers u, AMB defines g(u) to be the unique value of the bucket. For ambigu-
ous minimizers v, we set g(v) = 0, where 0 is viewed as a special value marking

Shibuya et al. Page 7 of 16

ambiguous buckets (k-mers with count 0 are not present in the input). This has
the disadvantage of providing no information about the values of ambiguous buck-
ets, and also of making g less compressible (because of an additional value). On
the other hand, this has the advantage of distinguishing between ambiguous and
non-ambiguous buckets and allows the query to immediately return the answer for
k-mers hashing to non-ambiguous buckets. As a consequence, unambiguous k-mers
are not propagated to the second layer, and if g(µm(q)) 6= 0 it can be immediately
returned as f(q). We then have to store mapping f restricted only to k-mers from
ambiguous buckets, which we denote f̃ . Both mappings g and f̃ are stored using
BCSFs.
Our second implementation, named FIL (from FILtration), is shown in Algorithm

2. Here, g(s) is defined to be the majority value among all values of its bucket, ties
resolved arbitrarily. In particular, if s is a non-ambiguous minimizer then g(s) is
set to the unique value of the bucket. In practice, computing the majority value
may incur a computational overhead as this requires storing bucket values until all
values are known. An option to cope with this, not explored further in this work, is
to use the “approximate majority” computed by the online Boyer-Moore majority
algorithm [34]. We then store a “correcting mapping” h : K → N defined by
h(q) = f(q)− g(µm(q)). That is, we construct another counting table h where each
k-mer is associated to the correction factor h(q), which, added to the representative
g(s) results in the original count c. Both mappings g and h are stored using BCSFs.
The rationale for this scheme is that, due to the properties of minimizers, h(q) is
supposed to be often 0, which makes h well compressible using BCSF. Note that
because of the majority rule, 0 will always be the majority value of h. Therefore, the
Bloom filter of the BCSF storing h (if any) will hold k-mers q with f(q) 6= g(µm(q))
(i.e. h(q) 6= 0). Then the BCSF will store h restricted to k-mers with h(q) 6= 0
together with a subset of k-mers (false positives of the Bloom filter) for which
h(q) = 0.

Data: Input count table T , a minimizer length m0
Result: FIL compressed structure
let L be a map from minimizers to multisets of values;
foreach key-value pair (q, c) in T do

let z be the minimizer of q;
insert c into L[z];

end
let B be a map from minimizers to integer values;
foreach minimizer z in L do

let b be the multiset at L[z];
let r be the representative value of b chosen by majority rule;
B[z] = r;

end
Compress B by using BCSF;
Create output table O;
foreach key-value pair (q, c) in T do

let z be the minimizer of q;
O[q] = c−B[z];

end
Compress O by using BCSF;

Algorithm 2: FIL construction algorithm.

Shibuya et al. Page 8 of 16

3.3 Cascading
An intermediate layer corresponding to a minimizer length m < k, introduced
in Section 3.2, can be viewed as a “filter” providing values for some k-mers and
“propagating” the other k-mers to the next layer. Therefore, both implementations
can be cascaded into more than one layer. This construction is reminiscent of the
BBHash algorithm [19] or to cascading Bloom filters from [35].
For m1 < m2 < ...m` ≤ k, each layer i is then input some map fi−1 defined on a

subset of k-mers Ki−1 ⊆ K (f0 = f , K0 = K) and outputs another map fi defined
on a smaller subset Ki ⊆ Ki−1. Each layer stores a bucket table for minimizers
Mmi

(K) = {µmi
(q) | q ∈ Ki−1}. The specific definition of fi and Ki depends on the

implementation.
The multi-layer scheme is particularly intuitive for the AMB implementation,

where each layer stores a unique value for non-ambiguous minimizers and a special
value 0 otherwise. In this case, Ki consists of those k-mers of Ki−1 hashed to
ambiguous buckets, and fi is simply a restriction of f to those k-mers. Algorithm
3 shows a pseudo-code of multi-level AMB extended to the approximate case (see
Section 3.4 below). The multi-layer version of the FIL scheme is shown in Appendix
(Algorithm 4).

