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Tweedie-type stability estimates for the invariant probability measures of perturbed Markov chains under drift conditions

Introduction

In this paper, we study the sensitivity of the invariant probability measure of a Markov kernel when replaced with a perturbed version. Before presenting the general framework and the main results of this work, we discuss the classical example of the truncated-augmented scheme for approximating the invariant probability measure of an infinite stochastic matrix. Let P := (P (i, j)) (i,j)∈N 2 be an infinite stochastic matrix and for every k ≥ 1 let P k be a linear augmentation (e.g. in the first or the last column) of the (k + 1) × (k + 1) north-west corner truncation of P . Let π (resp. π k ) be the invariant probability measure of P on N (resp. of P k on B k := {0, . . . , k}). For the sake of simplicity, the natural extension on N of the finite matrix P k and of its invariant probability measure are still denoted by P k and π k in this introductory section. If P satisfies some minorization and geometric drift conditions with respect to (w.r.t.) some Lyapunov function V : N →[1, +∞), Tweedie proved in [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF]Th. 3.2] that, for the first-column augmentation, we have lim k ∥π k -π∥ V = 0 where ∥ • ∥ V stands for the V -weighted total variation norm, see the definition in (6). Tweedie's proof is based on the V -geometrical ergodicity property of both P and P k , that is: there exist ρ ∈ (0, 1) and C ∈ (0, +∞) such that ∀k ∈ N * ∪ {∞}, ∀n ≥ 0, sup

|f |≤V sup x∈N (P k n f )(x) -π k (f )1 X V (x) ≤ C ρ n (1) 
with the convention P ∞ := P , π ∞ := π. Explicit bounds of ∥π k -π∥ V are not stated in [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF]Th. 3.2] since the use of the rate ρ and constant C in (1) are unlikely to be of practical value, see [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF]p. 526]. Although progress on finding computable bounds for ρ and C has been made (e.g. see [MT94, Bax05, HL22a, and references therein]), this issue remains a difficult problem. A favourable but very specific case is when P is stochastically monotone and satisfies the following geometric drift condition w.r.t. some finite set S ∃δ ∈ (0, 1), b > 0,

P V ≤ δ V + b 1 S . (2) 
In this case and assuming that S := {0}, Tweedie proved in [Twe98, Th. 4.2, Eq. ( 46)] that

∀n ≥ 1, ∥π k -π∥ T V ≤ 4 b 1 -δ δ n + n η k with η k = 2b (1 -δ) V (k) (3) 
where ∥ • ∥ T V denotes the total variation norm (see (7)) and π k in (3) is the invariant probability measure of the last-column augmentation P k of P . Under the same assumptions on P , such a bound is proved to hold in [Liu10, Th. 5.2] for any arbitrary augmented truncation approximation. Moreover Liu shows in [START_REF] Liu | Augmented truncation approximations of discrete-time Markov chains[END_REF] that Tweedie's approach can also be used to get an explicit bound for ∥π k -π∥ T V when P is assumed to be stochastically monotone and polynomially ergodic. Specifically, if P satisfies a minorization condition with respect to some finite atom S and if the following polynomial drift condition introduced in [START_REF] Jarner | Polynomial Convergence Rates of Markov Chains[END_REF] ∃α < 1, b, c > 0,

P V ≤ V -c V α + b 1 S (4) 
holds with c = 1 and S = {0}, then we have (see [START_REF] Liu | Augmented truncation approximations of discrete-time Markov chains[END_REF]Th. 5.1])

∀n ≥ 1, ∥π k -π∥ T V ≤ 8V (1) 
(1 -α)

α 1-α 1 n α 1-α + n ξ k with ξ k = 2b V (k + 1) α .
(5)

In fact, this estimate only requires that P be dominated by a stochastically monotone Markov kernel Q satisfying the above drift conditions. Mention that this kind of estimates has been obtained in [START_REF] Masuyama | Error bounds for augmented truncations of discrete-time blockmonotone Markov chains under subgeometric drift conditions[END_REF] for the last-column augmentation of block-monotone Markov chains under the subgeometric drift condition introduced in [START_REF] Douc | Practical drift conditions for subgeometric rates of convergence[END_REF].

The purpose of this work is to use the recent work [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF] in order to extend Tweedie-type estimate (5) to perturbed Markov kernels {P θ } θ∈Θ (not necessarily obtained by truncation) defined on a general state space and satisfying uniform (w.r.t. θ ∈ Θ) minorization and polynomial drift conditions. In particular, we do not assume that P θ is stochastically monotone, nor do we assume that the small set of the minorization condition is an atom. Moreover, all the estimates are expressed in the V -weighted total variation norm for some V ≥ 1, which obviously dominates the total variation norm. Application to truncation of discrete Markov kernels is discussed in Section 3. Note that, although the case of geometrically ergodic Markov kernels P can be similarly developed (see Appendix A), it is omitted here since it has been proved in [START_REF] Liu | Error bounds for augmented truncation approximations of Markov chains via the perturbation method[END_REF][START_REF] Hervé | Explicit bounds for spectral theory of geometrically ergodic Markov kernels and applications[END_REF] that a better approach can be used to derive very simple explicit estimates of ∥π θ -π|| V from ∥P θ (x, •) -P (x, •)∥ V π θ (dx) where π θ is the invariant probability measure of P θ , see Remark 2.2.

Our general context is the following one. Let (X, X ) be a measurable space and let {P θ } θ∈Θ be a family of transition kernels on (X, X ), where Θ is an open subset of some metric space. Let M + (resp. M + * ) denote the set of finite non-negative (resp. positive) measures on (X, X ). For any µ ∈ M + and any µ-integrable function f : X → C, µ(f ) denotes the integral X f dµ. We assume that {P θ } θ∈Θ satisfies the following minorization condition

∃S ∈ X , ∃ν ∈ M + * , ∀θ ∈ Θ, ∀x ∈ X, ∀A ∈ X , P θ (x, A) ≥ ν(1 A ) 1 S (x). (S Θ )
Assumption (S Θ ) means that S is a small-set for the whole family {P θ } θ∈Θ and that the associated positive measure is the same for all θ ∈ Θ, namely ν. We also suppose that, for every θ ∈ Θ, there exists a unique P θ -invariant probability measure π θ on (X, X ) such that π θ (1 S ) > 0. Moreover, for every θ ∈ Θ and for every n ≥ 1 we consider the following probability measure µ

(θ) n on (X, X ) introduced in [HL20, HL22b] µ (θ) n := 1 µ (θ) n (1 X ) µ (θ) n where µ (θ) n := n k=1 ν • R k-1 θ and R θ := P θ -ν(•)1 S . Now let W : X →[1, +∞) be a measurable function such that ∀θ ∈ Θ, π θ (W ) < ∞ and ∃C ∈ (0, +∞), ∀θ ∈ Θ, P θ W ≤ CW. (W Θ )
Under Assumption (S Θ ) and the first condition in (W Θ ) we know from [HL22b, Ths. 2.1-3.1] that for every θ ∈ Θ we have lim n ∥π θ -µ

n ∥ W = 0, where ∥ • ∥ W stands for the W -weighted total variation norm, see (6). Now let θ 0 be fixed in Θ. To have a good understanding of the next results, P θ 0 has to be viewed as the unperturbed Markov kernel with unknown invariant probability measure π θ 0 , while P θ for θ ̸ = θ 0 are the perturbed Markov kernels with known or computable invariant probability measure π θ . The goal is to approximate π θ 0 by π θ .

