A four-dimensional cousin of the Segre cubic

Laurent Manivel

To cite this version:

Laurent Manivel. A four-dimensional cousin of the Segre cubic. Revista Matemática Iberoamericana, 2024, 40 (3), pp.1089-1114. 10.4171/RMI/1448 . hal-03871778

HAL Id: hal-03871778
 https://cnrs.hal.science/hal-03871778

Submitted on 25 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A FOUR-DIMENSIONAL COUSIN OF THE SEGRE CUBIC

LAURENT MANIVEL

Abstract

This note is devoted to a special Fano fourfold defined by a fourdimensional space of skew-symmetric forms in five variables. This fourfold appears to be closely related with the classical Segre cubic and its CremonaRichmond configuration of planes. Among other exceptional properties, it is infinitesimally rigid and has Picard number six. We show how to construct it by blow-up and contraction, starting from a configuration of five planes in a four-dimensional quadric, compatibly with the symmetry group \mathcal{S}_{5}. From this construction we are able to describe the Chow ring explicitely.

Dedicated to the memory of Laurent Gruson

1. Introduction

Fano threefolds were classified more that fourty years ago, after some fifty years of efforts. The classification of Fano fourfolds is still elusive and will probably remain so for a long time. There are many ways to construct such manifolds, and a systematic study was launched a few years ago, of those that can be constructed from vector bundles on products of Grassmannians and more general flag manifolds [6]; a sample has already appeared in [5]. In this database, there is a unique fourfold with maximal Picard number, equal to six: the study of this fourfold is the object of this note.

This study turned out to be related with interesting questions at the intersection of algebraic geometry with Lie theory. Consider two complex vector spaces V_{4} and V_{5}, of dimension four and five respectively. The action of $G L\left(V_{4}\right) \times G L\left(V_{5}\right)$ on $V_{4}^{\vee} \otimes \wedge^{2} V_{5}^{\vee}$ is known to be prehomogenous, its open orbit being the complement of a degree 40 hypersurface [24, p.98]. It is in fact one of the most complicated prehomogeneous spaces, containing no less than 63 distinct orbits [23, 9]. An important literature has been devoted to this prehomogeneous space, including some in connections with quintic field extensions, in the spirit of Bhargava's work on higher reciprocity laws $[16,17,7]$.

The Fano fourfold X_{4} we are interested in is defined by a generic element of the prehomogeneous space $V_{4}^{\vee} \otimes \wedge^{2} V_{5}^{\vee}$. It has two natural projections to $G(2,4) \simeq \mathbb{Q}^{4}$ and to the six-dimensional $G(3,5)$ that we describe in some details in section 4 . In particular we show it is a small resolution of a fourfold with ten singular points which appears to be a cousin, or a big brother of the Segre cubic primal; this small resolution contracts ten planes which can be seen as a special subcollection of the classical Cremona-Richmond configuration. We deduce:

Theorem. Consider five general planes in one of the two families of projective planes in \mathbb{Q}^{4}. They intersect pairwise in ten points. Blow-up these ten points and then the strict transforms of the five planes. Then the strict transforms of the exceptional divisors of the first blowup can be contracted to a smooth Fano fourfold, which is precisely X_{4}.

Then we show that the automorphism group is $\operatorname{Aut}\left(X_{4}\right)=\mathcal{S}_{5}$, so that

$$
\operatorname{Pic}\left(X_{4}\right)^{\mathcal{S}_{5}} \simeq \mathbb{Z}^{2}
$$

is generated by the pull-back of the hyperplane classes by the two projections. This suggests to construct the tensor that defines X_{4} by reverse-engineering, starting from the representation theory of \mathcal{S}_{5}; we show how this leads to a normal form from this tensor. We then use the previous constructions to describe the Chow ring of X_{4} completely, including the action of \mathcal{S}_{5}. We also check that X_{4}, as expected, is infinitesimally rigid.

This study can be considered as a warm-up for the more mysterious case of $U_{5}^{\vee} \otimes \wedge^{2} V_{5}^{\vee}$, directly related to E_{8}, which has infinitely many but well-described orbits for the action of $G L\left(U_{5}\right) \times G L\left(V_{5}\right)$ (see [15] for a first approach). Among other nice geometric objects, this representation will give rise to an interesting family of special Fano sixfolds.

Acknowledgements. We thank Marcello Bernardara, Enrico Fatighenti and Fabio Tanturri for sharing our joint project on Fano fourfolds. Thanks also to Pieter Belmans and Igor Dolgachev for their comments and suggestions. We acknowledge support from the ANR project FanoHK, grant ANR-20-CE40-0023.

2. Models

According to the classical Borel-Weil theorem, one can interprete the representation $V_{4}^{\vee} \otimes \wedge^{2} V_{5}^{\vee}$ as a space of global sections of an irreducible homogeneous vector bundle over a homogeneous space, and this in more than one way:

$$
\begin{aligned}
V_{4}^{\vee} \otimes \wedge^{2} V_{5}^{\vee} & =\Gamma\left(G\left(2, V_{4}\right) \times \mathbb{P}\left(V_{5}\right), \mathcal{U}^{\vee} \boxtimes \mathcal{Q}^{\vee}(1)\right) \\
& =\Gamma\left(\mathbb{P}\left(V_{4}\right) \times \mathbb{P}\left(V_{5}^{\vee}\right), \mathcal{O}(1) \boxtimes \wedge^{2} \mathcal{V}^{\vee}\right) \\
& =\Gamma\left(G\left(2, V_{5}\right) V_{4}^{\vee} \otimes \wedge^{2} \mathcal{V}^{\vee}\right) \\
& =\Gamma\left(\mathbb{P}\left(V_{4}\right) \times \mathbb{P}\left(V_{5}\right), \mathcal{O}(1) \boxtimes \mathcal{Q}^{\vee}(1)\right) \\
& =\Gamma\left(G\left(2, V_{4}\right) \times G\left(3, V_{5}\right), \mathcal{U}^{\vee} \boxtimes \wedge^{2} \mathcal{V}^{\vee}\right) \\
& =\Gamma\left(\mathbb{P}\left(V_{4}\right) \times G\left(3, V_{5}\right), \mathcal{O}(1) \boxtimes \wedge^{2} \mathcal{V}^{\vee}\right) \\
& =\Gamma\left(\mathbb{P}\left(V_{4}\right) \times G\left(2, V_{5}\right), \mathcal{O}(1) \boxtimes \wedge^{2} \mathcal{V}^{\vee}\right) \\
& =\Gamma\left(G\left(2, V_{4}\right) \times G\left(2, V_{5}\right), \mathcal{U}^{\vee} \boxtimes \wedge^{2} \mathcal{V}^{\vee}\right) .
\end{aligned}
$$

Here \mathcal{U} and \mathcal{V} denote tautological bundles on Grassmannians (with some abuse of notations since we use the these symbols several times for distinct bundles on different Grassmannians). As a consequence, consider a general element θ in $V_{4}^{\vee} \otimes$ $\wedge^{2} V_{5}^{\vee}$. Interpreting it as a global section of a vector bundle in these seven different ways, we obtain smooth subvarieties of codimensions equal to the ranks of the vector bundles in question, that we respectively denote as follows (the notation is such that X_{d} has dimension d):

$$
\begin{array}{ll}
X_{0} \subset G\left(2, V_{4}\right) \times \mathbb{P}\left(V_{5}\right), & X_{1} \subset \mathbb{P}\left(V_{4}\right) \times \mathbb{P}\left(V_{5}^{\vee}\right), \\
X_{2} \subset G\left(2, V_{5}\right), & X_{3} \subset \mathbb{P}\left(V_{4}\right) \times \mathbb{P}\left(V_{5}\right), \\
X_{4} \subset G\left(2, V_{4}\right) \times G\left(3, V_{5}\right), & X_{6} \subset \mathbb{P}\left(V_{4}\right) \times G\left(3, V_{5}\right), \\
X_{8} \subset \mathbb{P}\left(V_{4}\right) \times G\left(2, V_{5}\right), & X_{8}^{\prime} \subset G\left(2, V_{4}\right) \times G\left(2, V_{5}\right) .
\end{array}
$$

