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Upon loading, amorphous solids can exhibit brittle yielding, with the abrupt formation of macro-
scopic shear bands leading to fracture, or ductile yielding, with a multitude of plastic events leading
to homogeneous flow. It has been recently proposed, and subsequently questioned, that the two
regimes are separated by a sharp critical point, as a function of some control parameter charac-
terizing the intrinsic disorder strength and the degree of stability of the solid. In order to resolve
this issue, we have performed extensive numerical simulations of athermally driven elasto-plastic
models with long-range and anisotropic realistic interaction kernels in two and three dimensions.
Our results provide clear evidence for a finite-disorder critical point separating brittle and ductile
yielding, and we provide an estimate of the critical exponents in 2D and 3D.

Yielding of amorphous materials is a practically and
scientifically important problem [1–5]. When a material
is mechanically slowly driven from an initial quiescent
glassy state, two different types of yielding behavior are
observed. One is brittle yielding, where the sample catas-
trophically breaks into pieces and displays one or several
macroscopic shear bands (usually experimentally encoun-
tered in atomic and molecular glasses). The other one is
ductile yielding, for which the sample deforms rather ho-
mogeneously via a series of local and mesoscopic plastic
events that prevent catastrophic failure (usually experi-
mentally encountered in soft materials like colloids and
pastes). It has been established that a given material
may show brittle or ductile yielding depending on the
preparation history of the sample [3, 6–8]. In partic-
ular, a well-annealed, hence stable, glass sample shows
brittle yielding, whereas a poorly-annealed, less stable,
glass sample exhibits ductile yielding. Note that in the
materials science and engineering communities the yield
point is traditionally defined as the end of the purely
elastic branch and the onset of plastic behavior. How-
ever, because several molecular simulations and elasto-
plastic model (EPM) studies (see, e.g., [9–11]) demon-
strated that a purely elastic branch does not exist in
sheared amorphous solids as plasticity appears for any in-
finitesimal deformation in the thermodynamic limit, the
statistical physics community usually adopts a different
definition of yielding.

Recent theoretical studies suggest that brittle yield-
ing corresponds to a nonequilibrium first-order transition
(or spinodal [12–17]), associated with a macroscopic dis-
continuous stress drop at a given strain value, whereas
ductile yielding corresponds to a continuous stress-strain
curve, corresponding to a progressive plastic softening
of the material. In athermal quasi-static (AQS) condi-
tions [18], it was observed that these two distinct be-
haviors are separated by a critical value of the stabil-
ity (or the disorder) [19–21]. It was then proposed that
the brittle-to-ductile transition is a novel nonequilibrium

phase transition, similar to that of an athermally driven
random-field Ising model [22, 23]. Further understand-
ing the transformation from brittle to ductile yielding
appears as a major challenge in many fields, from mate-
rials science to statistical physics [24–35].

The above scenario has been challenged in Refs. [36–
38]. In particular, Ref. [36] argues that in AQS condition
and provided the samples are large enough, yielding al-
ways takes place in a brittle manner. This should hap-
pen irrespectively of the stability or disorder of the sam-
ples, except for the putative infinitely disordered sam-
ple, thereby implying that the brittle-to-ductile transi-
tion does not exist in the thermodynamic limit. Large-
scale molecular simulations [38] seem to give some sup-
port to the statements of Refs. [36, 37]. Yet, it remains
hard to conclude due to the limited system sizes accessi-
ble in molecular simulations and the very small number
of samples involved.

In this Letter, in order to overcome this difficulty
and obtain conclusive results, we perform a thorough
numerical analysis of the brittle-to-ductile transition in
EPMs [1, 39]. These mesoscopic models have already
been successfully applied to describe several aspects of
the rheology of amorphous materials, in particular the
yielding transition [37, 40]. Their coarse-grained lattice
nature enables us to access very large system sizes and
a large number of samples, allowing for a careful finite-
size scaling analysis of the critical point. Our main re-
sult is a direct numerical evidence for the existence of a
finite-disorder critical point separating brittle and ductile
behavior.

The type of EPM we focus on provides a simple scalar
description of the AQS dynamics [41–43] and corresponds
to a cellular automaton on two-dimensional (2D) and
three-dimensional (3D) cubic lattices. In particular, we
consider incompressible, homogenous and isotropic ma-
terials under a simple shear deformation protocol and we
focus on a single shear-stress component that we denote
σ [39]. (This is an approximate treatment which ignores

ar
X

iv
:2

20
4.

