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Abstract

1. Passive acoustic monitoring of biodiversity is growing fast, as it offers an alternative to traditional aural

point count surveys, with the possibility to deploy long-term acoustic surveys in large and complex

natural environments. However, there is still a clear need to evaluate how the frequency- and distance-

dependent  attenuation  of  sound  as  well  as  the  ambient  sound  level  impact  the  acoustic  detection

distance of the soniferous species in natural environments over the diel cycles and across seasons. This

is  of  great  importance  to  avoid  pseudoreplication  and  to  provide  relevant  biodiversity  indicators,

including species richness, species abundance and species density.

2. To address the issue of detection distance, we tested a field-based protocol in a Neotropical rainforest

(French Guiana,  France)  and in  an  Alpine  coniferous  forest  (Jura,  France).  This  standardized  and

repeatable  method  consists  in  a  recording  session  of  the  ambient  sound  directly  followed  by  an

experiment using a calibrated white noise sound broadcast at different positions along a 100 m linear

transect. We then used acoustic laws to reveal the basic physics behind sound propagation attenuation.

3. We  demonstrate  that  habitat  attenuation  in  two  different  kinds  of  forests  can  be  modelled  by  an

exponential decay law with a linear dependence on frequency and distance. We also report that habitat

attenuation, as first approximation, can be summarized by a single value, the coefficient of attenuation

of the habitat. 

4. Finally,  we  show  that  the  detection  distance  can  be  predicted  knowing  the  contribution  of  each

attenuation factor, the coefficient of attenuation of the habitat, the ambient sound pressure level and the

amplitude and frequency bandwidth characteristics of the transmitted sound. We show that the detection
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distance mostly depends on the ambient sound and may vary by a factor of up to 5 over the diel cycle

and across seasons. These results reinforce the need to take into account the variation of the detection

distance when performing passive acoustic surveys and producing reliable biodiversity indicators. 

Keywords

Biodiversity monitoring; active space; detection distance; excess attenuation; sound propagation; physical 

acoustics; passive acoustic monitoring (PAM); autonomous recording units (ARU); acoustic survey; 

bioacoustics; ecoacoustics
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1. Introduction

Passive  acoustics  monitoring  is  becoming  an  attractive  sampling  tool  in  ecology,  in  particular  for

biodiversity monitoring, as it provides complementary data to traditional aural point count surveys (Gibb et al.,

2019) and camera trap surveys (Buxton et al., 2018). Remote acoustic sensing devices, also called autonomous

recording units (ARUs), offer the possibility to record soundscapes in terrestrial  (Sugai et al., 2019), marine

(Sousa-Lima et al., 2013) and freshwater environments (Desjonquères et al., 2020), for long periods (Folliot et

al., 2022; Grinfeder et al., 2022). ARUs increase the sampling effort and at a frequency range that can exceed

the human ear range, e.g. infrasound (Fregosi et al., 2020) or ultrasound (Newson et al., 2017), with relatively

low-cost devices (Hill et al., 2019). In addition, the soundscapes recorded by ARUs are analyzed a posteriori,

offering multiple types of repeatable analyses based on human experts (Yip & Bayne, 2017) and/or algorithms

(Ulloa et al., 2018). 

Recent advances in the automatic recognition of species vocalizations  (Kahl et  al.,  2021) open the

possibility  of  detecting  the  presence  of  target  species  in  soundscapes  and  thereby  attaining  important

information for biodiversity assessment and conservation (Priyadarshani et al., 2018). To deliver reliable species

richness or abundance data at specific sites and to assign a specific number of observations per unit area, it is

often necessary to estimate the detection distance of an ARU, although this is rarely done in practice  (Pérez-

Granados & Traba, 2021), probably because it requires the realization of a difficult experiment without any

standardized guidelines  (Sugai et al., 2020). Furthermore, knowing the detection distance is a prerequisite for

defining the number and position of ARUs that need to be installed in the field to properly cover a study area

(Pérez-Granados  et  al.,  2018).  Standardization  in  the  evaluation  of  the  detection  range  is  also  required  to

provide correction factors between different brands of ARUs (Yip et al., 2017) as well as between ARUs and

human observers (Castro et al., 2019; Darras et al., 2018, 2019; Van Wilgenburg et al., 2017; Yip et al., 2017).

Therefore, determining the detection distance, also referred to as the sampling area, effective detection radius or

detection range, appears to be key to obtaining reliable biodiversity estimations (Shonfield & Bayne, 2017).

Most acoustic surveys estimate the detection distance by determining the threshold distance from which

the sound produced by a species of interest is no longer recognizable (Yip et al., 2017) or is below the ambient

sound pressure level (Darras et al., 2016). This estimation is generally achieved by playing back focal species-

specific song/call or tone bursts at different distances from the recorder (Shaw et al., 2021). Statistical models

such as  the  well  accepted effective  detection radius  (EDR)  (Sólymos et  al.,  2013)  or  the  recent  distance

truncation method (Hedley et al., 2021) are then used to determine when a sound is no longer recognizable by

an algorithm or a human expert. Such models allow multiple factors to be tested, such as the importance of

ARU specifications (e.g. sensitivity, frequency response), sound source properties (e.g. sound levels, pure tones,

species vocalizations, speaker brand, height or orientation), habitat characteristics (e.g. deciduous, coniferous,

open or closed habitat, ambient sound) and environmental conditions (e.g. relative humidity, temperature, wind

speed) (Darras et al., 2016, 2018; MacLaren et al., 2018; Pérez Granados et al., 2019; Priyadarshani et al., 2018;

Shaw et al., 2021; Thomas et al., 2020; Yip et al., 2017; Yip & Bayne, 2017) . Despite these models being

widely  used,  they  suffer  from  some  drawbacks.  These  models  are  mostly  species-specific  with  little
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consideration for the frequency characteristics of the animal vocalizations, precluding any generalizations to

other species with different frequency characteristics. In addition, these models do not consider the underlying

physics of sound propagation – such as the relative role of sound atmospheric absorption and sound scattering

due to vegetation – which is required to simulate realistic animal vocalization attenuation after propagation.

Finally, these models do not directly assess signal masking by the ambient sound as well as its variation over the

diel cycle and across seasons which might be an important driver of the detection range. 

