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A FOUR-DIMENSIONAL COUSIN OF THE SEGRE CUBIC

LAURENT MANIVEL

Abstract. This note is devoted to a special Fano fourfold defined by a four-
dimensional space of skew-symmetric forms in five variables. This fourfold
appears to be closely related with the classical Segre cubic and its Cremona-
Richmond configuration of planes. Among other exceptional properties, it is
infinitesimally rigid and has Picard number six. We show how to construct it
by blow-up and contraction, starting from a configuration of five planes in a
four-dimensional quadric, compatibly with the symmetry group S5. From this
construction we are able to describe the Chow ring explicitely.

Dedicated to the memory of Laurent Gruson

1. Introduction

Fano threefolds were classified more that fourty years ago, after some fifty years
of efforts. The classification of Fano fourfolds is still elusive and will probably
remain so for a long time. There are many ways to construct such manifolds, and
a systematic study was launched a few years ago, of those that can be constructed
from vector bundles on products of Grassmannians and more general flag manifolds
[6]; a sample has already appeared in [5]. In this database, there is a unique fourfold
with maximal Picard number, equal to six: the study of this fourfold is the object
of this note.

This study turned out to be related with interesting questions at the intersection
of algebraic geometry with Lie theory. Consider two complex vector spaces V4 and
V5, of dimension four and five respectively. The action of GL(V4) × GL(V5) on
V ∨
4 ⊗ ∧2V ∨

5 is known to be prehomogenous, its open orbit being the complement
of a degree 40 hypersurface [24, p.98]. It is in fact one of the most complicated
prehomogeneous spaces, containing no less than 63 distinct orbits [23, 9]. An im-
portant literature has been devoted to this prehomogeneous space, including some
in connections with quintic field extensions, in the spirit of Bhargava’s work on
higher reciprocity laws [16, 17, 7].

The Fano fourfold X4 we are interested in is defined by a generic element of the
prehomogeneous space V ∨

4 ⊗∧2V ∨
5 . It has two natural projections to G(2, 4) ≃ Q4

and to the six-dimensional G(3, 5) that we describe in some details in section 4.
In particular we show it is a small resolution of a fourfold with ten singular points
which appears to be a cousin, or a big brother of the Segre cubic primal; this small
resolution contracts ten planes which can be seen as a special subcollection of the
classical Cremona-Richmond configuration. We deduce:

Theorem. Consider five general planes in one of the two families of projective

planes in Q4. They intersect pairwise in ten points. Blow-up these ten points and

then the strict transforms of the five planes. Then the strict transforms of the

exceptional divisors of the first blowup can be contracted to a smooth Fano fourfold,

which is precisely X4.
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2 LAURENT MANIVEL

Then we show that the automorphism group is Aut(X4) = S5, so that

Pic(X4)
S5 ≃ Z2

is generated by the pull-back of the hyperplane classes by the two projections. This
suggests to construct the tensor that defines X4 by reverse-engineering, starting
from the representation theory of S5; we show how this leads to a normal form
from this tensor. We then use the previous constructions to describe the Chow ring
of X4 completely, including the action of S5. We also check that X4, as expected,
is infinitesimally rigid.

This study can be considered as a warm-up for the more mysterious case of
U∨
5 ⊗ ∧2V ∨

5 , directly related to E8, which has infinitely many but well-described
orbits for the action of GL(U5) × GL(V5) (see [15] for a first approach). Among
other nice geometric objects, this representation will give rise to an interesting
family of special Fano sixfolds.

Acknowledgements. We thank Marcello Bernardara, Enrico Fatighenti and Fabio
Tanturri for sharing our joint project on Fano fourfolds. Thanks also to Pieter
Belmans and Igor Dolgachev for their comments and suggestions. We acknowledge
support from the ANR project FanoHK, grant ANR-20-CE40-0023.

2. Models

According to the classical Borel-Weil theorem, one can interprete the representa-
tion V ∨

4 ⊗∧2V ∨
5 as a space of global sections of an irreducible homogeneous vector

bundle over a homogeneous space, and this in more than one way:

V ∨
4 ⊗ ∧2V ∨

5 = Γ(G(2, V4)× P(V5),U
∨
⊠Q∨(1))

= Γ(P(V4)× P(V ∨
5 ),O(1)⊠ ∧2V∨)

= Γ(G(2, V5), V
∨
4 ⊗ ∧2V∨)

= Γ(P(V4)× P(V5),O(1)⊠Q∨(1))
= Γ(G(2, V4)×G(3, V5),U

∨
⊠ ∧2V∨)

= Γ(P(V4)×G(3, V5),O(1)⊠ ∧2V∨)
= Γ(P(V4)×G(2, V5),O(1)⊠ ∧2V∨)
= Γ(G(2, V4)×G(2, V5),U

∨
⊠ ∧2V∨).

Here U and V denote tautological bundles on Grassmannians (with some abuse
of notations since we use the these symbols several times for distinct bundles on
different Grassmannians). As a consequence, consider a general element θ in V ∨

4 ⊗
∧2V ∨

5 . Interpreting it as a global section of a vector bundle in these seven different
ways, we obtain smooth subvarieties of codimensions equal to the ranks of the
vector bundles in question, that we respectively denote as follows (the notation is
such that Xd has dimension d):

X0 ⊂ G(2, V4)× P(V5), X1 ⊂ P(V4)× P(V ∨
5 ),

X2 ⊂ G(2, V5), X3 ⊂ P(V4)× P(V5),
X4 ⊂ G(2, V4)×G(3, V5), X6 ⊂ P(V4)×G(3, V5),
X8 ⊂ P(V4)×G(2, V5), X ′

8 ⊂ G(2, V4)×G(2, V5).

Another obvious thing to do is to consider θ as a general morphism from V4 to
∧2V ∨

5 . The image of P(V4) inside P(∧
2V ∨

5 ) is then a generic projective three-plane,
that has to meet the Grassmannian G(2, V ∨

5 ) along a set Y0 of five reduced points
(the degree of the Grassmannian being equal to five). Correspondingly, we get a
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set P0 of five points in P(V4), and a set Π0 of five planes in P(V5), all in general
position. Concretely, if we choose a basis e1, . . . , e4 of V4, with dual basis e∨1 , . . . , e

∨
4

of V ∨
4 and decompose θ accordingly as

θ = e∨1 ⊗ θ1 + e∨2 ⊗ θ2 + e∨3 ⊗ θ3 + e∨4 ⊗ θ4

then the contraction θ(v) = v1θ1+v2θ2+v3θ3+v4θ4 has rank two when [v] belongs
to P0; that is, it decomposes as f∨

1 ∧ f∨
2 for two linear forms f∨

1 , f
∨
2 whose kernels

intersect along the corresponding plane in P(V5). We will denote the five two-forms
of rank two (defined up to scalars) obtained by contracting θ as ω1, . . . , ω5. It would
be natural then to impose the normalization ω1+ · · ·+ω5 = 0, and decompose θ as

θ = u∨1 ⊗ ω1 + u∨2 ⊗ ω2 + u∨3 ⊗ ω3 + u∨4 ⊗ ω4 + u∨5 ⊗ ω5

for some linear forms u∨1 , . . . , u
∨
5 such that u∨1 + · · ·+ u∨5 = 0.

Notations.
P0 = {p1, . . . , p5} is a set of five points in P(V4), in natural bijection with the

set {ω1, . . . , ω5}, of five decomposable two-forms in ∧2V ∨
5 , that define five points

in G(2, V ∨
5 ) ≃ G(3, V5), hence five planes P1, . . . , P5 in P(V5). They also define five

planes π1, . . . , π5 in G(2, V4), where πk is the set of planes in V4 that contain pk.
L0 is the set of pairs of points in P0. According to the previous identifications,

it is in natural bijection with a set of ten lines in P(V4), a set of ten points in P(V5),
and a set of ten points in G(2, V4).

3. Small dimensions

Most results in this section are classical. Our purpose is mainly to set up the
scene for the main character, which will make its entry in the next section.

Proposition 3.1. X0 consists in 10 points of G(2, V4)×P(V5), in natural bijection

with L0.