In Section 2, under Assumptions (S Θ )-(W Θ ) we introduce the following quantities

∀n ≥ 1, ε n,Θ,W := sup θ∈Θ ∥π θ -µ (θ) n ∥ W and ∀θ ∈ Θ, ∀x ∈ X, ∆ θ,W (x) := ∥P θ (x, •)-P θ 0 (x, •)∥ W ,
and we prove in Theorem 2.1 that lim θ → θ 0 ∥π θ -π θ 0 ∥ W = 0 provided that the two following conditions hold:

lim n → +∞ ε n,Θ,W = 0 and ∀x ∈ X, lim θ → θ 0 ∆ θ,W (x) = 0.
Under these assumptions we prove in Corollary 2.1 that the real numbers γ θ := π θ (∆ θ,1 X ) and γ θ,W := π θ (∆ θ,W ) converge to 0 when θ → θ 0 . Moreover we give a rate of convergence for ∥π θ -π θ 0 ∥ W depending on ε n,Θ,W , γ θ and γ θ,W . In practice, γ θ and γ θ,W are supposed to be computable for θ ̸ = θ 0 , so that the error bounds for ∥π θ -π θ 0 ∥ W obtained in Corollary 2.1 is relevant whenever the rate of convergence of the sequence { ε n,Θ,W } n≥1 is known. This last question can be investigated from [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF] under geometrical or polynomial drift conditions. Then, assuming that the whole family {P θ } θ∈Θ satisfies these polynomial drift conditions in a uniform way in θ ∈ Θ, accurate and computable bounds for ε n,Θ,W are addressed in Section 3. When applied to the above described truncation framework with an atomic smallset as in [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF][START_REF] Liu | Augmented truncation approximations of discrete-time Markov chains[END_REF], the error bounds for ∥π k -π∥ T V are proved to be quite similar to Liu's estimate (5) under the polynomial drift condition (4) on P . Under geometric drift condition (2) on P , the estimates of ∥π k -π∥ V are quite similar to Tweedie's estimate (3), see Appendix A.

The novelty of this work is to use the intermediate quantity ∥π θ -µ

(θ) n ∥ W in place of ∥π θ -P n θ (x, •)∥ W to control the error norm ∥π θ -π θ 0 ∥ W .
This control is studied under standard drifts conditions. The benefit of this approach is that the bounds on ∥π θ -µ (θ) n ∥ W obtained in [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF] are in general much more accurate and practicable than those obtained in the literature for ∥π θ -P n θ (x, •)∥ W , see [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF]Sec. 6]. Finally recall that neither atomic (except when we compare with Liu's work) nor stochastic monotonicity assumptions are required in this paper. In the context of truncation approximation, the convergence of {π k } k≥1 to π has been studied for a long time, see [Twe98, IGL22, IG22, and references therein]. The results related to this note are briefly discussed in Remark 3.4. Notations.

If W : X →[1, +∞) is a measurable function and if (λ 1 , λ 2 ) ∈ (M + ) 2 is such that λ i (W ) < ∞ for i = 1, 2, then the W -weighted total variation norm ∥λ 1 -λ 2 ∥ W is defined by ∥λ 1 -λ 2 ∥ W := sup |f |≤W λ 1 (f ) -λ 2 (f ) . (6) 
If W = 1 X , then ∥λ 1 -λ 2 ∥ 1 X = ∥λ 1 -λ 2 ∥ T V is the standard total variation norm. If λ 1 and λ 2 are probability measures on (X, X ), then ∥λ 1 -λ 2 ∥ T V corresponds to their standard total variation distance, which can also be defined by

∥λ 1 -λ 2 ∥ T V = 2 sup A∈X |λ 1 (1 A ) -λ 2 (1 A )|. ( 7 
)
Recall that a non-negative kernel R(x, dy), x ∈ X, on (X, X ) is said to be submarkovian if for every x ∈ X we have R(x, X) ≤ 1. We denote by R its functional action defined by

∀x ∈ X, (Rf )(x) := X f (y) R(x, dy),
where f : X → R is any R(x, •)-integrable function. For every n ≥ 1 the n-th iterate kernel of R(x, dy) is denoted by R n (x, dy), x ∈ X, and R n stands for its functional action. As usual R 0 is the identity map I by convention.

Main results

Let {P θ } θ∈Θ be a family of transition kernels on (X, X ), where Θ is an open subset of some metric space. We assume that the family {P θ } θ∈Θ satisfies Assumption (S Θ ), and that for every θ ∈ Θ there exists a unique P θ -invariant probability measure π θ on (X, X ) such that π θ (1 S ) > 0. For every θ ∈ Θ we consider the following recursive sequence {β

(θ) k } k≥1 ∈ (M + ) N introduced in [HL20, HL22b] β (θ) 1 (•) := ν(•) and ∀n ≥ 2, β (θ) n (•) := ν P n-1 θ • - n-1 k=1 ν P n-k-1 θ 1 S β (θ) k (•). (8) 
We know from [START_REF] Hervé | V-geometrical ergodicity of Markov kernels via finite-rank approximations[END_REF][START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF] that

0 < µ (θ) (1 X ) := +∞ k=1 β (θ) k (1 X ) < ∞, π θ (1 S ) = µ (θ) (1 X ) -1 and π θ := µ (θ) (1 X ) -1 µ (θ) (9)
where µ (θ) ∈ M + * is defined by

µ (θ) := +∞ k=1 β (θ) k . (10) 
Moreover, for every θ ∈ Θ and for every n ≥ 1, let us define µ (θ)

n ∈ M + * and the probability measure µ (θ) n on (X, X ) by:

µ (θ) n := n k=1 β (θ) k and µ (θ) n := µ (θ) n (1 X ) -1 µ (θ) n . (11) 

Basic estimates

For any measurable function W : X →[1, +∞) satisfying Assumption (W Θ ) and for any fixed θ 0 ∈ Θ, let us introduce the following quantities

∀n ≥ 1, ε n,Θ,W = sup θ∈Θ ∥π θ -µ (θ) n ∥ W (12) ∀θ ∈ Θ, ∀x ∈ X, ∆ θ,W (x) := ∥P θ (x, •) -P θ 0 (x, •)∥ W (13)
together with the two following conditions:

lim n → +∞ ε n,Θ,W = 0 (E W ) ∀x ∈ X, lim θ → θ 0 ∆ θ,W (x) = 0. (∆ W )
Theorem 2.1 Assume that {P θ } θ∈Θ satisfies Assumption (S Θ ), and that for every θ ∈ Θ there exists a unique P θ -invariant probability measure π θ on (X, X ) such that π θ (1 S ) > 0. Let W : X →[1, +∞) be a measurable function satisfying Assumption (W Θ ). Then the following inequalities hold for for every n ≥ 2

for U ∈ {1 X , W }, ∥µ (θ) n -µ (θ 0 ) n ∥ U ≤ n-1 k=1 min µ (θ 0 ) k (∆ θ,U ) , µ (θ) k (∆ θ,U ) (14a) ∥π θ -π θ 0 ∥ W ≤ 2 ε n,Θ,W + ∥µ (θ) n -µ (θ 0 ) n ∥ W µ (θ) n (1 X ) + µ (θ 0 ) n (W ) ∥µ (θ 0 ) n -µ (θ) n ∥ T V µ (θ) n (1 X ) µ (θ 0 ) n (1 X ) . ( 14b 
)
If moreover Assumptions (∆ W ) and (E W ) hold, then

lim θ → θ 0 ∥π θ -π θ 0 ∥ W = 0. ( 15 
)
Remark 2.1 If {P θ } θ∈Θ satisfies Assumption (S Θ ) and if each P θ admits a unique invariant probability measure π θ on (X, X ) such that π θ (1 S ) > 0, then

∥π θ -π θ 0 ∥ T V ≤ 2 ε n,Θ,1 X + 2 µ (θ) n (1 X ) -1 ∥µ (θ) n -µ (θ 0 ) n ∥ T V (16) 
since W = 1 X obviously satisfies Assumption (W Θ ), so that (14b) with W = 1 X gives (16).

In particular both estimates ( 16) and (14b) hold under the assumptions of Theorem 2.1.

The proof of Theorem 2.1 is based on the two next lemmas. Lemma 2.1 below is classical, e.g. see [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF]. Its proof is recalled for convenience.

Lemma 2.1 Let W : X →[1, +∞) be a measurable function. For i = 0, 1 let R i (x, dy), x ∈ X, be two non-negative submarkovian kernels on (X, X ) such that ∀i ∈ {0, 1}, ∀x ∈ X, X W (y) R i (x, dy) ≤ W (x), (17) 
and define ∀x ∈ X, ∆ W (x) = ∥R 1 (x, •) -R 0 (x, •)∥ W .
Then we have for every measurable function f :

X → R such that |f | ≤ W ∀n ≥ 1, ∀x ∈ X, (R n 1 f )(x) -(R n 0 f )(x) ≤ min n-1 j=0 R j 0 ∆ W )(x), n-1 j=0 R j 1 ∆ W )(x) . ( 18 
)
Proof. For n = 1 Inequality (18) holds since we have for every measurable function f :

X → R such that |f | ≤ W (R 1 f )(x) -(R 0 f )(x) ≤ ∆ W (x)
from the definition of the W -weighted total variation norm. Next proceed by induction. Assume that (18) holds for some n ≥ 1. Let g : X → R be any measurable function such that

|g| ≤ W . Then (R n+1 1 g)(x) -(R n+1 0 g)(x) ≤ R n 1 (R 1 -R 0 )g (x) + R n 1 -R n 0 )R 0 g (x) ≤ X (R 1 g)(y) -(R 0 g)(y) R n 1 (x, dy) + n-1 j=0 R j 1 ∆ W )(x) ≤ X ∆ W (y) R n 1 (x, dy) + n-1 j=0 R j 1 ∆ W )(x) = n j=0 R j 1 ∆ W )(x)
using the triangular inequality, the fact that |R 0 g| ≤ R 0 W ≤ W by hypothesis (17) and the induction assumption, and finally the definition of ∆ W . Exchanging the role of R 0 and R 1 in the previous inequality gives (18) at order n + 1.

