
HAL Id: hal-03870654
https://cnrs.hal.science/hal-03870654

Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lattice-Compliant Simulations of Anti-Ferromagnetic
Textures and their Response to Spin-Orbit Torques

Jacques Miltat, André Thiaville

To cite this version:
Jacques Miltat, André Thiaville. Lattice-Compliant Simulations of Anti-Ferromagnetic Textures and
their Response to Spin-Orbit Torques. Physical Review B, 2022, �10.1103/physrevb.105.014401�. �hal-
03870654�

https://cnrs.hal.science/hal-03870654
https://hal.archives-ouvertes.fr
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Spin-Orbit Torques

Jacques Miltat∗ and André Thiaville
Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France

(Dated: December 24, 2021)

Spin textures in perfectly ordered antiferromagnetic ultra-thin films are evaluated on the basis of
atomistic simulations and compared to the results of recent extensions of the (l,m) decomposition
model. A comparison between similar textures supported by either a bcc or a fcc lattice shows that
the sole inclusion of symmetric Heisenberg exchange interactions suffices to provide, when geometry
commands, a natural canting between neighboring s↑ and s↓ spins within a texture. Moreover, a pure
’at lattice points’ dipole model leads to natural symmetries in clear disagreement with expectations
from the (l,m) model. Inversely, properties such as wall mobility under spin orbit torques depending
mostly on wall geometrical characteristics such as chirality and chirality axis orientation prove, as
anticipated, primarily lattice immune.

I. INTRODUCTION

C. Kittel and F. Keffer’s analysis of antiferromag-
netic resonance [1, 2], revealed i) the existence of a res-
onance frequency in zero field, ii) the coexistence of sev-
eral resonance modes, all with large frequencies w.r.t.
the ferromagnetic case. These concepts, established in a
two spin-lattices approach, have received a full exper-
imental confirmation in the case of e.g. MnF2 [3, 4],
NiO [5, 6] or CrCl3 [7]. Large frequencies, in the Ter-
aHz range, due to precession around the sum of the ex-
change and anisotropy fields, the latter potentially incor-
porating dipole-dipole interactions, entail large domain
wall velocities at low damping. Unusual wall velocities,
up to 20 km/sec, have indeed been experimentally ob-
served in rare-earth orthoferrites, not exactly antiferro-
magnets though, but weak ferromagnets as early as 1978
(see [8]). Recently, a possible electrical control of the or-
der parameter in antiferromagnets with potential appli-
cations to spintronics has attracted a sustained interest
both in metallic [9–16] and insulating antiferromagnetic
compounds [17–21].

In ferromagnets (F), micromagnetic simulations have
more than often proved instrumental in deciphering re-
sponses of small ferromagnetic elements to fields or to
spin transfer torques (STT), both in the frequency and
time domains. In antiferromagnets (AF), the sole fact
that spin-orbit torques (SOT) may reverse at the atomic
scale [9, 22] ought to promote atomistic simulations of the
spin dynamics. Such codes exist, e.g. [23–26]. However,
although numerous applications of atomistic codes may
be traced back in the case of F’s, fewer examples deal
with AF’s [26–29] beyond the 1D spin chain limit [30–
32]. The spin orientation in AF’s is characterized by the
superposition of spatially fast variables (spin inversion on
adjacent sites) and slow variables (e.g. in the presence of
an AF texture). Efforts to separate the fast from the slow
variables start with the (l,m) and Haldane’s decomposi-
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tions [33–35]. Haldane’s decomposition retains a general
staggered field character for the transverse spin compo-
nent. In the words of Tveten et al.[36], Haldane’s canting
field represents the dynamic magnetization induced by
temporal variations of the order parameter. The (l,m)
decomposition, l = 1

2 (ŝ↑ − ŝ↓),m = 1
2 (ŝ↑ + ŝ↓) allows to

envisage the new variables l and m as continuous vari-
ables. Models using the (l,m) decomposition implicitly
assume, however, l, the so-called Néel vector, and m, the
magnetization, to be located at the same node within a
regular mesh in spite of the initial need to associate two
specific AF coupled spins with distinct locations within
the primary lattice. As a consequence, Papanicolaou [30]
is lead, in his mesoscale treatment of 1D textures, to in-
troduce asymmetrical exchange interactions in order to
allow for some canting within a texture (a wall in this
case) between neighbouring s↑ and s↓ spins. An ex-
tension to the 3D case [36] appears, however, question-
able since tantamount to the introduction of isotropic
asymmetric exchange interactions where none such ex-
ist apart from surface and/or interface Dzyaloshinskii-
Moriya (DM) interactions.

In this work, we analyze characteristic spin textures in
AF thin films within an atomistic model focusing on two
crystal structures, the bcc and the fcc cubic Bravais lat-
tices, and provide values for their energy, concentrating
in a first step on the exchange and anisotropy energies.
In a second step, the introduction of dipole-dipole inter-
actions allows to quantify their role in the stability of
the AF order and the generation of (minute) stray fields
above a free surface. We examine next the conditions in
which the numerical computation load may be alleviated
via what we term ”lattice inflation” or ”swelling”. Lastly,
we analyse the role of spin-orbit torques on specific tex-
tures in the presence of DM interactions (see [22, 37]).

II. ATOMISTIC MODEL

The atomistic model Hamiltonian includes Heisen-
berg exchange interactions, anisotropy, the Zeeman
and dipole-dipole interactions energies as well as
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Dzyaloshinskii-Moriya interactions:

H = HExch +HK +HHa +HDip +HDMI

HExch = −1

2

∑
i6=j

Jij (ŝi · ŝj)

HK = k1

∑
i

f(s2
i,x, s

2
i,y, s

2
i,z) + k2....

HHa = −µs

∑
i

(Ba · ŝi)

HDip = −1

2
µs

∑
i

(Bi
Dip · ŝi)

HDMI =
1

2

∑
i 6=j

Dij · (ŝi × ŝj)

(1)

where, ŝi is a unit vector collinear with the local moment,
index i. Ba and BDip are the applied and dipole field,
respectively. The anisotropy constants k are expressed
in terms of an energy whereas Jij(F > 0;AF < 0) is
defined as an energy per bond, hence the factor 1

2 in
front of the exchange energy. We choose here the meV
as the energy unit and express all fields B in Tesla (T), or
fraction thereof, whereas µs is expressed in Bohr magne-
ton translated into an energy per T (1 µB ≈ 5.8 10−2

meV.T−1). Lastly, Dij is the Dzyaloshinskii vector,
Dij = dDMI(ûij × ẑ) in the case of interface driven DM
interactions with the highest symmetry, ûij is the unit
vector along the line joining sites i and j in the surface
plane and ẑ the normal to the surface. dDMI is also de-
fined as an energy per bond.