Another obvious thing to do is to consider θ as a general morphism from V_{4} to $\wedge^{2} V_{5}^{\vee}$. The image of $\mathbb{P}\left(V_{4}\right)$ inside $\mathbb{P}\left(\wedge^{2} V_{5}^{\vee}\right)$ is then a generic projective three-plane, that has to meet the Grassmannian $G\left(2, V_{5}^{\vee}\right)$ along a set Y_{0} of five reduced points (the degree of the Grassmannian being equal to five). Correspondingly, we get a
set P_{0} of five points in $\mathbb{P}\left(V_{4}\right)$, and a set Π_{0} of five planes in $\mathbb{P}\left(V_{5}\right)$, all in general position. Concretely, if we choose a basis e_{1}, \ldots, e_{4} of V_{4}, with dual basis $e_{1}^{\vee}, \ldots, e_{4}^{\vee}$ of V_{4}^{\vee} and decompose θ accordingly as

$$
\theta=e_{1}^{\vee} \otimes \theta_{1}+e_{2}^{\vee} \otimes \theta_{2}+e_{3}^{\vee} \otimes \theta_{3}+e_{4}^{\vee} \otimes \theta_{4}
$$

then the contraction $\theta(v)=v_{1} \theta_{1}+v_{2} \theta_{2}+v_{3} \theta_{3}+v_{4} \theta_{4}$ has rank two when $[v]$ belongs to P_{0}; that is, it decomposes as $f_{1}^{\vee} \wedge f_{2}^{\vee}$ for two linear forms $f_{1}^{\vee}, f_{2}^{\vee}$ whose kernels intersect along the corresponding plane in $\mathbb{P}\left(V_{5}\right)$. We will denote the five two-forms of rank two (defined up to scalars) obtained by contracting θ as $\omega_{1}, \ldots, \omega_{5}$. It would be natural then to impose the normalization $\omega_{1}+\cdots+\omega_{5}=0$, and decompose θ as

$$
\theta=u_{1}^{\vee} \otimes \omega_{1}+u_{2}^{\vee} \otimes \omega_{2}+u_{3}^{\vee} \otimes \omega_{3}+u_{4}^{\vee} \otimes \omega_{4}+u_{5}^{\vee} \otimes \omega_{5}
$$

for some linear forms $u_{1}^{\vee}, \ldots, u_{5}^{\vee}$ such that $u_{1}^{\vee}+\cdots+u_{5}^{\vee}=0$.
Notations.
$P_{0}=\left\{p_{1}, \ldots, p_{5}\right\}$ is a set of five points in $\mathbb{P}\left(V_{4}\right)$, in natural bijection with the set $\left\{\omega_{1}, \ldots, \omega_{5}\right\}$, of five decomposable two-forms in $\wedge^{2} V_{5}^{\vee}$, that define five points in $G\left(2, V_{5}^{\vee}\right) \simeq G\left(3, V_{5}\right)$, hence five planes P_{1}, \ldots, P_{5} in $\mathbb{P}\left(V_{5}\right)$. They also define five planes π_{1}, \ldots, π_{5} in $G\left(2, V_{4}\right)$, where π_{k} is the set of planes in V_{4} that contain p_{k}.
L_{0} is the set of pairs of points in P_{0}. According to the previous identifications, it is in natural bijection with a set of ten lines in $\mathbb{P}\left(V_{4}\right)$, a set of ten points in $\mathbb{P}\left(V_{5}\right)$, and a set of ten points in $G\left(2, V_{4}\right)$.

3. Small dimensions

Most results in this section are classical. Our purpose is mainly to set up the scene for the main character, which will make its entry in the next section.

Proposition 3.1. X_{0} consists in 10 points of $G\left(2, V_{4}\right) \times \mathbb{P}\left(V_{5}\right)$, in natural bijection with L_{0}.

Proof. By definition, a point $\left(A_{2}, B_{1}\right)$ belongs to X_{0} if and only if we can decompose θ in such a way that A_{2} is cut out by the linear forms $e_{3}^{\vee}, e_{4}^{\vee}$ and the skew-symmetric forms θ_{1}, θ_{2} have the same kernel $B_{1} \subset V_{5}$. Otherwise said, θ_{1} and θ_{2} belong to $\wedge^{2} B_{1}^{\perp}$. Since in the latter space, decomposable tensors are parametrized by a quadric, we can make a change of basis in A_{2}^{\perp} and suppose that θ_{1} and θ_{2} are indeed decomposable. Concretely, this means that we can write θ in the form

$$
\theta=e_{1}^{\vee} \otimes f_{1}^{\vee} \wedge f_{2}^{\vee}+e_{2}^{\vee} \otimes f_{3}^{\vee} \wedge f_{4}^{\vee}+e_{3}^{\vee} \otimes \theta_{3}+e_{4}^{\vee} \otimes \theta_{4}
$$

Then [e_{1}] belongs to P_{0}, the associated plane in $\mathbb{P}\left(V_{5}\right)$ being $P_{1}=\left\langle f_{1}, f_{2}\right\rangle^{\perp}$, and also [e_{2}] belongs to P_{0}, the associated plane being $P_{2}=\left\langle f_{3}, f_{4}\right\rangle^{\perp}$. In particular $A_{2}=\left\langle e_{1}, e_{2}\right\rangle$ and $B_{1}=P_{1} \cap P_{2}$, as claimed.

Proposition 3.2. X_{1} is the union of five disjoint lines, in natural bijection with P_{0}.

Proof. By definition, a point in X_{1} is a pair $\left(A_{1}, B_{4}\right)$ such that $\theta(v)$ vanishes on B_{4} when v generates A_{1}. But then $\theta(v)$ must have rank two, of the form $f_{1}^{\vee} \wedge f_{2}^{\vee}$. In particular A_{1} must correspond to one of the five points of P_{0}, and the hyperplane B_{4} can move in the pencil $\left\langle f_{1}^{\vee}, f_{2}^{\vee}\right\rangle$.
Proposition 3.3. $X_{2} \subset G\left(2, V_{5}\right)$ is a del Pezzo surface of degree five.

Proof. Obvious.
Recall that the del Pezzo surface of degree five contains 10 lines. Since the embedding in $G\left(2, V_{5}\right)$ is anticanonical, this means in our setting that there exists ten flags $A_{1} \subset A_{3} \subset V_{5}$ such that $\theta(v, w)=0$ for any $v \in A_{1}, w \in A_{3}$. It is easy to see that these ten flags are in natural bijection with L_{0}, the ten points $\left[A_{1}\right]$ in $\mathbb{P}\left(V_{5}\right)$ being exactly the intersections of the planes P_{1}, \ldots, P_{5}.
Proposition 3.4. The projection of X_{3} to $\mathbb{P}\left(V_{4}\right)$ is the blow-up of the five points of P_{0}. The projection to $\mathbb{P}\left(V_{5}\right)$ is a small resolution of a Segre cubic primal C_{3}, ten lines being contracted to the ten singular points of C_{3} defined by L_{0}.
Proof. (Well known.) By definition, X_{3} parametrizes the pairs $\left(A_{1}=[v], B_{1}\right)$ such that B_{1} is contained in the kernel of $\theta(v)$. Generically this two-form has rank four and the kernel is one-dimensional, which implies that X_{3} projects birationally to $\mathbb{P}\left(V_{4}\right)$. The projection has non trivial fibers when the rank of $\theta(v)$ drops, that is, over one of the five points in P_{0}. Then the kernel has dimension three and the fiber is a projective plane, as it has to be.

