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Abstract

Count-Min sketch is a hash-based data structure to represent a dynamically changing asso-
ciative array of counters. Here we analyse the counting version of Count-Min under a stronger
update rule known as conservative update, assuming the uniform distribution of input keys.
We show that the accuracy of conservative update strategy undergoes a phase transition, de-
pending on the number of distinct keys in the input as a fraction of the size of the Count-Min
array. We prove that below the threshold, the relative error is asymptotically o(1) (as opposed
to the regular Count-Min strategy), whereas above the threshold, the relative error is Θ(1).
The threshold corresponds to the peelability threshold of random k-uniform hypergraphs. We
demonstrate that even for small number of keys, peelability of the underlying hypergraph is a
crucial property to ensure the o(1) error. Finally, we provide an experimental evidence that
the phase transition does not extend to non-uniform distributions, in particular to the popular
Zipf’s distribution.

1 Introduction

Count-Min sketch is a hash-based data structure to represent a dynamically changing associative
array a of counters in an approximate way. The array a can be seen as a mapping from some set
K of keys to N, where K is drawn from a (large) universe U . The goal is to support point queries
about the (approximate) current value of a(p) for a key p. Count-Min is especially suitable for the
streaming framework, when counters associated to keys are updated dynamically. That is, updates
are (key,value) pairs (p, `) with the meaning that a(p) is updated to a(p) + `.

Count-Min sketch was proposed in [11], see e.g. [9] for a survey. A similar data structure was
introduced earlier in [8] named Spectral Bloom filter, itself closely related to Counting Bloom filters
[18]. The difference between Count-Min sketch and Spectral Bloom filter is marginal: while a
Count-Min sketch requires hash functions to have disjoint codomains (rows of Count-Min matrix),
a Spectral Bloom filter has all hash functions mapping to the same array, as does the regular
Bloom filter. In this paper, we will deal with the Spectral Bloom filter version but will keep the
term Count-Min sketch as more common in the literature.

Count-Min sketch supports negative update values ` provided that at each moment, each counter
a(p) remains non-negative (so-called strict turnstile model [22]). When updates are positive, the
Count-Min update algorithm can be modified to a stronger version leading to smaller errors in
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queries. This modification, introduced in [16] as conservative update, is mentioned [9], without any
formal analysis given in those papers. This variant is also discussed in [8] under the name minimal
increase, where it is claimed that it decreases the probability of a positive error by a factor of the
number of hash functions, but no proof is given. We discuss this claim in the concluding part of
this paper.

The case of positive updates is widespread in practice. In particular, a very common instance
is counting where all update values are 1. This task occurs in different scenarios in network traffic
monitoring, as well as other applications related to data stream mining [16]. In bioinformatics, we
may want to maintain, on the fly, multiplicities of k-mers (words of length k) occurring in a big
dataset [24, 1, 28]. We refer to [14] for more examples of applications.

While it is easily seen that the error in conservative update can only be smaller than in Count-
Min, obtaining more precise bounds is a challenging problem. Count-Min guarantees, with high
probability, that the additive error can be bounded by ε‖a‖1 for any ε, where ‖a‖1 is the L1-norm
of a [11]. In the counting setting, ‖a‖1 is the length of the input stream which can be very large,
and therefore this bound provides a weak guarantee in practice, unless the distribution of keys
is very skewed and queries are made on frequent keys (heavy hitters) [22, 6, 10]. It is therefore
an important practical question to analyse the improvement provided by the conservative update
strategy compared to the original Count-Min sketch.

Probably the first attempt towards this goal was made in [5], under assumption that all
(
n
k

)
counter combinations are equally likely at each step (n size of the Count-Min array, k number
of hash functions) which amounts to assuming uniform distribution on

(
n
k

)
input keys. For the

regime when the number of distinct keys in the input considerably exceeds the sketch size, it was
experimentally observed in [5] that frequent keys have essentially no error while the (over)estimate
for less frequent keys tends be the same, for given input stream length and sketch size. On the
other hand, it was experimentally shown that in that regime, the uniform distribution of keys
presents the worst-case scenario producing the largest such estimate and a method was proposed
to compute this estimate. Another method for bounding the error proposed in [14] is based on a
simulation of spectral Bloom filters by a hierarchy of ordinary Bloom filters. However, the bounds
provided are not explicit but are expressed via a recursive relation based on false positive rates of
involved Bloom filters. Recent works [4, 3] propose formulas for computing error bounds depending
on key probabilities assumed independent but not necessarily uniform, in particular leading to an
improved precision bounds for detecting heavy hitters.

In this paper, we provide a probabilistic analysis of the conservative update scheme for counting
under the assumption of uniform distribution of keys in the input. Our main result is a demonstra-
tion that the error in count estimates undergoes a phase transition when the number of distinct
keys grows relative to the size of the Count-Min array. We show that the phase transition thresh-
old corresponds to the peelability threshold for random k-uniform hypergraphs. For the subcritical
regime, when the number of distinct keys is below the threshold, we show that the relative error
for a randomly chosen key tends to 0 asymptotically, with high probability. This contrasts with
the regular Count-Min algorithm producing a relative error shown to be at least 1 with constant
probability.

For the supercritical regime, we show that the average relative error is lower-bounded by a
constant (depending on the number of distinct keys), with high probability. We prove this result
for k = 2 and conjecture that it holds for arbitrary k as well. We provide computer simulations
showing that the expected relative error grows fast after the threshold, with a distribution showing
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a peculiar multi-modal shape. In particular, keys with small (or zero) error still occur after the
threshold, but their fraction quickly decreases when the number of distinct keys grows.

After defining Count-Min sketch and conservative update strategy in Section 2 and introducing
hash hypergraphs in Section 3, we formulate the conservative update algorithm (or regular Count-
Min, for that matter) in terms of a hypergraph augmented with counters associated to vertices. In
Section 4, we state our main results and illustrate them with a series of computer simulations. All
technical proofs are provided in a separate Section 5.

In addition, in Section 6, we study a specific family of 2-regular k-hypergraphs that are sparse
but not peelable. For such graphs we show that while the relative error of every key is 1 with the
regular Count-Min strategy, it is 1/k + o(1) for conservative update. While this result is mainly
of theoretical interest, it illustrates that the peelability property is crucial for the error to be
asymptotically vanishing. Finally, in Section 7, we turn to non-uniform distributions and provide
experimental evidence that for Zipf’s distribution, the phase transition in average error does not
occur.

2 Count-Min and Conservative Update

We consider a (counting version of) Count-Min sketch to be an array A of size n of counters initially
set to 0, together with hash functions h1, . . . , hk mapping keys from a given universe to [1..n]. To
count key occurrences in a stream of keys, regular Count-Min proceeds as follows. To process a
key p, each of the counters A[hi(p)], 1 ≤ i ≤ k, is incremented by 1. Querying the occurrence
number a(p) of a key p returns the estimate âCM (p) = min1≤i≤k{A[hi(p)]}. It is easily seen that
âCM (p) ≥ a(p). A bound on the overestimate of a(p) is given by the following result adapted from
[11].