The equation of motion is an exact analog to the
Landau-Lifshitz-Gilbert (LLG) equation of magnetiza-
tion motion within micromagnetics, namely,

dŝ

dt
= −γ(ŝ×BEff) + αγ

[
ŝ× dŝ

dt

]
+ τSOT (2)

where, γ is the gyromagnetic ratio, α the damping pa-
rameter, τSOT the spin-orbit torque and BEff , the effec-
tive field that, classically, reads:

BEff = − 1

µS

δH
δŝ

(3)

In these equations, both the exchange field and the dipole
field mirror the lattice symmetries.

We consider here two simple cubic lattices, the bcc and
the fcc lattices, with as background antiferromagnetic
materials Cr on the one hand and NiO on the other.
Chromium has been widely studied at the time of the
discovery of the Giant Magnetoresistance [39, 40] and,
later, in the context of exchange coupling. In their study
of 3d transition metal monolayers on various (001) sur-
faces, including Ag, Au and Pd, Blügel et al. [41, 42]
envisage two possibilities for a Cr overlayer: either a F
p(1×1) or an AF c(2×2) spin ordering and conclude that
both are stable with, however, a slightly lower energy for
the AF ordering. On the other hand, as soon as the
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FIG. 1. bcc environment : A ↓ spin has 4 ↑ nearest neighbours
in the (001) plane below, 4 in the (001) plane above. The
vertical (c) axis in the figure coincides with the [001] direction.
Spin orientation owing to the sole legibility. Figure drawn
with VESTA [38].

thickness of a free standing layer exceeds 3 monolayers,
the staggered stacking of F (001) planes becomes more
stable. A largely amplified moment at the interface has
been obtained from ab initio calculations; it also appears
that Cr layers thin enough are devoid of incommensurate
spin density waves (see [43] for a timely review). High
quality Cr layers have also been grown on W [44]. For
bulk Cr, the spin orientation is in-plane with preferred
directions along [100] and [010] in the (001) plane. We
adopt this general view, without, however, imposing an
exalted moment at the interface. In the bcc lattice, each
↑ spin has 8 ↓ nearest neighbours (n.n.) and vice versa, as
recalled in Fig. 1. The exchange field limited to n.n. for
a site with its full environment thus reads:

bcc : Bi
Exch = +

1

µS

∑
j=1,N(=8)

Jij ŝj (4)

According to Eqn.4, the exchange effective field aligns
spin i with minus the average spin orientation of its 8
n.n.(Jij < 0). This sole mechanism allows for the lattice
induced canting of n.n. spins within a texture as shown
below (Section III). We also adopt a uniform value for
the Cr moment, a symbolic value µS = 1µB , somewhat
exceeding the value stemming from first principle calcu-
lations. We retain a value of −15 meV for the exchange
energy per link, in agreement with [45].

Various forms of anisotropy have been used,
with for the bcc lattice, for instance, the cubic
anisotropy (Kccf(α2, β2, γ2)) and a general orthorhom-
bic anisotropy reading Ku cos2 θ + KiP sin4 θ cos2(2φ),
where α, β, γ are the director cosines of the spin orienta-
tion in the cubic axes, θ and φ the polar and azimuthal
angle of the spin orientation owing to the specific orien-
tation of the computation box. The exact form of the
anisotropy will be made explicit with each computation
result below.

NiO is another well-studied AF material, sharing the
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structure of MnO, the first synthesized antiferromagnetic
oxide [46]. In the search for high quality supported
NiO or CoO films, Ag(001) and MgO have played a
leading role due to their minute lattice parameter mis-
match [19, 20, 47–50]. NiO growth has, however, also
been achieved with SrTiO3 as a substrate [18] as well as
Pt(111) [17]. Several first principles studies of magnetic
oxides appeared during the last decade [51–53]. Only one
of them [51] evoques a possible reduction of the Ni mo-
ment for the first grown layer over Ag(001). All agree on
the AF2 spin ordering within NiO or CoO, meaning stag-
gered F (111) planes, and on the existence of exchange
interactions with nearest neighbours (n.n.), at distance

a/
√

2, and next nearest neighbours (n.n.n.), at distance
a, corresponding, respectively to 90◦ and 180◦ (Ni2+–
O2−– Ni2+) bonds. Values obtained for the exchange en-
ergies J1 (n.n.) and J2 (n.n.n.), however, somewhat fluc-
tuate. We consider here perfect (111) NiO epilayers and
adopt the exchange parameters provided long ago by neu-
tron scattering techniques [54], namely J1 = +1.39 and
+1.35 meV for (ferromagnetic) n.n. interactions within
the (111) plane and (ferromagnetic) n.n. interactions out-
of-plane, respectively, and J2 = −19.05 meV for (anti-
ferromagnetic) n.n.n. interactions (see Fig. 2). With 6
n.n. in-plane, 6 n.n. out-of-plane, and 6 n.n.n. for a site
with its full environment, the exchange field reads:

fcc : Bi
Exch = +

J iP1
µS

∑
j=1,6

(ŝiPj )

+
JooP1

µS

∑
j=1,6

(ŝooPj )

+
J2

µS

∑
j=1,6

(ŝj)

(5)

where, iP and ooP stand for in-plane and out-of-plane,
respectively. Due to the AF2 character of antiferromag-
netism in NiO, ooP n.n. exchange interactions are frus-
trated.

We also adopt a uniform value for the Ni++ moment,
a symbolic value µS = 2µB , only marginally exceed-
ing values obtained from first principles calculations.
Anisotropy is dealt with on the same footing as in the
Cr case, namely a generalized orthorhombic anisotropy
reading Ku cos2 θ + KiP sin6 θ cos2(3φ) in order to keep
track with the six-fold anisotropy in the (111) plane.

Numerical simulations below have all been performed
by means of in-house codes ported to graphical process-
ing units (GPU’s). Epilayers contain 16 and 12 atomic
layers in the bcc (interlayer spacing: a/2) and fcc (in-

terlayer spacing a
√

3/3 )lattices, respectively, where a is
the cubic cell parameter. Double precision has been used
throughout.
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FIG. 2. fcc environment : Top perspective view of Ni ions
belonging to 3 successive (111) planes (depth indicated by the
atoms size). The c axis is normal to the plane of the figure
and coincides with the [111] direction. a) For any given Ni ion
within a given (111) plane, there exist 6 nearest neighbours
(n.n.) in plane; b) n.n. arrangement around a given Ni ion
one (111) plane up, one plane down; c) Ibid for next nearest
neighbours (n.n.n.). Figures generated with VESTA [38].