No we turn to the projection to $\mathbb{P}\left(V_{5}\right)$. By definition, the fibers are linear subspaces defined by the image of the morphism $Q(-1) \rightarrow V_{4}^{\vee} \otimes \mathcal{O}_{\mathbb{P}\left(V_{5}\right)}$ induced by θ. In particular the fibers are non trivial over the corresponding determinantal locus C_{3}, which is a cubic threefold since $\operatorname{det}(Q(-1))=\mathcal{O}_{\mathbb{P}\left(V_{5}\right)}(-3)$. This threefold becomes singular exactly when the rank drops to two. If $w \in V_{5}$ generates B_{1}, this means that the morphism from V_{4} to V_{5}^{\vee} sending e_{i} to $\theta_{i}(w, \bullet)$ has rank two. So we may suppose after a change of basis that $\theta_{1}(w, \bullet)=\theta_{2}(w, \bullet)=0$. In other words, θ_{1} and θ_{2} have the same kernel B_{1}, and after another change of basis if necessary we have already seen that we can suppose they are decomposable. So they define two points in P_{0}, in such a way that B_{1} is the point obtained as the intersection of the corresponding planes in $\mathbb{P}\left(V_{5}\right)$, while the line contracted to this point is the span of the corresponding points in $\mathbb{P}\left(V_{4}\right)$.

As a result, C_{3} is a cubic threefold with 10 nodes. (In fact C_{3} is the image of the rational map from $\mathbb{P}\left(V_{4}\right)$ to $\mathbb{P}\left(V_{5}\right)$ sending $[v]$ to the kernel of the two-form $\theta(v)$, and essentially by definition this is a Segre cubic primal [11].
Reminder on the Segre cubic primal. Recall that the Segre primal can be defined, if x_{0}, \ldots, x_{5} are homogeneous coordinates on \mathbb{P}^{5}, by the two equations

$$
x_{0}+\cdots+x_{5}=0, \quad x_{0}^{3}+\cdots+x_{5}^{3}=0 .
$$

This presentation exhibits an \mathcal{S}_{6} symmetry, and it is known that $\operatorname{Aut}\left(C_{3}\right)=\mathcal{S}_{6}$. Classically, the Segre primal contains 15 planes. (See [10, Chapter 9] for much more information.)

The Segre cubic primal admits a classical modular interpretation, according to which $C_{3} \simeq\left(\mathbb{P}^{1}\right)^{6} / / S L_{2}$. Moreover $\bar{M}_{0,6}$ is a resolution of its singularities (that just blows-up the singular points) and according to Kapranov it can be constructed by blowing-up five general points in \mathbb{P}^{3}, plus the strict transforms of the ten lines that join them [18]. (Note also that $\bar{M}_{0,6}$ compactifies the moduli space of genus 2 curves.)

Note also that C_{3} is known to be G-birationally rigid, and even G-birationally superrigid, when $\mathcal{A}_{5} \subset G \subset \mathcal{S}_{6}[1]$.

Blowing-up the ten singular points in C_{3} we get ten exceptional divisors isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$, each of which is contracted to \mathbb{P}^{1} in X_{3}. According to [14] any of
the rulings of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ can in fact be contracted, yielding $2^{10}=1024$ small resolutions of the singularities of C_{3}, falling into 13 orbits of \mathcal{S}_{6}, including 6 for which the resolution is projective. Homological Projective Duality for the Segre cubic is discussed in [3].

On the planes in the Segre cubic. In coordinates, the 15 planes on the Segre cubic are given by three equations

$$
x_{a}+x_{b}=x_{c}+x_{d}=x_{e}+x_{f}=0
$$

for (abcdef) a permutation of (123456); we denote such a plane by (ab|cd|ef). Together with the 15 points in the hyperplane $x_{0}+\cdots+x_{5}=0$ with four coordinates equal to zero, they form a $(153,153)$ configuration classically known as the CremonaRichmond configuration: each plane contains three of the 15 points and each of those points belongs to three planes of the configuration. But beware that two planes may meet along a single point, or a projective line; the second possibility occurs when their symbols have a common pair.

Proposition 3.5. There are exactly 6 collections of five planes among the fifteen planes in C_{3}, meeting pairwise along single points. These collections are exchanged transitively by the action of \mathcal{S}_{6}. Each one has for stabilizer a copy of \mathcal{S}_{5}, embedded in \mathcal{S}_{6} in a non standard way.

To understand the last sentence, recall that \mathcal{S}_{6} has the exceptional property that its outer automorphism group is non trivial: there exists a unique outer automorphism, and a non standard embedding of \mathcal{S}_{5} in \mathcal{S}_{6} is the composition of a standard embedding by such an outer automorphism. Note that this outer automorphism of \mathcal{S}_{6} exchanges the two conjugacy classes consisting of transpositions on one hand, and products of three disjoint transpositions on the other hand; the former corresponds to points, the latter to planes in the Cremona-Richmond configuration, which is for this reason self-dual.

Proof. Suppose given a collection of five planes, any two of which meet at a single point. This means that each plane is represented by three pairs, none of which being shared with another plane. So we have a total amount of 15 distinct pairs; necessarily, all the 15 pairs of integers from 1 to 6 must appear exactly once.

Up to permutation, we can assume that one of our planes is $(12|34| 56)$. Then the plane containing (13) is either $(13|25| 46)$ or $(13|26| 45)$ and up to permuting 5 and 6 we can suppose it is the first one. Then the other planes are determined. For example, for the one containing (14), we must split (2356) into two pairs, and since (25) and (56) have already been used the only possibility is $(14|26| 35)$. This also shows that we have three choices for the plane containing (12), then two choices for the plane containing (13), and then no more choices; this means there are exactly six possibilities. Explicitely, they are the following:

$(12\|34\| 56)$	$(12\|34\| 56)$	$(12\|35\| 46)$	$(12\|35\| 46)$	$(12\|36\| 45)$	$(12\|36\| 45)$
$(13\|25\| 46)$	$(13\|26\| 45)$	$(13\|24\| 56)$	$(13\|26\| 45)$	$(13\|25\| 46)$	$(13\|24\| 56)$
$(14\|26\| 35)$	$(14\|25\| 36)$	$(14\|25\| 36)$	$(14\|23\| 56)$	$(14\|23\| 56)$	$(14\|26\| 35)$
$(15\|24\| 36)$	$(15\|23\| 46)$	$(15\|26\| 34)$	$(15\|24\| 36)$	$(15\|26\| 34)$	$(15\|23\| 46)$
$(16\|23\| 45)$	$(16\|24\| 35)$	$(16\|23\| 45)$	$(16\|25\| 34)$	$(16\|24\| 35)$	$(16\|25\| 34)$

Let us denote these six configurations by $A B C D E F$. The action of \mathcal{S}_{6} on them induces a morphism $\mathcal{S}_{6} \rightarrow \mathcal{S}_{6}$, and a direct examination shows that it sends the transposition (12) to the permutation $(A B)(C D)(E F)$. So it has to correspond to the outer automorphism of \mathcal{S}_{6}, and our final claim follows.