In this article, we propose to address some of the aforestated limitations by introducing a standardized,

repeatable and generalized method that is able to predict the  attenuation of sound depending on the physical

laws that govern the sound propagation in natural environments. This new approach, which is complementary to

the aforementioned statistical models, is based on the popular  excess attenuation framework of outdoor sound

propagation, which estimates the surplus of attenuation that is not explained by the sum of the well known

geometric and atmospheric attenuations (Aylor, 1972; Price et al., 1988). After carefully removing the ambient

sound contribution from the audio recordings, we were able to estimate the frequency- and distance-dependent

coefficient of attenuation. This is a key parameter to simulate sound attenuation in two closed but contrasting

habitats, a Neotropical rainforest (French Guiana, France) and an Alpine coniferous forest (Jura, France). We

determined the detection distance of an ARU corresponding to the distance at which the sound pressure level

of a  transmitted signal  goes below the ambient  sound.  Finally,  we modelled the variation in the  detection

distance of the ARU over the diel cycle and across seasons in both habitats in order to analyze its temporal

fluctuations  and  its  impact  on  long-term  monitoring.  Explanations  of  technical  terms  related  to  physical

acoustics used in this paper are given in the supplementary glossary and their first relevant use in the text is

indicated in bold italics.

2. Materials and Methods

a. Study sites

We performed propagation experiments in two forest sites. The first site was a pristine Neotropical

lowland rainforest (French Guiana, France), near the Saut Pararé rapids of the Arataye River (4°2'N; 52°40'W,

CNRS Nouragues Research Station).  The forest  is  characterized by a fairly  open understorey and a  dense

canopy between 40 m and 45 m (see Table A-1 of Appendix A). The ground is covered with  thick litter. The

habitat structure does not undergo cyclic nor important changes over the year.  The experiment was conducted

on 18 February 2019,  at  the  end of the  dry season.  The temperature  and the relative  humidity during the

propagation test were 27.9 °C and 87 %, respectively. The atmospheric pressure given by the nearest Météo

France station at Cayenne-Matoury (97 km away) was 101,340 Pa.

The second site was an Alpine coniferous forest located in the Massif du Risoux (46°32’N; 6°06’E),

within the Parc Naturel Régional du Haut-Jura (Jura, France). The site is mainly covered by pure spruce ( Picea

abies) forest (see Table A-2 of Appendix A). The limestone soil is composed of a thin litter, covered with

blueberries (Vaccinium myrtillus) and presenting a superficial groove carved out by water in limestone soil

called lapiaz. The habitat structure does undergo small changes over the year, with snow cover during the winter
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and  slight  changes  of  the  foliage  density  due  to  the  presence  of  some  deciduous  trees  and  shrubs.  The

experiment took place on 11 July 2019, with an average temperature of 17 °C and a relative humidity of 67 %.

The atmospheric pressure given by the nearest Météo France station at Dijon-Longvic (114 km away) was

87,999 Pa. 

Finally, we used one-year audio data sets collected by the same ARU (Song Meter SM4, Wildlife

Acoustics, Maynard, MA, USA) with the same audio configuration at each site. These data sets consisted in a

collection of 1-minute audio recordings every 15 minutes (1 minute on, 14 minutes off) all day long for a total

of 584 hours (96 minutes * 365 days). These data sets were used to estimate the variation in the detection

distance  during  the  night  and  day  cycle  and across  seasons.  In  both  cases,  the  relative  humidity  and the

temperature  were measured in  parallel  to  the  audio  recordings every  15  minutes,  using dedicated  weather

loggers (Hobo, Onset, MX2302 and MX2202, Bourne, MA, USA).

b. Experimental protocol

We measured  sound  attenuation  via  propagation  experiments  using  the  level  difference  technique

(Ellinger & Hödl, 2003). This technique, which does not require the computation of free-field propagation and

supports the use of a non-calibrated source and receiver, consists in measuring the difference in the frequency

spectrum recorded at different propagation distances. The protocol first involved recording the ambient sound

for 22 seconds. This recording was directly followed by the broadcasting of  white noise  for an additional 22

seconds with a wireless and waterproof loudspeaker (JBL Xtrem2, Northridge, CA, USA). The white noise was

recorded  at  different  distances  by  an  autonomous  recording  unit  (Song  Meter  SM4,  Wildlife  Acoustics,

Maynard, MA, USA). The loudspeaker and the recorder were placed face to face at the same height (1.5 m in

French Guiana, 2.5 m in Jura). The loudspeaker was calibrated to control the sound level and to flatten the

broadcast signal around the desired frequency range (see Appendix B for the complete calibration procedure).

White noise was broadcast at 83 dB SPL re20 µPa at 1 m in French Guiana and 78 dB SPL re20 µPa at 1 m in

Jura every 10 m along a 100 m linear transect (see Appendix A for an illustration of each transect). These

source levels were within the range of those previously used for other sound attenuation studies (Darras et al.,

2016; Morton, 1975; Shaw et al.,  2021) and corresponded to the average sound level of bird vocalizations

(Aubin & Mathevon, 2020; Brackenbury, 1979). The ambient sound and the broadcast white noise were also

recorded and their sound level measured using a sound level meter with a flat frequency response between 0.05

kHz and 20 kHz (SVANTEK 977A, Warsaw, Poland) positioned right next to the ARU, both microphones

separated by less than 10 cm but at the same distance to the loudspeaker.

The main characteristics of the experiments are summarized in Table 1.

c. Sound attenuation contributions in the natural environment

We reduced the complexity of sound attenuation in the natural environment by decomposing it into

three components: (1) geometric attenuation (Ageo), also known as spreading loss or spherical attenuation; (2)

atmospheric attenuation (Aatm); and (3) habitat attenuation (Ahab) (Embleton, 1996). The new concept of habitat

attenuation is detailed below (see appendix C for the calculation of Ageo and Aatm).

i. Habitat attenuation  
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The attenuation due to the habitat Ahab encompasses the attenuation due to the ground effect and wave

scattering and absorption by tree trunks, branches and leaves (Rossing, 2007). We did not account for the effect

of topography because the transects were on flat terrain (see Appendix A). We also neglected the effect of wind

as wind speed was below 5 m/s and other minor phenomena like temperature gradients and vortices as the

experiments took place in closed habitats (Rossing, 2007).