III. NÉEL (BEND) AND HEAD-TO-HEAD
(SPLAY) WALLS

We consider in this section two types of walls in AF sys-
tems where the prevailing anisotropy tends to maintain
spins in-plane with respect to the geometry of the slab,
namely Néel and Head-to-Head (resp. Tail-to-Tail) walls
that, in the terminology used in nematic liquid crystals,
may be termed Bend and Splay walls [55]. At this stage,
only the exchange and anisotropy terms in the Hamilto-
nian are being considered. In the absence of dipole fields,
such walls are anticipated to entail equivalent energies.

A. bcc Spin lattice

Specifically, in the axes of Fig. 3, the anisotropy energy
now reads:

Ek = kus
2
z + kiP (s2

x − s2
y)2 (6)

with ku and kiP > 0. We adopt also here symbolic val-
ues for the anisotropy constants, namely ku = 0.1 meV,
kiP = 0.05 meV. Under such conditions, spins remain in
the (001) plane and rotate gradually from the [100] to the
[010] easy axis as the result of the competition between
exchange interactions and anisotropy (see Fig. 3) [56].
The global AF ordering between successive (001) planes
is, however, preserved. Similar remarks apply to the
Splay wall spin texture displayed in Fig.4. The Bend
and Splay 90◦ wall profiles displayed in Fig.5, prove es-
sentially similar, as anticipated. The roles of the sx and
sy spin components are simply swapped. The lattice ge-
ometry commands an offset between the spin locations
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x,	[110]	

y,	[110]	
_	

z,	[001]	

[100]	

[010]	

a)	

b)	

c)	

FIG. 3. AF Néel wall in a bcc spin lattice. The [001] direction
is normal to the plane of the figure and all spins tend to belong
to the easy (001) plane where the easy directions are the cubic
axes. The spin texture is displayed around the mid-plane of
a 16 monolayer (ML) stack (≈ 2.3 nm thick), one (001) plane
with ↑ spins (c), one plane above with ↓ spins (b). a) Spin
location projection onto the (001) plane and axes definition.
Only the spins belonging to rows with full symbols in a) are
represented, i.e. one half of the spins, where red, blue symbols
correspond to ↑ and ↓ spins, respectively. The relative shift
between b) and c) reflects the symmetry properties of the bcc
lattice. Distance between two spins, along x or y: a

√
2, where

a is the lattice parameter.

along equivalent rows located in adjacent (001) planes,
as captured in Fig. 3,a. Plotting minus sx and sy of the
↓ plane along the spin components of the ↑ plane, or vice
versa, clearly reveals the continuous character of the spin
rotation across the two sub-lattices, or, equivalently, the
continuous spin-canting between AF coupled neighbour-
ing spins within a texture (see the insets in Fig.5).

Before addressing the wall energy issue, it is worth
identifying what may be attributed to the texture (cur-
vature) within the exchange energy. Looking back at
Eqn.1, any uniform orientation of the order parameter
yields for the bcc lattice an energy 4 Jij < 0 per general
site. Therefore the wall contribution to the exchange en-
ergy is − 1

2Jij
∑
i(
∑
j=1,N (ŝi · ŝj) + N ), where N is the

number of n.n., N = 8 for a spin with its full environment
within a bcc lattice.

With this in mind, the wall exchange and anisotropy
energies are found to be almost strictly equal, namely
872.393 meV and 871.078 meV, respectively, for a L× t
wall surface, where L is the wall length and t the slab
thickness, namely (130 a

√
2/2) × (16 a/2) for this com-

putation. Note that the volume over which the wall

a)	

b)	

FIG. 4. AF Splay wall in a bcc spin lattice. a) ↓ spins plane,
b) ↑ spins plane. Same representation conventions as in Fig.3.
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FIG. 5. bcc spin lattice: a) Néel (Bend) and b) Splay wall
profiles corresponding to Figs.3 and 4, respectively. The large
open symbols in b) correspond to a fit by a classical Bloch wall
profile. Insets: superposition of −sx,y, ↓ plane (open symbols)
and sx,y, ↑ plane (full symbols).

energy is computed represents only a fraction of the
computation volume in order to minimize edge effects.
With a = 0.2884 nm (Cr), the wall energy amounts to
≈ 28.504 meV/nm2. The Splay wall profile sx in Fig.5,b
has been fitted with a function characteristic of a Bloch
wall in a ferromagnet. The excellent fit provides a pre-
cise value for the width parameter of that model Bloch
wall, namely ∆∗ = 1.713 nm. Wall width combined with
energy provide effective values for the continuum limit
of the exchange and anisotropy constants, respectively
A∗ = 12.207 meV/nm and KiP = 4.160 meV/nm3. The
discussion of such estimates is deferred to the end of the
section.
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FIG. 6. AF Néel (Bend) wall in a fcc spin lattice. The [111]
direction is normal to the plane of the figure and all spins
belong to the easy (111) plane where the easy directions are
the 〈211〉 directions in the (111) plane. The spin texture is
displayed around the mid-plane of a 12 monolayer (ML) stack
(≈ 3 nm thick), one (111) plane with ↑ spins (c), one plane
above with ↓ spins (b). a) Spin location projected onto the
(111) plane and axes definition. In agreement with the geom-
etry of the AF unit cell, only the spins located at positions
labeled with full symbols in a) are represented in b) and c),
where full red, blue symbols correspond to ↑ and ↓ spins, re-
spectively. Here, the shift between b) and c) takes place along
the y directions and amounts to dnn

√
3/3, where dnn is the

distance between nearest neighbours. Distances between two
spins in the representation: dnn and dnn

√
3, along x and y,

respectively.

B. fcc Spin lattice

We solely consider below walls separating S(or Spin)-
domains, i.e. domains belonging to a single T(or Twin)-
domain [57, 58]. A T-domain is characterized by a unique
{111} AF2 ordering. Four T-domains may coexist, cor-
responding to (111),

(
111
)
,
(
111
)

or
(
111
)

F-ordered
planes, respectively. In the axes of Fig. 6, the anisotropy
energy may be expressed as:

Ek = kus
2
z + kiP s2

x(s2
x − 3s2

y)2 (7)

Adopting here also symbolic values for the anisotropy
constants, namely ku = 0.1 meV, kiP = 0.05 meV [59],
spins remain confined to the (111) plane and rotate grad-
ually from the

[
211
]

to the
[
121
]

easy axis, resulting in
a 60◦ Néel wall (see Fig.6). Due to a specific distribution
of the easy axes (6-fold symmetry), the equivalent Splay
wall decomposes spontaneously into two 60◦ Splay walls
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b)	
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FIG. 7. fcc spin lattice: a) Néel (Bend) wall profile corre-
sponding to Fig.6 and b) decomposed Splay wall profile. The
large open symbols in a) correspond to a fit by a classical
Bloch wall profile. Insets: Ibid Fig.5.

with the same handedness as shown by the wall profiles
in Fig.7.