□ For any ν-integrable function f : X → R, we set T f := ν(f ) 1 S with S ∈ X and ν ∈ M + * given in (S Θ ). ( 19 
)
Note that for every θ ∈ Θ we have 0 ≤ T ≤ P θ from the positivity of ν and from (S Θ ). Define the submarkovian kernel R θ = P θ -T . We know from [HL22b, Prop. 2.1] that

∀θ ∈ Θ, ∀k ≥ 1, β (θ) k = ν • R k-1 θ (20)
with the convention R 0 θ = I. Moreover recall that β

(θ) 1 = β (θ 0 ) 1 = ν.
Lemma 2.2 Under the assumptions of Theorem 2.1, Property (14a) holds and we have

∀θ ∈ Θ, ∀n ≥ 2, ∥ µ (θ) n -µ (θ 0 ) n ∥ W ≤ a n ∥µ (θ) n -µ (θ 0 ) n ∥ W + b n ∥µ (θ 0 ) n -µ (θ) n ∥ T V (21a) with a n := 1 µ (θ) n (1 X ) and b n := µ (θ 0 ) n (W ) µ (θ) n (1 X ) µ (θ 0 ) n (1 X ) . (21b)
Proof. It is sufficient to prove (14a) with U = W , see Remark 2.1. Then we have for every measurable function f :

X → R such that |f | ≤ W ∀n ≥ 2, µ (θ) n (f ) -µ (θ 0 ) n (f ) ≤ n k=2 β (θ) k (f ) -β (θ 0 ) k (f ) (from (11)) = n k=2 X (R k-1 θ f )(x) -(R k-1 θ 0 f )(x) dν(x) (from (20)) ≤ n-1 k=1 X (R k θ f )(x) -(R k θ 0 f )(x) dν(x) ≤ n-1 k=1 k-1 j=0 ν R j θ ∆ θ,W from (18) in Lemma 2.1 applied to R 0 = R θ 0 and R 1 = R θ , observing moreover that ∆ θ,W in (13) is also given by ∀x ∈ X, ∆ θ,W (x) = ∥R θ (x, •) -R θ 0 (x, •)∥ W .
Then (14a) follows from (20) and from the definition of the W -weighted total variation norm (moreover exchange the role of θ and θ 0 in the previous inequality to obtain the complete form of (14a)). Finally let us prove (21a). We have for every measurable function f :

X → R such that |f | ≤ W µ (θ) n (f ) -µ (θ 0 ) n (f ) ≤ 1 µ (θ) n (1 X ) µ (θ) n (f ) -µ (θ 0 ) n (f ) + |µ (θ 0 ) n (f )| 1 µ (θ) n (1 X ) - 1 µ (θ 0 ) n (1 X ) ≤ 1 µ (θ) n (1 X ) ∥µ (θ) n -µ (θ 0 ) n ∥ W + µ (θ 0 ) n (W ) µ (θ 0 ) n (1 X ) -µ (θ) n (1 X ) µ (θ) n (1 X ) µ (θ 0 ) n (1 X ) ≤ 1 µ (θ) n (1 X ) ∥µ (θ) n -µ (θ 0 ) n ∥ W + µ (θ 0 ) n (W ) µ (θ) n (1 X ) µ (θ 0 ) n (1 X ) ∥µ (θ 0 ) n -µ (θ) n ∥ T V
from which we deduce (21a).

□ Proof of Theorem 2.1. Property (14a) has been proved in Lemma 2.2. Next we have

∀θ ∈ Θ, ∀n ≥ 1, ∥π θ -π θ 0 ∥ W ≤ ∥π θ -µ (θ) n ∥ W + ∥ µ (θ) n -µ (θ 0 ) n ∥ W + ∥ µ (θ 0 ) n -π θ 0 ∥ W .
Then (14b) follows from the definition of ε n,Θ,W in (12) and from (21a). Now prove (15) under the additional assumptions (∆ W )-(E W ). We have for every θ ∈ Θ and every n ≥ 2

∥π θ -π θ 0 ∥ W ≤ 2 ε n,Θ,W + (a n + b n ) ∥µ (θ) n -µ (θ 0 ) n ∥ W ≤ 2 ε n,Θ,W + ν(1 X ) -1 1 + ν(1 X ) -1 µ (θ 0 ) n (W ) ∥µ (θ) n -µ (θ 0 ) n ∥ W ≤ 2 ε n,Θ,W + ν(1 X ) -1 1 + ν(1 X ) -1 µ (θ 0 ) n (W ) (n -1) µ (θ 0 ) (∆ θ,W ) (22) from µ (θ) n (1 X ) ≥ µ (θ) 1 (1 X ) = β (θ)
1 (1 X ) = ν(1 X ), and from (14a) and µ

(θ 0 ) k ≤ µ (θ 0 ) . Recall that µ (θ 0 ) ∈ M + and that ∀θ ∈ Θ, ∆ θ,W ≤ 2CW (23) 
from (W Θ ). Then, under Assumption (∆ W ), we obtain that lim

θ → θ 0 µ (θ 0 ) (∆ θ,W ) = 0 from Lebesgue's theorem since µ (θ 0 ) (W ) < ∞ (use π θ 0 (W ) < ∞ and (9)). It follows from (22) that ∀n ≥ 2, lim sup θ → θ 0 ∥π θ -π θ 0 ∥ W ≤ 2 ε n,Θ,W .
Then Assumption (E W ) gives (15) since n is arbitrarily large in the previous inequality. □

Convergence rates

In practice the stationary distribution π θ 0 of P θ 0 is supposed to be unknown and to be not directly computable. By contrast the stationary distribution π θ of the perturbed transition kernel P θ is expected to be computable and then to provide an approximation of π θ 0 . In this context, Inequalities (14a)-(14b) of Theorem 2.1 can be used to obtain an explicit control of ∥π θ -π θ 0 ∥ W , provided that the functions ∆ θ,W (•) and ∆ θ,1 X (•) defined in (13) are also supposed to be computable, so that the real numbers γ θ,W := π θ (∆ θ,W ) and γ θ := π θ (∆ θ,1 X ) introduced below are available. The bound in (14b) also depends on the term ε n,Θ,W defined in (12), which is investigated in the next section under a polynomial drift condition, see also Remark 2.2.

Corollary 2.1 Assume that the assumptions of Theorem 2.1 hold and that there exists an integer n * ≥ 2 such that

∀n ≥ n * , ε n,Θ,1 X := sup θ∈Θ µ (θ) (1 X ) -µ (θ) n (1 X ) ≤ 1 2 . ( 24 
)
Then the following inequalities hold for every θ ∈ Θ and for every n ≥ n * :

∥π θ -π θ 0 ∥ T V ≤ 2 ε n,Θ,1 X + 4(n -1) γ θ (25a) ∥π θ -π θ 0 ∥ W ≤ 2 ε n,Θ,W + 2(n -1) γ θ,W + 2π θ 0 (W )γ θ (25b) with γ θ := π θ (∆ θ,1 X ) and γ θ,W := π θ (∆ θ,W ). ( 25c 
)
If moreover Assumptions (∆ W ) and (E W ) hold, then we have

lim θ → θ 0 γ θ = lim θ → θ 0 γ θ,W = 0. Proof. It follows from the definition (24) of n * that ∀n ≥ n * , ∀θ ∈ Θ, µ (θ) n (1 X ) ≥ µ (θ) (1 X ) -1/2 ≥ µ (θ) (1 X )/2 since µ (θ) (1 X ) = 1/π θ (1 S ) ≥ 1, see (9). Hence ∀n ≥ n * , ∀θ ∈ Θ, 1 µ (θ) n (1 X ) ≤ 2 π θ (1 S ).
Moreover Property (14a) and µ

(θ) k ≤ µ (θ) give for U ∈ {1 X , W } ∥µ (θ) n -µ (θ 0 ) n ∥ U ≤ (n -1)µ (θ) (∆ θ,U ).
Then, applying (14b) and the two last inequalities, we obtain that for every n ≥ n * and for every θ ∈ Θ

∥π θ -π θ 0 ∥ W ≤ 2 ε n,Θ,W + 2(n -1) π θ (1 S ) µ (θ) (∆ θ,W ) + 2π θ (1 S )π θ 0 (1 S )µ (θ 0 ) (W )µ (θ) (∆ θ,1 X ) ≤ 2 ε n,Θ,W + 2(n -1) π θ (∆ θ,W ) + 2π θ 0 (W )π θ (∆ θ,1 X )
from ( 9). This proves (25b). Similarly, starting from (16) (in place of (14b)), we obtain (25a).