We regarded the  habitat  as  a  homogeneous  propagation  medium governed by  a  single  attenuation

parameter which depends on the propagation distance r, the reference distance r0 and frequency f. We used an

empirical  model  of  sound  attenuation  following  an  exponential  decay  law  with  a  power-type  frequency

dependence (Szabo, 1994) whose exponent varies between 0 and 2. We assumed an exponent equal to 1, that is,

a linear dependence between frequency and distance. Eventually, the habitat attenuation law is governed by a

single parameter and Ahab can be expressed in terms of sound level using the following equation, with a0 being

the habitat attenuation coefficient in dB/kHz/m:

Ahab = 20 * log10(exp(â0 * f * (r – r0)))
Ahab = 8.69 * â0 * f * (r – r0)

Ahab = a0 * f * (r – r0) (1)

ii. Excess attenuation and experimental determination of habitat attenuation  

We calculated the excess attenuation  EA in order to estimate the difference between the theoretical

attenuation and the measured attenuation through the habitat (Ellinger & Hödl, 2003). EA at a given distance r

relative to a reference distance r0  corresponds to the difference between the theoretical sound level  L and the

experimentally  measured  sound  level  Lexp  for  each  frequency  step  f and  each  distance  step  r,  without  the

contribution of the ambient sound Ln, hereafter called Lexp_corr (see appendix C for the estimation of Lexp, Ln and

Lexp_corr). The theoretical sound level L is also equal to the initial sound level L0 measured at distance r0, minus

the geometric (Ageo) and atmospheric (Aatm) attenuations. Thus, EA can be expressed as:

EA = L0 – Ageo – Aatm – Lexp_corr (2)
If we consider that the excess attenuation EA is entirely due to the habitat attenuation Ahab, then  EA =

Ahab.  We obtain the expected frequency linear dependency of  Ahab after normalizing  EA by the propagation

distance r – r0 for each distance r:

EA = a0 * f * (r – r0)
EA / (r – r0) = a0 * f (3)

We estimated a0  by carrying out a linear regression using a robust (i.e. minimizing the contribution of

outliers) linear model of Eq. 3 as a function of f, r and r0. The reference distance r0 was set to vary between 10

m and 50 m (over 50 m, the signal is too weak to be used as a reference signal) while the range of the distance r

was set between 10 m to 100 m. We did not use distances smaller than 10 m because significant distortion due

to the ground effect could occur (Embleton, 1996). We restricted the frequency range of the linear regression

between 0.5 kHz and 15 kHz, because outside this range most  of  the propagated white noise  Lexp was not

separable from the ambient sound Ln. The estimate was validated if the linear model was highly significant (p <

0.001).  We  obtained  a0  for  both  habitats  with  the  ARU  and  the  sound  level  meter.  The  final  value  a0

6



corresponded  to  the  average  of  the  a0  resulting  from the  linear  minimizations  carried  out  by  varying  the

reference distance r0 between 10 m and 50 m.

iii. Full propagation model  

To  describe  and  predict  the  attenuation  of  acoustic  waves  propagating  through  both  forests,  we

simultaneously  took into  account  the  three  types  of  attenuations  described  above.  We  used  the  following

complete propagation model:

L = L0 − Ageo − Aatm − Ahab        (4)
In order to validate the full attenuation model, theoretical propagation curves were obtained by applying

the Eq. 4 for four frequency bands (i.e. [0−5] kHz, [5−10] kHz, [10−15] kHz and [15−20] kHz) for each habitat

and  each  recording  device.  L0,  Ageo,  Aatm and  Ahab were  calculated  using  the  experimental  parameters  (i.e.

temperature, relative humidity, barometric pressure, initial sound level) and the estimated coefficients  a0 (see

appendix C for calculation of  Ageo and  Aatm). Finally, the ambient sound level  Ln was taken into account by

adjusting its contribution to each theoretical propagation curve  L in order to estimate the experimental sound

level  Lexp which is a combination of the propagated sound (i.e. the white noise signal) and the ambient sound

that arrive simultaneously at the microphone. The result was then compared to the sound levels Lexp measured

for each propagation distance and each frequency band. In the case of ARU, we applied a frequency correction

in order to flatten as much as possible the frequency response of the ARU (see appendix D for the procedure of

calibration). Finally, for a demonstration purpose, we overlaid two curves obtained from partial attenuation

model (1) with only the geometric attenuation (i.e.  L0 −  Ageo) and (2) with both geometric and atmospheric

attenuations (i.e. L0 − Ageo − Aatm).

d. Detection distance estimation by autonomous recording units

We adopted the following definition of the detection distance: a sound emitted at a given frequency is

considered detectable but not necessarily discriminable if its sound level is greater than a threshold just above

the average sound level of the ambient sound corresponding to that frequency (Dawson & Efford, 2009).  We

inferred  the  ARU detection  distance  by  finding  the  distance  r that  minimizes  the  difference  between  the

propagated sound level L (see Eq. 4) and the level of the ambient sound Ln (Ellinger & Hödl, 2003).

In the case of data collected during a propagation distance experiment, Ln corresponds to the average

sound level measured during the ambient sound recording before broadcasting the white noise signal. In the

case of the annual data sets, we set the ambient sound as the median of the sound pressure level measured at

each  1  kHz  frequency  bin  within  the  frequency  range  1–20  kHz,  for  each  month  within  a  1-hour  slot

corresponding to four 1-minute-long recordings. By knowing the ambient temperature and the relative humidity

measured by the loggers and using the propagation model defined in  Eq. 4, we were able to calculate the

detection distance of 80 dB SPL of white noise and focused on the frequency range 1–8 kHz, where most of the

biophony occurred. We made the assumption that the coefficient of attenuation  a0 of each habitat remained

constant throughout the year as there were only minimal changes in habitat structure over the course of the year.

e. Software tools

Data processing and statistical analyses were performed in R 3.6.3  (TEAM, R.Core, 2020) with the

7



seewave (Sueur et al., 2008) and tuneR (Ligges, 2016) packages for signal processing, the robustbase package

for linear regression (Maechler et al., 2022) and the plotly (https://plotly.com/graphing-libraries/) and tidyverse

(Wickham et al., 2019) packages for graphs.