In full similarity with the bcc case, the Néel wall profile
may be fitted by a pure Bloch wall profile as displayed
in Fig.7. In contradistinction to the bcc case, however,
no canting exists between equivalent spins belonging to
two successive (111) planes as shown in the insets of
Fig.7. Had we, however, considered a Néel wall paral-
lel to the

(
112
)

plane, then spin canting between AF
coupled neighbouring spins would have been recovered.

The contribution of exchange interactions to the wall
energy proves more complex than in the bcc case due
to the existence of frustrated n.n. interactions. How-
ever, when limiting the evaluation of the exchange en-
ergy to n.n.n. interactions, the expression derived in the
bcc case remains valid with Jij = J2 and N = 6. The
recorded exchange and anisotropy energies amount to
586.198 meV and 609.352 meV, respectively. With a
global thickness close to 2.9 nm, a lattice parameter
a = 0.41705 nm, and consequently, dnn = a

√
2/2 =

0.2949 nm, dnnn = dnn

√
2 = a, the 60◦ Néel wall en-

ergy amounts to 20.254 meV/nm2 whereas the wall pro-
file fit yields an effective wall width parameter equal
to ∆∗ = 1.8814 nm. Wall width combined with en-
ergy provide effective values for the continuum limit
of the exchange and anisotropy constants, respectively
A∗ = 9.540 meV/nm and KiP = 2.687 meV/nm3.

C. Wall width and energy analysis

We have dealt above with 90◦ and 60◦ Néel walls in a
bcc and a fcc lattice, respectively. It is straightforward
to show that, due to a prevailing uniaxial anisotropy,
spins are confined to their respective easy planes, namely
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the (001) and the (111) plane. The anisotropy energy
may thus be reduced to kiP sin2 2φ in the bcc case and
kiP sin2 3φ for the fcc lattice. Defining A andK as the ex-
change and anisotropy constants in the continuum limit,
the energy density of these walls may be written as ε =
A (dφ/dx)2+K sin2 2φ or ε = A (dφ/dx)2+K sin2 3φ ow-
ing to lattice, or, globally as ε = A∗ (du/dx)2 +K sin2 u,
where u = 2φ, A∗ = A/4 in the bcc case, u = 3φ,
A∗ = A/9 in the fcc case. The energy density expression
in u entails a Bloch-type 180◦ wall with width parameter
∆∗ =

√
A∗/K and energy 4

√
A∗K.

The migration from a discrete spin system to a con-
tinuum is, in the ferromagnetic case, done classically as
follows. Choosing here, as an example, the bcc lattice
and referring back to the unit cell geometry depicted in
Fig.1, a Taylor expansion up to the second order of spins
s(r) located at the apices of the unit cell may be per-
formed w.r.t. the spin at the cell centre, ŝ0, with, as a
result, an exchange field reading:

Bi
Exch =

J

µs

∑
j=1,N

(ŝj) =
J

µs
(N ŝ0 + a2∇2ŝ|0) (8)

The laplacian term at site 0 and ŝ0 are the only sur-
viving terms in the Taylor expansion after summing-up
over the 8 n.n.. The ŝ0 field component exerts no torque
on ŝ0 itself and, thus, may, in the ferromagnetic case,
be discarded. In the continuum limit, the exchange field
reads BExch = (2A/Ms)∇2m, be it for the bcc or fcc lat-
tice. Since Ms, the saturation magnetization, is, for a bcc
lattice, equal to 2µs/a

3, one finds A = J/a, a still being
the lattice cell parameter.

In order to treat the AF case on a similar footing, let us
first consider a F spin chain (1D) embedding a wall. If ε
is the angle between two adjacent spins, the contribution
to the exchange energy of that spin pair is −JF cos(ε).
For constructing the equivalent AF spin chain, just re-
vert one spin over two. The energy per spin pair becomes
−JAF cos(π±ε). In the spirit of Haldane [35], now define
the order parameter as l = (−1)is, where i is the spin
index along the chain. For any equivalent spin pair along
the chain, the exchange energy is either −JAF cos(π± ε),
applying to s, or −|JAF |cos(ε), applying to l. The argu-
ment is easily extended to 3D textures, with, as a partic-
ular example, l = (−1)ks in the case of the AF structures
considered above, where k is the atomic layer index. The
continuum limit values of the exchange and anisotropy
constants remain therefore linked to their discrete coun-
terparts as, bcc (Ms = 2µs/a

3): A = |J |/a, K = 2k/a3,
fcc (Ms = 4µs/a

3): A = |2J |/a, K = 4k/a3.
From the fit of the wall profile and the wall energy

computation, the following parameters were extracted,
A = 4A∗ = 48.827 meV/nm and K = 4.160 meV/nm3

in the bcc case, A = 9A∗ = 85.860 meV/nm and
K = 2.687 meV/nm3 in the fcc case, to be com-
pared to bcc: 52.012 meV/nm and 4.169 meV/nm3, fcc:
91.356 meV/nm and 2.757 meV/nm3, respectively. It

a)	

b)	

s	 BDip	

€ 

log BDip( )
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FIG. 8. bcc spin lattice: a,b) Uniform spin distribution (sx =
sy, sz = 0), left, and dipole field, right; a) Upper, b) Lower
(001) plane. c) log of the dipole field modulus (T) across layer
thickness.

may be noticed that, perhaps unsurprisingly, the agree-
ment between respective anisotropy values is better than
between exchange parameters. Altogether, however,
agreement is considered as satisfactory.

IV. DIPOLE FIELDS

In their group theory analysis of dipolar crystals, Lut-
tinger and Tisza [60, 61] first recall that the field at a
point r due to a point-like dipole at the origin is linear
in the dipole’s moment p, classically:

B(r) =
µ0

4π

(
3(p · r)r

r5
− p

r3

)
(9)

where p = µsŝ. It ensues that the field displays the
same symmetry as the generating dipole array. The dipo-
lar energy then is a quadratic function of the dipoles vec-
tor components and finding the energy associated to var-
ious ordering modes ultimately reduces to an eigenvalue
problem. It has been shown [60–62] that, for an infinitely
extended bcc lattice, the dipole field is strictly zero at lat-
tice points provided the dipoles are oriented along any of
the cube axes. For a fcc lattice, with AF2 ordering (i.e.
F-ordered {111} planes), the dipolar energy proves mini-
mum for moments uniformly ordered in the {111} plane,
irrespective of the spin orientation within the plane (see
also [5]).