Data: Input count table T , M = m1 < m2 < ...m` ≤ k, δ
Result: One BCSF for each layer
i = 0;
Ti = T ;
foreach minimizer length m in M do

let L be a map from minimizers to pairs of values;
foreach key-value pair (q, c) in Ti do

let z be the minimizer of q;
if z is a key in L then

let (rmin, rmax) = L[z];
L[z] = (min(rmin, c),max(rmax, c));

else
L[z] = (c, c);

end
end
let B be a map from minimizers to integer values;
foreach minimizer z in L do

let (rmin, rmax) = L[z];
if rmax − rmin > δ then B[z] = 0 ;
else B[z] = rmin ;

end
Compress B by using BCSF;
Initialise Ti+1;
foreach key-value pair (q, c) in Ti do

let z be the minimizer of q;
if B[z] == 0 then

Ti+1[q] = c;
end

end
i = i+ 1;

end
Algorithm 3: AMB multi-layer construction algorithm. Exact AMB can be
obtained by setting δ = 0.

3.4 Extension to approximate counts
In addition to cascading, AMB can also be easily extended to work as an approxi-
mation algorithm. Consider, to this end, the layered bucketing procedure desribed

Shibuya et al. Page 9 of 16

in 3.3. In the exact case, a bucket is marked as colliding whenever it contains two or
more distinct count values. In the approximate case, a collision is defined if a bucket
contains a pair of counts, ci, cj such that |ci−cj | > δ with δ a pre-defined maximum
absolute error. With this modification, the algorithm guarantees to output a value
within the absolute error δ from the true count.
We chose g(s) to be the minimum value in a bucket if the bucket is unambiguous.

The rationale of using minimum is the decreasing behavior of k-mer spectra which
implies that smaller counts are more frequent and therefore more likely to constitute
the majority. In order to detect collisions, it is then sufficient to only remember the
maximum max(s) and minimum min(s) values seen by each bucket and check if
max(s) −min(s) > δ. If that is the case, then the bucket is marked as colliding,
otherwise min(s) is chosen as representative (see Algorithm 3).

4 Results and discussion
Three datasets were used in this study:
1 The collection of fully assembled Escherichia Coli genomes from [2], from now

on referred to as “df”.
2 Escherichia Coli Sakai strain (NCBI accession number B000007) from the

previous collection [2] but from now on referred to as “Sakai” to highlight its
stand-alone usage.

3 Full reference genome of Caenorhabditis Elegans, strain Bristol N2 down-
loaded from RefSeq (accession number GCF_000002985.6). We will refer to
this dataset as “Elegans”.

4 “SRR10211353” run of Illumina reads (10x coverage, Escherichia Coli) down-
loaded from NCBI SRA (accession number SAMN12880992).

Unless stated otherwise, FIL and AMB were run on all possible combinations of
two and three minimizer lengths for k ∈ [13, 15, 18, 21] with only the best combina-
tions reported using the following naming convention:

• CSF: baseline CSF implementation from Sux4J [24].
• BCSF: extended CSF with Bloom filter from Section 3.1. It may get reduced

to a simple CSF if the Bloom filter is not useful.
• AMB m1 k: our first implementation, selecting each representative by mini-

mum and marking colliding buckets with a special value.
• AMB m1 m2 k: same as before but with an additional layer.
• FIL m1 k: our second implementation, saving into each bucket a majority-

selected representative and saving corrections into its second layer.
• FIL m1 m2 k: same as before but with an additional layer.

4.1 Compression of skewed data
Figure 1 reports memory usage when compressing the Sakai dataset. Simple CSF use
more than 1 bit/k-mer, while Bloom-enhanced CSF (BCSF) is considerably more
efficient, reaching space closer to the entropy. For relatively small k’s (k = 13) AMB
and FIL give almost the same results as BCSF, that is, minimizer-based bucketing
is not helpful. For larger k’s, however, both AMB and FIL lead to significant space
reductions, eventually breaking the entropy barrier for larger values of k (k =
18, 21). This demonstrates that for larger k’s, minimizers provide an effective way

Shibuya et al. Page 10 of 16

of factoring the space of k-mers in such a way that k-mers with equal counts tend
to have the same minimizer.
More in detail, for larger k, the overwhelming majority of buckets are unambiguous