Proof. By definition, a point (A2, B1) belongs toX0 if and only if we can decompose
θ in such a way that A2 is cut out by the linear forms e∨3 , e

∨
4 and the skew-symmetric

forms θ1, θ2 have the same kernel B1 ⊂ V5. Otherwise said, θ1 and θ2 belong to
∧2B⊥

1 . Since in the latter space, decomposable tensors are parametrized by a
quadric, we can make a change of basis in A⊥

2 and suppose that θ1 and θ2 are
indeed decomposable. Concretely, this means that we can write θ in the form

θ = e∨1 ⊗ f∨
1 ∧ f∨

2 + e∨2 ⊗ f∨
3 ∧ f∨

4 + e∨3 ⊗ θ3 + e∨4 ⊗ θ4.

Then [e1] belongs to P0, the associated plane in P(V5) being P1 = 〈f1, f2〉
⊥, and

also [e2] belongs to P0, the associated plane being P2 = 〈f3, f4〉
⊥. In particular

A2 = 〈e1, e2〉 and B1 = P1 ∩ P2, as claimed. �

Proposition 3.2. X1 is the union of five disjoint lines, in natural bijection with

P0.

Proof. By definition, a point in X1 is a pair (A1, B4) such that θ(v) vanishes on B4

when v generates A1. But then θ(v) must have rank two, of the form f∨
1 ∧ f∨

2 . In
particular A1 must correspond to one of the five points of P0, and the hyperplane
B4 can move in the pencil 〈f∨

1 , f
∨
2 〉. �

Proposition 3.3. X2 ⊂ G(2, V5) is a del Pezzo surface of degree five.
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Proof. Obvious. �

Recall that the del Pezzo surface of degree five contains 10 lines. Since the
embedding in G(2, V5) is anticanonical, this means in our setting that there exists
ten flags A1 ⊂ A3 ⊂ V5 such that θ(v, w) = 0 for any v ∈ A1, w ∈ A3. It is easy
to see that these ten flags are in natural bijection with L0, the ten points [A1] in
P(V5) being exactly the intersections of the planes P1, . . . , P5.

Proposition 3.4. The projection of X3 to P(V4) is the blow-up of the five points

of P0. The projection to P(V5) is a small resolution of a Segre cubic primal C3, ten

lines being contracted to the ten singular points of C3 defined by L0.

Proof. (Well known.) By definition, X3 parametrizes the pairs (A1 = [v], B1) such
that B1 is contained in the kernel of θ(v). Generically this two-form has rank four
and the kernel is one-dimensional, which implies that X3 projects birationally to
P(V4). The projection has non trivial fibers when the rank of θ(v) drops, that is,
over one of the five points in P0. Then the kernel has dimension three and the fiber
is a projective plane, as it has to be.

No we turn to the projection to P(V5). By definition, the fibers are linear sub-
spaces defined by the image of the morphism Q(−1) → V ∨

4 ⊗ OP(V5) induced by
θ. In particular the fibers are non trivial over the corresponding determinantal
locus C3, which is a cubic threefold since det(Q(−1)) = OP(V5)(−3). This threefold
becomes singular exactly when the rank drops to two. If w ∈ V5 generates B1, this
means that the morphism from V4 to V ∨

5 sending ei to θi(w, •) has rank two. So we
may suppose after a change of basis that θ1(w, •) = θ2(w, •) = 0. In other words,
θ1 and θ2 have the same kernel B1, and after another change of basis if necessary
we have already seen that we can suppose they are decomposable. So they define
two points in P0, in such a way that B1 is the point obtained as the intersection
of the corresponding planes in P(V5), while the line contracted to this point is the
span of the corresponding points in P(V4). �

As a result, C3 is a cubic threefold with 10 nodes. (In fact C3 is the image of the
rational map from P(V4) to P(V5) sending [v] to the kernel of the two-form θ(v),
and essentially by definition this is a Segre cubic primal [11].

Reminder on the Segre cubic primal. Recall that the Segre primal can be
defined, if x0, . . . , x5 are homogeneous coordinates on P5, by the two equations

x0 + · · ·+ x5 = 0, x30 + · · ·+ x35 = 0.

This presentation exhibits an S6 symmetry, and it is known that Aut(C3) = S6.
Classically, the Segre primal contains 15 planes. (See [10, Chapter 9] for much more
information.)

The Segre cubic primal admits a classical modular interpretation, according to
which C3 ≃ (P1)6//SL2. Moreover M̄0,6 is a resolution of its singularities (that
just blows-up the singular points) and according to Kapranov it can be constructed
by blowing-up five general points in P3, plus the strict transforms of the ten lines
that join them [18]. (Note also that M̄0,6 compactifies the moduli space of genus 2
curves.)

Note also that C3 is known to be G-birationally rigid, and even G-birationally
superrigid, when A5 ⊂ G ⊂ S6 [1].

Blowing-up the ten singular points in C3 we get ten exceptional divisors isomor-
phic to P1 × P1, each of which is contracted to P1 in X3. According to [14] any of
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the rulings of P1 × P1 can in fact be contracted, yielding 210 = 1024 small resolu-
tions of the singularities of C3, falling into 13 orbits of S6, including 6 for which
the resolution is projective. Homological Projective Duality for the Segre cubic is
discussed in [3].

On the planes in the Segre cubic. In coordinates, the 15 planes on the Segre
cubic are given by three equations

xa + xb = xc + xd = xe + xf = 0,

for (abcdef) a permutation of (123456); we denote such a plane by (ab|cd|ef).
Together with the 15 points in the hyperplane x0+· · ·+x5 = 0 with four coordinates
equal to zero, they form a (153, 153) configuration classically known as the Cremona-
Richmond configuration: each plane contains three of the 15 points and each of
those points belongs to three planes of the configuration. But beware that two
planes may meet along a single point, or a projective line; the second possibility
occurs when their symbols have a common pair.

Proposition 3.5. There are exactly 6 collections of five planes among the fifteen

planes in C3, meeting pairwise along single points. These collections are exchanged

transitively by the action of S6. Each one has for stabilizer a copy of S5, embedded

in S6 in a non standard way.

To understand the last sentence, recall that S6 has the exceptional property that
its outer automorphism group is non trivial: there exists a unique outer automor-
phism, and a non standard embedding of S5 in S6 is the composition of a standard
embedding by such an outer automorphism. Note that this outer automorphism of
S6 exchanges the two conjugacy classes consisting of transpositions on one hand,
and products of three disjoint transpositions on the other hand; the former cor-
responds to points, the latter to planes in the Cremona-Richmond configuration,
which is for this reason self-dual.

Proof. Suppose given a collection of five planes, any two of which meet at a single
point. This means that each plane is represented by three pairs, none of which
being shared with another plane. So we have a total amount of 15 distinct pairs;
necessarily, all the 15 pairs of integers from 1 to 6 must appear exactly once.

Up to permutation, we can assume that one of our planes is (12|34|56). Then
the plane containing (13) is either (13|25|46) or (13|26|45) and up to permuting 5
and 6 we can suppose it is the first one. Then the other planes are determined. For
example, for the one containing (14), we must split (2356) into two pairs, and since
(25) and (56) have already been used the only possibility is (14|26|35). This also
shows that we have three choices for the plane containing (12), then two choices for
the plane containing (13), and then no more choices; this means there are exactly
six possibilities. Explicitely, they are the following:

(12|34|56) (12|34|56) (12|35|46) (12|35|46) (12|36|45) (12|36|45)
(13|25|46) (13|26|45) (13|24|56) (13|26|45) (13|25|46) (13|24|56)
(14|26|35) (14|25|36) (14|25|36) (14|23|56) (14|23|56) (14|26|35)
(15|24|36) (15|23|46) (15|26|34) (15|24|36) (15|26|34) (15|23|46)
(16|23|45) (16|24|35) (16|23|45) (16|25|34) (16|24|35) (16|25|34)
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Let us denote these six configurations by ABCDEF . The action of S6 on them
induces a morphism S6 → S6, and a direct examination shows that it sends the
transposition (12) to the permutation (AB)(CD)(EF ). So it has to correspond to
the outer automorphism of S6, and our final claim follows. �

Question. Is there an interpretation in terms of the root system E7? In fact the
Lie algebra e7 admits a Z3-grading of the form

e7 = sl3 × sl6 ⊕ (C3 ⊗ ∧2C6)⊕ (C3 ⊗ ∧2C6)∨,

and roots of e7 defined by weights of C3 ⊗ ∧2C6 can be interpreted as triples of
pairs [21]. Note that roots of e7 are classically connected with the 28 bitangents of
a plane quartic.