The ambient  sound estimation over the course of a year in a Neotropical rainforest and an Alpine

coniferous forest was performed in Python with the scikit-maad package (Ulloa et al., 2021).

Comprehensive functions to compute sound pressure level from audio files, spreading loss, atmospheric

attenuation  and  habitat  attenuation  as  well  as  to  estimate  the  detection  distance  are  available  on  GitHub

(https://github.com/shaupert/HAUPERT_MEE_2022) (R) and in the scikit-maad package (Python).
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3. Results

a. Ambient sound and white noise sound level variation as a function of distance

The time-frequency representation of the  sound recorded by the ARU (see Appendix E for results

obtained with the sound level meter) as a function of distance revealed that in both forests: 1) the frequency

spectrum of  the  white  noise  signal  recorded by  the  ARU was  not  flat;  2)  part  of  the  white  noise  signal

disappeared in the ambient sound at 30 m and beyond (Figs. 1a and 2a).

Similarly, the mean power spectra of the white noise showed  aperiodic lobes  that probably resulted

from a  comb filter effect which delayed version of the transmitted signal to itself, causing constructive and

destructive interference due to the reverberation of the sound on the ground (Figs. 1b and 2b).

The overall sound level (ambient + white noise) as well as the ambient sound level alone and the white

noise level alone in the Neotropical forest revealed a peak of acoustic energy of between 6.5 kHz and 8.5 kHz,

followed by a smaller peak of around 15 kHz, due to insect stridulations. Likewise, a peak of acoustic energy of

between 0 and 1 kHz occurred in the Alpine coniferous forest, mostly due to aircrafts and the rustling of leaves

(Figs. 1c and 2c). 

In both forests, the sound level of the white noise decreased as expected with distance to reach a value

close to the ambient sound level beyond 60 m and for frequencies above 10 kHz. 
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Figure 1: Ambient sound and white noise variations according to distance in the  Neotropical rainforest (French Guiana).

(a) Time-frequency representation of the sounds recorded by the ARU of the ambient sound and the white noise between 10

m and 100 m. (b) Mean spectra of the total sound pressure level (dB SPL) (i.e. ambient sound + white noise) measured at

each distance. (c) Map of  sound levels: overall transmitted signal at each propagation distance (left), ambient sound

(centre) and white noise (right). The missing pixels in panel (c) represent the distance-frequency combinations where the

amplitude level of white noise could not be disentangled from the ambient sound. The unit is dB SPL (re20 µPa). The audio

signals were collected by the ARU on 18 February 2019 between 2 pm and 5 pm.
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Figure 2: Ambient sound and white noise variations according to distance in the Alpine coniferous forest (Jura). (a) Time-

frequency representation of the sounds recorded by the ARU of the ambient sound and the white noise between 10 m and

100 m. (b) Mean spectra of the total sound pressure level (dB SPL) (i.e. ambient sound + white noise) measured at each

distance. (c) Map of sound levels: overall transmitted signal at each propagation distance (left), ambient sound (centre)

and white noise (right). The missing pixels in panel (c) represent the distance-frequency combinations where the amplitude

level of white noise could not be disentangled from the ambient sound. The unit is dB SPL (re20 µPa). The audio signals

were collected by the ARU on 11 July 2019 between 11 am and 1 pm.

b. Habitat attenuation

The linear dependence between the habitat attenuation Ahab and the frequency f was verified using the

excess attenuation EA normalized by the propagation distance (EA / (r – r0)) for different distances of reference

r0  (see Eq. 3). Moreover, the linear dependence between frequency and (EA / (r – r0)) only occurred when the

ambient sound was subtracted from the original sound level, while this was not true when no correction was

applied (see appendix G). 
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The habitat attenuation coefficients a0 are summarized in Table 2. The average value of the attenuation

coefficient a0 in the Neotropical rainforest was 0.019 ± 0.001 dB/kHz/m according to the sound level meter and

0.011 ± 0.001 dB/kHz/m according to the ARU. In the Alpine coniferous forest, the attenuation coefficient a0

was 0.020 ± 0.008 dB/kHz/m according to the sound level meter and 0.024 ± 0.008 dB/kHz/m according to the

ARU. The dispersion of the values of  a0 around the mean value precluded any statistical analyses. However,

attenuation was slightly lower in the Neotropical rainforest (French Guiana) than in the Alpine coniferous forest

(Jura).

The theoretical propagation curves in the Neotropical rainforest using the full attenuation model (i.e.

Ageo+Aatm+Ahab) and partial attenuation models (i.e. Ageo only or Ageo+Aatm) are shown in Fig. 3 when the receiver

is the ARU (see Appendix F for the results obtained in the case of the theoretical propagation curves in the

Alpine coniferous forest and when the receiver is the reference sound level meter). The trend of the sound level

attenuation predicted by the full attenuation model, including the addition of the ambient sound, was in good

agreement  with  the  experimental  values,  except  for  the  highest  bandwidth  15–20  kHz,  where  the  model

overestimated  the  experimental  values  by  6  dB  (see  Fig.  3).  The  discrepancy  between  the  theoretical

propagation curves and the experiment in the case of the ARU might have been due to the loss of sensitivity of

the microphone in high frequencies.
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Figure 3: Comparison between experimental data acquired with the ARU in a Neotropical rainforest (French Guiana) and

theoretical propagation curves obtained from the full model as described by Eq. 4. The comparison was performed for the

following bandwidths: (a) 0–5 kHz; (b) 5–10 kHz; (c) 10–15 kHz; and (d) 15–20 kHz. The habitat coefficient attenuation

parameter was a0 = 0.011 dB/kHz/m. L (model): predicted sound level according to the full propagation model; Lexp (exp):

experimental sound level; L0  - Ageo (model): predicted sound level according to a partial propagation model taking into

account only the geometric attenuation; L0 - (Ageo + Aatm) (model): predicted sound level according to a partial propagation

model taking into account both, the geometric and atmospheric attenuation; Ln (exp): experimental ambient sound level; L