10
68

3v
2 

 [
co

nd
-m

at
.s

of
t]

  2
4 

N
ov

 2
02

2



2

the other stress components.) The model describes the
evolution of coarse-grained local stresses σi in the pres-
ence of an external strain γ. Whenever one such stress
goes above a stability threshold, the site yields, and the
resulting stress drop is propagated through the sample
via a long-range Eshelby-like propagator [44]. The initial
stability of the solid, which in real systems depends on
the annealing protocol, is quantified by a parameter R as-
sociated with the width of the initial stress distribution
(and therefore characterizing the strength of the disor-
der). We vary the system size over a wide range of linear
box lengths, L = 256 − 4096 for 2D and L = 48 − 164
(with a few samples at L = 200) for 3D. Details concern-
ing the simulated model and the numerical simulations
are presented in the SM [45]. We have checked that vari-
ations of the model corresponding to different ways of
accounting for the initial stability and the force balance
lead to the same results (see the SM).

We first show that the model displays the same be-
havior as that found in numerical simulations of particle
systems [3, 19, 20], with in particular the signature of
a brittle-to-ductile transition accompanied by substan-
tial finite-size effects [37, 38]. In consequence, it pro-
vides a suitable framework to address the issues discussed
above. In Fig. 1, we present stress-versus-strain curves
for a 3D system with L = 200 for two values of the dis-
order strength, R = 0.3 and R = 0.8. The former clearly
shows brittle yielding characterized by a discontinuous
stress drop and the appearance of a shear band (top in-
set), while the latter displays ductile yielding character-
ized by a continuous monotonic stress growth and homo-
geneously distributed plastic events (bottom inset). Brit-
tle and ductile yieldings are thus qualitatively distinct,
and their occurrence depends on the disorder strength R.
The present results are in line with previous numerical
observations in two-dimensional EPMs [40, 42, 46].

Our second goal is to identify the putative critical point
separating brittle and ductile yielding. In previous stud-
ies [19, 20, 28], the maximum stress drop, 〈∆σmax〉 =
〈maxγ{∆σ(γ)}〉 where ∆σ(γ) is the stress drop due to
irreversible events at the strain γ, was used as an order
parameter to detect the transition. Here, 〈· · · 〉 denotes
an average over many independent realizations (or sam-
ples), and the maximum is computed for each sample
and then averaged over samples. We have found that for
EPMs a more efficient order parameter is obtained from
the fraction of sites along a single line in 2D or plane in
3D that have yielded at least once up to the strain γ. We
consider the maximum of this fraction over all horizontal
and vertical lines (2D) or planes (3D) and we call this
quantity n(γ). By construction it is an increasing func-
tion of γ. It shows a discontinuous jump of order O(1)
when σ(γ) shows a discontinuous drop of order O(1) and
it increases continuously when σ(γ) shows a continuous
ductile behavior (see below). Therefore, n(γ) essentially
contains the same information as σ(γ) for distinguish-
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FIG. 1. Stress versus strain curves in the 3D elasto-plastic
model illustrating the brittle (R = 0.3) and the ductile
(R = 0.8) cases. The linear box length is L = 200. Three
independent samples are presented. Insets: Real-space con-
figurations at γ = 0.6 in the two cases. The color bar corre-
sponds to the number of local plastic events.

ing brittle and ductile yielding behavior. We then define
a new order parameter, ∆nmax = maxγ{∆n(γ)}, where
∆n(γ) is the jump of n(γ) that takes place in the AQS
dynamics from γ to γ + ∆γ in a given sample. We have
observed that ∆nmax better quantifies the abrupt emer-
gence of a system-spanning shear band and, as a result,
detects the critical point in EPMs more accurately than
∆σmax (see the detailed discussion in the SM).

As seen in Figs. 2(a,b), the average order parame-
ter 〈∆nmax〉 is small and essentially constant at high
disorder strength R and it starts to rapidly grow be-
low some finite value of R. Moreover, as L increases
both in 2D and in 3D, the increase of 〈∆nmax〉 with de-
creasing R becomes steeper while the flat part becomes
smaller, suggesting the presence of a critical point. Fig-
ures 2(c,d) show the variance of ∆nmax, which corre-
sponds to the associated “disconnected susceptibility”,
χdis = NVar(∆nmax), defined in analogy with an AQS
driven random-field Ising model [19, 21]. (It provides
crisper, but similar, results than the “connected suscep-
tibility” χcon = −∂〈∆nmax〉/∂γ [19, 20].) The discon-
nected susceptibility is strongly peaked and the peak be-
comes sharper and higher with increasing L, suggesting
a divergence at some critical point. Essentially the same
trend is observed for ∆σmax (see SM), in agreement with
the results of molecular simulations [19].