4. The Fano fourfold

Recall that our main character X4 ⊂ G(2, V4)×G(3, V5) is defined by θ a general
element in V ∨

4 ⊗ ∧2V ∨
5 , considered as a general section of the vector bundle U∨

⊠

∧2V∨. Here U denotes the tautological rank two bundle onG(2, V4), while V denotes
the tautological rank three bundle on G(3, V5).

In this section we describe the geometry of X4 by blowups and contractions.

4.1. The main invariants. We start by computing the main numerical invariants
of X4, including its Hodge numbers.

Proposition 4.1. X4 is a rational Fano fourfold of index one.

Its cohomology is pure, with h1,1 = 6 and h2,2 = 17.
Moreover h0(−KX4

) = 40 and K4
X4

= 172.

Proof. The first assertion is an immediate consequence of the adjunction formula.
The Hodge numbers and invariants can computed using exact sequences, along

the lines explained in [5]. (They could also be deduced from the geometric descrip-
tions that will follow.) Since 172 = 4× 43 is not divisible by any fourth power, the
index must be one. �

Note that h0(−KX4
) = 40 < dim(∧2V4 ⊗ ∧3V5) = 60, which means that X4

is linearly degenerate inside G := G(2, V4) × G(3, V5). This can be checked by
considering the twisted Koszul complex

0 −→ ∧6E∨(1, 1) −→ · · · −→ E∨(1, 1) −→ OG(1, 1) −→ OX4
(1) −→ 0.

Indeed H0(E∨(1, 1)) ≃ V4 ⊗ V5 has dimension 20, while it can be checked that
H0(∧kE∨(1, 1)) = 0 for k > 1.

We will describe in some details the two projections p1, p2:

X4

p1

{{✈✈
✈✈
✈✈
✈✈
✈

p2

$$
❍❍

❍❍
❍❍

❍❍
❍

G(2, V4) G(3, V5).

We start with the second one.
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4.2. The second projection and the Cremona-Richmond configuration.

We start with the projection to G(3, V5), which is very similar to the resolution of
singularities of the Segre cuic primal.

Proposition 4.2. The projection of X4 to G(3, V5) is a small resolution of a codi-

mension two subvariety C4 of degree 12, contracting ten planes to ten singular points

in natural bijection with L0.

Proof. The fiber of p2 : X4 −→ G(3, V5) over a point [V ] ∈ G(3, V5) is defined by
the morphism θV : ∧2V → V ∨

4 induced by θ. In particular the fibers are non trivial
when the rank is at most two, which happens in codimension two. We conclude
that the image C4 of X4 is a determinantal fourfold. Its structure sheaf admits a
resolution by the Lascoux complex [20]

(1) 0 −→ V∨(−3) −→ V4 ⊗OG(2,V5)(−2) −→ OG(2,V5) −→ OC4
−→ 0,

where V denotes the rank three tautological bundle. We deduce in particular that
the class of C4 in the Chow ring of the Grassmannian G(3, V5) is 3σ11 + 2σ2, so
that its degree is 3× 2 + 2× 3 = 12.

The rank of θV drops to one on the singular locus of C4, which must have
codimension 6, hence be a finite set, over which the fibers are projective lines. The
fact that θV has a two dimensional kernel means that we can find a basis v1, v2, v3
of V such that θi(v1, v2) = θi(v1, v3) = 0 for all i. Completing with two vectors
v4, v5 and taking the dual basis, we conclude that every θi belongs to the space of
forms generated by v∨1 ∧v∨4 , v

∨
1 ∧v∨5 and ∧2(v⊥1 ). In particular 〈θ1, θ2, θ3, θ4〉 has to

meet ∧2(v⊥1 ) in dimension at least two, which means that V defines a pair of planes
πp, πq in P0, whose intersection point is a line in V . Finally, V defines a hyperplane
Hpq of V4, and the corresponding fiber is the set G(2, Hpq) ≃ P2 of planes in Hpq.

Conversely, such a pair of planes being given, we can decompose θ is an adapted
basis as

θ = e∨1 ⊗ f∨
1 ∧ f∨

2 + e∨2 ⊗ f∨
3 ∧ f∨

4 + e∨3 ⊗ θ3 + e∨4 ⊗ θ4,

and then the conditions θ3(f5, •) = θ4(f5, •) = 0 define a 3-plane V containing f5.
This exactly means that the singular locus of C4 consists in ten points, in natural
bijection with L0. �

Proposition 4.3. Each singular point of C4 defines a plane in the Segre cubic pri-

mal C3. The five remaining planes are the projectivized kernels of the five singular

form ω1, . . . , ω5.

Proof. By definition, a point [v] ∈ P(V5) belongs to C3 when the four linear forms
θi(v, •) on V5 are linearly dependent. In the proof above, we have seen that a
singular point in C4 corresponds to a three-plane V = 〈v1, v2, v3〉 in V5 with
θ(v1, v2) = θ(v1, v3) = 0. So for any v ∈ V , the linear forms θi(v, •) vanish on
v1, and also on v by skew-symmetry. When v and v1 are independent, the four
linear forms θi(v, •) therefore belong to the three-dimensional space 〈v, v1〉

⊥ ⊂ V ∨
5 ,

so they must be linearly dependent. Hence P(V ) ⊂ C3.
That the projectivized kernels P(Kj) of the five singular skew forms θj are con-

tained in C3 is obvious, since θj(v, •) = 0 for v ∈ Kj is a linear dependence relation
between the θi(v, •). �

Note that we also have a special point [v1] in each of the ten planes P(V ).
Moreover the five planes P(K1), . . . ,P(K5) meet pairwise at a single point. In
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particular, they provide one of the special subcollections of the Cremona-Richmond
configuration described in Proposition 3.5.

Also observe that a form ω which is as above in the span of v∨1 ∧ v∨4 , v
∨
1 ∧ v∨5

and ∧2(v⊥1 ), but does not belong to ∧2(v⊥1 ), can be written as v∨1 ∧ w∨ + γ with
γ ∈ ∧2(v⊥1 ) and w∨ a combination of v∨4 and v∨5 . It has rank two when γ has rank
(at most) two and w∨ ∧ γ = 0, which means if w∨ 6= 0 that γ is divisible by w∨.
But then ω itself is divisible by w∨, and since w∨ is a combination of v∨4 and v∨5 this
implies that ω(v2, v3) = 0. In other words, the linear form that defines Hpq ⊂ V4
vanishes at the point that corresponds to ω. This exactly means that

pi ∈ Hjk i 6= j, k.

We thus get in G(2, V4) a collection of 5 + 10 planes, such that each plane of
the second type meets exactly three planes of the first type. Hence a configuration
(103, 56). The condition that (jk) be disjoint from (lm), so that the two hyperplanes
meet in pn, defines a copy of the Petersen graph.

Being a degeneracy locus of a morphim between vector bundles, C4 admits two
natural resolutions of singularities; X4 is one of them. For the other one, we need
to impose a rank one kernel in the source of the morphism ∧2V → V ∨

2 ; note
that a rank one subspace of ∧2V is always of the form ∧2W for W ⊂ V a rank
two subspace. But then the composition ∧2W → V ∨

2 vanishes exactly when W
defines a point in the del Pezzo surface X2 ⊂ G(2, V5). Our second resolution of
singularities is thus simply PX2

(Q), the projectivisation of the quotient bundle of

G(2, V5), restricted to X2. The two resolutions are dominated by X̃4, the set of
triples (U2, V3 ⊃W2) such that (U2, V3) belongs to X4 and W2 belongs to X2. We
get a diagram:

X̃4

α

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

π

��

β

##
●●

●●
●●

●●
●

X4

p1

{{✇✇
✇✇
✇✇
✇✇
✇

p2

  
❆❆

❆❆
❆❆

❆❆
PX2

(Q)

q2
{{✇✇
✇✇
✇✇
✇✇
✇

q1

##
●●

●●
●●

●●
●

G(2, V4) C4 X2.

Proposition 4.4. The morphism q2 : PX2
(Q) −→ C4 is a small resolution of

singularities, contracting ten lines to the ten singular points of C4. These ten lines

are mapped by q1 to the ten lines in the del Pezzo surface X2.

The morphism β is the blow-up of the ten exceptional lines of q2, as well as α is

the blow-up of the ten exceptional planes of p2.
Finally, π is the blow-up of the ten singular points of C4, its exceptional divisor

being the disjoint union of ten copies of P2 × P1.