(model) with Ln (exp): predicted sound level according to the full propagation model taking into account the contribution

of the experimental ambient sound level 

c. Detection distance estimation by autonomous recording units

The detection distance was driven by the combination of multiple factors: the source sound level L0, the

source frequency bandwidth, the sound attenuation factors (geometric  Ageo, atmospheric  Aatm and habitat  Ahab

attenuations), and the ambient sound level Ln.

i. Contributions of the different attenuation factors  

Regardless of the type of habitat, the most important attenuation factor was Ageo (Fig. 4). Its contribution

was predominant for low frequencies, especially in the Neotropical rainforest, where Ageo was the main sound

attenuation  factor,  representing  more  than  75  %  of  the  attenuation  for  frequencies  below  10  kHz.  For

frequencies above 10 kHz, the relative proportion of  Ageo decreased with frequency to become almost of the

same order of magnitude as the sum of the other two types of attenuation, Aatm and Ahab, especially in the Alpine

coniferous forest.  The contribution of atmospheric attenuation  Aatm followed the opposite trend to  Ageo as it

increased with frequency. This trend was similar for both forests. The contribution of attenuation due to the

habitat  Ahab was of  the  same order  of  magnitude  as  Aatm,  in  particular  in  the  Alpine coniferous  forest  for

frequencies above 10 kHz. The contribution of  Ahab for frequencies below 10 kHz was slightly smaller in the

Neotropical rainforest than in the Alpine coniferous forest.

ii. Variation in detection distance according to frequency  

The detection distance of white noise at 80 dB SPL re20 µPa varied considerably depending on the

frequency  and  the  type  of  habitat.  In  the  Neotropical  rainforest,  the  detection  distance  varied  between  a

minimum of 3 m at 7.75 kHz and a maximum of 83 m at 4.25 kHz (Fig. 4a). At a large frequency scale, the

average detection distance was 44 m and 45 m for the frequency range 0–10 kHz and 10–20 kHz, respectively.

In the case of the Alpine coniferous forest, the detection distance varied between a minimum of 6 m at 0.25 kHz

and a maximum of 125 m at 1.75 kHz (Fig. 4b). The detection distance was on average 81 m for the 0–10 kHz

frequency band and almost three times shorter with an average of 35 m for the 10–20 kHz frequency band. With

regard to estimating the detection distance by frequency of the quietest and the loudest passerine birds in Jura by

the ARU, see Appendix H.

iii. Variation in detection distance according to time of day and season  
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The detection  distance  within  both  habitats  varied  according  to  the  diel  period,  exhibiting  a  clear

difference between night and day (Figs. 5 and 6). In the case of the Neotropical rainforest, the detection distance

varied considerably during the night and day cycle and by season. The detection distance was lowest – just a

few metres – for the frequency range 7–8 kHz occupied by insects. In the case of the Alpine coniferous forest,

the detection distance varied most for frequencies below 2 kHz and least for frequencies above 4 kHz. The

detection distance fluctuated by up to five times according to the season and the time of the day. 

iv. Comparison between ARU and reference sound level meter  

In  both forests,  the detection distance estimated by the ARU was similar  to  that  estimated by the

reference sound level meter (see Appendix H). The detection distance was slightly lower for the ARU than for

the  sound level  meter,  in  particular  for  frequencies  above  10 kHz.  This  behaviour  owed to  the  frequency

response of the ARU which was not flat and which decreased significantly above 10 kHz (see Appendix C).

This resulted in a lower SNR for high frequencies, reducing the sensitivity threshold of sound attenuated by a

long propagation distance.

Figure 4: Detection distance of the ARU obtained with the model in: (a) a Neotropical rainforest (French Guiana); (b) an

Alpine coniferous forest (Jura, France). The source was a wideband (0–20 kHz) white noise broadcast at 80 dB SPL re20

µPa at 1 m. The profile of the source and the ambient sound takes into account the frequency response of the ARU. The

contribution of geometric (i.e. spreading loss) attenuation (Ageo, green), atmospheric absorption (Aatm, red) and habitat

attenuation (Ahab, purple) are depicted with different colours.
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Figure 5: Detection distance variation of the ARU according to night and day cycle and month in a Neotropical rainforest

(French Guiana) taken into account the variation of the environmental factors (T °C and RH %) as well as the  ambient

sound level Ln. The sound source was a wideband (0–20 kHz) white noise broadcast at 80 dB SPL re20 µPa at 1 m. Each

circular plot represents one month, with each circle corresponding to a propagation distance from 50 to 200 m by a step of
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50 m over a complete day (white) and night (black) cycle. Line colours refer to four 1 kHz frequency bands (0–1 kHz, 1–2

kHz, 4–5 kHz, 7–8 kHz). 

Figure 6: Detection distance variation of the ARU according to night and day cycle and month in an Alpine coniferous

forest (Jura) taken into account the variation of the environmental factors (T °C and RH %) as well as the  ambient sound
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level Ln. The sound source was a wideband (0–20 kHz) white noise broadcast at 80 dB SPL re20 µPa at 1 m. Each circular

plot represents one month, with each circle corresponding to a propagation distance from 50 to 200 m by a step of 50 m

over a complete day (white) and night (black) cycle. Line colours refer to four 1 kHz frequency bands (0–1 kHz, 1–2 kHz,

4–5 kHz, 7–8 kHz).

4. Discussion

In  this  study,  we  propose  a  standardized  and  repeatable  method  based  on  the  excess  attenuation

framework to estimate the detection distance of an autonomous recording unit (ARU). After taking into account

the ambient sound and the atmospheric absorption frequency dependence, in two types of forests, we show that

the attenuation of a habitat can be modelled with a single parameter a0 expressed in dB/kHz/m. We also confirm

that  for  a  given habitat,  the  detection distance varies  depending on the initial  sound pressure  level  of  the

broadcast  signal  and  its  frequency bandwidth.  Moreover,  we  highlight  that  the  main  factor  that  alters  the

detection distance is the masking effect of the ambient sound, which may vary dramatically during the 24-hour

cycle  and across  seasons in  both  habitats.  These findings  are  significant  in  providing  reliable  biodiversity

measures regardless of whether acoustic surveys are performed with ARUs or by traditional human point count

surveys.

a. Determining sound attenuation requires consideration of ambient sound and atmospheric absorption

frequency dependence 

We first  demonstrate  that  besides  geometric  attenuation  (Ageo),  it  is  necessary to  take into  account

atmospheric absorption (Aatm) in order to compute the excess attenuation EA and be able to estimate the habitat

attenuation (Ahab). We show that this corresponds to about a fifth of Ageo for a mid-frequency range relative to

bird calls and songs and up to a third for frequencies higher than 10 kHz. 