Theorem 1 ([11]) For ε > 0, δ > 0, consider a Count-Min sketch with k = dln(1δ )e and size
n = k eε . Then âCM (p)− a(p) ≤ εN with probability at least 1− δ, where N is the size of the input
stream.

While Theorem 1 is useful in some situations, it has a limited utility as it bounds the error with
respect to the stream size which can be very large.

Conservative update strengthens Count-Min by increasing only the smallest counters among
A[hi(p)]. Formally, for 1 ≤ i ≤ k, A[hi(p)] is incremented by 1 only ifA[hi(p)] = min1≤j≤k{A[hj(p)]}
and is left unchanged otherwise. The estimate of a(p), denoted âCU (p), is computed as be-
fore: âCU (p) = min1≤i≤k{A[hi(p)]}. It can be seen that âCU (p) ≥ a(p) still holds, and that
âCU (p) ≤ âCM (p). The latter follows from the observation that on the same input, an entry
of counter array A under conservative update can never get larger than the same entry under
Count-Min.

3 Hash hypergraphs and CU process

With a counter array A[1..n] and hash functions h1, ..., hk we associate a k-uniform hash hypergraph
H = (V,E) with vertex-set V = {1..n} and edge-set E = {{h1(p), ...hk(p)}} for all distinct keys
p. Let Hkn,m be the set of k-uniform hypergraphs with n vertices and m edges. We assume that

the hash hypergraph is a uniformly random Erdős-Rényi hypergraph in Hkn,m, which we denote
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by Hk
n,m, where m is the number of distinct keys in the input (for k = 2, we use the notation

Gn,m = H2
n,m). Even if this property is not granted by hash functions used in practice, it is a

reasonable and commonly used hypothesis to conduct the analysis of sketch algorithms.
Below we show that the behavior of a sketching scheme depends on the properties of the

associated hash hypergraph. It is well-known that depending on the m/n ratio, many properties of
Erdős-Rényi (hyper)graphs follow a phase transition phenomenon [19]. For example, the emergence
of a giant component, of size O(n), occurs with high probability (hereafter, w.h.p.) at the threshold
m
n = 1

k(k−1) [21].

Particularly relevant to us is the peelability property. Let H = (V,E) be a hypergraph. The
peeling process on H is as follows. We define H0 = H, and iteratively for i ≥ 0, we define Vi to
be the set of leaves (vertices of degree 1) or isolated vertices in Hi, Ei to be the set of edges of Hi

incident to vertices in Vi, and Hi+1 to be the hypergraph obtained from Hi by deleting the vertices
of Vi and the edges of Ei. A vertex in Vi is said to have peeling level i. The process stabilizes
from some step I, and the hypergraph HI is called the core of H, which is the largest induced
sub-hypergraph whose vertices all have degree at least 2. If HI is empty, then H is called peelable.

It is known [25] that peelability undergoes a phase transition. For k ≥ 3, there exists a positive
constant λk such that, for λ < λk, the random hypergraph Hk

n,λn is w.h.p. peelable as n → ∞,

while for λ > λk, the core of Hk
n,λn has w.h.p. a size concentrated around αn for some α > 0 that

depends on λ. The first peelability thresholds are λ3 ≈ 0.818, λ4 ≈ 0.772, etc., λ3 being the largest.
For k = 2, for λ < 1/2, w.h.p. a proportion 1 − o(1) of vertices are in trees of size O(1),

(and a proportion o(1) of the vertices are in the core), while for λ ≥ 1/2, the core size is w.h.p.
concentrated around αn for α > 0 that depends on λ [27].

We note that properties of hash hypergraphs determine the behavior of some other hash-based
data structures, such as Cuckoo hash tables [26] and Cuckoo filters [17], Minimal Perfect Hash
Functions and Static Functions [23], Invertible Bloom filters [20], and others. We refer to [29] for
an extended study of relationships between properties of hash hypergraphs and some of those data
structures. In particular, peelability is directly relevant to certain constructions of Minimal Perfect
Hash Functions as well as to good functioning of Invertible Bloom filters.

The connection to hash hypergraphs allows us to reformulate the Count-Min algorithm with
conservative updates as a process, which we call CU-process, on a random hypergraph Hk

n,m, where
n,m, k correspond to counter array length, number of distinct keys, and number of hash functions,
respectively. Let H = (V,E) be a hypergraph. To each vertex v we associate a counter cv initially
set to 0. At each step t ≥ 1, a CU-process on H chooses an edge e = {v1, . . . , vk} ∈ E in H,
and increments by 1 those cvi which verify cvi = min1≤j≤k cvj . For t ≥ 0 and v ∈ V , cv(t)
will denote the value of the counter cv after t steps, and oe(t) the number of times edge e ∈ E
has been drawn in the first t steps. The counter ce(t) of an edge e = {v1, . . . , vk} is defined as
ce(t) = min1≤i≤k cvi(t). Clearly, for each t and each e, oe(t) ≤ ce(t). The relative error of e at time

t is defined as Re(t) = ce(t)−oe(t)
oe(t)

. The following Lemma can be easily proved by induction on t.

Lemma 1 Let H = (V,E) be a hypergraph on which a CU-process is run. At every step t, for each
vertex v, there is at least one edge e incident to v such that ce(t) = cv(t).

Observe that, when H is a graph (k = 2), Lemma 1 is equivalent to the property that vertex
counters cannot have a strict local maximum, i.e., at every step t, each vertex v has at least one
neighbour u such that cu(t) ≥ cv(t).
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4 Phase transition of the relative error

4.1 Main results

Let H = (V,E) be a hypergraph, |V | = n, |E| = m. Let N ≥ 1. We consider two closely related
models of input to perform the CU-process. In the N -uniform model, the CU process is performed
on a random sequence of keys (edges in E) of length N ·m, each key being drawn independently
and uniformly in E. In the N -balanced model, the CU-process is performed on a random sequence
of length N ·m, such that each e ∈ E occurs exactly N times, and the order of keys is random. In
other words, the sequence of keys on which the CU-process is performed is a random permutation
of the multiset made of N copies of each key of E. Clearly, both models are very close, since the
number of occurrences of any key in the N -uniform model is concentrated around N (with Gaussian

fluctuations of order
√
N) as N gets large. For both models, we use the notation c

(N)
v = cv(Nm)

for the resulting counter of v ∈ V , o
(N)
e = oe(Nm) for the resulting number of occurrences of e ∈ E,

c
(N)
e = ce(Nm) for the resulting counter of e ∈ E, and R

(N)
e = Re(Nm) = (c

(N)
e − o(N)

e )/o
(N)
e for

the resulting relative error of e. In the N -balanced model, since each key e ∈ E occurs N times,

we have R
(N)
e = (c

(N)
e −N)/N .