To firmly establish the existence of the critical point,
we have performed a detailed finite-size scaling analy-
sis. We use here the same scaling ansatz as that of
the AQS driven random-field Ising model, χdis(r, L) ∼
Lγ̄/νΨ(rL1/ν), where Rc(L) locates the maximum value
of χdis, r = (R − Rc(L))/R is the reduced disorder
strength, Ψ(·) is a scaling function, and with γ̄ and ν
some critical exponents. According to this ansatz, the
maximum over r of χdis(r, L) should diverge as Lγ̄/ν
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FIG. 2. Evidence for a critical point in 2D and 3D EPMs.
Upper: Average value of the order parameter 〈∆nmax〉 as a
function of R for several system sizes in 2D (a) and 3D (b).
Lower: Variance of ∆nmax multiplied by N = LD, where D
is the spatial dimensions, i.e., disconnected susceptibility, in
2D (c) and 3D (d).

and its full width at half maximum should vanish as
L−1/ν . The corresponding plots obtained from the data
in Figs. 2(c,d) are shown in Fig. 3. We observe a good
power-law behavior, and by fitting these curves we ob-
tain γ/ν = 1.86 ± 0.02 and ν = 3.0 ± 0.3 in 2D, and
γ/ν = 2.66±0.04 and ν = 2.5±0.2 in 3D, where the errors
are derived from the fit. We also show in Fig. 4 the scal-
ing collapse of the disconnected susceptibility, in which
the parameters γ, ν, and Rc(L) are adjusted to provide
the best visual collapse of the curves for the different
values of L. The displayed collapses are for γ/ν ≈ 1.82
and ν ≈ 2.9 in 2D, and γ/ν ≈ 2.61 and ν ≈ 2.2 in 3D,
values that are consistent with those determined by the
fitting procedure. Work is now in progress to determine
whether these critical exponents are in the same univer-
sality class as an AQS driven random-field Ising model
with Eshelby-like interactions [47].

Figures 2, 3 and 4 provide very strong evidence for a
critical behavior around Rc(L) with an estimate for the
associated exponents γ and ν in 2D and 3D. However,
the critical disorder Rc(L) slightly shifts to larger R as L
increases, as seen from Fig. 2. Understanding the fate of
the critical disorder Rc(L) in the thermodynamic limit
is therefore a key issue. Ref.s [19, 20] proposed that
Rc(L → ∞) stays finite in the thermodynamic limit,
whereas Refs. [36–38] argued that Rc(L → ∞) → ∞.
Note that in this second scenario there is no ductile phase

103

104

105

106

104 105 106 107

(a)

2D
3D

10-2

10-1

104 105 106 107

(b)

2D
3D

FIG. 3. Log-log plot of the maximum (a) and the full width
at half maximum (b) of the disconnected susceptibility as-
sociated with the order parameter ∆nmax as a function of
N = LD for both 2D (blue) and 3D (red). The straight black
lines have slopes 0.9 in (a) and −0.15 in (b).
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FIG. 4. Scaling plot of the disconnected susceptibility versus
reduced disorder r = (R − Rc(L))/R for the data in Fig. 2
in 2D (a) and 3D (b) EPMs. A good collapse is obtained for
γ/ν ≈ 1.82 and ν ≈ 2.9 in 2D and γ/ν ≈ 2.61 and ν ≈ 2.2 in
3D.

for large enough system size, i.e., all systems are brit-
tle in the thermodynamic limit (except in the singular
infinite-disorder limit). We stress that the existence of a
finite-disorder brittle-to-ductile critical point in the ther-
modynamic limit is a separate issue from the persistence
of an overshoot in the average stress-versus-strain curve
for large ductile systems, which was the main concern of
Ref. [37]. We show below that by disentangling these two
problems one can obtain conclusive evidence in favor of
the existence of the critical point in the thermodynamic
limit.

We display in Fig. 5(a) the stress-versus-strain curves
of typical 3D samples at fixed R for several values of L.
We set R = 0.40 (> Rc(L)), which belongs to the puta-
tive ductile yielding regime as determined from the above
finite-size scaling analysis. The plots focus on the stress
values around the overshoot. For a fixed R, the stress
drop tends to become sharper with increasing L, show-
ing the same trend as found in Refs. [36–38]. Instead, as
shown in Fig. 5(b), for a fixed L (here, L = 128) a clear
evolution between distinct yielding patterns is observed
as R is decreased, from a purely monotonic increase of
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FIG. 5. Stress-versus-strain curves for 3D samples at fixed
disorder strength R = 0.40 for several system sizes (a) and at
fixed system size L = 128 for different values of R (b). Insets:
The corresponding n(γ) curves.
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FIG. 6. Value of the disorder at which the overshoot first
appears, Ro, and at the apparent critical point, Rc, as a func-
tion of the system size, N = LD, in 2D (a) and in 3D (b).
Blue lines are fits to R∞

c − a/Nb, with R∞
c = 0.35, a = 0.61,

b = 0.14 in 2D and R∞
c = 0.5, a = 1.29, b = 0.15 in 3D.