We also confirm as has already been noted (Darras et al., 2016; Shaw et al., 2021) that it is necessary to

remove the contribution of the ambient sound from the sound propagated through the habitat to estimate without

bias the attenuation process that affects sound propagation.

Altogether,  we strongly recommend removing the contribution of the ambient  sound  Ln as well  as

subtracting the attenuation Aatm and Ageo relative to the distance and the frequency band, in order to extract the

coefficient of attenuation of the habitat  a0. If not,  EA exhibits no linear relationship between frequency and

distance (see Figs. G-2 and G-3 in appendix G).

b. Sound attenuation partially depends on the habitat and can be modelled by a single value a0

Our propagation measurements reveal that sound attenuation partially depends on the habitat following

an exponential decay that can be modelled by a single coefficient of attenuation, a0. To our knowledge, this is

the first sound attenuation model of natural environments that has been validated over a large frequency band

(0–20 kHz), fitting particularly well in the 1–10 kHz frequency bandwidth, where most of the biophony is

found. Our model, which is based on acoustic physics and not descriptive statistics, does not attempt to evaluate

separately the different sources of attenuation occurring within the habitat, but rather quantify the role of each

variable, including temperature, relative humidity, atmospheric pressure, distance, frequency, ambient sound

pressure level and habitat.
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Having a single parameter opens the possibility of comparing attenuation among different habitats and

tracking the variation in habitat attenuation over seasons in case of deciduous forests, or over decades in case of

vegetation’s alterations (e.g. increase/decrease of the density of trees, timber extraction). We found that the

attenuation  coefficient  a0 did  not  differ  significantly  between  the  Neotropical  rainforest  and  the  Alpine

coniferous  forest,  a  counter-intuitive  result  that  is  actually  in  agreement  with  the  literature  (Aylor,  1972;

Ellinger & Hödl, 2003; Price et al., 1988). The apparent similarity of a0 between both forests might be explained

first by the measurement uncertainty possibly owing to an imperfect alignment between the loudspeaker and the

microphone. The apparent similarity of a0 might also be explained by the relatively equal influence of the three

main attenuation factors expected to play a role in sound propagation: (1) the ground effect, which acts as a

comb filter producing typical frequency bumps and rays, is mostly visible at the lowest frequencies (<1 kHz)

(Tarrero et al., 2008), minimizing its influence on the overall attenuation law; (2) the vegetation effect, which is

expected to induce scattering at  high frequencies (>1 kHz), actually seems to play a similar  role in sound

degradation regardless of forest type (Aylor, 1972; Darras et al., 2016; Shaw et al., 2021); and (3) the micro-

meteorological effect, including turbulence, which is stronger in open areas than in closed areas like the forest

understorey (Wiener & Keast, 1959). 

Due to the similarity of a0 for two different type of forests, we make the assumption supported by the

results found in the literature (see Appendix G)  that it is possible to use an average value of  a0 (i.e. 0.018

dB/kHz/m) as  a  reasonable  approximation  to  model  part  of  the  attenuation  of  sound through forests  with

relatively sparse foliage (i.e. with a visibility around 10 m), regardless of the type of forest. For instance, this

opens the possibility of obtaining a first approximation of the optimal spatial sampling when designing new

passive acoustic surveys. In temperate forests such Alpine coniferous forests, a minimum grid spacing of 500 m

(i.e. a 250 m radius) between ARUs is recommended when the louder bird vocalization in the habitat reaches up

to 90 dB SPL (see appendix H). We advise researchers to estimate the attenuation coefficient of their habitat of

interest using this method in order to verify this assumption and adjust a0 to their need. 

c. Drivers of the detection distance 

We show that it is possible to estimate the distance at which a transmitted sound vanishes. We call this

distance the detection distance, in contrast to the active distance, which is from the point of view of the emitter

(i.e. the source). The detection distance also differs from the sampling distance (also referred to as the detection

radius or the detectability area) used in human or automatic point count surveys (MacLaren et al., 2018; Pérez

Granados et al.,  2019; Yip et al.,  2017; Yip & Bayne, 2017). Indeed, in this study we do not provide the

probability of detecting a vocalization at a relative distance from the receiver, but rather provide the distance at

which the vocalization no longer emerges above the ambient sound. Despite this conceptual difference, the

detection distance found in both habitats is consistent with the sampling distances found in the literature (Darras

et al., 2018; MacLaren et al., 2018; Shaw et al., 2021).

For a given natural and relatively homogeneous environment over the period of observation, that is,

with a fixed a0, we show that the detection distance mostly depends on the ambient sound. A clear example are

the insect stridulations found between 6.5 kHz and 8.5 kHz in the Neotropical rainforest, which are so strong
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that the detection distance in this frequency range is just a few meters away from the receiver. Environmental

factors such as temperature and relative humidity play only a minor role in the global sound attenuation process

through the variation of the atmospheric absorption (see appendix J to observe the variation of the detection

distance over the diel cycle and across seasons when the ambient sound level Ln is fixed to the average yearly

value for each frequency bins and hours of the day).  Moreover, we demonstrate for the first  time that the

detection distance may vary considerably during the night and day cycle and by month regardless of the habitat

and the nature of the ambient sound. For instance, the detection distance within a 24-hour period was never

close to a constant in French Guiana, whatever the month, its patterns being more complex than the day-night

alternation. In Jura, the detection distance for the frequency bin 0–1 kHz increased by a factor of five between

the day and the night in relation to aircraft traffic (Grinfeder et al., 2022). In both forests, the detection distance

varied by up to a factor of 5 depending on the frequency bandwidth. The detection area, which is the square of

the distance (i.e. the radius), might then vary by up to a factor of 25 depending on the hour of the day and the

season. This major result implies carefully evaluating the detection distance at the frequency level in order to

provide reliable information on species density when using ARUs or human point count methods. Variability

among  surveys  with  respect  to  the  ambient  sound  might  also  affect  most  distance  sampling  or  detection

probability models, resulting in an over- or underestimation of species abundance or species richness (Koper et

al., 2016). Although the negative effect of the natural ambient sound on avian detectability is well-known for

point counts  (Simons et al.,  2007) and ARU surveys  (Darras et al.,  2016), to our knowledge few previous

studies  have  explicitly  included  the  ambient  sound  as  a  variable  in  their  models  to  predict  detectability

(Anderson et al., 2021) and none of them have shown that it can actually be generalized to other ambient sound

levels at different frequency ranges. We advise measuring the ambient sound by frequency bands in parallel to

ARUs or point count surveys in order to be able to take into account the variation in the model according to the

frequency.