A. Uniform order parameter

Dealing with ultra-thin epilayers inherently leads to
truncations in the dipole fields sums, hence a dipole con-
tribution to the overall energy at variance from the bulk.
We first evaluate the dipolar field lattice response when
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FIG. 9. fcc spin lattice: a,b) Uniform spin distribution (|sx| =√
3/2, |sy| = 1/2, sz = 0), left, and dipole field, right; a)

Upper, b) Lower (111) plane. c) Dipole field modulus (T)
across layer thickness.

the order parameter is uniform, i.e. in the absence of
any spin texture. Note that, in this context, the (l,m)
decomposition assumes the system to be devoid of any
field, assuming the m distribution to be the sole source
of dipolar field. The main results may be summarized
as follows: i) bcc lattice : for a spin direction along a
〈100〉 direction within the epilayer plane, the field decays
rapidly from the outer surfaces, in agreement with the
full 3D analysis of Luttinger and Tisza [60, 61]. A fairly
large amplitude field however still subsists within the out-
most atomic layers. The surviving field is dipole aligned
(Fig.8), a property found to be independent of the spin
orientation in the (001) plane; ii) fcc lattice : for a spin
direction within the epilayer plane, (111) here, the dipole
field is also, dipole oriented. In agreement with the 3D
analysis [60, 61], the dipole field only weakly depends on
the distance from outer surfaces (Fig.9). For all these
cases, the dipole field stabilizes the spin orientation.

A different picture emerges when the dipoles are ori-
ented along the epilayer normal. In the bcc lattice, a
sizeable field is still to be found in the layers closest to
the surfaces (Fig.10). The field is now, however, oriented
opposite to the local moment and the field asymmetry be-
tween the bottom and the top surfaces is a consequence
of the even number of atomic planes across the thickness,
implying a spin orientation reversal between the outmost
atomic layers. In the fcc lattice (Fig.11), the field is now
also oriented opposite to the local spin, and its modu-
lus increases gently only in the immediate vicinity of the
surfaces. Thusly, for dipoles oriented along the epilayer
normal, the dipole field acts for an ultra-thin AF epilayer
as a local demagnetizing field.

It is clear that the dipolar energy reduces to a local
anisotropy term when dealing with infinitely extended
crystals. Is it the case, too, when dealing with ultra-
thin epilayers ? It seems so since, both for the bcc or
fcc lattices, dipolar interactions are consistent with the
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FIG. 10. bcc spin lattice: Uniform spin distribution (sx =
sy = 0, |sz| = 1), left, and dipole field, right, in a (x, z)
plane cross section representation embedding the whole layer
thickness t. a) is located one plane beneath b). c) Log of the
dipole field modulus (T) across layer thickness.
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FIG. 11. fcc spin lattice: a) Projected spin distribution
(|sz| = 1) onto the (112) plane, and dipole field b) embed-
ding the whole layer thickness t. c) Dipole field modulus (T)
across layer thickness.

existence of an easy plane perpendicular to the epilayer
normal. An anisotropy of the form kDs

2
z in the computa-

tion axes of Figs. 3,6 seems therefore adequate, provided
kD be a lattice specific function of the altitude z within
the AF layer.

B. Spin Textures

Up to this point, we have only considered a uniform or-
der parameter. Do the dipolar properties above remain
true in the presence of a spin texture, as assumed, long
ago, by Yamada [63, 64] in his study of walls in NiO ? In-
stead of attempting to answer globally to that question,
we notice that the spin textures considered up to now
are strictly planar. It follows that the z component of
the dipole field is directly linked to the spin distribution
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FIG. 14. Schematic magnetic charge distribution across a wall
in successive atomic layers and resulting wall induced dipole
field (large red arrows). a) Splay wall, b) Néel wall.

across the wall, as shown in Figs. 12-13. In these figures,
the field profile per atomic layer is plotted vs distance
from the wall center. Profiles are shown only for the up-
per half of the layer thickness and symmetry vs the layer
mid-plane provides the missing profiles. Figs. 12 and 13
show that the z field component is wall-type specific and
globally independent of the lattice. The residual field
proves rather small with amplitude in the 10 − 20 mT
range for Splay walls, ≈ 4 times smaller for Néel walls
and only weakly dependent on the atomic layer index.

In each F-ordered atomic layer parallel to the surface,
a Splay wall gives rise to so-called σ charges, a Néel wall
to dipolar or π charges as schematically shown in Fig. 14.
Charges change sign with each unit increase or decrease
of the layer index. In order to deal with fully compen-
sated AF epilayers, we have solely considered an even
number of atomic layers, be it for a bcc or a fcc lattice.
Then, for any atomic layer in Fig.14, pair summation,
starting with the two layers adjacent to that under con-
sideration, does not lead to a full balance of the fields.
Thusly, a monopolar z component field is expected for
a Splay wall, dipolar for a Néel wall, the sign of which
is defined by the sign of charges closest to the interface
and the free surface. It has been checked that the z field
component reverses with a global reversal of the spin ori-
entation.

According to the (l,m) decomposition scheme, the ex-
act opposite result would have been reached. Although
at first puzzling, this result is easily understood after re-
alizing that, since l ⊥ m, the corresponding m wall is,
for a Splay wall, akin a Néel wall and vice versa (see
e.g. Fig.7 in [36]). As such, however, the pure ’at lattice
points’ point dipole theory is not free of critics, either,
as noticed early in [60] when alluding to weak disorder.
The very fact that the ’at lattice points’ picture proves
sensitive to the exact local dipoles positions means a re-
striction to low temperatures.

Practically, dipole fields evaluation highly benefits
from Fast Fourier Transforms (FFT) techniques as soon
as the dipole distribution may be dispatched into as nec-
essary a number of ferromagnetic tetragonal sublattices.
The bcc case is simple, with only two sublattices. The fcc
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case proves much more demanding due to the incompat-
ibility between an ABC sequence of (111) planes and the
bi-(111) planes AF ordering, meaning a 6 (111) planes
sequence, as recalled in Fig.11. This added complexity
may, however, rather easily be mastered. In this work,
FFT techniques have been implemented overall and care
has been taken to make sure that the FFT dipole fields
evaluations were exactly equivalent to direct sum esti-
mates. It remains nevertheless true that dipole fields
estimates remain sensitive to the boundary conditions
imposed by a finite size ’computation box’. In the com-
putation axes of Figs.3 or 6, the y and z computation box
limits are physically linked to the AF stripe width and
epilayer thickness, respectively. The x limits are compu-
tation specific and care needs to be experienced in order
to make sure that the x limits have the minimal incidence
on the final results.