The parameter b is related to the critical exponent ν through
1/ν = Db, so that the fits yield ν ≈ 3.57 in 2D and ν ≈ 2.22 in
3D. Insets: The corresponding schematic stress-versus-strain
curves.

the stress to a continuous overshoot and then to a discon-
tinuous drop. To characterize the asymptotic behavior
when L→∞, we locate for each given system size L the
value of R at which the overshoot first appears (coming
from large R) in the average stress-versus-strain curves
and we denote it by Ro(L) (see the SM for details). We
display Ro, together with the critical disorder Rc, for 2D
and 3D in Fig. 6. To facilitate the comparison between
2D and 3D we plot Ro and Rc as a function of the number
of sites N = LD. We find that Ro is essentially indepen-
dent of N in both cases while Rc increases very slowly
with N . As we explain in more detail below, this is direct
evidence for the existence of a ductile phase over a finite
range of disorder strength in the thermodynamic limit.

The values of Ro(N) and Rc(N) define three distinct
yielding regimes in the (N,R) plane, as schematically il-
lustrated by the insets in Fig. 6. The region R > Ro(N)
corresponds to a monotonic increase of the average stress,
with no overshoot. The region R < Rc(N) corresponds

to a discontinuous stress drop at yielding. The regime
Rc(N) < R < Ro(N) corresponds to a continuous aver-
age stress curve with a mild overshoot. By construc-
tion, Rc(N) has to remain below Ro(N), which then
gives an upper bound on the critical disorder. The fact
that Ro(N) is essentially independent of N thus provides
strong evidence that Rc(N) converges to a finite value
for large N and that a finite-disorder brittle-to-ductile
critical point persists in the thermodynamic limit. The
fate of the overshoot as N → ∞ is instead unclear and
depends on whether Rc(N) converges to Ro(∞) or to
Rc(∞) < Ro(∞) in the thermodynamic limit. In the for-
mer case the overshoot disappears at the critical point
whereas a regime of ductile yielding with an overshoot
exists in the latter case. We show in Fig. 6 the best fits
to Rc(N) = Rc(∞) − a/N b with Rc(∞), a, and b free
parameters. We find that Rc(∞) is finite in 2D and 3D.
In the critical scaling picture and assuming that 2D and
3D are below the upper critical dimension, the param-
eter b is related to the (correlation length) exponent ν
through 1/ν = Db. The fits then yield ν ≈ 3.57 in 2D
and ν ≈ 2.22 in 3D, values which, given the large uncer-
tainties, are consistent with the previous determinations
given above.

Strictly speaking, we cannot exclude an alternative sce-
nario in which Ro(N) would start to increase with N
above some size N∗ which is out of reach of present-day
simulations and would ultimately diverge in the thermo-
dynamic limit together with Rc(N). However, in view of
the absence of any observable N -dependence of Ro(N)
in the accessible range, which spans three decades in 2D,
and of the lack of any sound theoretical argument sup-
porting the existence of a critical size N∗, this possibility
seems extremely unlikely.

In conclusion, we have performed extensive numerical
simulations of athermally driven elasto-plastic models in
two and three dimensions. Thanks to the simple coarse-
grained, lattice-based, nature of the modeling, we have
been able to simulate substantially larger system sizes
and larger number of samples than in molecular simula-
tions, allowing us to perform a thorough finite-size scaling
analysis. We have obtained clear evidence for the exis-
tence of a critical point separating brittle from ductile
yielding in 2D and 3D and we have provided estimates
for two associated critical exponents. Our results estab-
lish, at least for the studied elasto-plastic models, that
criticality persists in the thermodynamic limit and takes
place for a finite value of the disorder characterizing the
samples (and corresponding to a given initial stability of
the solid), as suggested in Refs. [19, 20]. The alternative
scenario [36, 38] according to which the critical point ei-
ther takes place at infinite disorder or disappears because
the disorder cannot go beyond some upper bound is not
plausible in view of our results from elastoplastic model-
ing. It is nonetheless still unclear if the overshoot in the
average stress-versus-strain curve disappears in the ther-
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modynamic limit for the ductile regime, as advocated in
Ref. [37]. If it does, the critical point would occur ex-
actly when the overshoot associated with brittle yielding
disappears and then gives way to a monotonic (albeit
singular at criticality) average stress-strain curve. The
other possibility is that the critical point takes place at
a value of the disorder for which a smooth overshoot is
still present. The latter case implies that disorder, which
is not accounted for in the linear instability argument of
Ref. [37], is able to pin the propagation of the instability,
thereby allowing for the presence of a smooth overshoot.
It is hard to go beyond the present study in terms of
numerical simulations. Thus, progress is now needed on
the theoretical front.