Our main result is the following.

Theorem 2 (subcritical regime) Let k ≥ 2, and let λ < λk, where λ2 = 1/2, and for k ≥ 3, λk
is the peelability threshold as defined in Section 3. Consider a CU-process on a random hypergraph

Hk
n,λn under either N -uniform or N -balanced model, and consider the relative error R

(N)
e of a

random edge in Hk
n,λn. Then R

(N)
e = o(1) w.h.p., as both n and N grow1.

Note that with the regular Count-Min algorithm (see Section 2), in the N -balanced model, the

counter value of a node v is c̃
(N)
v = N ·deg(v), and the relative error R̃

(N)
e of an edge e = (v1, . . . , vk)

is always (whatever N ≥ 1) equal to min(deg(v1), . . . ,deg(vk))−1, and is thus always a non-negative
integer. For fixed k ≥ 2 and λ > 0, and for a random edge e in Hk

n,λn, the probability that all k
vertices belonging to e have at least one incident edge apart from e converges to a positive constant
c(λ, k) = (1 − e−kλ)k. Therefore, R̃e is a nonnegative integer whose probability to be non-zero
converges to c(λ, k). Thus, Theorem 2 ensures that, for λ < λk, conservative updates lead to a
drastic decrease of the error, from Θ(1) to o(1).

For a given hypergraph H = (V,E) with m edges, we define errN (H) = 1
m

∑
e∈E R

(N)
e the

average error over the edges of H. Theorem 2 states that a randomly chosen edge has a small
error, but this does not formally exclude that a small fraction of edges may have large errors,
possibly yielding errN (H) larger than o(1). However, we believe that this is not the case. From
the previous remark, it follows that the error of an edge e = (v1, . . . , vk) is upper-bounded by
min(deg(v1), . . . ,deg(vk))− 1. Since the expected maximal degree in Hk

n,λn grows very slowly with
n, one can expect that any set of o(n) edges should have a contribution o(1) w.h.p.. This is also
supported by experiments given in the next section.

Based on Theorem 2 and the above discussion, we propound that a phase transition occurs for
the average error, in the sense that it is o(1) in the subcritical regime λ < λk, and Θ(1) in the
supercritical regime λ > λk, w.h.p.. Regarding the supercritical regime, we are able to show that
this indeed holds for k = 2 in the N -balanced model.

1Formally, for any ε > 0, there exists M such that P(R
(N)
e ≤ ε) ≥ 1 − ε if n ≥M and N ≥M .
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Theorem 3 (supercritical regime, case k = 2) Let λ > 1/2. Then there exists a positive con-
stant f(λ) such that, in the N -balanced model, errN (Gn,λn) ≥ f(λ) w.h.p., as n grows2.

Our proof of Theorem 3 can be extended to any k ≥ 2 and λ > 1
k(k−1) such that the giant

component G′ = (V ′, E′) in Hk
n,λn satisfies w.h.p. |E′| − |V ′| ≥ an for some positive constant a.

For k = 2, any value λ > 1/2 has this property [27], while for k = 3 (respectively, k = 4), the
analysis given in [2] ensures that this property holds for values of λ strictly above the peelability

threshold, namely λ > λ̃3 ≈ 0.94 (respectively, λ > λ̃4 ≈ 0.98) . Nevertheless, based on simulations
presented below, we expect that Theorem 3 holds for k ≥ 3 for all λ > λk as well, however proving
this would then require a different kind of argument.

4.2 Simulations

Here we provide several experimental results illustrating the phase transition stated in Theorems 2
and 3. Figure 1 shows plots for the average relative error errN (Hk

n,m) as a function of λ = m/n,
for k ∈ {2, 3, 4} for regular Count-Min and the conservative update strategies. Experiments were
run for n = 1000 with the N -independent model (each edge drawn independently with probability
1/m) and N = 50, 000 (number of steps N · |E|). For each λ, an average is taken over 15 random
graphs.

(a) k = 2 (b) k = 3 (c) k = 4

Figure 1: Average relative error as a function of λ = m/n for regular Count-Min (red) and conser-
vative update (blue), for k ∈ {2, 3, 4}.

The phase transitions are clearly seen to correspond to the critical threshold 0.5 for k = 2,
and, for k ∈ {3, 4}, to the peelability thresholds λ3 ≈ 0.818, λ4 ≈ 0.772. Observe that the
transition looks sharper for k ≥ 3, which may be explained by the fact that the core size undergoes
a discontinuous phase transition for k ≥ 3, as shown in [25] (e.g. for k = 3, the fraction of vertices
in the core jumps from 0 to about 0.13).

For the supercritical regime, we analysed the concentration around the average shown in Figure 1
by simulating CU-processes on 50 random graphs, for each λ. Figure 2 shows the results. We observe
that the concentration tends to become tighter for growing λ. Furthermore, we experimentally
studied the empirical distribution of individual relative errors, which turns out to have an interesting
multi-modal shape for intermediate values of λ. Typical distributions for k = 2, 3 are illustrated in

2Formally, for any ε > 0, there exists M such that P(errN (Gn,m) ≥ f(λ)) ≥ 1 − ε if N ≥ 1 and n ≥M .
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(a) k = 2 (b) k = 3

Figure 2: Concentration of the average error as a function of λ = m/n, for k ∈ {2, 3}.

Figure 3 where each point corresponds to an edge, and the edges are randomly ordered along the
x-axis. Each plot corresponds to an individual random graph.

When λ grows beyond the peelability threshold, a fraction of edges with small errors still
remains but vanishes quickly: these include edges incident to at least one leaf (these have error 0)
and peelable edges (these have error o(1), by arguments to be given in Section 5.3). For intermediate
values of λ, the distribution presents several modes: besides the main mode (largest concentration
on plots of Figure 3), we observe a few other concentration values which are typically integers.
While this phenomenon is still to be analysed, we explain it by the presence in the graphs of
certain structural motifs that involve disparities in node degrees. Note that the fraction of values
concentrated around the main mode is dominant: for example, for k = 3, λ = 3 (Figure 3d),
about 90% of values correspond to the main mode (≈ 3.22). Finally, when λ becomes larger, these
“secondary modes” disappear, and the distribution becomes concentrated around a single value.
This is consistent with the tighter concentration observed earlier in Figure 2.