Remark. Contrary to X4, the fourfold X ′
4 = PX2

(Q) is not Fano but only weak
Fano. Indeed, the canonical bundle of X2 is det(Q∨), so the canonical bundle of X ′

4

is OX′

4
(−3). The quotient bundle Q is obviously not ample on G(2, V5), and neither

is it when restricted to X2 since the morphism defined by OX′

4
(1) is precisely q2
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and has non trivial fibers. But of course Q is obviously nef, and it is also big since
∫

X′

4

OX′

4
(1)4 =

∫

X2

s2(Q) =

∫

G(2,V5)

s2(Q)σ4
1 = 2 > 0.

Note also the striking similarity with the two main projective resolutions of the
Segre cubic, which can be encapsulated in a similar diagram

Z̃3

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

��

##
❋❋

❋❋
❋❋

❋❋
❋

Z3

||③③
③③
③③
③③

  
❅❅

❅❅
❅❅

❅❅
PX2

(U)

{{①①
①①
①①
①①
①

##
●●

●●
●●

●●
●

P(V4) C3 X2,

where Z3 is the blowup of P(V4) = P3 at five points. Two important differences:
Z3, contrary to X4, is only weak Fano; Z3 and Z ′

3 = PX2
(U), contrary to X4 and

X ′
4, are related by flops and therefore derived-equivalent. Instead of that, we have:

Proposition 4.5. The birational map q2 ◦ p
−1
2 : X4 99K X ′

4 is a flip.

Proof. Since X4 is Fano, we need only to check that the canonical bundle of X ′
4

is nef on the non trivial fibers of the projection to C4. But we have seen that
KX′

4
= OX′

4
(−3), the fiber of OX′

4
(−1) at a point defined by a flag U2 ⊂ U3 being

U3/U2. On a fiber F of the projection to C4, by definition U3 is fixed, so OX′

4
(−1)|F

is base point free, hence also KX′

4
|F . �

According to the Bondal-Orlov conjecture, there should therefore exist a fully
faithful functor Db(X ′

4) −→ Db(X4) that would be interesting to describe ex-
plicitely.

4.3. Pencils of skew-forms and the first projection. In order to describe the
projection to G(2, V4), we first note that a plane in V4 defines through θ a pencil of
skew-symmetric forms in five variables, and that such pencils have been classified.
In fact, for a two dimensional vector space V2, the action of GL(V2) × GL(V5)
on V ∨

2 ⊗ ∧2V ∨
5 has finitely many orbits, which are described in [19]. Let us only

mention that there are exactly eight orbits: the open orbit O7, an orbit O6 of
codimension two and another O5 of codimension four, and then all the other orbits
have bigger codimension.

The orbit O5 (or rather its closure) is characterized as consisting of tensors of
rank at most four, in the sense that they belong to V ∨

2 ⊗∧2V4 for some hyperplane
V4 ⊂ V ∨

5 . The orbit O6 (or rather its closure) is characterized as consisting of those
pencils in ∧2V ∨

5 admiting a rank two element. So the open orbit O7 parametrizes
pencils of forms of constant rank four. By [22, Proposition 2], given such a pencil
one can find a basis of V5 for which the two skew-forms

ω1 = f∨
1 ∧ f∨

3 + f∨
2 ∧ f∨

4 , ω2 = f∨
1 ∧ f∨

4 + f∨
2 ∧ f∨

5

are generators. The projective line 〈f∨
1 , f

∨
2 〉 is the pivot of the pencil. Now, observe

that if a three-plane V ⊂ V5 is isotropic with respect to any skew-form sω1 + tω2

of the pencil, it has to contain its kernel, which is generated by s2f3 − stf4 + t2f5.
So necessarily V = 〈f3, f4, f5〉, the orthogonal to the pivot.
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Proposition 4.6. The projection of X4 to G(2, V4) is birational. The exceptional

locus in G(2, V4) is the union of five planes, intersecting in the ten points of L0,

whose fibers are quadratic surfaces.

Proof. The fiber of the projection p1 : X4 −→ G(3, V5) over the point [U ] ∈ G(2, V4)
is defined by the morphism θU : U → ∧2V ∨

5 . This morphism is injective and we
thus get a pencil of skew-symmetric forms. If this pencil is generic, which means
that it has constant rank, then we have just seen that there is a unique three-plane
in V5 which is isotropic with respect to any skew-form in the pencil. This three-

plane is the image of the induced map θ
(2)
U : S2U → ∧4V ∨

5 ≃ V5. In particular, p1
is birational.

Special fibers will occur when the pencil Im(θU ) becomes special in some way. By
the usual arguments for orbital degeneracy locus [4], we need to take into account,
in the space of pencils, only those orbits of codimension smaller than five, which
apart from the open orbit are the orbits O5 and O6 we have described above.

Pencils in O5 contain two skew-forms of rank two. In our case, they must be two
of the skew-forms ω1, . . . , ω5, say θ1 and θ2. Choose an adapted basis such that
θ1 = f∨

1 ∧ f∨
2 and θ2 = f∨

3 ∧ f∨
4 , so that

θU = e∨1 ⊗ f∨
1 ∧ f∨

2 + e∨2 ⊗ f∨
3 ∧ f∨

4 .

It is straightforward to check that the three-planes that are isotropic with respect
to any skew-form in the pencil are those generated by f5, a vector in 〈f1, f2〉, and
a vector in 〈f3, f4〉. We thus get for fiber a copy of P1 × P1.

Finally, pencils in O6 contain exactly one skew-form of rank two, say θ1. To
describe the corresponding fiber we must understand the 3-planes isotropic with
respect to both the generic form θ2 and the degenerate form θ1 = f∨

1 ∧ f∨
2 . Such a

3-plane must contain the kernel of θ2; let us choose a generator f5 and a hyperplane
H4 in V5 not containing f5. We may suppose that f∨

2 vanishes on f5. The 3-planes
we are looking for are in correspondence with the 2-planes H = 〈h, h′〉 in H4 such
that ω2(h, h

′) = 0 and f∨
1 (h) = f∨

1 (h
′) = 0. Such a 2-plane must be contained in

the kernel K3 of f∨
1 , and it has to contain the kernel K1 of the restriction of ω2 to

K3. We finally get for fiber a pencil of planes. �

To summarize, the exceptional locus is the union of five planes π1, . . . , π5 in
G(2, V4), where πi parametrizes the planes in V4 containing ωi. Any two of these
five planes meet at a single point, over which the fiber of p1 is a quadratic surface.

If U2 does not belong to any of the five exceptional planes, we have seen that
U3 is the span of the kernels of the two-forms θ(v), for v ∈ U2. Since this kernel
can be computed as θ(v) ∧ θ(v), there is a natural associated conic bundle over
G(2, V4) minus the five exceptional planes. This also stresses the analogy with the
construction of the Segre primal C3 as the image of a rational map P(V4) 99K P(V5)
defined by θ. Here we get C4 as the image of a rational map G(2, V4) 99K G(2, V5)
also defined by θ. We will put its equations in simple form in the next section.

4.4. Blow-up and contract. Proposition 4.6 suggests to construct X4 by first
blowing-up G(2, V4) along the 10 points of L0, then the strict transforms of the 5
planes, which are Del Pezzo surfaces of degree five. The first blow-up Bl0 : G0 −→
G(2, V4) gives 10 exceptional divisors Eij ≃ P3 for 1 ≤ i < j ≤ 5, each with
a pair of skew lines ℓi, ℓj coming from the two planes πi and πj intersecting at
pij . The second blow-up BlP : G1 −→ G0 produces five other exceptional divisors
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Fk for 1 ≤ k ≤ 5, while the strict transform of Ẽij of Eij is the blowup of Eij

along ℓi ∪ ℓj . Since the blowup of P3 along two skew lines is the total space of
P(O(−1, 0)⊕O(0,−1)) over P1 × P1, we deduce that the rational map to X4 is a
morphism. More precisely, it has to coincide with the blowup BlQ : G1 −→ X4 of

the ten quadratic surfaces Sij = p−1
1 (pij) in X4. This explains in particular why

the Picard number is equal to 6.

G(2, V4)

X4G0

Bl0

G1

BlP BlQ

p1

Let F = F1 + · · ·+F5, and let E be the sum of the ten divisors Ẽij in G1. from
the identity

KG1
= −4H1 + 3E + F = KX4

+ E = −H1 −H2 + E

we deduce the relation 3H1 = H2 + 2E + F .

The exceptional locus of p2 defines a collection of 10 planes in X4, contracted to
the ten singular points of C4, and that we can identify with their isomorphic images
in G(2, V4). Recall that in this Grassmannian we have the five planes π1, . . . , π5.