In addition to the ambient sound, the detection distance depends on the sound level and the frequency

content of the source. In this study, we did not test the role of the sound level, as we used a fixed wideband

sound source level. Nevertheless, we are aware that the sound levels of biological sources, although rarely

known,  vary  across  species,  among  individuals  of  the  same  species,  and  within  the  same  individual.  For

instance, the sound level of common birds can vary from 75 dB SPL at 1 m in the case of the goldcrest (Regulus

regulus) (Brackenbury, 1979), among the quietest bird in Jura, to up to 111.5 dB SPL at 1 m in the case of the

screaming piha (Lipaugus vociferans) (Nemeth, 2004), among the loudest bird in French Guiana. In this study,

we instead focused on the frequency dependence of the detection distance. We have shown that in both habitats,

the detection distance of high-frequency sound is generally shorter than mid-frequency sound. This is congruent

with a signal processing perspective, which states that a habitat acts as a low-pass filter  (Römer, 2001), as

higher frequencies with smaller wavelengths suffer more from multiple scattering than do lower frequencies.

Interestingly, in the case of low frequency sound (< 1 kHz), the detection distance is smaller than in the case of

mid frequency sound. The detection distance of low-frequency sound is mostly driven by the ambient sound,

which is louder than at a mid- or high-frequency range, rather than by the habitat characteristics. The main
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origin of low-frequency ambient sound may be associated with geophonic sounds (e.g. wind or distant rain),

anthropogenic sounds (e.g. aircrafts or cars) or technical issues (e.g. recorder noise).

Finally, we have shown that the frequency response of ARUs, which is rarely flat, is also a driver of the

detection distance. For instance, the frequency response of the SM4 ARU decreases steeply above 10 kHz,

limiting the detection distance of high-frequency content sources compared to devices with a flat frequency

response, such as sound level meters. This result is supported by previous studies comparing different ARUs

(Darras et al., 2016; Pérez Granados et al., 2019; Rempel et al., 2013). The quality of the electronics, especially

the flatness of the ARU’s microphone, should be carefully considered when a correct detection distance is

required across a large frequency bandwidth (Turgeon et al., 2017). 

d. Limitations of the study

Our experiment was based on a single transect facing the microphone. In this configuration, we did not

have access to the propagation distance in other directions from the recorder. However, the direct sound path

between the loudspeaker and the ARU might have resulted in the longest possible detection radius range, which

is required to determine the minimum distance between ARUs to avoid violating the assumption of independent

observations. Furthermore, focusing on a single transect seems to be a reasonable option for homogeneous

habitats and when several ARUs are deployed and extensive propagation experiments cannot be run around

each of them. 

In addition, we did not take into account the directivity of the microphone, especially given that the

recorders were mounted on tree trunks, which can cause sound shadows  (Darras et al., 2018). The detection

distance was probably neither circular nor planar due to the specification of the microphone, the position and

orientation of the ARU and the landscape  (Castro et al.,  2019; MacLaren et al.,  2018; Shaw et al.,  2021).

However, as our model directly predict the attenuation of sound depending on the physical laws that explicitly

govern the sound propagation in natural environments, this opens the possibility to include, in a second step,

additional attenuation factors such as the angle (0° to 360°) between the source and the microphone. Our model

may need to be adapted to mountainous or urban areas – where the trajectory of the sound is more difficult to

predict due to reverberation – and to open areas, where winds can dominate. Moreover, our model does not take

into account the fact that sound is propagated in three dimensions, hence different attenuation laws may also

occur  in the  vertical  direction  (Ellinger & Hödl,  2003).  For  instance,  it  has been observed that  blackbirds

(Turdus merula) choose to sing at higher elevation spots to limit the degradation of their songs (Dabelsteen et

al., 1993). 

From an ecological statistics perspective, our physics-based model alone is not sufficient to provide a

reliable probability of detection of individuals, due to the variability of the sound sources directivity. Indeed, the

estimation of the detection distance might be overestimated when the individuals do not vocalize towards the

microphone which might lead to an underestimation of the number of individuals within a fixed radius. We

believe that this bias might be overcomed by developing a dedicated statistical model of detection probability

that could be partially based on our physics-based model.  
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Finally,  we studied signal  detection  based on a threshold derived solely from the amplitude of the

sound. A sound is set to be detected if its level exceeds that of the ambient noise. Such a threshold is suitable for

the automatic processing of spectrograms where the phase is generally neglected. However, it does not take into

account more complex cues (such as repetition, duration and modulations) used by animals and humans (Aubin

& Jouventin, 1998; Aubin & Mathevon, 2020) for detecting and recognizing sounds in noisy environments. Our

estimation is therefore conservative, meaning that the detection distance may be longer when more complex

cues are included. 

5. Perspectives and conclusion

Passive acoustic  monitoring  based  on  the  deployment  of  ARUs  appears  to  be  a  reliable  tool  for

assessing acoustic biodiversity over the long term and at large spatial scales in a non-invasive way (Castro et al.,

2019; Darras et al., 2018, 2019; Van Wilgenburg et al., 2017; Yip et al., 2017). Recently, species distribution

models (SDMs) adapted to passive acoustic surveys have been proposed based on either the acoustic space

occupancy model (Rappaport et al., 2020), the modified spatial capture-recapture model (MacLaren et al., 2018)

or integrated models combining acoustic and point count data (Doser et al., 2021; Van Wilgenburg et al., 2017).