Next assume that Assumptions (∆ W ) and (E W ) hold. Note that

γ θ,W = π θ (∆ θ,W ) ≤ π θ (∆ θ,W ) -π θ 0 (∆ θ,W ) + π θ 0 (∆ θ,W ) ≤ 2C∥π θ -π θ 0 ∥ W + π θ 0 (∆ θ,W )
since ∆ θ,W ≤ 2CW , see [START_REF] Theorem | 1 below is only given for completeness[END_REF]. Hence lim θ → θ 0 γ θ,W = 0 from (15) and from Lebesgue's theorem with respect to the probability measure π θ 0 (recall that

π θ 0 (W ) < ∞ from Assump- tion (W Θ )). Finally we have lim θ → θ 0 γ θ = 0 since γ θ ≤ γ θ,W . □ Remark 2.
2 At this stage of the exposition, when {P θ } θ∈Θ is a family of perturbed geometrically or polynomially ergodic Markov kernels, then the bounds (25a)-(25b) of Corollary 2.1 combined with the estimates of ε n,Θ,W derived from [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF] can be used to control the error term ∥π θ -π θ 0 ∥ W for some suitable functions W linked to the drift conditions. In this work we are mainly concerned with the polynomial case, see Section 3. Indeed, in the case of V -geometrically ergodic Markov kernels, the norm ∥π θ -π θ 0 ∥ W with W = V α 0 for some suitable α 0 ∈ (0, 1] can be simply and efficiently controlled from γ θ,W = X ∥P θ 0 (x, •) -P θ (x, •)∥ W π θ (dx) combining a spectral approach with solutions to Poisson's equation (see [LL18, Th. 2] for irreducible and positive recurrent discrete Markov kernels and [HL22a, Th. 6.1] in a general context). So, we are not going in that direction. What can be done using Corollary 2.1 in the context of perturbed V -geometrically ergodic Markov kernels is postponed in Appendix A for completeness. In particular we show in Appendix A that our general estimates are very close to Tweedie's (see (2)) when applied to discrete truncation issues.

Applications to polynomially ergodic Markov kernels

Under Assumption (S Θ ), let us introduce the following condition for some positive integer m: there exists a collection {V i } m i=0 of Lyapunov functions (i.e.

V i : X →[1, +∞) is measurable) with V m = 1 X and ∀θ ∈ Θ, ∀x ∈ X, (P θ V 0 )(x) < ∞, such that ∀θ ∈ Θ, ∀i ∈ {0, . . . , m -1}, (P θ -T )V i ≤ V i -V i+1 with T (•) := ν(•)1 S . (26) 
Since P θ -T ≥ 0 from (S Θ ), the properties (26) imply that

V m = 1 X ≤ V m-1 ≤ • • • ≤ V 1 ≤ V 0 .
Moreover we have ν(V 0 ) < ∞. For any positive integer j define

C j := 2 j(j+1) 2
-1 and D j := 2

(j+1)(j+2) 2 +1 . ( 27 
)
The next estimates for the terms ε n,Θ,1 X and ε n,Θ,V j defined in (12) and used in Estimates (25a)-(25b) are obtained from the bounds in [HL22b, Eq. ( 24), (27) and Cor. 5.1] applied to P θ , which only depend on ν(V 0 ) with ν ∈ M + * (independent of θ ∈ Θ) given in (S Θ ) and on the positive constants µ (θ) (V j ). Hence, for j = 0, . . . , m we define (a priori in [0, +∞])

ϑ j := sup θ∈Θ µ (θ) (V j ).
Complements on these constants are provided in Remark 3.1.

Theorem 3.1 Assume that the family {P θ } θ∈Θ satisfies Assumption (S Θ ) and Conditions (26) for some m ≥ 1 with respect to some collection {V i } m i=0 of Lyapunov functions with V m = 1 X and ∀θ ∈ Θ, ∀x ∈ X, (P θ V 0 )(x) < ∞. Also assume that for every θ ∈ Θ there exists a unique P θ -invariant probability measure π θ on (X, X ) such that π θ (1 S ) > 0. Then the following assertions hold.

(a) If m ≥ 2, then Estimate (25a) holds with

∀n ≥ n * , ε n,Θ,1 X ≤ 2 C m ν(V 0 ) m -1 1 n m-1 where n * = max 2 , 2(m -1) -1 C m ν(V 0 ) 1/(m-1) + 1 . (28) 
(b) If m ≥ 3, then for every j = 2, . . . , m-1 and every θ ∈ Θ we have

π θ (V j ) ≤ µ (θ) (V j ) < ∞.
Moreover we have ϑ j < ∞, and Estimate (25b) holds with W = V j and

∀n ≥ n * , ε n,Θ,V j ≤ C j ν(V 0 ) j -1 1 n j-1 + 2 ϑ j C m ν(V 0 ) m -1 1 n m-1 . (c) If m ≥ 1 and ϑ 0 < ∞, then Estimate (25a) holds with ∀n ≥ n * * , ε n,Θ,1 X ≤ 2D m ϑ 0 m 1 n m where n * * = max 2 , 2m -1 D m ϑ 0 1/m + 1 . (29) 
(d) If m ≥ 2 and ϑ 0 < ∞, then for every j = 1, . . . , m -1 we have ϑ j ≤ ϑ 0 , and Estimate (25b) holds with W = V j and

∀n ≥ n * * , ε n,Θ,V j ≤ D j ϑ 0 j 1 n j + 2 ϑ j D m ϑ 0 m 1 n m .
Remark 3.1 Note that for j = 0, . . . , m-1 the second condition of (W Θ ) holds with W = V j from (26) and ν(V j ) < ∞. Also mention that n * in (28) (resp. n * * in (29)) satisfies (24) under the assumptions of Assertion (a) (resp. Assertion (c)) since for every θ ∈ Θ the quantity

ε n := µ (θ) (1 X ) -µ (θ) n (1 X ) satisfies from [HL22b, Cor. 5.1] ε n ≤ C m ν(V 0 ) m -1 1 n m-1 in Assertion (a) and ε n ≤ D m ϑ 0 m 1 n m in Assertion (c).
Moreover the following bound for the constant ϑ j can be used in Assertions (b) of Theorem 3.1 (see the proof [HL22b, Cor. 5.1]): 9). In particular Condition ϑ 0 < ∞ in Assertions (c)-(d) of Theorem 3.1 holds if, and only if, a := inf θ∈Θ π θ (1 S ) > 0 and L := sup θ∈Θ π θ (V 0 ) < ∞, in which case we have ϑ 0 ≤ L/a. Moreover, in Assertions (a) and (c), we have lim θ → θ 0 ∥π θ -π θ 0 ∥ T V = 0 from Corollary 2.1, provided that Assumption (∆ W ) holds with W = 1 X . Similarly, in Assertion (b) and (d) we have lim θ → θ 0 ∥π θ -π θ 0 ∥ V j = 0 provided that Assumption (∆ W ) holds with W = V j (with the condition on j given in Assertion (b) and (d) respectively). The smaller j is, the larger the function W = V j is in (25b), but the worse bound of ε n,Θ,V j is. Consequently in practice, for a given measurable function f : 

ϑ j = sup θ∈Θ +∞ k=1 β (θ) k (V j ) ≤ C j ν(V 0 ) +∞ k=1 1 k j . ( 30 
)
Also recall that µ (θ) (V j ) = µ (θ) (1 X )π θ (V j ) = π θ (V j )/π θ (1 S ) from (
X → R such that f /V 1 is
(f ) -π θ 0 (f )| is provided by (a) (or by (c) if ϑ 0 < ∞).
Also observe that the bound of ε n,Θ,V j in Assertion (b) does not apply to j = 1. By contrast, under the condition ϑ 0 < ∞, the bound of ε n,Θ,V j in Assertion (d) applies to j = 1.