Altogether, dipole fields exert a rather tiny influence
on the converged wall textures, up to the point, actually,
where it proves difficult to display their influence at the
graph level, except for the sz spin component that re-
mains smaller than 10−4 under the prevailing anisotropy
as displayed in Fig.15 (the noise level in these computa-
tions is of the order of 10−15). Similar results are ob-
tained for Splay walls within a fcc lattice whereas Néel
walls display bimodal sz profiles for both lattice types.

On the other hand, dipole fields allow for an estimate
of the fringing field below the interface or above the free
surface of the AF epilayer that may cast new insights into
AF wall observability by means of, for instance, NV mi-
croscopy (e.g. [65] and loc.cit.). Fig.16 displays the x and
z components of the fringing field above the free surface
corresponding to a) a Splay wall in a bcc lattice and b)
a Néel wall in a fcc lattice. In the Splay wall case, the z
component of the fringing field outside and wall-induced
dipole field inside (Fig.12) are both primarily unimodal,
changing sign, however, upon crossing the free surface, in
relation with the wall charge distribution just below the
free surface (Fig.14). Similar arguments hold true for the
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FIG. 16. Dipole field distribution above the free surface for a)
a Splay wall in a bcc lattice, b) a Néel wall in a fcc lattice. Left
scale: Bx (mT); right scale: Bz (mT). Bx profiles at distances
a) 1, 2 .., 6 nm, b) 0.5, 1, .., 3 nm from the free surface; Bz

profiles at surface level and distances a) 1, 2 .., 6 nm, b) 0.5,
1, .., 3 nm from the free surface.

Néel wall. Such features, characteristic of ferromagnets,
therefore find their counterpart in AF’s, at least in lay-
ered AF’s, such as those considered here. As anticipated,
the fringing field decays rapidly with distance from the
surface: the Splay wall z field component drops to less
than 0.15 mT at 15 nm from the surface and its Néel wall
counterpart to roughly the same value at only 5 nm.

A last remark ought to be made at the end of this sec-
tion if wishing to find which part of the dipolar energy
ought to be attributed to a wall. The only suggestion,
here, is to perform the difference between the dipolar en-
ergies linked to two identical volumes, one containing a
fully relaxed wall, the second solely containing the two
domains separated by an abrupt transition. Following
this procedure for instance for the Splay wall in a bcc lat-
tice, one finds ∆EDip = −92.02 − (−94.94) = 2.9 meV,
i.e. a value small w.r.t. the exchange or anisotropy en-
ergies within the same volume (Section III A).

V. LATTICE INFLATION AS A ROUTE
TOWARDS AF MICROMAGNETICS

Although the exchange energy per link is clearly asso-
ciated to a precise distance between n.n. or n.n.n., no
length explicitly enters the expressions of the exchange
or anisotropy effective fields. It follows that lattice in-
flation, or swelling, allows for the computation of AF
textures in larger volumes whilst preserving the native
ordering within a given lattice. Defining the swelling ra-
tio as Sw, a pure number, the material parameters need
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FIG. 17. Splay (bcc) and Néel (fcc) wall profiles as a function
of lattice swelling ratio Sw. Continuous lines: native lattice,
+ and × symbols: Sw = 2, full red and blue symbols: Sw = 3.

to be scaled as a ⇒ Swa, Jij ⇒ SwJij , dDMI ⇒ SwdDMI

and µs ⇒ S3
wµs, k ⇒ S3

wk in order to keep their contin-
uum limit equivalents constant. We stress that charac-
teristic lengths such as the wall width are left untouched
in the swelling process. The wall energy per unit area is
equally conserved. No rescaling of time needs to be envis-
aged, leaving an open access to the full physical frequency
range, in particular those large frequencies imposed by
the exchange field. Inversely, the swelling process intro-
duces a cut-off in the spin-wave (or phonon) spectrum.
Such properties evoke micromagnetics in ferromagnets,
with, however, one difference: in F’s, the continuum
limit is commonly viewed as an intermediary step be-
tween atomistic modeling and projection onto a suitable
mesh, the size of which is conditioned by the character-
istic lengths of the system. Here, lattice-compliant infla-
tion allows the intermediary step to be skipped. Swelling
ratios in the range 2− 5 may easily be used, thereby po-
tentially reducing the number of lattice points by a factor
S3
w for a given physical volume.

Validation of the lattice-compliant inflation scheme
in the static limit may be gained from the inspection
of Fig.17 comparing wall profiles for two values of the
swelling ratio, in both lattices. Only a slight global trans-
lation of the profiles w.r.t. the native lattice profile has
been allowed for in order to keep a common wall centre.
The agreement between profiles proves excellent.

Unfortunately, the inclusion of dipole-dipole interac-
tions is more problematic due to the alternate nature of
the dipole fields sums in AF’s and their truncation in
ultra-thin layers. Reducing the dipolar energy to a local
anisotropy energy certainly helps, at least when almost

constant across the thickness as such is the case for the
fcc lattice. Reducing dipolar energy to anisotropy im-
plies, however, the neglect of wall specific dipolar inter-
actions. Those have been shown above to be small, but
nevertheless real.

VI. ACTION OF SPIN-ORBIT TORQUES

Recently investigated metallic AF compounds include
CuMnAs, Mn2Au, and IrMn or PtMn [9–16]. The
collinear antiferromagnets CuMnAs and Mn2Au have
in common a tetragonal unit cell and a ”staggered”
stacking of (001) planes meaning alternate spin orien-
tations in successive (001) planes. Insulating AF com-
pounds include CoO and NiO and the weak ferromagnet
Fe2O3 [17–21]. Depending, however, on the substrate
orientation, these collinear antiferromagnets may exhibit
different preferred orientations of the order parameter.
For instance, if grown on Pt(111) or MgO(111), NiO ex-
hibits preferred spin orientations in the (111) plane [17].
If grown on MgO(001), the preferred orientations in
strained CoO or NiO epilayers belong anew to the growth
plane, and follow 〈110〉 directions [18–20, 49]. Note that,
in neither case, is the spin ordering precisely known. If
the general picture pertaining to bulk NiO or CoO holds
true, i.e. alternate spin orientations in successive {111}
planes, then the [110] and [110] directions are, in any
given (001) plane, inequivalent in terms of spin stacking
as demonstrated experimentally at the free surface of a
NiO crystal [66].