Finally, we report on another experiment supporting the conjecture of a positive average er-
ror in the supercritical regime. We simulated the CU-process on sparse random non-peelable
3-hypergraphs (i.e. k = 3), namely 2-regular 3-hypergraphs with 2n edges and 3n vertices (n pa-
rameter). These are sparsest possible non-peelable 3-hypergraphs, with degree 2 of each vertex. We
observed that the average error for such graphs is concentrated around a constant value of ≈ 0.217.
Since the core size is linear in the supercritical regime, this experiment provides an evidence of
a positive error in the general case. While this remains to be proved in general, in Section 6 we
provide a proof for certain families of regular hypergraphs.
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(a) k = 2, λ = 1 (b) k = 3, λ = 1

(c) k = 2, λ = 3 (d) k = 3, λ = 3

(e) k = 2, λ = 5 (f) k = 3, λ = 5

Figure 3: Distribution of relative errors of individual edges shown in a random order along x-axis.

5 Proofs of main results

Theorem 2 relies on properties of random hypergraphs. Case k = 2 corresponds to Erdős-Rényi
random graphs Gn,λn [15] which have been extensively studied [19]. In particular, it is well known
when λ < 1/2 and n gets large, Gn,λn is, w.h.p., a union of small connected components most
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of which are constant-size trees. That is, a random edge in Gn,λn is, w.h.p., in a tree of size
O(1). Thus, the proof amounts to showing that, for a fixed tree T and a vertex v ∈ T , we have

c
(N)
v /N = 1+o(1) w.h.p.. We prove this in Section 5.1 for both N -uniform and N -balanced models.

The proof for k ≥ 3, given in Section 5.3, requires more ingredients. An additional difficulty is
that, for λ < λk, a random edge e in Hk

n,λn may be in the giant component (if λ ∈ ( 1
k(k−1) , λk)).

However, we rely on the fact that the peeling level of e is O(1) w.h.p., and prove that for a vertex

v of bounded level, we have c
(N)
v /N = 1 + o(1) w.h.p. as N → ∞, where the o(1) term does not

depend on the size of the giant component.

5.1 CU-process on a fixed tree

5.1.1 Analysis in the N-uniform model

Consider a graph G = (V,E), with m edges, on which the CU-process is run, in the N -uniform
model. Recall that cv(t) (resp. ce(t)) denotes the value of the counter for v (resp. for e) after t
steps, and oe(t) is the number of occurrences e in the first t steps. The aim of this Section is to
prove the following result.

Lemma 2 Let T = (V,E) be a tree, on which the CU-process is run, in the N -uniform model. Let
m = |E|. Then, for every vertex v of T , there exist absolute positive constants av, bv such that, for
any N ≥ 1 and x > 0, we have

P
(

maxt∈[0..Nm]|cv(t)− t/m| ≥ x
√
N
)
≤ av exp(−bvx2).

Lemma 2 implies that, in the N -uniform model, the final counter c
(N)
v of every vertex v of T is

concentrated around N , with (sub-)Gaussian fluctuations of order
√
N . The same holds for the final

counter c
(N)
e = min(c

(N)
u , c

(N)
v ) of every edge e = (u, v) of T . On the other hand, the number oe(Nm)

of times e is chosen follows a binomial distribution Bin(Nm, 1/m). Then, it is also concentrated

around N , with Gaussian fluctuations of order
√
N . This implies that R

(N)
e = O(1/

√
N) = o(1)

w.h.p. as N gets large.
We say that a family of events ENM indexed by two parameters N,M ≥ 1, is (N,M)-concentrated

if there are absolute constants a, b > 0 such that, for every N,M , we have P(ENM ) ≤ a exp(−bx2),
where x = M/

√
N . For f(t) a (possibly random) quantity depending on t ∈ [0..Nm], we use the

notation f̂(t) := f(t) − t/m. Thus, to prove Lemma 2, we have to show that for a fixed tree T
with m edges on which the N -independent CU-process is run, and for v a vertex of T , the event
{maxt∈[0..Nm]|ĉv(t)| ≥M} is (N,M)-concentrated.

We proceed by induction on the peeling level i of vertices. A vertex v at level 0 is a leaf. Let e
be its incident edge. It is easy to see that the counter of v increases exactly at the steps when e is
drawn. Hence cv(t) = oe(t) for t ∈ [0..Nm]. Doob’s martingale maximal inequality combined with
Hoeffding’s inequality ensure that, for every edge e of T , we have

P(maxt∈[0..Nm]|ôe(t)| ≥M) ≤ 2 exp(−2x2/m), where x = M/
√
N.

Hence, for any leaf v of T , the event {maxt∈[0..Nm]|ĉv(t)| ≥M} is (N,M)-concentrated. Moreover,
for v a vertex and e an arbitrary edge incident to v, the fact that cv(t) ≥ oe(t) ensures that the
event {mint∈[0..Nm]ĉv(t)) ≤ −M} is (N,M)-concentrated. It thus remains to show that, for vertices
of positive levels, the event {maxt∈[0..Nm]ĉv(t) ≥M} is (N,M)-concentrated.

The following statement will be useful to treat the inductive step.
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Lemma 3 Let G be a graph on which a CU-process is run. Let v be a vertex of G, with v1, . . . , vh+1

its neighbours one of which (say vh+1) is distinguished, and with e denoting the edge {v, vh+1}. For
t ∈ [0..Nm], let dv(t) = max(cv1(t), . . . , cvh(t)). Consider the event ENM that there exists t ∈ [0..Nm]
such that cv(t) ≥ dv(t)+M , and the event FNM that there exists t ∈ [0..Nm] such that |ôe(t)| ≥M/4

or |d̂v(t)| ≥M/4. Then ENM implies FNM .

Proof: If ENM holds, let t0 ≥ 0 be such that cv(t0) ≥ dv(t0)+M . Let t′ = max{t ≤ t0 | cv(t) ≤ dv(t)}.
The crucial point is that, in the interval [t′..t0], any step where cv increases occurs when e is chosen
(indeed, when cv(t) > max(cv1(t), . . . , cvh(t)), choosing an edge {v, vi} with i ∈ [1..h] yields no
increase of cv). Hence, cv(t0)− cv(t′) ≤ oe(t0)−oe(t′). Since cv(t

′) = dv(t
′) and cv(t0) ≥ dv(t0) +M

we conclude that oe(t0) − oe(t
′) ≥ dv(t0) − dv(t

′) + M . Thus we also have ôe(t0) − ôe(t
′) ≥

d̂v(t0)− d̂v(t′) +M . Hence max(|ôe(t0)|, |ôe(t′)|, |d̂v(t0)|, |d̂v(t′)|) ≥M/4, so that FNM holds. �
Let i ≥ 1, and assume Lemma 2 holds for all vertices of level smaller than i. Let v be a vertex of

level i, for which we want to prove that the event {maxt∈[0..Nm]ĉv(t) ≥M} is (N,M)-concentrated.
All neighbours v1, . . . , vh+1 of v have level at most i− 1, except for one, say vh+1, with its level in
{i − 1, i, i + 1} (respectively corresponding to Ti having one vertex, two vertices, or at least three
vertices).