(e.g. more than 99% of them, for k = 18,m = 13). As a consequence, AMB is able
to “filter out” a very large number of k-mers with few buckets. Only a small set
of k-mers, corresponding to ambiguous buckets, are propagated to the next layer.
This, combined with the prevalence of one value due to the skewedness of the count
distribution, and the fact of using minimizers with increasing lengths, leads to highly
compressible bucket tables. Altogether, this enables breaking the empirical entropy
lower bound.
The situation is similar for FIL: its first layer is even better compressible than the

one of AMB, due to the absence of the additional special value which makes the
table of AMB slightly less compressible. On the other hand, the BCSF of the second
layer table of FIL turns out to take more space than that of AMB. This is because
its Bloom filter operates on the large set of all k-mers, which implies a very small
value of ε to keep the set of false positives under control, and as a consequence, a
relatively large Bloom filter. Overall, FIL turns out to yield a slightly larger space
than AMB.
For small k’s, none of our methods beats the empirical entropy, with minimizers

unable to provide an efficient mean to factor the space of k-mers according to count
values. On the contrary, we observe that in this case applying a BCSF to the input
table provides the most efficient solution.
Since longer k-mers lead to more skewed data, and by extension, to smaller en-

tropies, both AMB and FIL better compress whole genome count tables for increas-
ing ks. To test this assumption we chose to compress the Elegans dataset (around
100 Mbp). We randomly chose m1 = 18 and m2 = 19 for both three-layer AMB
and FIL (ignoring m2 for the two layered versions). Figure 2 demonstrates that our
algorithms are not limited to bacterial genomes. Instead they are applicable in the
general case as long as count tables are computed on fully assembled data and k

is large enough. Note that, under such a regime, larger values of k only reduce the
entropy of the data, leading to more succinct representations whereas simple CSF
could not go below 1.2 bits/k-mer.

4.2 Compression of higher entropy data
With very skewed data, collisions of k-mer counts may happen between unrelated
k-mers simply because one counter value strongly dominates the spectrum. In order
to demonstrate the utility of minimizers in a more general setting other than whole
genome count tables, we applied our methods to less skewed distributions. To this
end, we compressed the k-mer count tables when using dataset SRR10211353 whose
results are presented in Figure 3. As opposed to fully assembled genomes, entropy
in this case remains well above 1 even for larger values of k. Nonetheless, both AMB
and FIL are able to produce representations more compact than both simple CSFs
and BCSFs for all k > 13, beating the entropy lower bound.
Further proof of the ability of minimizer-based bucketing to boost compression

of k-mer count tables can be found in Figure 4. Here, we compressed the table
produced by counting the number of occurrences for each k-mer among the 29 E.Coli

Shibuya et al. Page 11 of 16

genomes of dataset df (note that df is a mnemonic for “document frequency”). Note
that entropy does not decrease as rapidly as before with increasing k, despite counts
bounded in the range [1, 29].
The use of minimizers for larger k’s, proves to be beneficial again, with AMB and

FIL requiring much less space than the empirical entropy of the data. Again, when
k = 13, both AMB and FIL do not have an advantage over a simpler (B)CSF.
For even smaller k-mers (B)CSF remains the best option (see Additional Figure 5).
The seemingly erroneous exceptions (BCSF taking more space than simple CSF)
are explained by the approximation carried out by formula (2) (assumption of equal
values of CCSF in both sides).

4.3 Approximate counts
In many applications, it is acceptable to tolerate a small absolute error in retrieved
counts. Figure 6 reports space usage when using the approximate version of AMB
(δ > 0, see section 3.4) on the Sakai dataset. Results for the exact algorithm (δ = 0)
are reported in Figure 7 for comparison.
In order to show how the approximate algorithm achieves better compression

ratios, k was chosen from [10, 11, 12, 13], a range of values which is particularly
difficult for AMB (or FIL) with δ = 0. Trying all possible minimizer combinations
compatible with such ks, the best results are obtained for very short minimizer
lengths (between 1 and 5). Building minimizer layers for such small values of m
does not lead to better compression than simple (B)CSFs, with Figure 7 showing
no tangible differences between (B)CSFs and AMB (or FIL). For these reasons,
minimizer lengths in Figure 6 are equal to k − 1 (and k − 2) for every choice of k
(e.g. if k = 10, layers will be 8, 9, 10 for three-layer AMB). Using the same small
lengths of the exact case would not allow meaningful bucketing of counts values.
An interesting observation about the approximate case is that AMB with three

layers is substantially better than AMB with two layers only for k = 12 and k = 13.
For k = 10 and k = 11 both versions give almost the same results.