Finally, we point out that the presence of a finite-
disorder critical point is not restricted to the specific
rheological setting considered in this paper. Recently,
the AQS cyclic shear protocol has been actively studied,
in relation to other nonequilibrium phase transition phe-
nomena such as absorbing-state phase transitions. This
protocol also leads to a transition from ductile to brittle-
like behavior, as a function of the disorder or stability
of the initial glass samples, as shown in molecular sim-
ulations [27, 28], simulated EPMs [46, 48], as well as a
mean-field EPM [49]. A detailed characterization of the
critical point under cyclic shear and the determination of
the associated exponents would be an interesting subject
for future research.
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SUPPLEMENTAL MATERIAL

Implementation of Elasto-Plastic Models

We study two and three-dimensional lattice-based
elasto-plastic models [39] with periodic boundary con-
ditions. We consider a simple scalar description whose
main quantity is the local shear stress σi on each site i of
the lattice. The macroscopic stress, σ (without index),
is defined by σ = 1

N

∑
i σi. We then assign a condition

for the local stability: when a site i has |σi| > σth
i it

is considered to be unstable and it yields locally with a
stress drop ηi > 0; otherwise this site is stable. σth

i is the
threshold stress. In this paper, we set it to one, σth

i = 1,
uniformly for all sites for the model presented in the main
text. Another choice with nonuniform σth

i ’s [50] will be
discussed below. The stress drop η is drawn from an ex-
ponential distribution, P (η) = 1

η̄ e
−η/η̄, with mean value

η̄ = 1. This exponential distribution of the local stress
was observed in molecular simulations [51].

The initial condition at γ = 0, σi(γ = 0), is inde-
pendently and identically extracted from a probability
distribution P0(σi), given by

P0(σi) =
(1− σ2

i )

N
e−σ

2
i /(2R

2), σi ∈ [−1, 1], (1)

where R is a parameter that characterizes the strength
of the initial disorder of the sample and N is a nor-
malization constant. Notice that when R is small this
distribution has essentially the same form as a Gaus-
sian distribution of zero mean and standard deviation R.
To ensure that each site respects the stability condition,
|σi(γ = 0)| < 1 at γ = 0, we add a correction term,
1− σ2

i , in front of the Gaussian distribution.
When the external loading is applied, the local stress

at each site is increased by the same amount ∆σext, which
is the minimum stress increment needed to induce a lo-
cal instability at a single site somewhere in the sample,
triggering a plastic event [42]. When this unstable site,
say i, yields, it influences all the other sites via a discrete
stress propagator from site i to j, namely,

Gj,i = G(rj − ri) , (2)

leading to a distribution of new stresses on sites j 6= i

σj → σj +Gj,iηi , (3)

where ηi is the stress drop at site i. Note that choosing
for convenience Gi,i = −1 allows one to use Eq. (3) also
for j = i. This stress propagation may lead to other sites
reaching the condition of instability. This process goes
on until all sites become stable, forming an avalanche.
We next proceed to a new increase of the external stress
∆σext so that a single site yields, and the process is re-
peated. This driving mechanism decouples the timescale

of the external loading and the timescale of formation of
an avalanche, which amounts to the so-called athermal
quasi-static driving (AQS) [18].

More precisely, the evolution of the model is given by
the following algorithm:

1. Initialize the stresses σi(γ = 0) that are i.i.d. from
P0(σi);

2. Find site i that is closest to its positive threshold,
i.e., minimizes σth

i − σi;

3. Increase the stress on all sites by ∆σext = σth
i − σi

such that site i yields;

4. Extract ηi from P (η) and evolve all sites according
to σj → σj +Gj,iηi (recall that Gi,i = −1);

5. For all unstable sites with |σi| > σth
i , choose a

random stress drop δσi = sign(σi)(|σi| − σth
i + ηi)

with ηi i.i.d. from P (η), assign δσi = 0 to stable
sites, and transform all sites in parallel according
to σj → σj +

∑
iGj,iδσi; repeat until all sites are

stable.

6. Repeat from (2).

In each step, the local stresses evolve as

σj → σj + ∆σext +
∑
i

Gj,i∆σi , (4)

where ∆σi is the total accumulated stress change during
steps 4 and 5 of the procedure. Because the macroscopic
stress is the spatial average of σi, summing Eq. (4) over
j and noting that Ĝq=0 =

∑
j Gj,i does not depend on i,

it evolves as

σ → σ + ∆σext + Ĝq=0
1

N

∑
i

∆σi , (5)

where q = (qx, qy) in 2D and q = (qx, qy, qz) in 3D denote
the wave-vector. The macroscopic strain at each step of
the evolution is obtained as follows. In the beginning,
γ = 0. At each step, the strain γ is then increased by
an amount ∆γ = ∆σext/µ, where µ is the local shear
modulus that we set to one (µ = 1). The choice of Ĝq=0

is then related to the way the system is driven. We con-
sider in this work the strain-controlled driving, which
corresponds to Ĝq=0 = −1. With this choice, the stress
evolution is

σ → σ + µ∆γ −∆σp , (6)

where ∆σp = 1
N

∑
i ∆σi corresponds to the irreversible

plastic stress drop at constant strain. Other driving set-
tings including the stress-control one were for instance
studied in Ref. [52].
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In this work we choose the Eshelby elastic stress prop-
agator, which in the case of a continuous material is given
by