Application to truncation-augmentation of discrete Markov kernels

Let P := (P (x, y)) (x,y)∈N 2 be a Markov kernel on X := N. For any k ≥ 1 let B k := {0, . . . , k}.

We assume that there exists a finite subset S ⊂ N and ν ∈ M + * with finite support Supp(ν) ⊂ N such that ∀x ∈ N, ∀A ⊂ N, P (x, A) ≥ ν(1 A ) 1 S (x).

(S)

Moreover we assume that there exists an unbounded and non-decreasing sequence V := (V (x)) x∈N with V (0) = 1 such that

M := sup x∈S (P V )(x) < ∞ (M ) ∃α ∈ [0, 1), ∃c > 0, ∀x ∈ S c , (P V )(x) ≤ V (x) -c V (x) α . (DJ S c )
In the present context, Inequality (DJ S c ) is the polynomial drift condition introduced in [JR02] and is nothing else than Inequality (4) in the introduction. This condition was used with c = 1 and S = {0} in [Liu10, Th. 5.1]. Recall that this polynomial drift condition has been generalized in [START_REF] Douc | Practical drift conditions for subgeometric rates of convergence[END_REF] to cover general subgeometric rates of the convergence of the iterates P n to π(•) 1 X , see also [DMPS18, Sect. 17.2]. Finally P is assumed to have a unique invariant probability measure π such that π(1 S ) > 0.

Now, for k ≥ 1 set B k c := N \ B k and let us consider the k-th truncated and arbitrary augmented matrix P k of the (k + 1) × (k + 1) north-west corner truncation of P :

∀(x, y) ∈ B k 2 , P k (x, y) := P (x, y) + P (x, B k c ) ψ x,k (y) (31) 
where ψ x,k (•) is some probability measure on B k . When ψ x,k (•) ≡ ψ k (•) only depends on k then this is referred as to a linear augmentation. When

ψ x,k (•) = δ 0 (•) or ψ x,k (•) = δ k (•)
then we obtain the first/last column linear augmentation used in [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF]. The goal here is to prove that, if P satisfies Assumptions (S)-(M )-(DJ S c ), then its invariant probability measure π can be approximated by the P k -invariant probability measure π k , with an explicit error control in function of the integer k. Since P is an infinite matrix, we first define the following extended Markov kernel P k of P k on N:

∀(x, y) ∈ N 2 , P k (x, y) :=      P k (x, y) if (x, y) ∈ B k 2 1 if y = 0 and x > k 0 otherwise.
Similarly, if π k is a P k -invariant probability measure on B k , then we define the extended probability measure π k on N by

∀x ∈ N, π k ({x}) := π k ({x}) if x ∈ B k 0 if x / ∈ B k . ( 32 
)
For every k ≥ 1, let us introduce

∀x ∈ N, ∆ k (x) := ∥P (x, •) -P k (x, •)∥ T V (33) 
and, if π k is a P k -invariant probability measure on B k , define

γ k := x∈B k π k (x) ∆ k (x). (34) 
Finally let k 0 ∈ N be the smallest integer such that

S ⊂ B k 0 and Supp(ν) ⊂ B k 0 . (35) 
The main focus here is on the comparison of our results with Liu's work [START_REF] Liu | Augmented truncation approximations of discrete-time Markov chains[END_REF], so that the finite set S in Assumptions (S)-(M )-(DJ S c ) is assumed to be an atom in the next Theorem 3.2 which is based on [HL22b, Cor. 5.4], see Remark 3.3 for the non-atomic case. More specifically assume that P := (P (x, y)) (x,y)∈N 2 satisfies Assumptions (S)-(M )-(DJ S c ) with S supposed to be an atom satisfying Condition (35). Next define the following positive integer

m := ⌊(1 -α) -1 ⌋ (36)
with α ∈ [0, 1) given in (DJ S c ) and where ⌊•⌋ denotes the integer part function. We know from [HL22b, Subs. 5.2] that the single Markov kernel P satisfies Condition (26) with respect to the following family {V i } m i=0 of Lyapunov functions

V 0 = m k=1 c k -1 V, ∀1 ≤ i ≤ m -1 : V i = m k=i+1 c k -1 V α i , V m = 1 X (37)
with c 1 := c ∈ (0, 1) (we can choose c ∈ (0, 1) in (DJ S c )) and some explicit {c i } m i=2 ∈ (0, 1) m-1 , and with 0

< α m-1 < • • • < α 2 < α 1 < 1 recursively defined by α 0 = 1, α 1 := 1 -1/m ∈ [0, 1), and ∀i = 2, . . . , m -1, α i = 2α i-1 -α i-2 = (α 1 -1) i + 1,
see [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF]Cor. 5.4 and its proof] for details. We have ∀i = 0, . . . , m -1, lim

x → +∞ V i (x) -V i+1 (x) = 0 since α i+1 < α i and V (x) ↗ +∞ when x → +∞ by hypothesis. Hence there exists a positive integer k 1 such that

∀i = 0, . . . , m -1, ∀x ∈ N ∪ [k 1 , +∞), V i (x) -V i+1 (x) ≥ V i (0). ( 38 
)
Now assume that P has a unique invariant probability measure π such that π(1 S ) > 0 and that for every k ≥ k max := max(k 0 , k 1 ), the matrix P k in (31) admits a unique P k -invariant probability measure π k on B k such that π k (1 S ) > 0. Then the next Lemmas 3.1-3.3 show that π k defined in (32) is the unique P k -invariant probability measure, and that the whole family {P θ } θ∈Θ with

Θ := k max , +∞ ∩ N ∪ {∞}, P ∞ := P, ∀θ ≥ k max , P θ := P k , (39) 
satisfies Assumption (S Θ ) with S, ν given in (S) and Condition (26) w.r.t. the Lyapunov functions {V i } m i=0 defined in (37). Moreover Assumption (∆ W ) is fulfilled with W = V 0 . Accordingly all the conclusions of Theorem 3.1 hold with π θ 0 = π ∞ = π and π θ = π k for k ≥ k max . This provides an explicit control for ∥ π k -π∥ T V or for ∥ π k -π∥ V j according to the value of m in (36), which only depends on α ∈ [0, 1) in (DJ S c ). The next statement only focusses on the error bound in total variation distance ∥ π k -π∥ T V to fit the framework of [START_REF] Liu | Augmented truncation approximations of discrete-time Markov chains[END_REF].

Theorem 3.2 Assume that P := (P (x, y)) (x,y)∈N 2 satisfies Assumptions (S)-(M )-(DJ S c ) with S supposed to be an atom and to satisfy Condition (35). Let k 0 and k 1 be given in ( 35) and (38) respectively, and set k max := max(k 0 , k 1 ). Moreover assume that P has a unique invariant probability measure π such that π(1 S ) > 0 and that for every k ≥ k max (up to pick a larger integer k max ) the matrix P k admits a unique P k -invariant probability measure π k on B k such that π k (1 S ) > 0. Finally let m be defined by (36) and let V 0 be the Lyapunov function in (37). Then the following assertions holds.

(a) For every k ≥ k max , π k defined in (32) is the unique P k -invariant probability measure.

(b) The sequence {γ k } k≥1 defined in (34) satisfies: 27) and the integer n * ≥ 2 as in (28), then we have:

lim k γ k = 0. (c) If m ≥ 2, defining C m as in (
∀k ≥ k max , ∀n ≥ n * , ∥ π k -π∥ T V ≤ 4 C m ν(V 0 ) m -1 1 n m-1 + 4(n -1) γ k . ( 40 
) (d) If m ≥ 1 and L := sup k∈Θ π k (V 0 ) < ∞, a = inf k∈Θ π k (1 S ) > 0, then ∀k ≥ k max , ∀n ≥ n * * , ∥ π k -π∥ T V ≤ 4D m ϑ 0 m 1 n m + 4(n -1) γ k ( 41 
)
with ϑ 0 = L/a and where D m and the integer n * * ≥ 2 are defined as in ( 27) and ( 29).