Proposition 4.7. The resulting collection of 10+5 planes in G(2, V4) is in natural

correspondance with the Cremona-Richmond configuration.

4.5. Incidences with the Segre cubic. Now we relate the two varieties X3 and
X4 by considering the incidence correspondence

I = {(A1, B1), (U2, U3) ∈ X3 ×X4, A1 ⊂ U2, B1 ⊂ U3}.

Recall that by definition, B1 is (contained in) the kernel of θ(v) for v ∈ A1, while
U3 is the linear span of the kernels of the two forms θ(u) for u ∈ U2; this kernel
depends quadratically on u since it is given by θ(u) ∧ θ(u). This implies that I is
(generically) a P1-bundle over X4, and (generically) a P2-bundle over X3. We have
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a commutative diagram

I

xxrr
rr
rr
rr
rr
rr

��
''◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

X3

��

Fl(1, 2, V4)

yyrr
rr
rr
rr
rr

&&◆
◆◆

◆◆
◆◆

◆◆
◆

X4

��

P(V4) G(2, V4).

One easily checks that:

Proposition 4.8. The base locus of the birational projection I −→ Fl(1, 2, V4) is

the union of five disjoint planes.

Proof. Denote by ψi the plane G(2, V4) parametrizing the lines in P(V4) that pass
through pi, and by Ψi its lift in Fl(1, 2, V4). The preimage in I of a point in ψi is
given by a flag B1 ⊂ U3 ⊂ V5 such that U1 is contained in the kernel Ki of ωi and
U3 contains

4.6. Projective duality. We have seen that X4 is birationally equivalent to the
projective bundle PX2

(Q) over the del Pezzo surface X2. Since Q
∨ has no section,

we would rather write it as P = PX2
(∧2Q∨), in which case the relative tautological

bundle OP(−1) sends P to P(∧2V ∨
5 ) ≃ P(∧3V5), the image being C4 ⊂ G(3, V5). We

are then in the context of Homological Projective Duality for projective bundles,
according to which P → P(∧2V ∨

5 ) is dual to P∗ → P(∧2V5), with P∗ the projective
bundle PX2

(W ∧ V5), where W denotes the rank to tautological bundle.

Proposition 4.9. The image of P∗ → P(∧2V5) is an octic hypersurface in P(∧2V5),
containing the Grassmannian G(2, V5) in its singular locus.

Proof. First consider the full projective bundle PG(2,V5)(W ∧V5) and its projection

to P(∧2V5). The generic fiber is a copy of Q3 (while the special fibers, that occur
over G(2, V5), are codimension two Schubert cycles). When we restrict to X2, we
cut the fibers by linear spaces of codimension four. Generically, they meet the
span of the fiber at one point; in codimension one, this point will be on the fiber
itself. This implies that P∗ → P(∧2V5) is birational onto its image, which must be
a hypersurface. As usual, we compute the degree of this hypersurface as

∫

P∗

OP∗(1)8 =

∫

X2

s2(W ∧ V5) =

∫

G(2,V5)

(2σ2 + σ11)σ
4
1 = 8.

Here we used exact sequences to compute the Segre class s(W ∧V5) = c(Q)5c(S2U),
with c(Q) = 1 + σ1 + σ2 + σ3 and c(U) = 1− σ1 + σ11.

Over a pointW 0 of the Grassmannian, the fiber of PG(2,V5)(W∧V5) → P(∧2V5) is

the Schubert cycle of planesW meetingW 0 along at least a line. It is desingularized
by a P3-bundle over P(W 0). If we fix a line L ⊂W 0, there exists a plane W ⊃ L in
X2 if and only if the four linear forms θ(L, •) on V5/L are linearly dependent. This
defines a section of ∧4(Q∨(1)) = O(3) over P1, and we conclude that the general
fiber of PX2

(W ∧ V5) → P(∧2V5) over G(2, V5) consists in three points. Since this
morphism is birational onto its image, Zariski’s main theorem implies that G(2, V5)
is contained in the singular locus. �
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5. Symmetries

The symmetries of the Segre cubic primal must be reflected in X4. In this section
we describe the symmetries of X4 in some detail. In particular we will prove:

Proposition 5.1. The generic stabilizer of the action of PGL(V4)× PGL(V5) on
P(V ∨

4 ⊗ ∧2V ∨
5 ) is the symmetric group S5.

What is classically known, as we mentionned in the introduction, is that the ac-
tion of PGL(V4)×PGL(V5) on V

∨
4 ⊗∧2V ∨

5 is prehomogeneous. The representative
of the open orbit given in [23] is

θ = e∨1 ⊗ (f25 − f34) + e∨2 ⊗ (f15 − f24) + e∨3 ⊗ (f23 − f14) + e∨4 ⊗ (f45 − f12),

with the notation fij = f∨
i ∧ f∨

j . The corresponding points in P(V4) and rank two
forms are easy to identify; we get

p1 = e2 + ie4, ω1 = (f1 + if4) ∧ (f2 + if5),
p2 = e2 − ie4, ω2 = (f1 − if4) ∧ (f2 − if5),
p3 = e1 + e3 + e4, ω3 = (f2 + f4) ∧ (f1 + f3 + f5),
p4 = e1 + je3 + j2e4, ω4 = (f2 + j2f4) ∧ (f1 + j2f3 + jf5),
p5 = e1 + j2e3 + je4, ω5 = (f2 + jf4) ∧ (f1 + jf3 + j2f5).

Here j and i are primitive fourth and third roots of unity. Each pair ωp, ωq defines
two planes in V ∨

5 whose common orthogonal is a line [epq]. Then the planes of the
Cremona-Richmond configuration are obtained as follows: Ppq is generated by the
three points eij , ejk, eik for ijk distinct from pq; and Pp is generated by the four
points eip for i 6= p. Explicitely, the ten vectors epq can be chosen as follows:

e12 = (0, 0, 1, 0, 0) e24 = (i,−j2,−2ij, 1, ij2)
e13 = (1,−i,−2, i, 1) e25 = (i,−j,−2ij2, 1, ij)
e14 = (−i,−j2, 2ij, 1,−ij2) e34 = (1, 0, j2, 0, j)
e15 = (−i,−j, 2ij2, 1,−ij) e35 = (1, 0, j, 0, j2)
e23 = (1, i,−2,−i, 1) e45 = (1, 0, 1, 0, 1).

Each ωi defines a plane πi in V ∨
5 , from which we can deduce a collection of

hyperplanes πij = πi + πj and points pijk = πi ∩ (πj + πk).

Proposition 5.2. For any permutation i, j, k, l,m of 1, . . . , 5, pijk = pilm.

Proof. Explicit check. �

We have no convincing explanation of this coincidence, but as a consequence,
we don’t get thirty but only fifteen points in P(V ∨

5 ). Obviously, pijk belongs to πi,
hence to any of the four hyperplanes πil, l 6= i. Conversely, πij contains the three
points piab plus the three points pjcd.

Proposition 5.3. The fifteen points πijk and the ten hyperplanes πij in P(V4) form
a configuration (154, 106).

We thus recover the abstract configuration classically defined by the Segre primal.
In particular the fifteen points πijk should be in natural correspondence with planes
in the Segre primal.

Automorphisms in PGL(V4) × PGL(V5) that fix 〈θ〉 are in bijective correspon-
dence with elements of PGL(V5) fixing the four-plane generated by the ωi’s. Au-
tomatically such an automorphism will preserve the set of five planes π1, . . . , π5,
hence the collection of the thirty points pijk.
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In order to show that any permutation of the five planes can be lifted to PGL(V5),
it is enough to lift two generators of S5, say a transposition and a complete cycle.
By sending fi to ǫifi with ǫi = 1 for i odd and ǫi = −1 for i even, we exchange
π1 and π2 and let the three other planes fixed. So let us turn to a maximal cycle.
We claim that the cycle (12345) ∈ S5 can be lifted to the tranformation of GL(V5)
given by

f1 7→ j
3f1 − 2ijf2 +

j
3f3 − ijf4 +

4j
3 f5,

f2 7→ − 2i
3 f1 − f2 +

i
3f3 +

i
3f5,

f3 7→ 4j2

3 f1 + 4ij2f2 −
2j2

3 f3 − 4ij2f4 +
4j2

3 f5,

f4 7→ − ij
3 f1 −

ij
3 f3 − jf4 +

2ij
3 f5,

f5 7→ 4
3f1 + if2 +

1
3f3 + 2if4 +

1
3f5.