GE(r) =
cos(4θ)

πr2
(2D), (7)

GE(r) =
3

4π

r2(x2 + y2)− 10x2y2

r7
(3D), (8)

where r = (x, y) in 2D and r = (x, y, z) in 3D denote
the position of a site relative to the yielded site [53].
Notice that, since our system is defined on a discrete lat-
tice, we need to consider a carefully discretized version
of this propagator. First of all, we note that the value
of GE(r = 0) is not defined because the Eshelby kernel
describes the long-range elastic field and has to be reg-
ularized at the origin. For the discrete version, we can
thus freely choose Gi,i = G(r = 0) = −1, as discussed
above. Next, we compute the Eshelby propagator in the
continuous Fourier space [53],

ĜE(q2
x, q

2
y) = −

4q2
xq

2
y(

q2
x + q2

y

)2 (2D),

ĜE(q2
x, q

2
y, q

2
z) = −

4q2
xq

2
y

q4
− q2

z

q2
(3D).

(9)

Because we consider a finite system with a linear box
length L and periodic boundary conditions, we need to
discretize the Fourier space as well, following the same
procedure as in Ref. [52]. First, the wave-vector compo-
nents are written as qµ = (2π/L)nµ, with µ = x, y(, z)
and nµ = −L/2 + 1, · · · , L/2. Second, we consider a
discrete Laplacian instead of the continuous one, which
amounts to replacing q2

µ → 2− 2 cos qµ in Eq. (9). More-
over, Eq. (9) is not defined at q = 0 because the Eshelby
propagator is not integrable in infinite volume, but in the
discrete version we can normalize it in such a way that
Ĝq=0 = −1, as discussed above. These two conditions,

Ĝq=0 = −1 and Gi,i = −1, can be simultaneously sat-
isfied by normalizing the Eshelby propagator in Fourier
space [40]. Our final discrete propagator is then

Ĝq =

{
−1 , q = 0 ,
ĜE(q2µ→2−2 cos qµ)

G , q = 2π
L n 6= 0 ,

(10)

with the constant G determined by the condition,

Gi,i =
1

N

∑
q

Ĝq = −1 , (11)

where the sum is over the discretized wave-vectors. The
propagator in discrete real space is finally obtained from
Ĝq by a discrete inverse Fourier transform.

Comparison with molecular simulations

To perform sample averages of the various observables,
we use 1000− 2000, 400− 600, 400− 600, 200− 400, and

100 − 200 samples for L = N1/2 = 256, 512, 1024, 2048,
and 4096, respectively, in 2D, and 800−2000, 800−1000,
800 − 1000, 400 − 1000, 200 − 500, and 100 − 200 sam-
ples for L = N1/3 = 48, 64, 80, 104, 128, and 164,
respectively, in 3D. These numbers are larger than
those used in molecular dynamics (MD) simulation
studies: in previous work by some of us, we averaged
over 800, 700, 400, 200, 200, 200, 200, and 100 samples
for N = 1000, 2000, 4000, 8000, 16000, 32000, 64000,
and 128000, respectively, in 2D [20], and
800, 400, 200, 100, 100, 50, and 25 − 50 samples for
N = 1500, 3000, 6000, 12000, 24000, 48000, and 96000,
respectively, in 3D [19]. Moreover, we study a larger
number of values of the disorder (R in EPMs) than in
molecular simulations (in which disorder is encoded by
Tini [19, 20]).

It is also instructive to compare the system sizes
achieved in MD and EPM simulations. This can be done
by following two distinct approaches. The first one is
measuring the typical size of a shear transformation zone,
which corresponds to a building block (or single site) for
the EPM mesoscopic description, in an MD simulation:
see, e.g., [51]. The second one is a quantitative calibra-
tion or mapping from MD to EPM, such that the sta-
tistical properties and the macroscopic responses in both
studies match: see, e.g., [54, 55]. All of this indicates that
a single site in an EPM corresponds to of the order of
magnitude of 100 particles (atoms) in an MD simulation.
Although these studies focus on a rather ductile yielding
regime, we expect that this order of magnitude does not
change significantly in the brittle yielding regime. This
issue is further discussed in Ref. [56]. Using this conver-
sion, 16 millions of particles in an MD simulation as in
Ref. [38] correspond to 160000 sites in EPMs. Our largest
EPM in 2D (N = L2 = 16777216) is thus about 100 times
larger and in 3D (N = L3 = 4410944) about 30 times
larger than the MD counterpart in Ref. [38]. Therefore,
effectively, our study accesses much larger system sizes
than previous MD studies.