Question. Is there an interpretation in terms of the root system E_{7} ? In fact the Lie algebra \mathfrak{e}_{7} admits a \mathbb{Z}_{3}-grading of the form

$$
\mathfrak{e}_{7}=\mathfrak{s l}_{3} \times \mathfrak{s l}_{6} \oplus\left(\mathbb{C}^{3} \otimes \wedge^{2} \mathbb{C}^{6}\right) \oplus\left(\mathbb{C}^{3} \otimes \wedge^{2} \mathbb{C}^{6}\right)^{\vee}
$$

and roots of \mathfrak{e}_{7} defined by weights of $\mathbb{C}^{3} \otimes \wedge^{2} \mathbb{C}^{6}$ can be interpreted as triples of pairs [21]. Note that roots of \mathfrak{e}_{7} are classically connected with the 28 bitangents of a plane quartic.

4. The Fano fourfold

Recall that our main character $X_{4} \subset G\left(2, V_{4}\right) \times G\left(3, V_{5}\right)$ is defined by θ a general element in $V_{4}^{\vee} \otimes \wedge^{2} V_{5}^{\vee}$, considered as a general section of the vector bundle $\mathcal{U}^{\vee} \boxtimes$ $\wedge^{2} \mathcal{V}^{\vee}$. Here \mathcal{U} denotes the tautological rank two bundle on $G\left(2, V_{4}\right)$, while \mathcal{V} denotes the tautological rank three bundle on $G\left(3, V_{5}\right)$.

In this section we describe the geometry of X_{4} by blowups and contractions.
4.1. The main invariants. We start by computing the main numerical invariants of X_{4}, including its Hodge numbers.

Proposition 4.1. X_{4} is a rational Fano fourfold of index one.
Its cohomology is pure, with $h^{1,1}=6$ and $h^{2,2}=17$.
Moreover $h^{0}\left(-K_{X_{4}}\right)=40$ and $K_{X_{4}}^{4}=172$.
Proof. The first assertion is an immediate consequence of the adjunction formula.
The Hodge numbers and invariants can computed using exact sequences, along the lines explained in [5]. (They could also be deduced from the geometric descriptions that will follow.) Since $172=4 \times 43$ is not divisible by any fourth power, the index must be one.

Note that $h^{0}\left(-K_{X_{4}}\right)=40<\operatorname{dim}\left(\wedge^{2} V_{4} \otimes \wedge^{3} V_{5}\right)=60$, which means that X_{4} is linearly degenerate inside $G:=G\left(2, V_{4}\right) \times G\left(3, V_{5}\right)$. This can be checked by considering the twisted Koszul complex

$$
0 \longrightarrow \wedge^{6} E^{\vee}(1,1) \longrightarrow \cdots \longrightarrow E^{\vee}(1,1) \longrightarrow \mathcal{O}_{G}(1,1) \longrightarrow \mathcal{O}_{X_{4}}(1) \longrightarrow 0
$$

Indeed $H^{0}\left(E^{\vee}(1,1)\right) \simeq V_{4} \otimes V_{5}$ has dimension 20, while it can be checked that $H^{0}\left(\wedge^{k} E^{\vee}(1,1)\right)=0$ for $k>1$.

We will describe in some details the two projections p_{1}, p_{2} :

We start with the second one.
4.2. The second projection and the Cremona-Richmond configuration. We start with the projection to $G\left(3, V_{5}\right)$, which is very similar to the resolution of singularities of the Segre cuic primal.

Proposition 4.2. The projection of X_{4} to $G\left(3, V_{5}\right)$ is a small resolution of a codimension two subvariety C_{4} of degree 12 , contracting ten planes to ten singular points in natural bijection with L_{0}.

Proof. The fiber of $p_{2}: X_{4} \longrightarrow G\left(3, V_{5}\right)$ over a point $[V] \in G\left(3, V_{5}\right)$ is defined by the morphism $\theta_{V}: \wedge^{2} V \rightarrow V_{4}^{\vee}$ induced by θ. In particular the fibers are non trivial when the rank is at most two, which happens in codimension two. We conclude that the image C_{4} of X_{4} is a determinantal fourfold. Its structure sheaf admits a resolution by the Lascoux complex [20]

$$
\begin{equation*}
0 \longrightarrow \mathcal{V}^{\vee}(-3) \longrightarrow V_{4} \otimes \mathcal{O}_{G\left(2, V_{5}\right)}(-2) \longrightarrow \mathcal{O}_{G\left(2, V_{5}\right)} \longrightarrow \mathcal{O}_{C_{4}} \longrightarrow 0 \tag{1}
\end{equation*}
$$

where \mathcal{V} denotes the rank three tautological bundle. We deduce in particular that the class of C_{4} in the Chow ring of the Grassmannian $G\left(3, V_{5}\right)$ is $3 \sigma_{11}+2 \sigma_{2}$, so that its degree is $3 \times 2+2 \times 3=12$.

The rank of θ_{V} drops to one on the singular locus of C_{4}, which must have codimension 6 , hence be a finite set, over which the fibers are projective lines. The fact that θ_{V} has a two dimensional kernel means that we can find a basis v_{1}, v_{2}, v_{3} of V such that $\theta_{i}\left(v_{1}, v_{2}\right)=\theta_{i}\left(v_{1}, v_{3}\right)=0$ for all i. Completing with two vectors v_{4}, v_{5} and taking the dual basis, we conclude that every θ_{i} belongs to the space of forms generated by $v_{1}^{\vee} \wedge v_{4}^{\vee}, v_{1}^{\vee} \wedge v_{5}^{\vee}$ and $\wedge^{2}\left(v_{1}^{\perp}\right)$. In particular $\left\langle\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right\rangle$ has to meet $\wedge^{2}\left(v_{1}^{\perp}\right)$ in dimension at least two, which means that V defines a pair of planes π_{p}, π_{q} in P_{0}, whose intersection point is a line in V. Finally, V defines a hyperplane $H_{p q}$ of V_{4}, and the corresponding fiber is the set $G\left(2, H_{p q}\right) \simeq \mathbb{P}^{2}$ of planes in $H_{p q}$.

Conversely, such a pair of planes being given, we can decompose θ is an adapted basis as

$$
\theta=e_{1}^{\vee} \otimes f_{1}^{\vee} \wedge f_{2}^{\vee}+e_{2}^{\vee} \otimes f_{3}^{\vee} \wedge f_{4}^{\vee}+e_{3}^{\vee} \otimes \theta_{3}+e_{4}^{\vee} \otimes \theta_{4}
$$

and then the conditions $\theta_{3}\left(f_{5}, \bullet\right)=\theta_{4}\left(f_{5}, \bullet\right)=0$ define a 3 -plane V containing f_{5}. This exactly means that the singular locus of C_{4} consists in ten points, in natural bijection with L_{0}.

Proposition 4.3. Each singular point of C_{4} defines a plane in the Segre cubic primal C_{3}. The five remaining planes are the projectivized kernels of the five singular form $\omega_{1}, \ldots, \omega_{5}$.
Proof. By definition, a point $[v] \in \mathbb{P}\left(V_{5}\right)$ belongs to C_{3} when the four linear forms $\theta_{i}(v, \bullet)$ on V_{5} are linearly dependent. In the proof above, we have seen that a singular point in C_{4} corresponds to a three-plane $V=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ in V_{5} with $\theta\left(v_{1}, v_{2}\right)=\theta\left(v_{1}, v_{3}\right)=0$. So for any $v \in V$, the linear forms $\theta_{i}(v, \bullet)$ vanish on v_{1}, and also on v by skew-symmetry. When v and v_{1} are independent, the four linear forms $\theta_{i}(v, \bullet)$ therefore belong to the three-dimensional space $\left\langle v, v_{1}\right\rangle^{\perp} \subset V_{5}^{\vee}$, so they must be linearly dependent. Hence $\mathbb{P}(V) \subset C_{3}$.