They all infer sound attenuation from audio recordings as covariates without explicitly describing the physical

process behind the attenuation,  limiting their  versatility,  especially when the sampling distance varies with

ambient  sound.  Incorporating some knowledge of sound detection distance into these models,  for  example

habitat attenuation and ambient sound, would increase the robustness of the next generation of SDMs. 

The new method we propose may be extended to point count surveys performed by human experts in

order to avoid, for instance, inaccurate estimations of bird distances. The ARU transfer function can be directly

replaced by the average human ear’s sensitivity – known as the equal-loudness contour  (Fletcher & Munson,

1933) – and approximated by  the A-weighting curve  (Marsh,  2001).  Similarly  to  ARUs,  the  human ear’s

performance is best around 1 khz to 5 kHz.

Throughout this  article,  we have  referred  to  the  detection  distance.  However,  we can  reverse  this

perspective and take the  place of  the  emitter  instead,  so  that  the  active  distance of  the  emitter,  that  is,  a

vocalizing animal, can be estimated. If we accept the concept of reciprocity, the exact same model can be

applied, because sound propagation is a reversible phenomenon. Within the context of intra- or inter-species

communication, the ARU transfer function may be swapped with the hearing transfer function of the target

species in order to simulate the intra-species active space. As an example, we simulated the attenuation of the

song of the screaming piha (Lipaugus Vociferans) from 200 m to 700 m through the tropical rainforest. We

were able to observe that the high-frequency content disappears first and that the low-frequency content travels

up to 666 m (see Appendix J). Modelling such attenuation provides the possibility of tackling several questions

in bioacoustics and ecoacoustics, such as the use of public and private information (Aubin & Mathevon, 2020)

and the acoustic adaptation hypothesis (Morton, 1975).

Tuning the signal to noise ratio (SNR) between the foreground signal of interest (i.e. bird songs or other

animal vocalizations) and the background signal (i.e. the ambient sound) is key when preparing training data
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sets to train models such as convolutional neural networks (CNNs) for automatic species identification (Kahl et

al.,  2021).  Simulating  the  propagation  attenuation  of  the  foreground  signal  would  improve  such  data

augmentation and thereby provide more realistic soundscapes. In the opposite direction, very recently a CNN

was trained with spectrograms of a single call recorded at different distances to infer the sampling detection of

that call (Yip et al., 2020).

Finally, we think that  our model opens the possibility of estimating the sound pressure level of most

vocalizing  species,  which  remain  poorly  documented  due to  difficulties  in  obtaining  data  at  the  reference

distance (i.e.  1  m).  An accurate assessment of the  sound pressure level  requires the  estimation of the full

attenuation law along the direct path between the animal and the microphone – which can be provided by our

method – as well as a correct estimation of the distance between the animal and the microphone.

To summarize, we have proposed a standardized, repeatable and generalized physics-based method for

determining outdoor sound attenuation in two very different kinds of forests, opening the possibility to extend

this method to other terrestrial environments. We have demonstrated that the attenuation of sound in different

forests can be summarized, as a first approximation, by a single value. We have shown the detection distance of

an ARU can also be predicted and may significantly fluctuate because of the variation in the ambient sound.

Therefore, we strongly recommend considering the variation of the detection distance over the diel cycle and

across seasons in order to provide reliable and operational biodiversity indicators for conservation policy and

wildlife management planning.
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Table legends

Table  1.  Main  experimental  parameters.  Equipment  settings  (ARU,  sound  level  meter,  loudspeaker),

environmental variables and spatial sampling used in the two forest sites. The parameters slightly differ between

the sites due different sampling protocols used for long-term monitoring programs. 

Table  2:  Habitat  attenuation  coefficients  a0 depending on  the habitat  in  the  neotropical  rainforest  (French

Guiana) and in the Alpine coniferous forest (Jura), the recorder (reference sound level meter and ARU), and the

reference distance r0 (m). The unit of the coefficient a0 is dB/kHz/m. 
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Table 1

Neotropical rainforest

(French Guiana)

Alpine coniferous

forest (Jura)

SM4 audio recording

settings
Sampling frequency 48,000 Hz 44,100 Hz
Pre-amplifier gain 26 dB 26 dB

Gain 4 dB 16 dB
Microphone sensitivity –35 dBV –35 dBV

Filter No No
Height 1.5 m 2.5 m

Sound level meter settings
Sampling frequency 48,000 Hz 48,000 Hz
Pre-amplifier gain 12 dB 12 dB

Gain None None
Microphone sensitivity –29.12 dBV –29.12 dBV

Filter No No
Height 1.5 m 2.5 m

Loudspeaker settings
Output sound level (SPL) 83 dB 78 dB

Signal type White noise White noise
Bandwidth 70 Hz – 20 kHz 70 Hz – 20 kHz
Weather

Temperature 24 °C 17 °C
Relative humidity 87 % 67 %

Atmospheric pressure 101,340 Pa 87,999 Pa
Transect

Positions [m]
1; 10; 20; 30; 40; 50; 60;

70; 80; 90; 100

1; 2; 5; 10; 20; 30; 40;

50; 60; 70; 80; 90; 100
Altitude 69 m +/– 5m 1,210 m+/– 4m
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Table 2

Neotropical rainforest

(French Guiana)

Alpine coniferous

forest (Jura)

r0 Reference ARU Reference ARU
10 m 0.018

(R² = 0.7) 

0.012

(R² = 0.6)

0.014 

(R² = 0.6) 

0.028

(R² = 0.9) 
20 m 0.019

(R² = 0.7)

0.010

(R² = 0.3)

0.033

(R² = 0.8) 

0.033

(R² = 0.8)
30 m 0.018

(R² = 0.8)

0.010

(R² = 0.5)

0.024

(R² = 0.7)

0.021

(R² = 0.7)
40 m 0.019

(R² = 0.6)
p> 0.001

0.017

(R² = 0.5) 

0.014

(R² = 0.7)
50 m p> 0.001 p> 0.001 0.013

(R² = 0.5)

p> 0.001

a0 mean 0.019 0.011 0.020 0.024
a0 std 0.001 0.001 0.008 0.008
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