Let e be the edge between v and vh+1. Let ENM be the event that ĉv(t) ≥M for some t ∈ [0..Nm].

If this holds, then one of the two events {ĉv(t) − d̂v(t) ≥ M/2} or {d̂v(t) ≥ M/2} holds. By
Lemma 3, the first event implies that |d̂v(t)| ≥M/8 or |ôe(t)| ≥M/8 for some t ∈ [0..Nm]. Hence,
the event {maxt∈[0..Nm]ĉv(t) ≥ M} implies that either the event {maxt∈[0..Nm]|d̂v(t)| ≥ M/8}
(which is also the union of the events {maxt∈[0..Nm]|ĉvj (t)| ≥ M/8} for j ∈ [1..h]) or the event
{maxt∈[0..Nm]|ôe(t)| ≥M/8} holds. Since these events are (N,M)-concentrated, we conclude (using
the union bound) that the event {maxt∈[0..Nm]ĉv(t) ≥ M} is also (N,M)-concentrated, which
concludes the proof of Lemma 2.

5.1.2 Analysis in the N-balanced model

Lemma 4 Let T be a tree, on which the CU-process is performed, in the N -balanced model. Then,

for every edge e of T , we have R
(N)
e = o(1) w.h.p. as N →∞.

Proof: Note that the N -balanced model is just the N -uniform model conditioned on all edges
occurring exactly N times, which happens with probability Θ(n−m/2) if T has m edges. Let u be
an extremity of e. By Lemma 2, there exists a positive constant b such that, in the N -uniform
model,

P(cu(Nm) ≥ N +N2/3) = O(e−b n
1/3

).

Hence, in the N -balanced model, we have

P(c(N)
u ≥ N +N2/3) = O(nm/2e−b n

1/3
) = o(1),

and thus
P(R(N)

e ≥ N−1/3) = P(c(N)
e ≥ N +N2/3) ≤ P(c(N)

u ≥ N +N2/3) = o(1),

which ensures that R
(N)
e = o(1) w.h.p. as N →∞. �
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5.2 Proof of Theorem 2 for k = 2

We use the well-known property [15] that, for fixed λ ∈ (0, 1/2), a random edge e in Gn,λn is w.h.p.
in a tree of size O(1). Precisely, if we let Emn,λ be the event that e belongs to a tree of size at most m,
then we have the property that, for every ε > 0, there exist m and n0 such that P(Emn,λ) ≥ 1− ε for
n ≥ n0. By Lemma 4, there exists N0 (depending on m) such that, in the N -balanced or N -uniform

model, for every tree T with at most m edges, and every edge e ∈ T , we have P(R
(N)
e ≥ ε) ≤ ε for

N ≥ N0. Hence, for n ≥ n0 and N ≥ N0, if we perform the CU-process on Gn,λn in the N -balanced
model (note that the N -balanced model holds separately on every connected component), and draw
a random edge e, we have

P(R(N)
e ≥ ε) ≤ P(R(N)

e ≥ ε | Emn,λ) + P(¬Emn,λ) ≤ 2ε.

This means that R
(N)
e = o(1) w.h.p., when n and N grow. In the N -uniform model, the same

argument holds, using the fact that the total number of times edges in T are drawn is concentrated
around Nm.

5.3 Proof of Theorem 2 for k ≥ 3

The proof partly follows the same lines as for k = 2, but requires additional arguments, in particular
a suitably extended notion of peelability. A marked hypergraph is a hypergraph H = (V,E) where
some of the vertices are marked. The subset of marked vertices is denoted V∞. When performing
a CU-process on a marked hypergraph, the counters of unmarked vertices are (as usual) initially
0, while the counters at marked vertices are initially (and remain) +∞. When peeling, the marked
vertices are not allowed to be peeled (even when they are incident to a unique edge). We define
H0 = H, and iteratively for i ≥ 0, we define Vi as the set of non-marked vertices that are leaves or
isolated vertices in Hi, Ei as the set of edges of Hi incident to vertices in Vi, and Hi+1 to be the
hypergraph obtained from Hi by deleting the vertices in Vi and the edges in Ei. A vertex in Vi is
said to have level i. Then H is called peelable if every unmarked vertex is peeled at some step.

Following the exact same lines as in the proof of Lemma 2 (induction on the vertex-levels, and
a straightforward adaptation of Lemma 3 to hypergraphs) and Lemma 4, we obtain:

Lemma 5 Let H = (V,E) be a peelable connected marked hypergraph, on which the CU-process
is run, in the N -uniform model. Let m = |E|, and for t ∈ [0..Nm], let cv(t) be the value of the
counter of v after t steps. Then, for every unmarked vertex v of H, there exist absolute positive
constants av, bv such that, for any N ≥ 1 and x > 0, we have

P
(

maxt∈[0..Nm]|cv(t)− t/m| ≥ x
√
N
)
≤ av exp(−bvx2).

In the N -uniform or N -balanced model, for every unmarked vertex v of H, we have c
(N)
v /N =

1 + o(1) w.h.p. as N →∞.

For H a hypergraph, and for v a vertex of finite level in H, a vertex u ∈ H is called a descendant
of v if there is a sequence v0 = u, v1, . . . , vr = v of vertices such that, for each j ∈ [1..r− 1], vj and
vj+1 are incident to a same edge, and the level of vj+1 is larger than the level of vj .
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Lemma 6 For a hypergraph H, and for a vertex v of H of finite level, let Dv be the set formed
by v and it descendants, and let Ev be the set of edges that are incident to at least one vertex from
Dv. Let Hv be the marked hypergraph formed by the edges in Ev and their incident vertices, where
the marked vertices are those not in Dv. Then Hv is peelable.

Proof: Let u be a vertex in Dv, of level i. If i = 0, then u is a leaf in H. It is also a leaf in Hv,
and is immediately peeled. Otherwise, except for possibly one incident edge, u has at least one
neighbour ve of level smaller than i in every incident edge e (note that ve has to be in Dv). By
induction, ve and e are peeled in the peeling process of Hv. Hence, u is peeled as well during the
peeling process on Hv (by induction as well, the level of a vertex in Dv is actually the same in H
and in Hv). �

Remark 1 In a hypergraph H = (V,E), the distance between two vertices u and v is the minimum
number of edges to traverse in order to reach v from u. For r ≥ 1 and v ∈ V , the ball BH(v, r) is
the set of vertices at distance at most r from v. Clearly, if v is at level i, then every vertex in Dv

is in BH(v, i), and every vertex of Hv is in B(v, i+ 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lemma 7 (Lemma 3 in [25]) Let k ≥ 3, and let λ ∈ (0, λk). For every ε > 0, there exist I(ε)
and n0(ε) such that, for v a random vertex in Hk

n,λn, the probability that v has level at most I(ε) is
at least 1− ε, for n ≥ n0(ε).