4.4 Query speed
Figure 8 shows query time averaged over all distinct k-mers, in ns/k-mer. Simple
CSFs, not surprisingly, are the fastest method, with BCSF having a negligible effect
on the average query speed. On the other hand, bucketing has a tangible effect on
performance, with speed negatively affected by additional layers. For short k-mers,
both FIL and AMB are slower than the simple CSF by a factor equal to their
number of layers.
The situation is different for larger k’s where AMB is only marginally slower than

a bare-bones CSF. This is because most queries are solved without accessing all
layers every time, thanks to unambiguous buckets. Two-layered FIL, on the other
hand, gives almost constant average query times across all test, since all queries
have to access both of its layers to reconstruct the exact count value. We did not
perform tests for FIL with 3 layers because it will always be slower than the two
layered version.

Shibuya et al. Page 12 of 16

4.5 Choosing minimizer lengths
In all reported cases, good minimizer lengths for the first layer (m0) follow the rule:
m0 > ms = (log4|G| + 2) with |G|, the size in base pairs of the genome. Smaller
m0, are no longer capable of partitioning k-mers in a meaningful way. Furthermore,
space tends to first monotonically decrease to a minimum for increasing minimizer
lengths, to increase again once the optimal value is passed. It is therefore possible
to find the minimum by sequentially trying all possible minimizers greater than ms

and stop as soon as the compressed size starts to increase again.
If it is not possible to choose m0 > ms = (log4|G|+ 2) because, e.g. k is already

too small, approximation might be a viable option even for relatively small δ. The
only caveat to pay attention to in this case is to check if a minimizer layer would be
useful or not. If yes, δ can be incremented without further adjustments compared
to exact case. If not, minimizer lengths for the bucketing layers should be chosen
as big as possible to allow meaningful bucketing of count values.
Our results also show how multiple layers have a marginal effect on final com-

pression sizes. In case of AMB, using three layers is always helpful, compared to
the two-layer case. Best results are usually achieved for combinations including the
best minimizer length obtained for the two-layer case. On the other hand, FIL with
three layers seems to be advantageous only for low entropy data, performing worse
than its two-layer counterpart when compressing document frequency tables and
for small k’s.

5 Conclusions
In this work, we introduced three data structures to represent compressed k-mer
count tables. Our BCSF algorithm combines Compressed Static Functions, as im-
plemented in Sux4J software [24], with Bloom filters. This allows for a much better
compression for skewed distributions with empirical entropy smaller than 1. Note
that, to the best of our knowledge, this is the first time CSFs are used in a bioin-
formatics application. We also provide a method to dimension the Bloom filter in
a BCSF in order to minimise the final space. Our two other algorithms, AMB and
FIL, pair BCSF with a bucketing procedure where count values are mapped into
buckets according to minimizer values of respective k-mers. This locality-sensitive
hashing scheme allows us to efficiently factor the space of counts, which leads to
breaking the empirical entropy lower bound for large enough k’s. AMB and FIL use
slightly different strategies in decomposing the input table across minimizer layers.
Our last contribution is an extension of AMB to the approximate case, gaining more
space at the expense of a small and user-definable absolute error on the retrieved
counts.
We validated our algorithms on four different types of count tables, two fully as-

sembled genomes (E.Coli and C.Elegans) of different sizes, one dataset of E.Coli
reads at 10x coverage and one document frequency table of 29 different E.Coli
genomes, for different k-mer lengths showing how BCSF, AMB and FIL behave in
different situations. AMB and FIL have a clear advantage when minimizers are long
enough to bucket k-mers in a meaningful way, for both skewed and high entropy
data. When it is not possible to define a long-enough minimizer length, the advan-
tage of using intermediate minimizer layers vanishes, and simple CSF and its BCSF
provide a better solution.

Shibuya et al. Page 13 of 16

At query time, CSF and BCSF are the fastest methods requiring about 100ns on
average for a single query. For a fixed number of layers, AMB is faster than FIL
in all situations when minimizers are useful. FIL becomes faster than AMB only
for those cases when both algorithms achieve worse compression ratios than simple
(B)CSF.
We consider this study to be the first step towards designing efficient representa-

tions for k-mer count tables occurring in data-intensive bioinformatics applications.
One possible future direction is compression of RNA-Seq experiments where counts
may translate expression levels of genes. Another example is metagenomics where
different species may be present with different abundances which can be captured
by k-mer counts. In such applications, efficient representation of k-mer counts can
be particularly beneficial.