Conducting and insulating AF’s also differ in the na-
ture of the current induced spin-torque. In the metallic
structures CuMnAs, Mn2Au, the charge current is meant
to flow homogeneously through the AF layer. For the
insulating compounds, the current flows within an adja-
cent heavy metal layer, Pt most often. In one scenario,
the spin polarization of carriers flowing across the heavy
metal layer splits in the presence of spin-orbit interac-
tions (Spin Hall Effect) and the associated spin-current
may be absorbed at the interface [67, 68]. A charge cur-
rent flowing parallel to an interface with naturally broken
inversion symmetry may also, in the presence of spin-
orbit interactions, generate spin currents [69]. Spin-orbit
interactions imply a correlation between the conduction
electrons momentum and their spin. Such concepts ex-
tended to conducting antiferromagnets with adequate
structural characteristics lead to a spin-polarization un-
balance per sub-lattice, with, as a consequence, a mod-
ulation of the carriers spin-polarization at the atomic
scale [9, 70].

From a purely geometrical point of view, however,
torques acting on the localized moments may be simply
differentiated as field-like, τFL ∝ ŝ× p̂, and damping-like,
τDL ∝ ŝ× (ŝ× p̂), where ŝ and p̂ are unit vectors along
the localized moment and the polarization of the local
spin current, respectively [69]. Application to antiferro-
magnets swiftly reveals the kind of interchange occurring
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FIG. 18. Action of the field-like (a,c) and damping-like (b,d)
spin-orbit torques on an AF coupled bi-spin (SA,SB) in the
case of a,b) a uniform polarization p of the spin current, c,d) a
staggered polarization. Black arrows: initial spin orientation;
red or blue arrows: spin orientation upon application of the
torque.

between the field-like and damping-like torques whether
p̂ is uniform or reverses with ŝ, see Fig. 18.

The first experiments [9, 17] attempted to demonstrate
a direct electrical control of the AF order parameter by
spin-orbit torques (SOT). Shortly after, however, the ob-
servation of domains in CuMnAs proved that wall motion
indeed offers an alternative mechanism [11]. Similarly, in
NiO, spin-orbit torques resulting from the application of
current pulses were shown to lead to important reorgan-
isations of the domain pattern [71]. On the other hand,
current pulses in these early experiments prove altogether
alarmingly long compared to typical precession times in
AF’s.

We consider first below the action of SOT’s on the
spin orientation within small volumes with uniform order
parameter, second, the action of SOT’s on certain wall
types in the presence of DM interactions, still within the
lattice-compliant formulation of the present work. More
precisely, we now consider epitaxial AF layers with a bcc
or fcc lattice in contact with a heavy metal layer. We as-
sume the current to flow solely in the heavy metal layer:
in the axes of Figs.3 or 6, a charge current flowing along
the x direction produces a spin current polarized along
the y direction. We do not envisage here the more com-
plex case of systems like CuMnAs with their staggered
spin-orbit fields (see [72]).

Fields corresponding to the SOT’s may now be added
to the effective field, namely BDL = BD [ŝ× ŷ]; BFL =
BFŷ; BD = ~

2
J
e
A
µs

ΦSH; BF = χBD where, BD and BF

are the moduli of the damping-like and field-like Spin
Hall fields and χ the ratio between them, J is the current
density in the heavy metal layer and A the area per spin
in the interface plane, e the electron charge (e < 0) and

ΦSH the Spin Hall angle. For the bcc lattice, A is equal to
a2 for a (001) interface, d2

nn

√
3/2 for the (111) interface of

a fcc lattice. The above definition implies the SOT to be
applied into a single atomic layer within the AF, namely
that located at the interface. In the following, we stick to
that definition, exchange interactions relaying the torque
in the upper AF layers. Distributing the torque would
have been equally possible. The difference between the
two approaches actually remains immaterial.

Finally, DM interactions have been experimentally
shown to lead to remarkable spin textures in ultra-thin
films such as spin spirals, homochiral successive walls or
a skyrmion lattice [73–75]. The present implementation
into an atomistic code adopts the 3 ions mechanism of
Levy and Fert [76], owing to which two spin carrying
ions belong to the interface plane, one ion, non-magnetic,
to the layer just below/above. We also consider at first
a fully crystalline stack, so that the non-magnetic ion
remains in an epitaxial relation with the spin carrying
layer. Practically, for a (001) interface within a bcc lat-
tice, the spin carrying ions are n.n.n.’s and the non mag-
netic ion a n.n.. For each link in the interface plane, there
exist two n.n. non magnetic ions in the heavy metal, jus-
tifying the use of the expression Dij = dDMI(ûij × ẑ) in
the DM interactions energy. For a (111) interface within
a fcc lattice, neighbours in the interface plane are n.n.’s
whilst n.n.n.’s control exchange interactions within the
AF layer. More importantly, for each link in the interface
plane, there exists a single n.n. non magnetic ion [77] so
that Dij does not any more belong to the interface plane.
Moreover, two successive links around a given spin at the
interface share a common n.n. non-magnetic ion. It fol-
lows that the out of plane component of the Dzyaloshin-
skii vector alternates at the atomic scale in full similarity
to the Co/Pt(111) case. Although calling for further in-
sight, we prefer at this stage to keep a unique definition
of the Dzyaloshinskii vector. Then, for both lattices, the
two magnetic ions belong to the interface and so does
Dij . It ensues that a gain in DM interactions energy
may only be achieved if the spin orientation leaves the
interface plane.

All calculations below have been performed for purely
indicative parameters, namely |dDMI| = 1.5 meV, J =
−50 GA/m2, ΦSH = 0.1, χ = 0 or 0.25 and damping
parameter α = 0.01.

A. Uniform order parameter

The main result in this section is that, switching-on the
current only leads, whether χ = 0 or 0.25, to a minute
reorientation of the spins, in full similarity with the ferro-
magnetic case. This minute reorientation occurs within
a few ps for damping parameters in the 10−2 range. For
experimentally accessible currents, a direct control of the
AF order parameter [78] proves simply out of reach, ex-
cept, perhaps, for situations where huge spin currents
result from the fast demagnetization of an adjacent fer-
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Simulation parameters: J = −50 GA/m2, ΦSH = 0.1, χ = 0
and α = 0.01. dDMI = +1.5 meV(a, b, d),−1.5 meV(c).

romagnetic layer [26].
Obviously, a drastically different scenario develops if,

instead of starting with a spin orientation at equilibrium,
one starts with a metastable equilibrium state. Such
would be the case should the anisotropy landscape be
altered due to e.g. rising thermal strains [79]. Sadly so,
however, the SOT becomes simply superfluous.