Lemma 8 Let H = (V,E) be a hypergraph, and let E′ be a subset of E. Let V ′ (resp. W ) be the
subset of vertices incident to at least one edge from E′ (resp. incident only to edges in E′). Let
H ′ = (V ′, E′) be the marked hypergraph where the unmarked vertices are those in W . Consider a
CU-process on H, with S the sequence of items (each item an edge of H), and for v ∈ V let cv be
the final value of the counter of v. Let S′ be the subsequence of S composed by the items in E′.
Consider the CU process on H ′ where the sequence of items is S′. For v ∈ W , let c′v be the final
value of the counter of v. Then c′v ≥ cv.

Proof: For an assignment f : V → N∪ {+∞} of initial values to the vertex counters, let cf : V →
N ∪ {+∞} be the function giving the final vertex counters after performing the CU-process on an
input sequence S. It is easy to check (by induction on the length of S) that the CU-process is
monotonous: if f(v) ≤ g(v) for all v ∈ V , then cf (v) ≤ cg(v) for all v ∈ V . Now, if we define f as
the function assigning initial value 0 to vertices in W , and initial value +∞ to the other vertices,
then c′v = cf (v) for all v ∈W . On the other hand, if f0 denotes the function assigning initial value
0 to all vertices, then cv = cf0(v) for all v ∈ V . Hence, the monotonicity property ensures that
c′v ≥ cv for all v ∈W . �

We can now conclude the proof of Theorem 2 for k ≥ 3. Let ε > 0. Let I(ε) and n0(ε) be as given
in Lemma 7. Let s(ε) be such that, for a random vertex v ∈ Hk

n,λn, we have P
(
|B(v, I(ε) + 1)| ≤

s(ε)
)
≥ 1 − ε for all n. The existence of s(ε) easily follows from the known property that Hn,λn

converges to a Galton-Watson branching process for the local topology, see e.g. [13, Prop 2.6]. Let
v be a random vertex in Hn,λn. Let En,ε be the event that the level of v is at most I(ε), and
the number of vertices in Hv is at most s(ε). Then, using Remark 1 and the union bound, we
have P(En,ε) ≥ 1 − 2ε for n ≥ n0(ε). From Lemma 5, there exists N0 such that, for every marked
k-uniform hypergraph H with at most s(ε) vertices, and for every unmarked vertex v of H, we have
P
(
c(N)
v /N −1 ≥ ε

)
≤ ε for N ≥ N0. Let e be a random edge in Hk

n,λn, and let v be a random vertex
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of e. Note that v is distributed as a random vertex in Hk
n,λn. With Lemma 6 and Lemma 8, this

implies that, conditioned on En,ε, for N ≥ N0 we have P
(
c(N)
v /N − 1 ≥ ε

)
≤ ε in the N -balanced

model, and also P(R
(N)
e ≥ ε) ≤ ε (since c

(N)
e ≤ c

(N)
v ). Since P(¬En,ε) ≤ 2ε, we conclude that, for

n ≥ n0(ε) and N ≥ N0, we have P(R
(N)
e ≥ ε) ≤ 3ε. Hence, in the N -balanced model, R

(N)
e = o(1)

w.h.p., when n and N grow. In the N -uniform model, the same argument holds again, using the
fact that the number of times an edge in Hv is drawn is concentrated around Nm, with m the
number of edges of Hv.

5.4 Proof of Theorem 3

The excess of a graph G is exc(G) = |E| − |V |.

Lemma 9 Let G = (V,E) be a graph. Then, for the N -balanced model, we have
∑

e∈E R
(N)
e ≥

1
2 exc(G).

Proof: During the CU process, each time an edge is drawn, the counter of at least one of its

extremities is increased by 1. Hence
∑

v∈V c
(N)
v ≥ N |E|. Hence, with the notation R

(N)
v :=

c
(N)
v /N − 1, we have

∑
v∈V R

(N)
v ≥ exc(G). Now, by Lemma 1, for each v ∈ V , there exists an edge

ev incident to v such that c
(N)
ev = c

(N)
v (if several incident edges have this property, an arbitrary one

is chosen). Hence,
∑

v∈V R
(N)
ev ≥ exc(G). Note that, in this sum, every edge occurs at most twice

(since it has two extremities), thus
∑

e∈E R
(N)
e ≥ 1

2exc(G). �
For λ > 1/2, it is known [27, Theorem 6] that there is an explicit constant f̃(λ) > 0 such

that the excess of the giant component G′ = (V ′, E′) of Gn,λn is concentrated around f̃(λ)n, with
fluctuations of order

√
n. Thus, exc(G′) ≥ 1

2 f̃(λ)n w.h.p. as n → ∞. Hence, by Lemma 9, w.h.p.
as n→∞ (and for any N ≥ 1), we have

errN (Gn,λn) ≥ 1

λn

∑
e∈E′

R(N)
e ≥ 1

2λn
exc(G′) ≥ 1

4λ
f̃(λ) =: f(λ).

6 Analysis for some non-peelable hypergraphs

Analysing the asymptotic behaviour of the relative error of the CU-process on arbitrary hypergraphs
seems to be a challenging task, even if we restrict ourselves to N -uniform and N -balanced models,
as we do in this paper. Based on simulations, we expect that, for a fixed connected k-hypergraph

H = (V,E), and for v ∈ V , we have c
(N)
v /N = Cv + o(1) w.h.p. as N →∞, for an explicit constant

Cv ∈ [1,deg(v)]. Since the number of increments at each step lies in [1..k], constants Cv must
verify 1 ≤ 1

|E|
∑

v∈V Cv ≤ k, where 1
|E|
∑

v∈V Cv can be seen as the average number of increments
at a step. If H is peelable, then Lemma 5 implies that this concentration holds, with Cv = 1.
We expect that, if no vertex of H is peelable, and if H is “sufficiently homogeneous”, then the

constants Cv should be all equal to the same constant C > 1, and thus the relative error R
(N)
e of

every edge is concentrated around C − 1 > 0 w.h.p. as N → ∞. This, in particular, is supported
by an experiment reported at the end of Section 4.2.

In this Section, we show that this is the case for a family of regular hypergraphs which are very
sparse (O(

√
|V |) edges) but have a high order (an edge contains O(

√
|V |) vertices). The dual of

a hypergraph H is the hypergraph H ′ where the roles of vertices and edges are interchanged: the
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vertices of H ′ are the edges of H, and the edges of H ′ are the vertices of H so that an edge of H ′

corresponding to a vertex v of H contains those vertices that correspond to edges incident to v in
H. We consider here the hypergraph K ′n dual to the complete graph Kn.