Definition of the order parameter

In order to characterize the presence of a critical point,
we need to define a proper order parameter associated
with the brittle-to-ductile transition. The most direct
one is based on the presence of a discontinuity in the indi-
vidual stress-versus-strain curve, namely, the stress drop,
∆σ(γ). One can then define ∆σmax = maxγ{∆σ(γ)},
which amounts to finding the largest stress drop in the
whole dynamics [19, 20]. If one considers a system with a
strong disorder, i.e., in the ductile regime, this quantity
goes to zero as the system size increases. However, in
the brittle regime a macroscopic stress drop is present,
and as a result ∆σmax remains finite. Therefore, one can
study how ∆σmax changes when the initial stability (or
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FIG. 7. Mean value of the order parameter ∆σmax as a func-
tion of R for several system sizes L in 2D (a) and 3D (b).
The corresponding variance of ∆σmax, which corresponds to
a disconnected susceptibility, is shown in (c) for 2D and (d)
for 3D.

disorder strength) R is varied in order to distinguish the
two yielding regimes.

The mean and variance of ∆σmax are presented in
Fig. 7 in both 2D and 3D. As in Fig. 2 in the main text,
we observe the signature of a critical point: 〈∆σmax〉 is of
order O(1) when R is small, while it goes to nearly zero
when R is large, and more so as the system size L in-
creases. Around the onset of the growth of 〈∆σmax〉, the
(disconnected) susceptibility, N

(
〈∆σ2

max〉 − 〈∆σmax〉2
)
,

shows a peak that grows with the system size. How-
ever, as we decrease R further, the susceptibility seems
to diverge again with the system size. This unexpected
behavior can be explained by considering a simple argu-
ment in the case of very weak disorder R. Let us assume
that when R → 0+ the system evolves purely elastically
up to the macroscopic yielding strain γY, which corre-
sponds to the value of γ at which the least stable site
yields. We now define the maximum stress of the initial
distribution, σmax = maxi{σi(γ = 0)}. Consequently,
we have µγY = σth − σmax. If we also assume that the
macroscopic stress goes to a plateau value σss after yield-
ing, we obtain ∆σmax = µγY − σss. Therefore, we can
relate the fluctuations of ∆σmax and σmax through

〈∆σ2
max〉 − 〈∆σmax〉2 = 〈σ2

max〉 − 〈σmax〉2 . (12)

Since the initial distribution is nearly a Gaussian, σmax

follows a Gumbel distribution, associated with extreme-

value statistics [57]. We then arrive at

〈∆σ2
max〉 − 〈∆σmax〉2 =

π2R2

12 lnN
. (13)

This expression explains the growth of the susceptibility
at R → 0 in Fig. 7. In real experiments and molec-
ular simulations, such a growth would not be present
because in practice the elastic branch contains multiple
plastic events and the purely elastic assumption taken
above does not hold in these systems [10].

In order to avoid this problem in the elasto-plastic
models, we have decided to consider a different order pa-
rameter. Since the presence of a macroscopic stress drop
in the brittle regime is accompanied by the abrupt for-
mation of a shear band, one can think of characterizing
yielding by looking at the number of sites that yield in
each horizontal or vertical line (in 2D) or plane (in 3D).
More precisely, we define a quantity nx,y(γ) in 2D that is
1 if the site at (x, y) has already had a plastic event dur-
ing its evolution up to γ, and 0 otherwise (and similarly
for nx,y,z(γ) in 3D). We can then define

nx(γ) =
1

L

L∑
y=1

nx,y(γ) (2D), (14)

nx(γ) =
1

L2

L∑
y,z=1

nx,y,z(γ) (3D), (15)

in 2D and 3D respectively. In the same way we also
define ny(γ) for vertical lines in 2D, and ny(γ) and
nz(γ) for vertical planes in 3D. We expect that, in
the ductile regime, there is essentially no difference
between nx(γ) and ny(γ) (and nz(γ)) since the plastic
activity occurs rather uniformly throughout the sample
and no spatial organization of the events is observed.
On the other hand, in the brittle regime, there is
a specific x∗ (or y∗ or z∗) such that nx∗(γ) ≈ 1 at
γ ≈ γY due to the formation of the shear band. This
corresponds to a strong anisotropic localization of the
plastic activity. One can then characterize whether the
system is in a ductile or brittle phase by studying the
evolution of these quantities. In particular we consider
n(γ) = maxx,y{nx(γ), ny(γ)} (and similarly in 3D). The
inset of Fig. 4 in the main text shows the evolution
of n(γ) for some samples. The discontinuous stress
drop of σ(γ) in the brittle regime corresponds to the
discontinuous jump of n(γ), whereas the mild continuous
crossover of σ(γ) in the ductile regime corresponds to a
continuous increase of n(γ). Therefore, n(γ) essentially
contains the same information as σ(γ) as far as charac-
terizing brittle and ductile yielding is concerned. As for
∆σ(γ), we compute the jumps, ∆n(γ), in this quantity,
which allows us to define a new order parameter ∆nmax,
defined as ∆nmax = maxγ{∆n(γ)}. The results for
∆nmax(γ) are presented in Fig. 2 in the main text.
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Force balance