Corollary 5.4. The automorphism group of the Fano fourfold X4 is Aut(X4) = S5.

Proof. An automorphism of X4 is induced by a linear transformation in PGL(V4)×
PGL(V5) preserving θ. Considered as a homomorphism from V4 to ∧2V ∨

5 , θ defines
a codimension four linear section of G(2, V5), that is a degree five del Pezzo surface
S5. This implies that Stab(θ) embeds into Aut(S5), which is well-known to be
S5. Since we know by the previous computations that Stab(θ) contains S5, we are
done. �

Once we identify S5 with the stabilizer of θ in SL(V4)×SL(V5), we get actions of
S5 on V4 and V5, clearly irreducible. Up to the sign representation there is a unique
irreducible representation of S5 of dimension 4, and a unique one of dimension
5. The complex (1) shows that C4 is cut out by a family of quadrics on G(2, V5)
parametrized by V4, hence a S5-invariant copy of V4 inside S22V5. We will show later
on that this copy is unique. (This point of view from finite group representation
theory is typically used in [12]. Something with the same flavour has been done in
[2] for the quintic del Pezzo surface.)

We use the character table of S5 (see for example [13]) to compute some plethysm
and tensor product representations. Recall that S5 has irreducible representations
of dimension 1, 1, 4, 4, 5, 5, 6 that we denote by U1, U

−
1 , U4, U

−
4 , U5, U

−
5 , U6. All these

representations are self-dual, being defined over the real numbers. Concretely,
U1 is the trivial representation, U−

1 is the sign representation, U4 is the natural
representation, U−

4 = U4 ⊗ U−
1 and U6 = ∧2U4. One computes that

S2U4 = U5 ⊕ U4 ⊕ U1, ∧2U5 = U−
4 ⊕ U6.

The last decomposition implies in particular that (U−
4 )∨ ⊗∧2U∨

5 contains a unique
S5-invariant tensor θS5

, up to scalars.
At this point it could therefore be reasonable to reverse the whole process and

start from the representation theory of S5. One should be able to check directly
that θS5

is generic, and then we should get θS5
-invariant descriptions of all the

objects we have been studying.
Note that S2U4 = U5 ⊕ U4 ⊕U1 allows to construct U5 from U4, as the space of

quadrics which are apolar to the obvious invariant cubic. In coordinates x1, . . . , x5
permuted by S5, the representation U4 is the hyperplane x1 + · · · + x5 = 0, the
invariant cubic is x31+ · · ·+x35 and the apolar quadrics are of the form

∑

i6=j aijxixj
with

aij = aji ∀i 6= j,
∑

i6=k

aik = 0 ∀k.
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We get ten indeterminates and five independent relations, consistently with the fact
that these quadrics should span a copy of V5.

Inside the space V5 of apolar quadrics to the invariant cubic, note that we have
qij,kl = (xi − xj)(xk − xl) for i, j, k, l distinct integers. These quadrics are subject
to the Plücker type relations qij,kl − qik,jl + qil,jk = 0. This suggests to define the
following elements of ∧2V5:

Q1 = q23,45 ∧ q24,35,
Q2 = q13,45 ∧ q14,53,
Q3 = q12,45 ∧ q14,25,
Q4 = q12,35 ∧ q13,52,
Q5 = q12,34 ∧ q13,24.

Obviously, for any permutation σ ∈ S5 one must have σ(Qi) = ±Qσ(i). We also
let, for a pair i 6= j with complement p, q, r in 1 . . . 5,

Qi,j = qip,qr ∧ qjp,qr + qiq,rp ∧ qjq,rp + qir,pq ∧ qjr,pq.

Proposition 5.5. The action of S5 on 〈Q1, . . . , Q5〉 gives a copy of the represen-

tation U−
4 in ∧2U5. Similarly, the action of S5 on 〈Qi,j , 1 ≤ i < j ≤ 5〉 gives a

copy of the representation U6.

What have we gained in doing all that? First, we get a better, more symmetric
normal form for the generic θ than that of Ozeki, as

θS5
= e1 ⊗Q1 + e2 ⊗Q2 + e3 ⊗Q3 + e4 ⊗Q4 + e5 ⊗Q1,

with e1 + · · ·+ e5 = 0.

Also, we can make explicit the quadratic equations of C4. A character computa-
tion yields:

Lemma 5.6. The multiplicity of U−
4 inside S2(∧2U5) is equal to one.

So the space of quadratic equations we are looking for is uniquely defined in
terms of the S5-action. Moreover, recall that ∧2U5 = U−

4 ⊕ U6. Another character
computation shows that the copy of U−

4 that we are looking for inside S2(∧2U5) is
in fact contained inside U−

4 ⊗ U6 = U−
4 ⊗ ∧2(U−

4 ) ⊂ U−
4 ⊗ End(U−

4 ) (recall that
U−
4 is self-dual). So there is an obvious map to U−

4 , and dually, this says that the
space of quadrics we are looking for is generated by the five quadrics

CQi =
∑

j 6=i

Qi,jQj, 1 ≤ i ≤ 5.

Remark. Since Aut(C3) = S6, certain automorphisms of the Segre primal do not
lift to X4. would it be possible that S6 act on X4 by birational transformations?

6. The Chow ring of X4

In this section we completely determine the Chow ring of X4, with its structure
of S5-module. Let us start with the Picard group.

From the relation 3H1 = H2 + 2E + F that we found on G1, we compute that

H4
1 = 2, H3

1H2 = 6, H2
1H

2
2 = 13, H1H

3
2 = 14, H4

2 = 12.

The Picard group is generated by H1, H2 and the five components of F , which are
permuted by S5. We deduce:
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Proposition 6.1. The Chow ring of X4 is generated by A∗(G) and the five divisors

F1, . . . , F5. As a representation of S5, the Picard group decomposes as

Pic(X4)⊗Z C = 2U0 ⊕ U4.

We know by Proposition 4.1 that the middle dimensional Chow group A2(X4)
has dimension 17, and we expect that the invariant part has dimension four, with
two classes coming from G(2, V4) and two other classes from G(2, V5). We will show
that are all come (at least over Q) from products of divisor classes.

We compute the multiplicative structure of the Chow ring by embedding it in
the Chow ring of G1, that we shall now describe. First, the Chow ring of G0 is
generated by the Chow ring of G = G(2, V4) and the ten exceptional divisors E0

pq

of the blow-up b0 = Bl0, such that

(E0
pq)

4 = −1, E0
pqE

0
p′q′ = 0 for {p, q} 6= {p′, q′}, E0

pq.b
∗
0C = 0

for any class C ∈ A∗(G) of positive degree. After this first blow-up, the five planes
π1, . . . , π5 give five disjoint surfaces Σ1, . . . ,Σ5, each one being a plane blow-up in
five points, that is a del Pezzo surface of degree 5. We denote the four exceptional
lines in Σp by ℓqp, whose image in G is the point πpq, for q 6= p.

The second blow-up b1 = BlP is the blow-up of these five surfaces. We denote
by F 1

p the five exceptional divisors, and by E1
pq the strict transforms of the divisors

E0
pq. Since F 1

p = P(Np), for Np the normal bundle of Σp inside G0, we need to
describe this normal bundle. Recall that when one blows up one point in a smooth

varietyX , creating an exceptional divisor E inside the blow-up Y
π
→ X , the tangent

exact sequence is 0 → TY → π∗TX → i∗TE → 0, where i : E → Y denotes the
inclusion. Since the normal bundle of πp inside the Grassmannian G is the quotient
bundle Q, we get the following diagram:

0 0 0




y





y





y

0 −−−−→ TΣp −−−−→ TG0|Σp
−−−−→ Np −−−−→ 0





y





y





y

0 −−−−→ b∗0Tπp −−−−→ b∗0TG|πp
−−−−→ b∗0Q −−−−→ 0





y





y





y

0 −−−−→ ⊕q 6=pT ℓ
q
p −−−−→ ⊕q 6=pTE

0
pq −−−−→ ⊕q 6=pN

q
p −−−−→ 0





y





y





y

0 0 0

Here we denoted by N q
p the normal bundle to ℓqp ≃ P1 inside E0

pq ≃ P3, which is
just Oℓ

q

p
(1)⊕Oℓ

q

p
(1). We deduce the Segre class

s(Np) = s(b∗0Q)
∏

q 6=p

c(Oℓ
q

p
(1))2 ∈ A∗(Σp).