The P k -invariant probability measure π k on B k is supposed to be computable since P k is a finite matrix. In this case the exact value of the real numbers γ k := π k (∆ k ) in ( 34) is computable from Formula (42) below. A bound of γ k is given in Proposition 3.4. Finally note that, if the positive measure µ (θ) in (10) with Θ given here in (39) is known, then ϑ 0 in Assertion (d) is given by ϑ 0 := sup θ∈Θ µ (θ) (V 0 ), provided that this quantity is finite, see Theorem 3.1 and Remark 3.1.

Proof. Assertion (a) is proved in Lemma 3.1 below. Note that we have ∀k ≥ k 0 , π k (1 S ) = π k (1 S ) since S ⊂ B k 0 from Assumption (35). Moreover we deduce from Lemma 3.1 that γ k = π k (∆ k ), thus γ k ≡ π θ (∆ θ,1 X ) = γ θ using the notations from (39) and Corollary 2.1, see (25c). Then the conclusions (40) and (41) follow from (25a) combined with Assertions (a) and (c) of Theorem 3.1. Indeed Lemma 3.3 below shows that the whole family {P θ } θ∈Θ given in (39) satisfies the assumptions of Theorem 3.1, see also Remark 3.1 concerning the constant ϑ 0 in Assertion (d). Moreover we know from Theorem 3.1 that Assumption (E W ) holds with W = 1 X , and Lemma 3.2 below shows that Assumption (∆ W ) holds with W = 1 X . This proves Assertion (b) due to Corollary 2.1. □ Lemma 3.1 Let P := (P (x, y)) (x,y)∈N 2 be a Markov kernel on N, let k ≥ 1, and let P k be the stochastic matrix P k given in (31). If P k admits a unique invariant probability measure π k on B k , then π k defined in (32) is the unique P k -invariant probability measure.

Proof. We deduce from the definitions of P k and π k that

∀y ∈ B k c , x∈N P k (x, y) π k ({x}) = 0 = π k ({y}).
Thus

∀y ∈ B k , x∈N P k (x, y) π k ({x}) = x∈B k P k (x, y) π k ({x}) = x∈B k P k (x, y) π k ({x}) = π k ({y}) = π k ({y})
using successively the definitions of π k and P k , the P k -invariance of π k , and again the definition of π k . We have proved that π k is a P k -invariant probability measure. To prove the uniqueness, consider any P k -invariant probability measure η = ( η({x})) x∈N . Then

∀y ∈ B k c , η({y}) = x∈N P k (x, y) η({x}) = 0 from the definition of P k . Thus ∀y ∈ B k , η({y}) = x∈N P k (x, y) η({x}) = x∈B k P k (x, y) η({x}) = x∈B k P k (x, y) η({x})
from the definition of P k . Thus η := ( η({x})) x∈B k is a P k -invariant probability measure on B k . This proves that η = π k . □ Lemma 3.2 Let P := (P (x, y)) (x,y)∈N 2 be a Markov kernel on N. For any k ≥ 1, let ∆ k (•) be given in (33). Then we have

∀k ≥ 1, ∀x ∈ N, ∆ k (x) = 2 1 B k (x)P (x, B k c ) + 1 B k c (x)P (x, N * ) . (42) 
Moreover we have ∀x ∈ N, lim k ∆ k (x) = 0, that is Assumption (∆ W ) holds with W = 1 X .

Proof. For any x ∈ B k we have

∆ k (x) = y∈N P (x, y) -P k (x, y) = P (x, B k c ) y∈B k ψ x,k (y) + P (x, B k c ) = 2P (x, B k c ) (43)
from the definitions of P k , P k in (31) using that ψ x,k (B k ) = 1. For any x ∈ B k c , we obtain from the definition of

P k that ∆ k (x) = (1 -P (x, 0)) + y∈N * P (x, y) = 2P (x, N * ).
Thus Equality (42) holds for any x ∈ N. Finally, for any x ∈ N, the convergence to 0 of the sequence {∆ k (x)} k≥1 easily follows from (42) and the convergence of y∈N P (x, y). □ Lemma 3.3 If P := (P (x, y)) (x,y)∈N 2 satisfies the assumptions of Theorem 3.2, then the family {P θ } θ∈Θ given in (39) satisfies the assumptions of Theorem 3.1.

Proof. Let k ≥ k 0 . For every x ∈ S and every A ⊂ N we have

P k (x, A) ≥ y∈A∩B k P k (x, y) ≥ y∈A∩B k P (x, y) = P (x, A ∩ B k ) ≥ ν(A ∩ B k ) = ν(A)
using successively x ∈ S ⊂ B k 0 ⊂ B k and the definitions of P k and P k , Assumption (S), and finally Supp(ν) ⊂ B k 0 ⊂ B k . This proves that the family {P θ } θ∈Θ in (39) satisfies Assumption (S Θ ) with S, ν given in (S). Now let us prove that {P θ } θ∈Θ satisfies Condition (26) with respect to the family {V i } m i=0 defined in (37). That the Markov kernel P ∞ = P satisfies (26) w.r.t. {V i } m i=0 is discussed before Theorem 3.2. Next, we have to prove that, for every k ≥ k max , the Markov kernel P k satisfies (26) with respect to the same family {V i } m i=0 . Let W := (W (x)) x∈N be any non-decreasing sequence with W (0) ≥ 1. Let k ≥ 1. We have Note that for every i = 0, . . . , m -1 the function W = V i is non-decreasing and such that

∀x ∈ B k , ( P k W )(x) = y∈B k P (x, y) W (y) + P (x, B k c ) y∈B k ψ x,k (y)W (y) ≤ y∈B k P (x, y)W (y) + P (x, B k c ) W (k) y∈B k ψ x,k (y) 
V i (0) ≥ 1 since V i ≥ V m = 1 X . Let k ≥ k 1 .
Then applying the previous inequalities to W = V i for any i = 0, . . . , m -1 provides

∀x ∈ B k , ( P k V i )(x) ≤ (P V i )(x) ≤ V i (x) -V i+1 (x) + ν(V i )1 S (x) (45) 
since P satisfies (26), and

∀x ∈ B k c , ( P k V i )(x) = V i (0) ≤ V i (x) -V i+1 (x) ≤ V i (x) -V i+1 (x) + ν(V i )1 S (x) (46) 
from (38). This proves that P k satisfies (26).

Finally note that we have ∀x ∈ X, (P V 0 )(x) < ∞ from (M ) and (DJ S c ). Then we obtain that ∀k ≥ k max , ∀x ∈ X, ( P k V 0 )(x) < ∞ from ( 45 

∆ k,V j (x) = ∥P (x, •) -P k (x, •)∥ V j .
Note that the term γ θ,V j := π θ (∆ θ,V j ) in Estimates (25b) is given here by

γ k,V j = π k (∆ k,V j ) = x∈B k π({x})∆ k,V j (x).
For completeness let us prove that ∀x ∈ N, lim k ∆ k,V j (x) = 0, so that lim k γ k,V j = 0 due to Corollary 2.1. Obviously it is sufficient to prove that ∀x ∈ N, lim k ∆ k,V 0 (x) = 0 since V j ≤ V 0 . From the definition of P k and (31), we have for every Now fix x ∈ N. Then it follows from (47) applied to any k > x that lim k ∆ k,V 0 (x) = 0 since y∈N P (x, y)V 0 (y) = (P V 0 )(x) < ∞ from (M ) and (DJ S c ).