Since we use the AQS driving, imposing force balance
is an important element in the simulation of the EPM.
In the continuum limit, mechanical equilibrium imposes
that the divergence of the stress vanishes. For example
in 2D, one should have

∂σxx(x, y)

∂x
+
∂σxy(x, y)

∂y
= 0 . (16)

Integrating this relation over x, we obtain∫
dx
∂σxy(x, y)

∂y
= −

∫
dx
∂σxx(x, y)

∂x
. (17)

Because the right-hand side of Eq. (17) vanishes due to
periodic boundary conditions for any y, we obtain

∂

∂y

∫
dxσxy(x, y) = 0 , (18)

implying that the average shear stress σxy(x, y) must be
constant over a row (or a column). A similar derivation
can be obtained in 3D.

In the discrete version, averaging the local shear stress
(here σ = σxy) evolution in Eq. (4) over x in 2D, we
obtain

1

L

∑
x

σx,y →
1

L

∑
x

σx,y + ∆σext −∆σp

+
1

N

∑
qy 6=0

Ĝqx=0,qy∆σ̂qx=0,qy e
iqyy .

(19)

Because the Eshelby kernel in Fourier space vanishes
whenever qx = 0 for all qy 6= 0, see Eq. (9), the second
line vanishes and the average stress along all rows changes
by the same quantity, ∆σext−∆σp [58]. The same result
is obtained for columns. This means that the difference
between the average stress along a given row and along a
different row or column remains constant during the dy-
namics. Therefore, to impose mechanical equilibrium, or
force balance condition, it is sufficient to ensure that the
sum of the stresses along rows and columns is the same
for the initial stress distribution at γ = 0. For 3D, a
similar argument holds for the average local shear stress
over an x-z (or y-z) plane.

As already explained, we initialize the local stresses by
a nearly Gaussian distribution with zero mean. Thus,
the force balance condition is satisfied asymptotically at
large L because the average stress over a single row or
column goes to zero when γ = 0 and L → ∞. However,
this condition does not hold exactly in finite system sizes.
We have thus tested another way to initialize the local
stresses, which strictly enforces the force balance con-
dition. The initial stress at each site is drawn from a
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FIG. 8. Finite-size analysis of the critical point for the model
described in Ref. [40]. (a) Average value of ∆nmax. (b) As-
sociated disconnected susceptibility.
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FIG. 9. Average stress-versus-strain curves for a 2D model
with L = 2048 close to Ro = 0.36. Inset: zoom in on the
region where the overshoot appears. The dashed horizontal
lines are a guide for the eye.

Gaussian distribution of zero mean and standard devia-
tion R, but we follow the procedure described in Ref. [40]
and implement an additional random operation to keep
the sum of the stresses equal along all rows and columns.
We then use this initial condition for our EPMs, and we
find that the results quickly converge to the results pre-
sented in the main text with increasing L. Therefore, our
conclusions on the critical point are not affected by the
choice of the force balance condition at γ = 0.

Variations of the model: random thresholds

We have also considered a different way to tune the
disorder of the sample. We fix R = 0.45 for the initial
condition and we let instead the stress threshold σth

i be
randomly distributed [40]. In this model, the local stress
threshold at each site, σth

i , when γ = 0 is chosen accord-
ing to a Gaussian distribution of mean M and variance
0.01. After each plastic event, σth

i is updated from an-
other Gaussian distribution of mean 1 and variance 0.01.
Notice that in this model the system shows brittle or
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ductile yielding depending on the average value M of the
initial σth

i . A large M corresponds to a stable or weakly
disordered sample, whereas a small M corresponds to a
less stable or highly disordered sample. Although this
model contains some ingredients that are different than
those of the model we have studied in the main text, such
as the threshold distribution and its softening, the precise
way to enforce force balance, etc., it essentially displays
the same phenomenology. This is illustrated in Fig. 8 for
the mean value of the order parameter ∆nmax and the
associated disconnected susceptibility, with 1/M playing
the role of R. These numerical observations suggest that
the critical point that we have identified in this work is
quite robust and universal with respect to changes in the
details of the simulated elasto-plastic models.

Determination of the onset of the stress overshoot

We determine the onset value Ro at which the stress
overshoot appears (or disappears) in the evolution with
the applied strain of the stress averaged over many in-
dependent samples. We illustrate the operational pro-
cedure in Fig. 9 for the 2D elasto-plastic model with
L = 2048. Three averaged stress-versus-strain curves in
the vicinity of the first appearance of the overshoot are
shown. From such a plot, one can detect Ro in a reliable
manner. We have performed this analysis for different
values of L both in 2D and 3D. The outcome is summa-
rized in Fig. 5 in the main text.
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