B. Spin textures

Néel type walls within a ferromagnet (F) with perpen-
dicular anisotropy have been shown to move with speeds
up to a few 100 m/s under the action of SOT’s in the
presence of DM interactions [80]. More recently, walls
within F stripes with an in-plane magnetization were
also shown to move, albeit with a lesser velocity, due
to cycloidal distortions of the domain wall structure as-
sociated with DM interactions [81]. In their 1D study
of simple walls in AF’s, Shiino et al. do find that (x, z)
plane Néel and Splay walls (resp. z and x axis uniax-
ial anisotropy) propagate with similar velocities under
SOT’s in the presence of DM interactions ([31] and asso-
ciated Supplemental Material).

The results of the present study are similar. In a nut-
shell, fully planar ((x, y) plane) spin textures, whether
Néel or Splay do not propagate under SOT’s, both in the
bcc or fcc lattice, even in the presence of DM interactions.
These results are in line with a previous remark stating
that DM interactions may only have a bearing when the
out-of-plane spin component ceases to be zero and dipole
field interactions are simply too weak to provide the nec-

essary action. On the other hand, wall structures in AF’s
potentially leading to a high mobility under SOT’s may
be thought of.

In the bcc lattice, such walls include, for a (001) inter-
face and a (010) easy plane, a 180◦ Néel (Splay) wall in
a system with leading perpendicular ([100] axis uniaxial)
anisotropy, and for a (110) interface, a 90◦ Néel or Splay
wall. For the whole set of spin textures, (001) remains
the ferromagnetic plane. The first two and last two struc-
tures are characterized by fully uncompensated (the 1st
layer is ferromagnetic) and fully compensated interfaces,
respectively. More precisely, each ↑ spin belonging to the
(110) bcc interface has four ↓ n.n.n.’s, and vice versa. All
these walls are chiral with a chirality axis along ŷ and,
thus, couple efficiently to the damping-like SO field. Note
that the wall chirality proves common to the various F
sub-lattices. Results are summarized in Fig.19. For these
simulations, an initial clockwise (cw) chirality has been
imposed to the spin textures (a)-(c), anticlockwise (ccw)
for (d). Then, the correct sign is assigned to the DM in-
teractions parameter dDMI so as to lead to a gain in DM
energy. Physically, this would mean a particular choice
for the heavy metal in contact with the AF layer. The in-
spection of Fig.19 indicates that, for a cw chirality, dDMI

needs to be > 0 in the case of a ferromagnetic interface,
< 0 for a fully compensated AF interface, as a direct con-
sequence of the vector product entering the expression of
the DM energy. The sign of dDMI also needs to reverse
with chirality. Owing to conventions valid here, a nega-
tive current density pushes a cw texture towards x < 0,
a ccw texture towards x > 0. The analogy between fer-
romagnets [80] and antiferromagnets is thus, here also,
striking.

Current densities in this work are in the low end of
the density spectrum addressed in [31]. Furthermore, a
rather conservative value of the damping parameter has
been chosen (α = 10−2). Wall velocities in the present
lattice-compliant approach of AF’s prove therefore equiv-
alent to velocities reached in [31], i.e. velocities in the
km/s range for α = 10−3. Pending a detailed analysis,
the velocity scatter in Fig.19 is to be attributed mostly
to the variation in wall width, itself a function of the
anisotropy landscape.

Lastly, we consider, for the fcc lattice, two spin tex-
tures, a Néel and a Splay wall, schematically represented
in Fig.20 and equivalent to the textures in Fig.19 c-d.
These still are spin textures belonging to a single (111)
AF2 ordered Twin domain but now with a (110) inter-
face. Similarly to the bcc case, the interface is compen-
sated with also each ↑ spin belonging to the interface
having four ↓ neighbours, and vice versa. The exact
geometry proves, however, different since two of the ↓
spins are n.n.’s, two n.n.n.’s. Although possibly call-
ing for the definition of two DMI parameters, we treat
them here indifferently. Both of these walls are found
to propagate effortless under damping-like SOT’s pro-
vided n.n. exchange interactions are turned off [82]. As
above, variations in velocity, here minute, are ascribable
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FIG. 20. Spin textures and velocity under SOT. Left: two dif-
ferent spin textures within a fcc lattice with ŷ chirality axis,
(110) interface and 〈211〉 easy axes within the (111) plane.
Right: wall velocity under spin-orbit torques. Simulation pa-
rameters: J1 = 0, J = −50 GA/m2, ΦSH = 0.1, χ = 0 and
α = 0.01. dDMI = −1.5 meV(a),+1.5 meV(b).

to anisotropy induced wall width modulations.
Summarizing, domain wall mobility under SOT’s in

antiferromagnets is clearly related to wall geometrical
characteristics, in full analogy with ferromagnets. It is
therefore not surprising that wall mobility under SOT be
largely independent of the subtending lattice. Similarly
to the F case, successive partial angle walls in AF’s (90◦

in bcc or, 60◦ or 120◦ in fcc structures) may not be ho-
mochiral, and thus, may only move towards or away from
each other under SOT’s.

VII. OUTLOOK

In the absence of DM interactions, wall textures in fer-
romagnets are often the result of competing interactions
between anisotropy characteristics and sample specific
demagnetizing field distributions, exchange interactions

being mostly isotropic. In AF’s, anisotropy and lattice-
compliant exchange interactions set the rules. In par-
ticular, magnetostrictive spontaneous deformations and,
at a first level, strain-induced anisotropy play a particu-
lar role. The latter have been neglected in this work as,
except for the most recent work [79], in many previous
studies and a suitable continuum mechanics remedy be-
yond strain-induced anisotropy needs to be found. On
the other hand, this work casts new insights into the
role of lattice-compliant exchange interactions and ’at
lattice points’ dipole fields. Lattice-compliant Heisen-
berg exchange interactions are the only needed exchange
interactions in the bulk of AF’s with inversion symmetry.
Owing to lattice and wall geometry, these may, or not, in-
duce phase lags in the spin canting between sub-lattices.
Although complex, ’at lattice points’ dipole-dipole in-
teractions respect basic symmetries. Neither of these
characteristics is met in the (l,m) decomposition mod-
els developed recently. Both for exchange and dipoles
interactions, the lattice-compliant and the (l,m) decom-
position model differ basically in the location assignment
of two neighbouring AF coupled spins and the difference
appears irreducible. An alternative, lattice-compliant,
route towards AF micromagnetics is also being proposed.
A finely tuned comparison with multipole-inspired mod-
els [83] probably proves at this stage desirable.
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