That the projectivized kernels $\mathbb{P}\left(K_{j}\right)$ of the five singular skew forms θ_{j} are contained in C_{3} is obvious, since $\theta_{j}(v, \bullet)=0$ for $v \in K_{j}$ is a linear dependence relation between the $\theta_{i}(v, \bullet)$.

Note that we also have a special point $\left[v_{1}\right]$ in each of the ten planes $\mathbb{P}(V)$. Moreover the five planes $\mathbb{P}\left(K_{1}\right), \ldots, \mathbb{P}\left(K_{5}\right)$ meet pairwise at a single point. In
particular, they provide one of the special subcollections of the Cremona-Richmond configuration described in Proposition 3.5.

Also observe that a form ω which is as above in the span of $v_{1}^{\vee} \wedge v_{4}^{\vee}, v_{1}^{\vee} \wedge v_{5}^{\vee}$ and $\wedge^{2}\left(v_{1}^{\perp}\right)$, but does not belong to $\wedge^{2}\left(v_{1}^{\perp}\right)$, can be written as $v_{1}^{\vee} \wedge w^{\vee}+\gamma$ with $\gamma \in \wedge^{2}\left(v_{1}^{\perp}\right)$ and w^{\vee} a combination of v_{4}^{\vee} and v_{5}^{\vee}. It has rank two when γ has rank (at most) two and $w^{\vee} \wedge \gamma=0$, which means if $w^{\vee} \neq 0$ that γ is divisible by w^{\vee}. But then ω itself is divisible by w^{\vee}, and since w^{\vee} is a combination of v_{4}^{\vee} and v_{5}^{\vee} this implies that $\omega\left(v_{2}, v_{3}\right)=0$. In other words, the linear form that defines $H_{p q} \subset V_{4}$ vanishes at the point that corresponds to ω. This exactly means that

$$
p_{i} \in H_{j k} \quad i \neq j, k
$$

We thus get in $G\left(2, V_{4}\right)$ a collection of $5+10$ planes, such that each plane of the second type meets exactly three planes of the first type. Hence a configuration $\left(10_{3}, 5_{6}\right)$. The condition that $(j k)$ be disjoint from $(l m)$, so that the two hyperplanes meet in p_{n}, defines a copy of the Petersen graph.

Being a degeneracy locus of a morphim between vector bundles, C_{4} admits two natural resolutions of singularities; X_{4} is one of them. For the other one, we need to impose a rank one kernel in the source of the morphism $\wedge^{2} V \rightarrow V_{2}^{\vee}$; note that a rank one subspace of $\wedge^{2} V$ is always of the form $\wedge^{2} W$ for $W \subset V$ a rank two subspace. But then the composition $\wedge^{2} W \rightarrow V_{2}^{\vee}$ vanishes exactly when W defines a point in the del Pezzo surface $X_{2} \subset G\left(2, V_{5}\right)$. Our second resolution of singularities is thus simply $\mathbb{P}_{X_{2}}(Q)$, the projectivisation of the quotient bundle of $G\left(2, V_{5}\right)$, restricted to X_{2}. The two resolutions are dominated by \tilde{X}_{4}, the set of triples $\left(U_{2}, V_{3} \supset W_{2}\right)$ such that $\left(U_{2}, V_{3}\right)$ belongs to X_{4} and W_{2} belongs to X_{2}. We get a diagram:

Proposition 4.4. The morphism $q_{2}: \mathbb{P}_{X_{2}}(Q) \longrightarrow C_{4}$ is a small resolution of singularities, contracting ten lines to the ten singular points of C_{4}. These ten lines are mapped by q_{1} to the ten lines in the del Pezzo surface X_{2}.

The morphism β is the blow-up of the ten exceptional lines of q_{2}, as well as α is the blow-up of the ten exceptional planes of p_{2}.

Finally, π is the blow-up of the ten singular points of C_{4}, its exceptional divisor being the disjoint union of ten copies of $\mathbb{P}^{2} \times \mathbb{P}^{1}$.

Remark. Contrary to X_{4}, the fourfold $X_{4}^{\prime}=\mathbb{P}_{X_{2}}(Q)$ is not Fano but only weak Fano. Indeed, the canonical bundle of X_{2} is $\operatorname{det}\left(Q^{\vee}\right)$, so the canonical bundle of X_{4}^{\prime} is $\mathcal{O}_{X_{4}^{\prime}}(-3)$. The quotient bundle Q is obviously not ample on $G\left(2, V_{5}\right)$, and neither is it when restricted to X_{2} since the morphism defined by $\mathcal{O}_{X_{4}^{\prime}}(1)$ is precisely q_{2}
and has non trivial fibers. But of course Q is obviously nef, and it is also big since

$$
\int_{X_{4}^{\prime}} \mathcal{O}_{X_{4}^{\prime}}(1)^{4}=\int_{X_{2}} s_{2}(Q)=\int_{G\left(2, V_{5}\right)} s_{2}(Q) \sigma_{1}^{4}=2>0
$$

Note also the striking similarity with the two main projective resolutions of the Segre cubic, which can be encapsulated in a similar diagram

where Z_{3} is the blowup of $\mathbb{P}\left(V_{4}\right)=\mathbb{P}^{3}$ at five points. Two important differences: Z_{3}, contrary to X_{4}, is only weak Fano; Z_{3} and $Z_{3}^{\prime}=\mathbb{P}_{X_{2}}(U)$, contrary to X_{4} and X_{4}^{\prime}, are related by flops and therefore derived-equivalent. Instead of that, we have:

Proposition 4.5. The birational map $q_{2} \circ p_{2}^{-1}: X_{4} \rightarrow X_{4}^{\prime}$ is a flip.
Proof. Since X_{4} is Fano, we need only to check that the canonical bundle of X_{4}^{\prime} is nef on the non trivial fibers of the projection to C_{4}. But we have seen that $K_{X_{4}^{\prime}}=\mathcal{O}_{X_{4}^{\prime}}(-3)$, the fiber of $\mathcal{O}_{X_{4}^{\prime}}(-1)$ at a point defined by a flag $U_{2} \subset U_{3}$ being U_{3} / U_{2}. On a fiber F of the projection to C_{4}, by definition U_{3} is fixed, so $\mathcal{O}_{X_{4}^{\prime}}(-1)_{\mid F}$ is base point free, hence also $K_{X_{4}^{\prime} \mid F}$.

According to the Bondal-Orlov conjecture, there should therefore exist a fully faithful functor $D^{b}\left(X_{4}^{\prime}\right) \longrightarrow D^{b}\left(X_{4}\right)$ that would be interesting to describe explicitely.
4.3. Pencils of skew-forms and the first projection. In order to describe the projection to $G\left(2, V_{4}\right)$, we first note that a plane in V_{4} defines through θ a pencil of skew-symmetric forms in five variables, and that such pencils have been classified. In fact, for a two dimensional vector space V_{2}, the action of $G L\left(V_{2}\right) \times G L\left(V_{5}\right)$ on $V_{2}^{\vee} \otimes \wedge^{2} V_{5}^{\vee}$ has finitely many orbits, which are described in [19]. Let us only mention that there are exactly eight orbits: the open orbit \mathcal{O}_{7}, an orbit \mathcal{O}_{6} of codimension two and another \mathcal{O}_{5} of codimension four, and then all the other orbits have bigger codimension.