One the one hand, the Segre class s(Q) equals the Chern class of the tautological
bundle on G, that is s(Q) = 1−H1+σ11, and the Schubert class σ11 restricts to zero
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on πp. On the other hand, on the del Pezzo surface Σp we have Oℓ
q

p
(1) = O(−ℓqp)|ℓqp ,

from which we get the Segre class s(Oℓ
q

p
(1)) = 1 + ℓqp + 2(ℓqp)

2. Finally,

s(Np) = 1−H1 + 2
∑

q 6=p

ℓqp + 2
∑

q 6=p

(ℓqp)
2.

We can deduce several intersection numbers, since for any class C3−k of degree 3−k
on G0, we have the classical formulas

F k+1
p b∗1C3−k =

∫

Fp

F k
p b

∗
1C3−k = (−1)k

∫

Σp

sk−1(Np)C3−k.

Lemma 6.2.

(F 1
p )

4 = 8, (F 1
p )

3H1 = −1, (F 1
p )

2H2
1 = −1, F 1

pH
3
1 = 0.

Note also that F 1
p does not meet E1

rq for r, q 6= p, but it meets E1
pq transverselly

along the surface Sq
p = b−1

1 (ℓqp). Therefore

OG1
(E1

pq|F 1
p

) = OF 1
p
(Sq

p) = b∗1OΣp
(ℓqp).

Applying the previous formula to C3−k = (E0
pq)

3−k we get:

Lemma 6.3. F 1
pE

1
rq = 0 if r, q 6= p, but

(F 1
p )

3E1
pq = −2, (F 1

p )
2(E1

pq)
2 = 1, F 1

p (E
1
pq)

3 = 0.

On the other hand, E0
pq gets blown-up along the two-skew lines ℓqp and ℓpq , and

its strict transform E1
pq is contracted to the quadratic surface ℓqp × ℓpq in X4. This

surface is also the intersection of Fp and Fq in X4, in particular it is contained in
Fp. We deduce, denoting BlQ by c, that

c∗Fp = F 1
p +

∑

q 6=p

E1
pq .

Summing up over p, we get the relation c∗F = F 1 + 2E1.

Corollary 6.4. C4 ⊂ G(3, V5) is the image of G = G(2, V4) by the linear system

|Iπ(3H1)| of cubics vanishing along the union π of the five planes π1, . . . , π5.

We have enough information to describe the full intersection product on X4.

Proposition 6.5. The nonzero intersection numbers among the divisor classes

H1, F1, . . . , F5 are the following, for 1 ≤ p 6= q ≤ 5:

F 4
p = 12, F 3

pFq = −2, F 2
pF

2
q = 1, F 3

pH1 = −1, F 2
pH

2
1 = −1, H4

1 = 2.

Moreover we always have H1FpFq = 0 for p 6= q and FpFqFr = 0 for p 6= q 6= r 6= p.

Proof. The values of F 3
pH1 and F 2

pH
2
1 can be computed directly by restricting to

a general hyperplane or a general codimension two section of G; then we avoid the
points πqr and we are reduced to compute the self-intersection of the exceptional
divisor for the blow-up of a line in a three-dimensional quadric, or a point in a
surface. Then we can deduce the value of F 4

p by computing the self-intersection of
H2 = 3H1 − F , which we know is equal to

12 = 81H2
1 − 108H3

1F + 54H2
1F

2 − 12H1F
3 + F 4 = 162− 270 + 60 + F 4.
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This gives F 4 = F 4
1 + · · · + F 4

5 = 60, hence F 4
p = 12. (But note that this is not

equal to (c∗Fp)
4 = −4, as a consequence of the fact that Fp contains four of the

quadratic surfaces blown-up by c.)
The other intersection numbers can be computed by pulling-back by c and using

Lemma 6.2. �

Proposition 6.6. The square map S2A1(X4) −→ A2(X4) is surjective. As a

consequence, the S5-module structure of A2(X4) is

A2(X4) = 4U0 ⊕ 2U4 ⊕ U5.

Proof. The decomposition of the S5-module S2A1(X4) is 4U0 ⊕ 3U4 ⊕U5, the sum
of three isotypic components, and the kernel of the square map must decompose
accordingly.

First consider the four invariant classes H2
1 , H1F, F

(2), F (11), where

F (2) =
∑

p

F 2
p , F (11) =

∑

p<q

FpFq.

Suppose that there is a relation aH2
1 + bH1F + cF (2) + dF (11) = 0. Multiplying

successively by H2
1 , H1Fp, F

2
p , FpFq and using the results of Proposition 6.5, we

deduce that 2a − 5c = 0, b + c = 0, a + b + 16c − 8d = 0, 4c − d = 0, hence
a = b = c = d = 0.

Now consider the possibility that U5 be contained in the kernel of the square map.
We claim that U5 is embedded inside S2A1(X4) as the space of linear combinations
∑

p6=q apqFpFq with apq = aqp and
∑

r apr = 0 for all p, q. Indeed, this defines

an invariant five-dimensional subspace of S2A1(X4), not containing any invariant
class, so it must be U5. A typical element is

3FpFq − (Fp + Fq)
∑

r 6=p,q

Fr +
∑

s,t6=p,q

FsFt.

If this was zero in A2(X4), multiplying by FpFq would imply that the intersection
number F 2

pF
2
q = 0, which is not the case.

We can conclude that the kernel of the square map must be contained in the
isotypical component 3U4 of S2A1(X4), which is generated by the three copies of
U4 respectively obtained as the linear combinations

∑

p apH1Fp,
∑

p apFFp and
∑

p apF
2
p for

∑

p ap = 0. A copy of U4 in the kernel corresponds to a relation of
the form

uH1Fp + vFFp + wF 2
p = I ∀p,

for I an invariant class. Since I is invariant, multiplying by H1Fp and H1Fq must
then give the same intersection number, which gives the relation −u− v − w = 0.
Similarly, multiplying by F 2

p or F 2
q must give the same result, that is−u+4v+12w =

−v + w. Finally, multiplying by FpFq or FqFr with q, r distinct from p must also
give the same result, that is −v − 2w = 0. These three equations are linearly
dependent and reduce to u = w and v = −2w, which proves that there is a unique
copy of U4 in the kernel of the square map. This concludes the proof. �

Threefolds. Consider the two families of divisors in X4 given by sections of H1

and H2, respectively. Since a general hyperplane section in G(2, V4) ≃ Q4 will avoid
the ten points πpq, the first ones are just blowups of five disjoint lines in Q3. For the
same reason, the second ones, say Z3, are isomorphic with their images in G(3, V5)∩
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H2, which are codimension two degeneraci loci defined by the condition that the
morphism ∧2V → V ∨

4 has rank exactly two. Its image is then the pullback from
G(2, V4) of the dual quotient bundle Q∨. In particular we get an exact sequence

0 → O(1,−2) → p∗2(∧
2V ) → p∗1Q

∨ → 0

on Z3. This shows in particular that O(−1, 2), the restriction of 2H2 − H1 =
5H1 − 2F , is generated by sections on Z3. The image in Z3 is the closure of the
planes U ⊂ V4 such that the image of S2U → ∧2V5 ≃ V5 is isotropic with respect
to some three-form on V5. This defines a section of ∧3(S2U)∨ = det(U∨)3, so that
the image of Z3 in G(2, V4) is a singular cubic hypersurface.

K3 surfaces. By taking sections of H1 ⊕H2 in X4, we get a family of smooth K3
surfaces S in X4. We denote by h1, h2, f1, . . . , f5 the restriction to S of the divisors
H1, H2, F1, . . . F5.

Proposition 6.7. The intersection numbers of these divisors in S are

h21 = 6, h22 = 14, h1h2 = 13, h1fi = 1, h2fi = 5, fifj = −2δij.

Proof. This is an immediate consequence of the computations above, since for two
divisors A,B on X restricting to a, b on S, we have ab = ABH1H2. �

An obvious consequence is that h1, f1, . . . , f5 are linearly independent. Moreover,
the curves Ci = Fi ∩ S are (−2)-curves on S, mapping to lines on G(2, V4) and to
rational quintics in G(2, V5). The divisor 5h1 − h2 = 2h1 + f should contract these
five (−2)-curves to the five singular points of a surface S̄. Note that this is a
divisor of degree 34, so S̄ could be a degeneration of a smooth K3 surface of genus
18. Mukai described the generic such K3 surface as the zero locus in OG(3, 9) of
five sections of the rank two spinor bundle. What is the connection? Note that we
have a family of surfaces of dimension 5 + 9 = 14 = 19− 5, which is coherent with
the expectation that imposing 5 nodes on a K3 surface of genus 18 should give five
independent conditions.

