M-CSF-mediated macrophage development is dominantly inhibited by NOD2 signaling for replenishment of immunogenic dendritic cells

To cite this version:
Camille Chauvin, Daniel Alvarez-Simon, Paul Régnier, Katarina Radulovic, Olivier Boulard, et al.. M-CSF-mediated macrophage development is dominantly inhibited by NOD2 signaling for replenishment of immunogenic dendritic cells. 6th European Congress of Immunology, Sep 2021, Belgrade, Serbia. 51, pp.307, P-0672. 10.1002/eji.202170200 . hal-03870668

HAL Id: hal-03870668
https://cnrs.hal.science/hal-03870668
Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
P-0672

**M-CSF-mediated macrophage development is dominantly inhibited by NOD2 signaling for replenishment of immunogenic dendritic cells**

Camille Chauvin1, Daniel Alvarez Simon1, Paul Régnier1, Katarina Radulovic2, Olivier Boulard1, Myriam Delacre3, Nadine Waldschmitt4, Laurent Peyrin Brioulet5, Jérôme Klusa5, Guillaume Darrasse Jotel6, Mathias Chamaille7, Lionel Franz Poulin8

1 Institut Pasteur, Paris 75015, France
2 Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1209, F-59000 Lille
3 Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, 75005 Paris, France; Biotherapy Unit (CIC-BT), Inflammation-Immunopathology-Biotherapy Department (DHU 128), Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), 75013 Paris, France
4 Unité de Recherche Clinique, Centre Hospitalier de Valenciennes, 59322 Valenciennes CEDEX, France
5 Univ. Lille, Inserm, U1209, F-59009 Lille
6 Chair of Nutrition and Immunology, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
7 Department of Gastroenterology, Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, France
8 University of Lille, InsERM U1277 - PHERA Laboratory, INSERM UMR-S 959, F-59900 Lille, France
9 Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, 75005 Paris, France; Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France

Despite recent advances, it remains unclear whether monocyte-derived dendritic cells (moDCs) represent alternative context-dependent fate in the gut. We found here that Nod2-dependent sensing of bacteria lowers the ability of circulating monocytes to respond to M-CSF for generating moDCs. Such inhibitory effect on monocyte-macrophage transition was prevented upon blockade of TNF-α. Recognition of the gut microbiota by Nod2 was sufficient to promote the expansion of moDCs within the colonic mucosa. A competitive bone marrow transplant model further demonstrated that Nod2 promotes the conversion of monocytes into dendritic cells. equally of importance, tumours with the highest transcript levels of NOD2 were associated with a favorable prognosis and characterized by an enrichment of a gene signature related to moDCs. This study implicates that Nod2-dependent sensing of the gut microbiota influences monocytic lineage commitment into dendritic cell progenitors, which sets the stage for future investigations to achieve accurate outcome prediction in colorectal cancer.

**Keywords:** Immune development, macrophage, dendritic cells, in vivo tumor models

---

P-0673

**Ex situ heart perfusion and control of cold storage differentially affect the ischemic secretome of donor hearts in perfusates but not the reperfusion response in recipient plasma**

Evgeny Chichelnitsky9, Bettina Wiegmann1, Lena Radomsky1, Nadine Ledwoch1, Fabio lus1, Franziska Wandler1, Jenny Kühne1, Kerstin Beuhausen1, Jana Keil2, Sebastian Rojas Hernandez2, Wiebe Sommer3, Christian Kühn1, Igor Tudorache1, Murat Avsar4, Axel Haverich4, Gregor Warnecke4, Christine S. Falk3

1 Institute of Transplant Immunology, Hannover Medical School, Germany
2 Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Germany
3 Institute of Transplant Immunology, Hannover Medical School, Germany, German Centre for Infection Research, DZIF, TTU-IICH Hannover-Braunschweig
4 Clinic for heart surgery, University Hospital Heidelberg, Germany

Allorgraft preservation procedures may influence the donor organ status and in turn affect heart transplant (HTx) recipient. Here we aimed to compare the secretomes in recipient plasma and perfusates in patients whose hearts were either preserved using ex situ heart perfusion (ESHP) or standard of care (SOC) cold static preservation in order to identify potential biomarker candidates for heart preservation. Using multiplex techniques, we measured 50 cytokines/chemokines in recipient plasma before (pre), after (T0), 24h and 3 weeks after HTx. Unsupervised cluster analyses identified top-10 plasma cytokines and chemokines clearly separating TO from other time points after HTx and reflecting a reperfusion injury-specific pattern. Surprisingly, ESHP or SOC heart preservation did not have a significant impact on these inflammatory plasma profiles at T0, T24 or 3 weeks. The two strongest discriminators separating TO from other time points i.e. IFN-γ, SCGF-β were detected in both ESHP and SOC recipients at comparable concentrations. In contrast, the preservation method clearly affected the cytokine/chemokine profile in perfusates highlighted by higher concentrations of pro- (IFN-y, CXCL10) and anti-inflammatory (IL-10, IL-1RA) mediators in ESHP compared to SOC samples. Although ESHP or SOC preservation did not affect the reperfusion response in plasma at T0 after HTx, normothermic oxygenated preservation of donor hearts was accompanied by secretion of pro- and anti-inflammatory cytokines, chemokines that may affect long-term functionality and longevity of the graft. With a better understanding of molecular changes during ESHP, we expect to identify biomarker candidates for improved organ function post HTx.

**Keywords:** Biomarkers, chemokines, cytokines and mediators, transplantation

---

P-0676

**The role of NK cells in the resolution of malaria-associated acute respiratory distress syndrome**

Emilie Pollenus1, Thao Thy Pham1, Hendrik Possemiers1, Leen Vandermeeren1, Sofie Knoops1, Patrick Matthys1, Ghislain Opdenakker2, Philippe Van Den Steen1

1 Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
2 Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium

Malaria is a global health disease with >400 000 deaths each year, caused by complications such as malaria-associated acute respiratory distress syndrome (MA-ARDS). Despite efficacious parasite killing with antimalarial drugs, 15% of patients with complications still die. This shows the need to study resolution and wound healing mechanisms involved in the recovery from these complications. Disease resolution is coordinated by several leukocyte subtypes. Here, we investigate the role of NK cells in the disease resolution of MA-ARDS. C57BL/6 mice were infected with Plasmodium berghei NK65 (PbNK65), resulting in the development of MA-ARDS on day 8 post infection. On this day, antimalarial treatment with atenascine and chloroquine was started for 5 days. To study the role of NK cells, NK cells were depleted by injection of anti-NK1.1. Depletion of NK cells did not affect the development of MA-ARDS, but resulted in a decreased survival during resolution. In particular, only 50% of the anti-NK1.1-treated mice recovered from MA-ARDS upon anti-malarial treatment, compared to >80% without depletion. Interestingly, the resolution of alveolar edema occurred as efficiently in the NK cell-depleted mice that could be rescued compared to the non-depleted mice. The treatment of PbNK65-infected C57BL/6 mice with antimalarial drugs serves as a good model to study the resolution of MA-ARDS. NK cells are not involved in the development of MA-ARDS, but are critical during the resolution process upon anti-malarial treatment.

**Keywords:** Innate host defence, NK cells, parasite infections, tissue damage and repair