Lemma 10 Consider any CU-process on K ′n = (V,E). At each step t, let minedges(t) be the set
of edges of E whose counter ce(t) is minimal over all edges. We have |minedges(t)| ≥ 2. Let e
be the edge selected at time t. Then, at time t, e is the only edge whose counter increases (by 1),
except when e ∈ minedges(t) and |minedges(t)| = 2, in which case the counter of the other edge in
minedges(t) also increases (by 1).

Proof: Every vertex v ∈ V has degree 2. Considering a vertex v of minimal counter, its two
incident edges thus have to be in minedges(t), therefore |minedges(t)| ≥ 2.

Let e be the chosen edge at time t. Clearly, ce increases (by 1). Moreover, for every edge e′

such that ce′(t) 6= ce(t), ce′ does not increase. Let now e′ be such that ce′(t) = ce(t), but there
exists an edge e′′ /∈ {e, e′} with ce′′(t) ≤ ce′(t). Let v = e′ ∩ e′′. By Lemma 1, we must have
cv(t) = ce′(t). Since v is not incident to e, its counter does not increase, and neither does the
counter of e′. If there does not exist e′′ /∈ {e, e′} with ce′′(t) ≤ ce′(t), then we must be in the
situation where e ∈ minedges(t) and |minedges(t)| = 2. Let v = e ∩ e′. Then, by Lemma 1, we
have cv(t) = ce(t) = ce′(t), and any vertex v′ 6= v must satisfy cv′(t) > cv(t) (since v′ has at least
one incident edge different from e, e′). Thus, the counter of v increases, and the counter of e′ also
increases. �

Theorem 4 For any fixed n ≥ 2, in the N -uniform model (resp. in the N -balanced model), the

counter of each vertex v ∈ K ′n satisfies c
(N)
v /N = n/(n − 1) + o(1) w.h.p. as N → ∞. Hence, the

relative error R
(N)
e of each edge e in K ′n satisfies R

(N)
e = 1/(n− 1) + o(1) w.h.p. as N →∞.

Proof: Consider a CU-process performed on K ′n = (V,E). At each step t, let p(t) = min(cv(t), v ∈
V ) = min(ce(t), e ∈ E), and let q(t) = max(ce(t), e ∈ E). It easily follows from Lemma 10 that∑

e∈E ce(t) = t + p(t). Therefore, (n − 1)p(t) ≤ t ≤ (n − 1)q(t), so that t
n−1 ∈ [p(t), q(t)]. We

now consider the CU process on K ′n in the N -uniform model. Let e1, e2 be two edges in E,
and let M ≥ 1. For t ∈ [0..Nn], the event that ce1(t) ≥ ce2(t) + M implies the event that
oe1(t)− oe1(t′) ≥ oe2(t)− oe1(t′) +M for some t′ ∈ [0..t] (indeed, letting t′ be the last time before
t where ce1 = ce2 , Lemma 10 ensures that all times in [t′..t − 1] where ce1 increases are due to
chosing e1), which is the same as the event that ôe1(t) − ôe1(t′) ≥ ôe2(t) − ôe1(t′) + M for some
t′ ∈ [0..t], with the notation of Section 5.1.1. Therefore, the event that ce2(t) − ce1(t) ≥ M for
some t ∈ [0..Nn] implies the event that max(|ôe1(t)|, |ôe2(t)|) ≥ M/4 for some t ∈ [0..Nn]. With
the terminology of Section 5.1.1, for every e ∈ E, the event maxt∈[0,Nn]|ôe(t)| ≥ M is (N,M)-
concentrated. Hence, the event {maxt∈[0,Nn](ce2(t) − ce1(t)) ≥ M} is (N,M)-concentrated. This

implies that P(ce2(Nn)− ce1(Nn) ≥ N2/3) = O(e−bN
1/3

) for some b > 0, and (by the union bound)

that P(q(Nn) − p(Nn) ≥ N2/3) = O(e−b̃N
1/3

) for some b̃ > 0. Note that Nn
n−1 ∈ [p(Nn), q(Nn)],

and for every edge e ∈ E we have ce(Nn) ∈ [p(Nn), q(Nn)]. Therefore, P(|ce(Nn) − Nn
n−1 | ≥

N2/3) = O(e−b̃N
1/3

). Hence, in the N -uniform model we have R
(N)
e − 1

n−1 = O(N−1/3) = o(1)
w.h.p. as N → ∞. In the N -balanced model, by the same argument as in Lemma 5.1.2, we have

P(|c(N)
e − Nn

n−1 | ≥ N2/3) = O(Nn/2e−b̃N
1/3

); hence, R
(N)
e − 1

n−1 = O(N−1/3) = o(1) w.h.p. as
N →∞. �
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Note that with regular Count-Min, the relative error of every edge is 1 + o(1) (exactly 1 in the
N -balanced model), since all vertices have degree 2. The statement and proof of Theorem 4 easily
extend to dual complete hypergraphs as follows. Let Kn,r be the complete r-uniform hypergraph on
n vertices (for n ≥ r ≥ 2), and consider a CU-process on K ′n,r in the N -uniform (resp. N -balanced)

model. Then the counter of each vertex v ∈ K ′n,r satisfies c
(N)
v /N = n/(n− r + 1) + o(1) w.h.p as

N →∞, hence the relative error R
(N)
e of any edge e ∈ K ′n,r satisfies R

(N)
e = r−1

n−r+1 + o(1) w.h.p. as
N →∞. For regular Count-Min, the relative error is r− 1 + o(1) (exactly r− 1 in the N -balanced
model), since every vertex in K ′n,r has degree r.

7 Non-uniform distributions

An interesting and natural question is whether the phase transition phenomenon holds for non-
uniform distributions as well. This question is of practical importance, as in many practical situa-
tions keys are not distributed uniformly. In particular, Zipfian distributions often occur in various
applications and are a common test case for Count-Min sketches [12, 5, 14, 7, 4].

In Zipf’s distributions, key probabilities in descending order are proportional to 1/iβ, where i is
the rank of the key and β ≥ 0 is the skewness parameter. Note that for β = 0, Zipf’s distribution
reduces to the uniform one. It is therefore a natural question whether the phase transition occurs
for Zipf’s distributions with β > 0.

One may hypothesize that the answer to the question should be positive, as under Zipf’s dis-
tribution, frequent keys tend to have no error, as it has been observed in earlier papers [5, 4, 3].
On the other hand, keys of the tail of the distribution have fairly similar frequencies, and therefore
might show the same behavior as for the uniform case.

However, this hypothesis does not hold. Figure 4 shows the behavior of the average error
for Zipf’s distributions with β ∈ {0.2, 0.5, 0.7, 0.9} vs. the uniform distribution (β = 0). The
average error is defined here as the average error of all keys weighted by their frequencies3, i.e.

errN (H) = 1
mN

∑
e∈E o

(N)
e

c
(N)
e −o(N)

e

o
(N)
e

= 1
mN

∑
e∈E(c

(N)
e − o

(N)
e ). In other words, errN (H) is the

expected error of a randomly drawn key from the entire input stream of length mN (taking into
account multiplicities).