The orbit \mathcal{O}_{5} (or rather its closure) is characterized as consisting of tensors of rank at most four, in the sense that they belong to $V_{2}^{\vee} \otimes \Lambda^{2} V_{4}$ for some hyperplane $V_{4} \subset V_{5}^{\vee}$. The orbit \mathcal{O}_{6} (or rather its closure) is characterized as consisting of those pencils in $\wedge^{2} V_{5}^{\vee}$ admiting a rank two element. So the open orbit \mathcal{O}_{7} parametrizes pencils of forms of constant rank four. By [22, Proposition 2], given such a pencil one can find a basis of V_{5} for which the two skew-forms

$$
\omega_{1}=f_{1}^{\vee} \wedge f_{3}^{\vee}+f_{2}^{\vee} \wedge f_{4}^{\vee}, \quad \omega_{2}=f_{1}^{\vee} \wedge f_{4}^{\vee}+f_{2}^{\vee} \wedge f_{5}^{\vee}
$$

are generators. The projective line $\left\langle f_{1}^{\vee}, f_{2}^{\vee}\right\rangle$ is the pivot of the pencil. Now, observe that if a three-plane $V \subset V_{5}$ is isotropic with respect to any skew-form $s \omega_{1}+t \omega_{2}$ of the pencil, it has to contain its kernel, which is generated by $s^{2} f_{3}-s t f_{4}+t^{2} f_{5}$. So necessarily $V=\left\langle f_{3}, f_{4}, f_{5}\right\rangle$, the orthogonal to the pivot.

Proposition 4.6. The projection of X_{4} to $G\left(2, V_{4}\right)$ is birational. The exceptional locus in $G\left(2, V_{4}\right)$ is the union of five planes, intersecting in the ten points of L_{0}, whose fibers are quadratic surfaces.

Proof. The fiber of the projection $p_{1}: X_{4} \longrightarrow G\left(3, V_{5}\right)$ over the point $[U] \in G\left(2, V_{4}\right)$ is defined by the morphism $\theta_{U}: U \rightarrow \wedge^{2} V_{5}^{\vee}$. This morphism is injective and we thus get a pencil of skew-symmetric forms. If this pencil is generic, which means that it has constant rank, then we have just seen that there is a unique three-plane in V_{5} which is isotropic with respect to any skew-form in the pencil. This threeplane is the image of the induced map $\theta_{U}^{(2)}: S^{2} U \rightarrow \wedge^{4} V_{5}^{\vee} \simeq V_{5}$. In particular, p_{1} is birational.

Special fibers will occur when the pencil $\operatorname{Im}\left(\theta_{U}\right)$ becomes special in some way. By the usual arguments for orbital degeneracy locus [4], we need to take into account, in the space of pencils, only those orbits of codimension smaller than five, which apart from the open orbit are the orbits \mathcal{O}_{5} and \mathcal{O}_{6} we have described above.

Pencils in \mathcal{O}_{5} contain two skew-forms of rank two. In our case, they must be two of the skew-forms $\omega_{1}, \ldots, \omega_{5}$, say θ_{1} and θ_{2}. Choose an adapted basis such that $\theta_{1}=f_{1}^{\vee} \wedge f_{2}^{\vee}$ and $\theta_{2}=f_{3}^{\vee} \wedge f_{4}^{\vee}$, so that

$$
\theta_{U}=e_{1}^{\vee} \otimes f_{1}^{\vee} \wedge f_{2}^{\vee}+e_{2}^{\vee} \otimes f_{3}^{\vee} \wedge f_{4}^{\vee}
$$

It is straightforward to check that the three-planes that are isotropic with respect to any skew-form in the pencil are those generated by f_{5}, a vector in $\left\langle f_{1}, f_{2}\right\rangle$, and a vector in $\left\langle f_{3}, f_{4}\right\rangle$. We thus get for fiber a copy of $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Finally, pencils in \mathcal{O}_{6} contain exactly one skew-form of rank two, say θ_{1}. To describe the corresponding fiber we must understand the 3 -planes isotropic with respect to both the generic form θ_{2} and the degenerate form $\theta_{1}=f_{1}^{\vee} \wedge f_{2}^{\vee}$. Such a 3 -plane must contain the kernel of θ_{2}; let us choose a generator f_{5} and a hyperplane H_{4} in V_{5} not containing f_{5}. We may suppose that f_{2}^{\vee} vanishes on f_{5}. The 3 -planes we are looking for are in correspondence with the 2-planes $H=\left\langle h, h^{\prime}\right\rangle$ in H_{4} such that $\omega_{2}\left(h, h^{\prime}\right)=0$ and $f_{1}^{\vee}(h)=f_{1}^{\vee}\left(h^{\prime}\right)=0$. Such a 2 -plane must be contained in the kernel K_{3} of f_{1}^{\vee}, and it has to contain the kernel K_{1} of the restriction of ω_{2} to K_{3}. We finally get for fiber a pencil of planes.

To summarize, the exceptional locus is the union of five planes π_{1}, \ldots, π_{5} in $G\left(2, V_{4}\right)$, where π_{i} parametrizes the planes in V_{4} containing ω_{i}. Any two of these five planes meet at a single point, over which the fiber of p_{1} is a quadratic surface.

If U_{2} does not belong to any of the five exceptional planes, we have seen that U_{3} is the span of the kernels of the two-forms $\theta(v)$, for $v \in U_{2}$. Since this kernel can be computed as $\theta(v) \wedge \theta(v)$, there is a natural associated conic bundle over $G\left(2, V_{4}\right)$ minus the five exceptional planes. This also stresses the analogy with the construction of the Segre primal C_{3} as the image of a rational map $\mathbb{P}\left(V_{4}\right) \rightarrow \mathbb{P}\left(V_{5}\right)$ defined by θ. Here we get C_{4} as the image of a rational map $G\left(2, V_{4}\right) \rightarrow G\left(2, V_{5}\right)$ also defined by θ. We will put its equations in simple form in the next section.
4.4. Blow-up and contract. Proposition 4.6 suggests to construct X_{4} by first blowing-up $G\left(2, V_{4}\right)$ along the 10 points of L_{0}, then the strict transforms of the 5 planes, which are Del Pezzo surfaces of degree five. The first blow-up $B l_{0}: G_{0} \longrightarrow$ $G\left(2, V_{4}\right)$ gives 10 exceptional divisors $E_{i j} \simeq \mathbb{P}^{3}$ for $1 \leq i<j \leq 5$, each with a pair of skew lines ℓ_{i}, ℓ_{j} coming from the two planes π_{i} and π_{j} intersecting at $p_{i j}$. The second blow-up $B l_{P}: G_{1} \longrightarrow G_{0}$ produces five other exceptional divisors
F_{k} for $1 \leq k \leq 5$, while the strict transform of $\tilde{E}_{i j}$ of $E_{i j}$ is the blowup of $E_{i j}$ along $\ell_{i} \cup \ell_{j}$. Since the blowup of \mathbb{P}^{3} along two skew lines is the total space of $\mathbb{P}(\mathcal{O}(-1,0) \oplus \mathcal{O}(0,-1))$ over $\mathbb{P}^{1} \times \mathbb{P}^{1}$, we deduce that the rational map to X_{4} is a morphism. More precisely, it has to coincide with the blowup $B l_{Q}: G_{1} \longrightarrow X_{4}$ of the ten quadratic surfaces $S_{i j}=p_{1}^{-1}\left(p_{i j}\right)$ in X_{4}. This explains in particular why the Picard number is equal to 6 .