Appendix
5.1 Multilayer FIL algorithm

Data: Input count table T , M = m1 < m2 < ...m` ≤ k
Result: One BCSFs + Bloom filter for each layer
i = 0;
Ti = T ;
foreach minimizer length m in M do

Let L be a map from minimizers to multisets of values;
Let n = 0;
foreach key-value pair (q, c) in Ti do

Let z be the minimizer of q;
Insert c into L[z];
n = n+ 1;

end
Let B be a map from minimizers to integer values;
foreach minimizer z in L do

Let b be the multiset at L[z];
Let r be the representative value of b chosen by majority rule;
B[z] = r;

end
Compress B by using BCSF;
Initialise Ti+1;
Let pq = 0;
foreach key-value pair (q, c) in Ti do

Let z be the minimizer of q;
if B[z] 6= c then

Ti+1[q] = c−B[z];
pq = pq + 1;

end
end
Compute α = (n− pq)/n;
Let ε = (1− α)/α;
Initialise an empty Bloom Filter F of size 1.44 log2(1/ε);
Insert all elements of Ti+1 into F ;
foreach key-value pair (q, c) in Ti do

let z be the minimizer of q;
if B[z] == c and q is in F then

Ti+1[q] = c−B[z] ; //Add false positive of F to Ti+1, c−B[z] = 0 by
definition)

end
end
i = i+ 1;

end
Algorithm 4: FIL multi-layer construction algorithm.

Shibuya et al. Page 14 of 16

5.2 Additional figures
Figure 5 reports space usage when compressing the document frequency table of the
29 E.Coli genomes dataset for small values of k.

Funding
GK was partially funded by RFBR, project 20-07-00652, and joint RFBR and JSPS project 20-51-50007.

Availability of data and materials
5.3 Datasets

• Collection of 29 fully assembled Escherichia Coli genomes from [2]. Approximately 25 million k-mers
• Full genome of Caenorhabditis Elegans, strain Bristol N2 downloaded from RefSeq (accession number

GCF_000002985.6).
• SRR10211353 run of Illumina reads (10x coverage, Escherichia Coli) downloaded from NCBI SRA

(accession number SAMN12880992).
In one of our experiments we specifically targeted the Sakai strain of E.Coli (one of the genomes included in [2])
with NCBI accession number B000007.

5.4 Implementation
All construction code is written in python, except for the CSF part which is handled by a simple Java program using
Sux4J [24]. An utility written in C using the code provided by Sux4J for reading and querying its CSFs provides time
measurements. We use xxHash (https://github.com/Cyan4973/xxHash) to define an ordering over minimizers. All
our code is available at https://github.com/yhhshb/locom.git.

5.5 Experimental setup
Experiments were performed on a machine equipped with an Intel® Core™ i7-4770k (Haswell), 8 GB of RAM and
Kubuntu 18.04.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
DB proposed the idea of using Compressed Static Functions with Bloom filters. YS proposed to use minimizers for
count bucketing (AMB algorithm). GK proposed the FIL algorithm. YS developed and tested the software. YS, DB
and GK analysed the data. YS wrote the manuscript, with editorial contribution and supervision from GK and DB.
All authors read and approved the final manuscript.

Author details
1LIGM, Université Gustave Eiffel, Marne-la-Vallée, FR. 2CAPA, DTISI, Centre de Recherche sur l’Information
Scientifique et Technique, Algiers, DZ. 3Skolkovo Institute of Science and Technology, Moscow, RU.