7. The Igusa quartic and the Coble fourfold

Given a linear form h on V5, there is an associated quadratic form Qh on V4:

Qh(v) = h ∧ θ(v) ∧ θ(v) ∈ ∧5V ∨
5 ≃ C.

Proposition 7.1. The quartic det(Qh) = 0 is the Igusa quartic in P4 = P(V ∨
5 ).

Proof. Recall that the generic point of the Segre cubic C3 ⊂ P(V5) is the kernel of
one of the two-forms θ(v), and that we can get this kernel as the line generated by
θ(v) ∧ θ(v) ∈ ∧4V ∨

5 ≃ V5. At this generic point, the affine tangent space to the
Segre cubic is therefore the hyperplane of V5 generated by the vectors of the form
θ(v) ∧ θ(w) ∈ ∧4V ∨

5 ≃ V5. This hyperplane is defined by a linear form hv ∈ V ∨
5

that vanishes on these vectors, which exactly means that hv ∧ θ(v) ∧ θ(w) = 0 for
any w ∈ V5. In other words, Qhv

(θ(v), θ(w)) = 0 for all w ∈ V5, which means that
θ(v) belongs to the kernel of the quadratic form Qhv

. In particular the latter is
degenerate.

We have thus proved that the generic point of the projective dual variety of
the Segre cubic is contained in the quartic hypersurface det(Qh) = 0. But this
projective dual is well-known to be the Igusa quartic in P(V ∨

5 ), and these two
quartics have to coincide. �
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This yields a simple determinantal representation of the Igusa quartic. Using
Ozeki’s representative we get

Qh =









2h1 −h2 −h3 −h5
−h2 2h3 −h4 0
−h3 −h4 2h5 −h1
−h5 0 −h1 2h3









,

whose determinant is readily computed to be

− det(Qh) = 4h43+4h23(3h1h5−h2h4)−4h3(h
3
1+h

3
5+h1h

2
4+h

2
2h5)+(h1h2−h4h5)

2.

One can consider inside P(V ∨
5 )×G(2, V4) the locus J5 of pairs ([h], U) such that

U is isotropic with respect to Qh. Recall that OGQ(2, 4) = P1 ∪ P1 is the disjoint
union of two smooth conics when Q is non degenerate. When Q is a quadratic
form of corank one on V4, the corresponding orthogonal Grassmannian OGQ(2, V4)
is a single conic (while if Q has corank two, OGQ(2, V4) is the union of two planes
meeting at one point, defined by the kernel). This means that the Stein factorization
of the projection of J5 to P(V ∨

5 ) is J5 → Cob4 → P(V ∨
5 ) where Cob4 is the double

cover of P(V5) branched over the Igusa quartic: that is, the Coble fourfold [8].

On the other hand, denote by QX4
the pull-back to X4 of the rank two quotient

bundle on G(3, V5). The P
1-bundle P(QX4

) overX4 has a natural map to G(2, V4)×
P(V ∨

5 ) and we claim that its image is precisely J5. Indeed, a generic element
(U, V ⊂ H) of G(2, V4)×Fl(3, 4, V5) belongs to P(Q∨

X4
) when V , hence H , contains

the kernels of all the two-forms θ(v), v ∈ U . But if h is a linear form defining H , the
condition that H contains the kernel of θ(v) exactly means that h∧θ(v)∧θ(v) = 0,
hence our claim. Moreover the projection map P(Q∨

X4
) → J5 is birational, being

clearly bijective outside the five special planes in G(2, V4). So we get a diagram

P(Q∨
X4

)

bir

{{①①
①①
①①
①①
①

P
1

##
●●

●●
●●

●●

J5
conic

##
●●

●●
●●

●●
● X4

Cob4

where the south-west arrow is a conic bundle, at least generically. But the picture
does not seem to recover the small resolutions of Cob4 described in [8].

8. Local rigidity

Since V ∨
4 ⊗ ∧2V ∨

5 is prehomogeneous, we expect that X4 has strong rigidity
properties. What we can prove is the following statement.

Proposition 8.1. X4 is locally rigid and has finite automorphism group.

Proof. Local rigidity is equivalent to the vanishing of H1(TX4). In order to check
this, as usual we rely on the normal exact sequence, which yields an exact sequence
of cohomology groups

H0(TG|X4
) −→ H0(E|X4

) −→ H1(TX4) −→ H1(TG|X4
).

So local rigidity will follow from the following statements, to be proved separately:
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(1) H1(TG|X4
) = 0;

(2) H0(E|X4
) = V ∨

4 ⊗ ∧2V ∨
5 /〈θ〉;

(3) H0(TG|X4
) −→ H0(E|X4

) is surjective.

The third statement follows from the fact that P(V ∨
4 ⊗ ∧2V ∨

5 ) is prehomogeneous
under PGL(V4)×PGL(V5), more precisely from the fact that the orbit of [θ] is open,
since this implies that the image of the natural differential sl4 × sl5 = H0(TG) −→
V ∨
4 ⊗ ∧2V ∨

5 /〈θ〉 sending X to X(θ) mod θ is surjective; since this morphism can
also be defined by restricting first to X4 and then composing with the morphism
we are interested in, the latter must also be surjective.

In order to prove the second statement we twist by E the Koszul complex resolv-
ing the structure sheaf of X4. By standard cohomological arguments, it is enough
to check that H0(G,End0(E)) = 0 and Hi(G,E ⊗∧i+1E∨) = 0 for any i > 0. For
the first claim, observe that

End0(E) = End0(U)⊕ End0(V )⊕ End0(U)⊗ End0(V )

is in fact acyclic. For the second claim, check that E ⊗ ∧i+1E∨ is also acyclic for
any i > 0. Similarly, in order to prove the first statement we need to check that
Hi+1(G, TG⊗∧iE∨) = 0 for any i ≥ 0, which is again a straightforward application
of Bott’s theorem.

By the same type of arguments (or using a computer to check that χ(TX4) = 0),
we deduce that H0(TX4) = 0, which implies that the automorphism group is
discrete, hence finite since X4 is Fano. �

The question remains open, whether X4 is also globally rigid, which would be
remarkable for a Fano fourfold with such a big Picard number. The first thing to
check is whether X4 remains smooth when we degenerate θ to the codimension one
orbit. If yes, we would get a similar situation to the case of codimension two linear
sections of the spinor tenfold (which has Picard number one, though).

Another question one may ask is whether the quotient bundle restricted to X4

is rigid. In other words, is the morphism to G(3, V5) uniquely defined?

9. Higher dimensions

Let us briefly describe the higher dimensional models.

Proposition 9.1. X6 is a rational Fano sixfold of index one and Picard rank two.

The projection of X6 to G(3, V5) is birational, with non trivial fibers isomorphic

to P1 over the smooth locus of C4, and to P2 over its ten singular points.

The projection to P(V4) is a Q3-bundle outside P0, with five four-dimensional

fibers over P0.

From this description and that of X4, we deduce that in the Grothendieck ring
of varieties one has the relation [X6] +L3[Y0] = [G(3, V5)] +L[X4]. This yields the
Poincaré polynomial of X6,

PX6
(t) = 1 + 2t+ 8t2 + 9t3 + 8t4 + 2t5 + t6.

Proposition 9.2. X8 is a Fano eightfold of pseudo-index three, while X ′
8 is Fano

eigthfold of index three.

Proposition 9.3. The projections of X8, X
′
8 to G(2, V5) are dual P2-fibrations

over the complement of a del Pezzo surface of degree five, the exceptional fibers

being isomorphic to P(V4) and G(2, V4) respectively.
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We can readily deduce that X8 and X ′
8 have pure cohomology, with Poincaré

polynomials

PX8
(t) = 1 + 2t+ 4t2 + 6t3 + 11t4 + 6t5 + 4t6 + 2t7 + t8,

PX′

8
(t) = 1 + 2t+ 5t2 + 11t3 + 13t4 + 11t5 + 5t6 + 2t7 + t8.

Of course X6, X8, X
′
8 inherit the same symmetries as X4. E. Fatighenti and F.

Tanturri checked the necessary vanishing conditions to establish, as for X4, that
they are also infinitesimally rigid.
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