We observe that the phase transition behavior vanishes for β > 0. It turns out that even in the
subcritical regime, frequent elements, while having no error themselves, heavily affect the error of
certain rare elements, which raises the resulting average error. In the supercritical regime (λ > 1 in
Figure 4) the opposite happens: the uniform distribution shows the largest average error. This is
because an increasingly large fraction of the keys (those in the core of the associated hypergraph)
contribute to the error, while for skewed distributions, frequent keys tend to have no error, and thus
the larger β (with frequent keys becoming more predominant) the smaller the average error. Note
that this is in accordance with the observation of [5] that the estimates for the uniform distribution
majorate the estimates of infrequent keys for skewed distributions.

3This definition is natural for non-uniform distributions, as the error for a frequent key should have a larger
contribution. Note that it is consistent with the definition of Section 4.1 in the N -balanced case, and in the N -
uniform case it presents a negligible difference when N gets large.
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Figure 4: Average error as a function of λ = m/n, for Zipf’s distributions with β ∈
{0.0, 0.2, 0.5, 0.7, 0.9}. Plots obtained for n = 1000, k = 3, N = 50, 000.

8 Concluding remarks

We presented an analysis of conservative update strategy for Count-Min sketch under the assump-
tion of uniform distribution of keys in the input stream. Our results show that the behaviour of the
sketch heavily depends on the properties of the underlying hash hypergraph. Assuming that hash
functions are k-wise independent, the error produced by the sketch follows two different regimes
depending on the density of the underlying hypergraph, that is the number of distinct keys relative
to the size of the sketch. When this ratio is below the threshold, the conservative update strategy
produces a o(1) relative error when the input stream and the number of distinct keys both grow,
while the regular Count-Min produces a positive constant error. This gap formally demonstrates
that conservative update achieves a substantial improvement over regular Count-Min.

We showed that the above-mentioned threshold corresponds to the peelability threshold for
k-uniform random hypergraphs. One practical implication of this is that the best memory usage is
obtained with three hash functions, due to the fact that λ3 is maximum among all λk, and therefore
k = 3 leads to the minimum number of counters needed to deal with a given number of distinct
keys.

In [8] it is claimed, without proof, that the rate of positive errors of conservative update is k
times smaller than that of regular Count-Min. This claim does not appear to be true. Note that
Count-Min does not err on a key represented in the sketch if and only if the corresponding edge
of the hypergraph includes a leaf (vertex of degree 1), while the conservative update can return an
exact answer even for an edge without leaves. However, this latter event depends on the relative
frequencies of keys and therefore on the specific distribution of keys and the input length. On the
other hand, our experiments with uniformly distributed keys show that this event is relatively rare,
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and the rate of positive error for Count-Min and conservative update are essentially the same.
One important assumption of our analysis is the uniform distribution of keys in the input. We

presented an experimental evidence that for skewed distributions, in particular for Zipf’s distribu-
tion, the phase transition disappears when the skewness parameter grows. Therefore, the uniform
distribution presents the smallest error in the subcritical regime. The situation is the opposite
in the supercritical regime when the number of distinct keys is large compared to the number of
counters: here the uniform distribution presents the largest average error. As mentioned earlier,
for Zipf’s distribution, frequent keys have essentially no error, whereas in the supercritical regime,
low frequency keys have all similar overestimates. This reveals another type of phase transition in
error approximation for Zipf’s distribution, occurring between frequent and infrequent elements.
Quantifying this transition is an interesting open question directly related to the accurate detection
of heavy hitters in streams.

Acknowledgments We thank Djamal Bellazougui who first pointed out to us the conservative
update strategy.
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[21] Micha l Karoński and Tomasz  Luczak. The phase transition in a random hypergraph.
Journal of Computational and Applied Mathematics, 142(1):125–135, 2002. Probabilis-
tic Methods in Combinatorics and Combinatorial Optimization. URL: https://www.

sciencedirect.com/science/article/pii/S0377042701004642, doi:https://doi.org/

10.1016/S0377-0427(01)00464-2.

[22] Hongyan Liu, Yuan Lin, and Jiawei Han. Methods for mining frequent items in data streams:
an overview. Knowledge and information systems, 26(1):1–30, 2011.

[23] Bohdan S Majewski, Nicholas C Wormald, George Havas, and Zbigniew J Czech. A family of
perfect hashing methods. The Computer Journal, 39(6):547–554, 1996.

[24] Hamid Mohamadi, Hamza Khan, and Inanc Birol. ntcard: a streaming algorithm for cardi-
nality estimation in genomics data. Bioinformatics, 33(9):1324–1330, 2017.

[25] Michael Molloy. Cores in random hypergraphs and boolean formulas. Random Structures &
Algorithms, 27(1):124–135, 2005.

[26] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–
144, 2004.

[27] Boris Pittel and Nicholas C Wormald. Counting connected graphs inside-out. Journal of
Combinatorial Theory, Series B, 93(2):127–172, 2005.

[28] Yoshihiro Shibuya and Gregory Kucherov. Set-min Sketch: a Probabilistic Map for Power-Law
Distributions with Application to k-mer Annotation. bioRxiv, page 2020.11.14.382713, Novem-
ber 2020. URL: https://www.biorxiv.org/content/10.1101/2020.11.14.382713v1, doi:
10.1101/2020.11.14.382713.

[29] Stefan Walzer. Random hypergraphs for hashing-based data structures. PhD thesis, Technische
Universität Ilmenau, Germany, 2020. URL: https://www.db-thueringen.de/receive/dbt_
mods_00047127.

19

https://www.sciencedirect.com/science/article/pii/S0377042701004642
https://www.sciencedirect.com/science/article/pii/S0377042701004642
https://doi.org/https://doi.org/10.1016/S0377-0427(01)00464-2
https://doi.org/https://doi.org/10.1016/S0377-0427(01)00464-2
https://www.biorxiv.org/content/10.1101/2020.11.14.382713v1
https://doi.org/10.1101/2020.11.14.382713
https://doi.org/10.1101/2020.11.14.382713
https://www.db-thueringen.de/receive/dbt_mods_00047127
https://www.db-thueringen.de/receive/dbt_mods_00047127

	Introduction
	Count-Min and Conservative Update
	Hash hypergraphs and CU process
	Phase transition of the relative error
	Main results
	Simulations

	Proofs of main results
	CU-process on a fixed tree
	Analysis in the N-uniform model
	Analysis in the N-balanced model

	Proof of Theorem 2 for k=2
	Proof of Theorem 2 for k3
	Proof of Theorem 3

	Analysis for some non-peelable hypergraphs
	Non-uniform distributions
	Concluding remarks