x ∈ B k ∆ k,V 0 (x) = y∈N P (x, y) -P k (x, y) V 0 (y) = P (x, B k c ) y∈B k ψ x,k (y)V 0 (y) +
Remark 3.3 The non-atomic case can be addressed in a similar way using [HL22b, Cor. 5.5], but in this case the analogue of the integer m and of the Lyapunov functions V i require more preparation. More specifically, assume that P := (P (x, y)) (x,y)∈N 2 satisfies Assumptions (S)-(M )-(DJ S c ) with some finite set S satisfying Condition (35). First of all, the biggest function V 0 is of the form V 0 = c 0 V η 0 for some constants c 0 > 0 and η 0 ∈ (0, 1] from [HL22b, Cor. 5.5]. Note that the case η 0 < 1 is possible when S is not an atom. Then we define the integer m := ⌊η 0 (1 -α) -1 ⌋. Observe that, if η 0 < 1, then m is not necessary positive, so that we have to assume that η 0 ≥ 1 -α (thus m ≥ 1) to continue the construction of the Lyapunov functions V i . From [HL22b, Cor. 5.5], if η 0 ≥ 1 -α, then the single Markov kernel P satisfies Condition (26) w.r.t. some family {V i } m i=0 of Lyapunov functions defined as in (37), but with V η 0 in place of V (see the proof of [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF]Cor. 5.5] for details on the construction of {V i } m i=0 and use [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF]Cor. 5.2] to obtain that P satisfies (26) w.r.t. {V i } m i=0 ). Consequently, when the assumptions of Theorem 3.2 holds with a non-atomic finite set S, then all the conclusions of Theorem 3.2 remain true with respect to the family {V i } m i=0 defined in [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF]Cor. 5.5]: this can be established by repeating the proof of Theorem 3.2 based on Lemmas 3.1-3.3. Indeed note that, in the proof of Theorem 3.2, the fact that S is an atom has been only used to prove that the single Markov kernel P satisfies Condition (26) w.r.t. the family {V i } m i=0 in (37) using [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF]Cor. 5.4]. Hence the only differences with the atomic case are the following. First the integer m := ⌊η 0 (1-α) -1 ⌋ may be zero (i.e. η 0 < 1-α), in which case the construction of the Lyapunov functions V i is not possible. Second, if 1 -α ≤ η 0 < 1, then the construction of {V i } m i=0 is possible, but the analogue of the bounds (40)-( 41) may be less accurate than in the atomic case since m := ⌊η 0 (1 -α) -1 ⌋ may be smaller than the integer ⌊(1 -α) -1 ⌋. Finally note that, under the previous assumptions on P , Assertions (b) and (d) of Theorem 3.1 also apply with respect to the family {V i } m i=0 defined in [HL22b, Cor. 5.5]. Again the bounds (30) can be used for Assertions (b), and we have lim k γ k,V j = 0, see Remark 3.2. Remark 3.4 (Convergence of { π k } n≥0 to π in truncation approximation) As already mentioned, Tweedie proved in [Twe98, Th 3.2] that the convergence in the V -weighted total variation norm takes place for the first-column linear augmentation (see (31) with ψ x,k = δ 0 ) of V -geometrically ergodic discrete Markov chains. Using regeneration methods, such a convergence is extended to V -geometrically or polynomially ergodic Markov chains with continuous state space in [IG22, Th 2] for a specific linear augmentation (that is the k-first columns augmentation, for some k, in the discrete state space case). Finally mention that the weak convergence in the case of general augmentation of continuous state space Markov chains has been recently addressed in [START_REF] Infanger | On convergence of general truncationaugmentation schemes for approximating stationary distributions of Markov chains[END_REF]. Note that in such context, the weak convergence does not provide the convergence in the total variation norm. The estimation of convergence rates is not discussed in [START_REF] Infanger | On convergence of a truncation scheme for approximating stationary distributions of Continuous state space Markov chains and processes[END_REF][START_REF] Infanger | On convergence of general truncationaugmentation schemes for approximating stationary distributions of Markov chains[END_REF].

To complete the estimates (40) and (41) of ∥ π k -π∥ T V , let us provide a bound on γ k = π k (∆ k ). Proposition 3.4 Assume that P := (P (i, j)) (i,j)∈N 2 satisfies Assumptions (S)-(M )-(DJ S c ). Let k ≥ 1 be such that the matrix P k in (31) admits a unique P k -invariant probability measure π k on B k , and let γ k defined in (34). Then

∀k ≥ k 0 , γ k ≤ 2(cM α + M ) c × 1 V (k + 1) α (48) 
where α and c are given in (DJ S c ).

Proof. Note that P V α ≤ (P V ) α from Jensen's inequality. From (43) we obtain for k ≥ k 0

γ k = 2 x∈B k π k ({x}) P x, B k c = 2 x∈B k π k ({x}) P x, {y ∈ N : y ≥ k + 1} (from (33)) = 2 x∈B k π k ({x}) P x, {y ∈ N : V (y) α ≥ V (k + 1) α } (since V α ↗) ≤ 2 x∈B k π k ({x}) (P V α )(x) V (k + 1) α (from Markov's inequality) ≤ 2 V (k + 1) α M α + x∈S c ∩B k π k ({x}) (P V α )(x) (from P V α ≤ (P V ) α , (M ), π k (B k ) = 1) ≤ 2 V (k + 1) α M α + x∈S c ∩B k π k ({x}) V (x) α (since ∀x ∈ S c , (P V α )(x) ≤ (P V (x)) α ≤ V (x) α from (DJ S c )) ≤ 2 V (k + 1) α M α + x∈B k π k ({x}) V (x) α = 2 V (k + 1) α M α + π k (V α k ) (49) 
where

V α k := V α |B k is the restriction of V α to B k . Next, if V k := V |B k , we have ∀x ∈ B k , (P k V k )(x) ≤ V k (x) -cV α k (x) + M
from Inequality (44) applied to W = V and (M )-(DJ S c ). Then, by using that π k P k = π k , it follows that c π k (V α k ) ≤ M. Finally, combining (49) and the last inequality, we obtain (48).

□

Let us only discuss the least favourable case of small values of α in (DJ S c ), noticing that m = 1 when α ∈ (0, 1/2) and that m = 2 when α ∈ [1/2, 2/3). As we can see from the estimates (40)-(41) of ∥π k -π∥ T V and from the estimate of γ k in (48), we obtain a quite similar bound to (5) [START_REF] Liu | Augmented truncation approximations of discrete-time Markov chains[END_REF]. Note that here P is not assumed to be stochastically monotone. and to prove that, when applied to truncation of stochastically monotone discrete Markov kernels, it then provides a bound for ∥π θ -π θ 0 ∥ T V which is similar to Tweedie's Estimate (3), see Remark A.3.

Assume that the family {P θ } θ∈Θ satisfies Assumptions (S Θ ) of Section 1 with respect to some small set S ∈ X and some ν ∈ M + * . Moreover assume that there exists a Lyapunov function V : X →[1, +∞) satisfying V (0) = 1 and such that the following conditions hold

M Θ := sup θ∈Θ sup x∈S (P θ V )(x) < ∞ (M Θ ) ∃δ ∈ (0, 1), ∀θ ∈ Θ, ∀x ∈ S c , (P θ V )(x) ≤ δ V (x). (D Θ,S c )
Assumptions (M Θ )-(D Θ,S c ) ensures that the whole family {P θ } θ∈Θ satisfies the so-called geometric drift condition ∃δ ∈ (0, 1), ∃b := M Θ > 0, ∀θ ∈ Θ, P θ V ≤ δ V + b1 S with respect to the Lyapunov function V in a uniform way in θ ∈ Θ. Then for every θ ∈ Θ there exists a unique P θ -invariant probability measure π θ on (X, X ) such that π θ (V ) < ∞, e.g. see [START_REF] Meyn | Markov chains and stochastic stability[END_REF][START_REF] Roberts | General state space Markov chains and MCMC algorithms[END_REF]. Also note that ν(V ) < ∞ from (S Θ ). We know from [HL22b, Cor. 4.2] that there exists a computable real number α 0 ∈ (0, 1] (see Remark A.1) such that

∀θ ∈ Θ, P θ V α 0 ≤ δ α 0 V α 0 + ν(V α 0 )1 S . (50) 
Define A := ν(V α 0 ) 1 -δ α 0 and n * = max 2 , ln(1 -δ α 0 ) -ln ν(V α 0 ) -ln 2 α 0 ln δ + 1 .

The following bounds for ε n,Θ,1 X and ε n,Θ,V α 0 are obtained from [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF](24) Remark A.2 Under the assumptions of Theorem A.1, the function W = V α 0 satisfies the second condition of (W Θ ) from (50). Consequently Estimates (25a)-(25b) of Corollary 2.1 combined with (52) can be used to control ∥π θ -π θ 0 ∥ V α 0 , provided that Assumption (∆ W ) holds with W = V α 0 , that is ∀x ∈ X, lim θ → θ 0 ∥P θ (x, •) -P θ 0 (x, •)∥ V α 0 = 0 is in any case more accurate than either Tweedie's bound (3) or (57) combined with (62). Finally mention that Liu's bound (65) has been extended in [START_REF] Hervé | Explicit bounds for spectral theory of geometrically ergodic Markov kernels and applications[END_REF]Th. 6.1] to any family {P θ } θ∈Θ of Markov kernels defined on a general state space and satisfying Assumptions (S Θ )-(M Θ )-(D Θ,S c ), provided that δ and M in (65) are replaced with δ α 0 and ν(V α 0 ) respectively, where α 0 is given in (50). In the atomic case where α 0 = 1, the bound [HL22a, Th. 6.1] is exactly (65).