References
1. Sims, G.E., Jun, S.-R., Wu, G.A., Kim, S.-H.: Alignment-free genome comparison with feature frequency

profiles (FFP) and optimal resolutions. Proceedings of the National Academy of Sciences of the United States
of America 106(8), 2677–2682 (2009). doi:10.1073/pnas.0813249106. Accessed 2019-12-12

2. Yi, H., Jin, L.: Co-phylog: an assembly-free phylogenomic approach for closely related organisms. Nucleic Acids
Research 41(7), 75 (2013). doi:10.1093/nar/gkt003

3. Dencker, T., Leimeister, C.-A., Gerth, M., Bleidorn, C., Snir, S., Morgenstern, B.: Multi-SpaM: A
Maximum-Likelihood Approach to Phylogeny Reconstruction Using Multiple Spaced-Word Matches and
Quartet Trees. In: Blanchette, M., Ouangraoua, A. (eds.) Comparative Genomics. Lecture Notes in Computer
Science, pp. 227–241. Springer, Cham (2018). doi:10.1007/978-3-030-00834-5_13

4. Fan, H., Ives, A.R., Surget-Groba, Y., Cannon, C.H.: An assembly and alignment-free method of phylogeny
reconstruction from next-generation sequencing data. BMC Genomics 16(1), 522 (2015).
doi:10.1186/s12864-015-1647-5. Accessed 2019-12-13

5. Rahman, A., Hallgrímsdóttir, I., Eisen, M., Pachter, L.: Association mapping from sequencing reads using
k-mers. eLife 7, 32920 (2018). doi:10.7554/eLife.32920. Accessed 2020-10-08

6. Khorsand, P., Hormozdiari, F.: Nebula: Ultra-efficient mapping-free structural variant genotyper. bioRxiv,
566620 (2019). doi:10.1101/566620. Accessed 2020-10-08

7. Kokot, M., Długosz, M., Deorowicz, S.: KMC 3: counting and manipulating k-mer statistics. Bioinformatics
33(17), 2759–2761 (2017). doi:10.1093/bioinformatics/btx304.
https://academic.oup.com/bioinformatics/article-pdf/33/17/2759/25163903/btx304.pdf

8. Rizk, G., Lavenier, D., Chikhi, R.: DSK: k-mer counting with very low memory usage. Bioinformatics 29(5),
652–653 (2013). doi:10.1093/bioinformatics/btt020. Accessed 2021-04-12

9. Marçais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.
Bioinformatics 27(6), 764 (2011). doi:10.1093/bioinformatics/btr011. Accessed 2020-09-16

(
https://github.com/yhhshb/locom.git
http://dx.doi.org/10.1073/pnas.0813249106
http://dx.doi.org/10.1093/nar/gkt003
http://dx.doi.org/10.1007/978-3-030-00834-5_13
http://dx.doi.org/10.1186/s12864-015-1647-5
http://dx.doi.org/10.7554/eLife.32920
http://dx.doi.org/10.1101/566620
http://dx.doi.org/10.1093/bioinformatics/btx304
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/33/17/2759/25163903/btx304.pdf
http://dx.doi.org/10.1093/bioinformatics/btt020
http://dx.doi.org/10.1093/bioinformatics/btr011

Shibuya et al. Page 15 of 16

10. Shokrof, M., Brown, C.T., Mansour, T.A.: MQF and buffered MQF: Quotient filters for efficient storage of
k-mers with their counts and metadata. bioRxiv, 2020–0823263061 (2020). doi:10.1101/2020.08.23.263061.
Accessed 2020-09-16

11. Limasset, A., Flot, J.-F., Peterlongo, P.: Toward perfect reads: self-correction of short reads via mapping on de
Bruijn graphs. Bioinformatics 36(5), 1374–1381 (2020). doi:10.1093/bioinformatics/btz102. Accessed
2021-04-15

12. Marchet, C., Iqbal, Z., Gautheret, D., Salson, M., Chikhi, R.: REINDEER: efficient indexing of k-mer presence
and abundance in sequencing datasets. Bioinformatics 36(Supplement_1), 177–185 (2020).
doi:10.1093/bioinformatics/btaa487. Accessed 2020-09-16

13. Karasikov, M., Mustafa, H., Danciu, D., Zimmermann, M., Barber, C., Rätsch, G., Kahles, A.: MetaGraph:
Indexing and Analysing Nucleotide Archives at Petabase-scale. bioRxiv, 2020–1001322164 (2020).
doi:10.1101/2020.10.01.322164. Accessed 2021-05-22

14. Karasikov, M., Mustafa, H., Joudaki, A., Javadzadeh-no, S., Rätsch, G., Kahles, A.: Sparse Binary Relation
Representations for Genome Graph Annotation. Journal of Computational Biology 27(4), 626–639 (2019).
doi:10.1089/cmb.2019.0324. Accessed 2021-05-22