Let $F=F_{1}+\cdots+F_{5}$, and let E be the sum of the ten divisors $\tilde{E}_{i j}$ in G_{1}. from the identity

$$
K_{G_{1}}=-4 H_{1}+3 E+F=K_{X_{4}}+E=-H_{1}-H_{2}+E
$$

we deduce the relation $3 H_{1}=H_{2}+2 E+F$.
The exceptional locus of p_{2} defines a collection of 10 planes in X_{4}, contracted to the ten singular points of C_{4}, and that we can identify with their isomorphic images in $G\left(2, V_{4}\right)$. Recall that in this Grassmannian we have the five planes π_{1}, \ldots, π_{5}.

Proposition 4.7. The resulting collection of $10+5$ planes in $G\left(2, V_{4}\right)$ is in natural correspondance with the Cremona-Richmond configuration.
4.5. Incidences with the Segre cubic. Now we relate the two varieties X_{3} and X_{4} by considering the incidence correspondence

$$
I=\left\{\left(A_{1}, B_{1}\right),\left(U_{2}, U_{3}\right) \in X_{3} \times X_{4}, A_{1} \subset U_{2}, B_{1} \subset U_{3}\right\}
$$

Recall that by definition, B_{1} is (contained in) the kernel of $\theta(v)$ for $v \in A_{1}$, while U_{3} is the linear span of the kernels of the two forms $\theta(u)$ for $u \in U_{2}$; this kernel depends quadratically on u since it is given by $\theta(u) \wedge \theta(u)$. This implies that I is (generically) a \mathbb{P}^{1}-bundle over X_{4}, and (generically) a \mathbb{P}^{2}-bundle over X_{3}. We have
a commutative diagram

One easily checks that:
Proposition 4.8. The base locus of the birational projection $I \longrightarrow F l\left(1,2, V_{4}\right)$ is the union of five disjoint planes.

Proof. Denote by ψ_{i} the plane $G\left(2, V_{4}\right)$ parametrizing the lines in $\mathbb{P}\left(V_{4}\right)$ that pass through p_{i}, and by Ψ_{i} its lift in $F l\left(1,2, V_{4}\right)$. The preimage in I of a point in ψ_{i} is given by a flag $B_{1} \subset U_{3} \subset V_{5}$ such that U_{1} is contained in the kernel K_{i} of ω_{i} and U_{3} contains
4.6. Projective duality. We have seen that X_{4} is birationally equivalent to the projective bundle $\mathbb{P}_{X_{2}}(Q)$ over the del Pezzo surface X_{2}. Since Q^{\vee} has no section, we would rather write it as $\mathbb{P}=\mathbb{P}_{X_{2}}\left(\wedge^{2} Q^{\vee}\right)$, in which case the relative tautological bundle $\mathcal{O}_{\mathbb{P}}(-1)$ sends \mathbb{P} to $\mathbb{P}\left(\wedge^{2} V_{5}^{\vee}\right) \simeq \mathbb{P}\left(\wedge^{3} V_{5}\right)$, the image being $C_{4} \subset G\left(3, V_{5}\right)$. We are then in the context of Homological Projective Duality for projective bundles, according to which $\mathbb{P} \rightarrow \mathbb{P}\left(\wedge^{2} V_{5}^{\vee}\right)$ is dual to $\mathbb{P}^{*} \rightarrow \mathbb{P}\left(\wedge^{2} V_{5}\right)$, with \mathbb{P}^{*} the projective bundle $\mathbb{P}_{X_{2}}\left(W \wedge V_{5}\right)$, where W denotes the rank to tautological bundle.

Proposition 4.9. The image of $\mathbb{P}^{*} \rightarrow \mathbb{P}\left(\wedge^{2} V_{5}\right)$ is an octic hypersurface in $\mathbb{P}\left(\wedge^{2} V_{5}\right)$, containing the Grassmannian $G\left(2, V_{5}\right)$ in its singular locus.

Proof. First consider the full projective bundle $\mathbb{P}_{G\left(2, V_{5}\right)}\left(W \wedge V_{5}\right)$ and its projection to $\mathbb{P}\left(\wedge^{2} V_{5}\right)$. The generic fiber is a copy of \mathbb{Q}^{3} (while the special fibers, that occur over $G\left(2, V_{5}\right)$, are codimension two Schubert cycles). When we restrict to X_{2}, we cut the fibers by linear spaces of codimension four. Generically, they meet the span of the fiber at one point; in codimension one, this point will be on the fiber itself. This implies that $\mathbb{P}^{*} \rightarrow \mathbb{P}\left(\wedge^{2} V_{5}\right)$ is birational onto its image, which must be a hypersurface. As usual, we compute the degree of this hypersurface as

$$
\int_{\mathbb{P}^{*}} \mathcal{O}_{\mathbb{P}^{*}}(1)^{8}=\int_{X_{2}} s_{2}\left(W \wedge V_{5}\right)=\int_{G\left(2, V_{5}\right)}\left(2 \sigma_{2}+\sigma_{11}\right) \sigma_{1}^{4}=8
$$

Here we used exact sequences to compute the Segre class $s\left(W \wedge V_{5}\right)=c(Q)^{5} c\left(S^{2} U\right)$, with $c(Q)=1+\sigma_{1}+\sigma_{2}+\sigma_{3}$ and $c(U)=1-\sigma_{1}+\sigma_{11}$.

Over a point W^{0} of the Grassmannian, the fiber of $\mathbb{P}_{G\left(2, V_{5}\right)}\left(W \wedge V_{5}\right) \rightarrow \mathbb{P}\left(\wedge^{2} V_{5}\right)$ is the Schubert cycle of planes W meeting W^{0} along at least a line. It is desingularized by a \mathbb{P}^{3}-bundle over $\mathbb{P}\left(W^{0}\right)$. If we fix a line $L \subset W^{0}$, there exists a plane $W \supset L$ in X_{2} if and only if the four linear forms $\theta(L, \bullet)$ on V_{5} / L are linearly dependent. This defines a section of $\wedge^{4}\left(Q^{\vee}(1)\right)=\mathcal{O}(3)$ over \mathbb{P}^{1}, and we conclude that the general fiber of $\mathbb{P}_{X_{2}}\left(W \wedge V_{5}\right) \rightarrow \mathbb{P}\left(\wedge^{2} V_{5}\right)$ over $G\left(2, V_{5}\right)$ consists in three points. Since this morphism is birational onto its image, Zariski's main theorem implies that $G\left(2, V_{5}\right)$ is contained in the singular locus.

5. Symmetries

The symmetries of the Segre cubic primal must be reflected in X_{4}. In this section we describe the symmetries of X_{4} in some detail. In particular we will prove:
Proposition 5.1. The generic stabilizer of the action of $P G L\left(V_{4}\right) \times P G L\left(V_{5}\right)$ on $\mathbb{P}\left(V_{4}^{\vee} \otimes \wedge^{2} V_{5}^{\vee}\right)$ is the symmetric group \mathcal{S}_{5}.