Proof. As in the proof of Proposition 3.4 we have from Markov's inequality 

γ k ≤ 2 i∈B k π k (i) (P V )(i) V (k + 1) ≤ 2 V (k + 1)
π k (V k ) = π k (P k V k ) ≤ δπ k (V k ) + M,
from which we deduce that π k (V k ) ≤ M 1 -δ .

Then (62) easily follows from the previous inequalities.

Next, if α 0 < 1, set β 0 = 1 -α 0 and for every i ∈ N define η i ∈ M + by: ∀A ⊂ N, η i = j∈A P (i, j)V (j) α 0 . Then we can write

γ k,V α 0 ≤ 2 i∈B k π k (i)
{j:V (j) β 0 ≥V (k+1) β 0 } P (i, j)V (j) α 0 (from (60) and V ↗)

≤ 2 i∈B k π k (i) η i (V β 0 ) V (k + 1) β 0
(from Markov's inequality w.r.t.

η i ) = 2 V (k + 1) β 0 i∈B k π k (i) (P V )(i)
(from the definitions of η i and β 0 ) ≤ 2M (1 -δ) V (k + 1) β 0 (proceeding as for γ k ).

This proves (63). Finally, if α 0 = 1, then setting β = η -1 and applying Markov's inequality to the set {j : V (j) β > V (k) β } as above we obtain that

γ k,V ≤ i∈B k π k (i) η i (V β ) V (k + 1) β = 2 V (k + 1) β i∈B k π k (i) (P V η )(i) ≤ 2M η (1 -δ η ) V (k + 1) β
where the last inequality is derived from the drift condition: ∀i ∈ B k , (P k V η k )(i) ≤ (P V η )(i) ≤ δ η V η (i) + M η , as in the first part of the proof. □

P

  (x, y)W (y) = (P W )(x) (44) since for any (y, z) ∈ B k × B k c , W (y) ≤ W (k) ≤ W (z) and since ψ x,k (•) is a probability measure on B k . Moreover we have ∀x ∈ B k c , ( P k W )(x) = W (0).

  )-(46) applied with i = 0. □ Remark 3.2 Assertions (b) and (d) of Theorem 3.1 apply too under the assumptions of Theorem 3.2. Recall that the bounds (30) can be used for Assertions (b) of Theorem 3.1. Moreover set

P

  (x, y)V 0 (y) ≤ 2 y∈B k c P (x, y)V 0 (y) (47) since V 0 is non-decreasing and ψ x,k (B k ) = 1. Moreover for any x ∈ B k c we have ∆ k,V 0 (x) = P (x, N * )V 0 (x) + y∈N * P (x, y)V 0 (y).

  , (27) and Cor. 4.2].Theorem A.1 Assume that the family {P θ } θ∈Θ satisfies Assumptions (S Θ )-(M Θ )-(D Θ,S c ) and that for every θ ∈ Θ we have π θ (1 S ) > 0, Then∀θ ∈ Θ, ∀n ≥ n * , ε n,Θ,1 X ≤ 2A δ α 0 n and ε n,Θ,V α 0 ≤ A 1 + 2A δ α 0 n . (52)Remark A.1 The real number α 0 ∈ (0, 1] in (50) can be easily computed from Assumptions (M Θ )-(D Θ,S c ) by using Jensen's inequality, see[START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF] (35) and Prop. 4.1]. Actually the real number M Θ plays an important role in the computation of α 0 : roughly speaking, the larger M Θ is compared to ν(V ), the smaller α 0 is. If S is an atom in (S Θ ) with ν given by ν = P (s, •) for some s ∈ S, then (50) holds with α 0 = 1, see[START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF] Cor. 4.1]. However the case α 0 = 1 is not equivalent to the atomic case, in other words Property (50) may hold with α 0 = 1 for non-atomic small set S, see[START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF] Sec. 6].

  i∈B k π k (i) δV (i) + M (from (M )-(D S c )).Moreover, settingV k := V |B k the restriction of V to B k , we have ∀i ∈ B k , (P k V k )(i) ≤ δV k (i) + Mfrom (44) applied to W = V and from (M )-(D S c ). Thus

where α 0 ∈ (0, 1] is given by (50). In particular we have lim θ → θ 0 γ θ = lim θ → θ 0 γ θ,V α 0 = 0 and lim

Finally note that n * given in (51) satisfies (24) since we know from [START_REF] Hervé | Quantitative approximation of the invariant distribution of a Markov chain. a new approach[END_REF]Cor. 4.2] that ∀θ ∈ Θ, ∥µ (θ) -µ (θ) n ∥ T V ≤ A δ α 0 n .

Applications to truncation-augmentation of discrete Markov kernels

Let P := (P (i, j)) (i,j)∈N 2 be a Markov kernel on X := N. For any k ≥ 1 let B k := {0, . . . , k}.

We assume that there exists a finite subset S ⊂ N and ν ∈ M + * with finite support Supp(ν) ⊂ N such that P satisfies Condition (S), see p. 11. Moreover we assume that there exists an increasing sequence V := {V (i)} i∈N with V (0) = 1 such that P satisfies Condition (M ) (see p. 11) and the following geometric drift condition

Under these assumptions we know that there exists a unique P -invariant probability measure π on N. We assume that π(1 S ) > 0. For k ≥ 1 let us consider the k-th truncatedaugmented matrix P k as defined in (31). The goal here is to prove that, if P satisfies Assumptions (S)-(M )-(D S c ), then its invariant probability measure π can be approximated by the P k -invariant probability measure π k , with an explicit error control in function of the integer k. Let P k be the extended Markov kernel of P k on N defined in Section 3. Similarly, π k is the extended probability measure (32) of the P k -invariant probability measure π k .

Under Assumptions (S)-(M )-(D S c ) we know from [HL22b, Cor. 4.2] that there exists a computable real number α 0 ∈ (0, 1] such that ∀i ∈ S, (P

Obviously the comments in Remark A.1 apply here to the real number α 0 defined in (53) from the single Markov kernel P . For every k ≥ 1 and every i ∈ N, ∆ k (i) is defined in (33) and we introduce ∀i

For any k ≥ 1, if π k is a P k -invariant probability measure on B k , then set

Finally let k 0 ∈ N be the smallest positive integer such that

Theorem A.2 Assume that P := (P (i, j)) (i,j)∈N 2 satisfies Assumptions (S)-(M )-(D S c ) and Condition (56). Moreover assume that π(1 S ) > 0 and that for every k ≥ k 0 (up to pick a larger integer k 0 ) the matrix P k admits a unique P k -invariant probability measure π k on B k such that π k (1 S ) > 0. Then the following assertions holds.

(a) π k defined in (32) is the unique P k -invariant probability measure.

(c) Defining A and n * as in (51), we have for every k ≥ k 0 and for every n ≥ n * :

(d) Setting B := 2A(1 + 2A), we have for every k ≥ k 0 and for every n ≥ n * :

The P k -invariant probability measure π k on B k is supposed to be computable since P k is a finite matrix. In this case the exact value of the real numbers 

. The conclusions (57) and (58) of Theorem 3.2 then follows from Corollary 2.1 combined with Theorem A.1 using the next Lemma A.2. □ Lemma A.1 Let P := (P (i, j)) (i,j)∈N 2 be a Markov kernel on N. For any k ≥ 1, we have

Moreover we have ∀i ∈ N, lim k ∆ k,V α 0 (i) = 0, i.e. Assumption (∆ W ) holds with W = V α 0 .

Proof. Let i ∈ B k . We have

For any i ∈ B k c , we easily derive from the definition of P k that

We have proved (59). Next,

Finally fix i ∈ N. Then it follows from (60) applied to any k > i that lim k ∆ k,V α 0 (i) = 0 since j∈N P (i, j)V (j) 

Proof. Let k ≥ k 0 . Then P k satisfies Condition (S Θ ), see the begining of the proof of Lemma 3.3. Moreover we have

from Inequality (44) applied to W = V and from (D S c ). The first inequality provides (M Θ ) due to (M ). Next we deduce from the first condition of (56) and from the definition of Let k ≥ 1 be such that the matrix P k admits a unique P k -invariant probability measure π k on B k , and let γ k and γ k,V α 0 be defined in (55) with α 0 ∈ (0, 1] given in (53). Then

where M and δ are given in (M )-(D S c ). Moreover if α 0 < 1, then

Finally, if α 0 = 1 and if there exists η > 1, δ η ∈ (0, 1) and M η > 0 such that we have