15. Mustafa, H., Kahles, A., Karasikov, M., Rätsch, G.: Metannot: A succinct data structure for compression of
colors in dynamic de Bruijn graphs. bioRxiv, 236711 (2018). doi:10.1101/236711. Accessed 2021-05-22

16. Müller, I., Sanders, P., Schulze, R., Zhou, W.: Retrieval and Perfect Hashing Using Fingerprinting. In:
Gudmundsson, J., Katajainen, J. (eds.) Experimental Algorithms. Lecture Notes in Computer Science, pp.
138–149. Springer, Cham (2014). doi:10.1007/978-3-319-07959-2_12

17. Yu, Y., Belazzougui, D., Qian, C., Zhang, Q.: Memory-efficient and Ultra-fast Network Lookup and Forwarding
using Othello Hashing. arXiv:1608.05699 [cs] (2017). arXiv: 1608.05699. Accessed 2020-10-08

18. Esposito, E., Graf, T.M., Vigna, S.: RecSplit: Minimal Perfect Hashing via Recursive Splitting.
arXiv:1910.06416 [cs] (2019). arXiv: 1910.06416. Accessed 2020-10-08

19. Limasset, A., Rizk, G., Chikhi, R., Peterlongo, P.: Fast and Scalable Minimal Perfect Hashing for Massive Key
Sets. In: 16th International Symposium on Experimental Algorithms (SEA 2017). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 75, pp. 25–12516. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2017). doi:10.4230/LIPIcs.SEA.2017.25.
http://drops.dagstuhl.de/opus/volltexte/2017/7619

20. Yu, Y., Liu, J., Liu, X., Zhang, Y., Magner, E., Lehnert, E., Qian, C., Liu, J.: SeqOthello: querying RNA-seq
experiments at scale. Genome Biology 19(1), 167 (2018). doi:10.1186/s13059-018-1535-9. Accessed
2020-09-16

21. Csűrös, M., Noé, L., Kucherov, G.: Reconsidering the significance of genomic word frequencies. Trends in
Genetics 23(11), 543–546 (2007). doi:10.1016/j.tig.2007.07.008. Accessed 2021-04-09

22. Chor, B., Horn, D., Goldman, N., Levy, Y., Massingham, T.: Genomic dna k-mer spectra: models and
modalities. Genome Biology 10(10), 108 (2009). doi:10.1186/gb-2009-10-10-r108

23. Belazzougui, D., Venturini, R.: Compressed static functions with applications. In: Proceedings of the
Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’13, pp. 229–240. Society for
Industrial and Applied Mathematics, New Orleans, Louisiana (2013)

24. Genuzio, M., Ottaviano, G., Vigna, S.: Fast scalable construction of ([compressed] static | minimal perfect
hash) functions. Information and Computation 273, 104517 (2020). doi:10.1016/j.ic.2020.104517. Accessed
2021-04-09

25. Lemane, T., Medvedev, P., Chikhi, R., Peterlongo, P.: kmtricks: Efficient construction of Bloom filters for large
sequencing data collections. bioRxiv, 2021–0216429304 (2021). doi:10.1101/2021.02.16.429304. Accessed
2021-05-31

26. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage requirements for biological
sequence comparison. Bioinformatics 20(18), 3363–3369 (2004). doi:10.1093/bioinformatics/bth408. Accessed
2021-04-09

27. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for document fingerprinting. In:
Proceedings of the 2003 ACM SIGMOD International Conference on Management Of data. SIGMOD ’03, pp.
76–85. Association for Computing Machinery, San Diego, California (2003). doi:10.1145/872757.872770.
https://doi.org/10.1145/872757.872770 Accessed 2021-04-09

28. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings. Compression and
Complexity of SEQUENCES 1997 (Cat. No.97TB100171), pp. 21–29 (1997).
doi:10.1109/SEQUEN.1997.666900

29. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence classification using exact alignments.
Genome Biology 15(3), 46 (2014). doi:10.1186/gb-2014-15-3-r46. Accessed 2021-04-09

30. Li, H.: Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics
32(14), 2103–2110 (2016). doi:10.1093/bioinformatics/btw152. Accessed 2021-04-09

31. Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18), 3094–3100 (2018).
doi:10.1093/bioinformatics/bty191.
https://academic.oup.com/bioinformatics/article-pdf/34/18/3094/25731859/bty191.pdf

32. Zheng, H., Kingsford, C., Marçais, G.: Lower Density Selection Schemes via Small Universal Hitting Sets
with Short Remaining Path Length. In: Schwartz, R. (ed.) Research in Computational Molecular Biology.
Lecture Notes in Computer Science, pp. 202–217. Springer, Cham (2020). doi:10.1007/978-3-030-45257-5_13

33. Ekim, B., Berger, B., Orenstein, Y.: A Randomized Parallel Algorithm for Efficiently Finding Near-Optimal
Universal Hitting Sets. In: Schwartz, R. (ed.) Research in Computational Molecular Biology. Lecture Notes in
Computer Science, pp. 37–53. Springer, Cham (2020). doi:10.1007/978-3-030-45257-5_3

34. Boyer, R.S., Moore, J.S.: MJRTY—A Fast Majority Vote Algorithm. In: Boyer, R.S. (ed.) Automated
Reasoning: Essays in Honor of Woody Bledsoe. Automated Reasoning Series, pp. 105–117. Springer, Dordrecht
(1991). doi:10.1007/978-94-011-3488-0_5. https://doi.org/10.1007/978-94-011-3488-0_5 Accessed
2021-04-09

http://dx.doi.org/10.1101/2020.08.23.263061
http://dx.doi.org/10.1093/bioinformatics/btz102
http://dx.doi.org/10.1093/bioinformatics/btaa487
http://dx.doi.org/10.1101/2020.10.01.322164
http://dx.doi.org/10.1089/cmb.2019.0324
http://dx.doi.org/10.1101/236711
http://dx.doi.org/10.1007/978-3-319-07959-2_12
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.25
http://dx.doi.org/10.1186/s13059-018-1535-9
http://dx.doi.org/10.1016/j.tig.2007.07.008
http://dx.doi.org/10.1186/gb-2009-10-10-r108
http://dx.doi.org/10.1016/j.ic.2020.104517
http://dx.doi.org/10.1101/2021.02.16.429304
http://dx.doi.org/10.1093/bioinformatics/bth408
http://dx.doi.org/10.1145/872757.872770
http://dx.doi.org/10.1109/SEQUEN.1997.666900
http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://dx.doi.org/10.1093/bioinformatics/btw152
http://dx.doi.org/10.1093/bioinformatics/bty191
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/34/18/3094/25731859/bty191.pdf
http://dx.doi.org/10.1007/978-3-030-45257-5_13
http://dx.doi.org/10.1007/978-3-030-45257-5_3
http://dx.doi.org/10.1007/978-94-011-3488-0_5

Shibuya et al. Page 16 of 16

35. Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading Bloom filters to improve the memory usage for de
Brujin graphs. BMC Algorithms for Molecular Biology 9(1), 2 (2014)

Figures

Figure 1 Results for the Sakai dataset for big values of k. For presentation purposes, H0 is
represented as an additional red column in each subgroup.

Figure 2 Results when compressing the Elegans dataset.

Figure 3 Compressed space usage for the high entropy SRR10211353 dataset.

Figure 4 Compressed space usage for the high entropy df dataset.

Figure 5 Compressed space usage for the high entropy df dataset when using small values of k.

Figure 6 Space usage when using the approximated version of AMB. Entropy (red columns) and
CSF (blue columns) are reported for comparison. Unlike Figure 7, AMB is able to break the
empirical entropy lower bound when small errors are acceptable.

Figure 7 Space usage of AMB for the Sakai dataset with small k (FIL is slightly worse and was
omitted).

Figure 8 Average query time for AMB with 2 and 3 layers and FIL with 2 layers.

	Abstract
	Background
	Technical preliminaries
	Minimizers
	Bloom filters
	Compressed static functions

	Methods
	Representation of low-entropy data
	Minimizer bucketing
	Cascading
	Extension to approximate counts

	Results and discussion
	Compression of skewed data
	Compression of higher entropy data
	Approximate counts
	Query speed
	Choosing minimizer lengths

	Conclusions
	Multilayer FIL algorithm
	Additional figures
	Datasets
	Implementation
	Experimental setup