What is classically known, as we mentionned in the introduction, is that the action of $P G L\left(V_{4}\right) \times P G L\left(V_{5}\right)$ on $V_{4}^{\vee} \otimes \wedge^{2} V_{5}^{\vee}$ is prehomogeneous. The representative of the open orbit given in [23] is

$$
\theta=e_{1}^{\vee} \otimes\left(f_{25}-f_{34}\right)+e_{2}^{\vee} \otimes\left(f_{15}-f_{24}\right)+e_{3}^{\vee} \otimes\left(f_{23}-f_{14}\right)+e_{4}^{\vee} \otimes\left(f_{45}-f_{12}\right),
$$

with the notation $f_{i j}=f_{i}^{\vee} \wedge f_{j}^{\vee}$. The corresponding points in $\mathbb{P}\left(V_{4}\right)$ and rank two forms are easy to identify; we get

$$
\begin{array}{ll}
p_{1}=e_{2}+i e_{4}, & \omega_{1}=\left(f_{1}+i f_{4}\right) \wedge\left(f_{2}+i f_{5}\right), \\
p_{2}=e_{2}-i e_{4}, & \omega_{2}=\left(f_{1}-i f_{4}\right) \wedge\left(f_{2}-i f_{5}\right), \\
p_{3}=e_{1}+e_{3}+e_{4}, & \omega_{3}=\left(f_{2}+f_{4}\right) \wedge\left(f_{1}+f_{3}+f_{5}\right), \\
p_{4}=e_{1}+j e_{3}+j^{2} e_{4}, & \omega_{4}=\left(f_{2}+j^{2} f_{4}\right) \wedge\left(f_{1}+j^{2} f_{3}+j f_{5}\right), \\
p_{5}=e_{1}+j^{2} e_{3}+j e_{4}, & \omega_{5}=\left(f_{2}+j f_{4}\right) \wedge\left(f_{1}+j f_{3}+j^{2} f_{5}\right) .
\end{array}
$$

Here j and i are primitive fourth and third roots of unity. Each pair ω_{p}, ω_{q} defines two planes in V_{5}^{\vee} whose common orthogonal is a line $\left[e_{p q}\right]$. Then the planes of the Cremona-Richmond configuration are obtained as follows: $P_{p q}$ is generated by the three points $e_{i j}, e_{j k}, e_{i k}$ for $i j k$ distinct from $p q$; and P_{p} is generated by the four points $e_{i p}$ for $i \neq p$. Explicitely, the ten vectors $e_{p q}$ can be chosen as follows:

$$
\begin{array}{ll}
e_{12}=(0,0,1,0,0) & e_{24}=\left(i,-j^{2},-2 i j, 1, i j^{2}\right) \\
e_{13}=(1,-i,-2, i, 1) & e_{25}=\left(i,-j,-2 i j^{2}, 1, i j\right) \\
e_{14}=\left(-i,-j^{2}, 2 i j, 1,-i j^{2}\right) & e_{34}=\left(1,0, j^{2}, 0, j\right) \\
e_{15}=\left(-i,-j, 2 i j^{2}, 1,-i j\right) & e_{35}=\left(1,0, j, 0, j^{2}\right) \\
e_{23}=(1, i,-2,-i, 1) & e_{45}=(1,0,1,0,1) .
\end{array}
$$

Each ω_{i} defines a plane π_{i} in V_{5}^{\vee}, from which we can deduce a collection of hyperplanes $\pi_{i j}=\pi_{i}+\pi_{j}$ and points $p_{i j k}=\pi_{i} \cap\left(\pi_{j}+\pi_{k}\right)$.
Proposition 5.2. For any permutation i, j, k, l, m of $1, \ldots, 5, p_{i j k}=p_{i l m}$.
Proof. Explicit check.
We have no convincing explanation of this coincidence, but as a consequence, we don't get thirty but only fifteen points in $\mathbb{P}\left(V_{5}^{\vee}\right)$. Obviously, $p_{i j k}$ belongs to π_{i}, hence to any of the four hyperplanes $\pi_{i l}, l \neq i$. Conversely, $\pi_{i j}$ contains the three points $p_{i a b}$ plus the three points $p_{j c d}$.
Proposition 5.3. The fifteen points $\pi_{i j k}$ and the ten hyperplanes $\pi_{i j}$ in $\mathbb{P}\left(V_{4}\right)$ form a configuration $\left(154,10_{6}\right)$.

We thus recover the abstract configuration classically defined by the Segre primal. In particular the fifteen points $\pi_{i j k}$ should be in natural correspondence with planes in the Segre primal.

Automorphisms in $P G L\left(V_{4}\right) \times P G L\left(V_{5}\right)$ that fix $\langle\theta\rangle$ are in bijective correspondence with elements of $P G L\left(V_{5}\right)$ fixing the four-plane generated by the ω_{i} 's. Automatically such an automorphism will preserve the set of five planes π_{1}, \ldots, π_{5}, hence the collection of the thirty points $p_{i j k}$.

In order to show that any permutation of the five planes can be lifted to $P G L\left(V_{5}\right)$, it is enough to lift two generators of \mathcal{S}_{5}, say a transposition and a complete cycle. By sending f_{i} to $\epsilon_{i} f_{i}$ with $\epsilon_{i}=1$ for i odd and $\epsilon_{i}=-1$ for i even, we exchange π_{1} and π_{2} and let the three other planes fixed. So let us turn to a maximal cycle. We claim that the cycle $(12345) \in \mathcal{S}_{5}$ can be lifted to the tranformation of $G L\left(V_{5}\right)$ given by

$$
\begin{aligned}
f_{1} & \mapsto \frac{j}{3} f_{1}-2 i j f_{2}+\frac{j}{3} f_{3}-i j f_{4}+\frac{4 j}{3} f_{5}, \\
f_{2} & \mapsto-\frac{2 i}{3} f_{1}-f_{2}+\frac{i}{3} f_{3}+\frac{i}{3} f_{5}, \\
f_{3} & \mapsto \frac{4 j^{2}}{3} f_{1}+4 i j^{2} f_{2}-\frac{2 j^{2}}{3} f_{3}-4 i j^{2} f_{4}+\frac{4 j^{2}}{3} f_{5}, \\
f_{4} & \mapsto-\frac{i j}{3} f_{1}-\frac{i j}{3} f_{3}-j f_{4}+\frac{2 i j}{3} f_{5}, \\
f_{5} & \mapsto \frac{4}{3} f_{1}+i f_{2}+\frac{1}{3} f_{3}+2 i f_{4}+\frac{1}{3} f_{5} .
\end{aligned}
$$

Corollary 5.4. The automorphism group of the Fano fourfold X_{4} is $\operatorname{Aut}\left(X_{4}\right)=\mathcal{S}_{5}$.
Proof. An automorphism of X_{4} is induced by a linear transformation in $P G L\left(V_{4}\right) \times$ $P G L\left(V_{5}\right)$ preserving θ. Considered as a homomorphism from V_{4} to $\wedge^{2} V_{5}^{\vee}, \theta$ defines a codimension four linear section of $G\left(2, V_{5}\right)$, that is a degree five del Pezzo surface S_{5}. This implies that $\operatorname{Stab}(\theta)$ embeds into $\operatorname{Aut}\left(S_{5}\right)$, which is well-known to be \mathcal{S}_{5}. Since we know by the previous computations that $\operatorname{Stab}(\theta)$ contains \mathcal{S}_{5}, we are done.

Once we identify \mathcal{S}_{5} with the stabilizer of θ in $S L\left(V_{4}\right) \times S L\left(V_{5}\right)$, we get actions of \mathcal{S}_{5} on V_{4} and V_{5}, clearly irreducible. Up to the sign representation there is a unique irreducible representation of \mathcal{S}_{5} of dimension 4 , and a unique one of dimension 5. The complex (1) shows that C_{4} is cut out by a family of quadrics on $G\left(2, V_{5}\right)$ parametrized by V_{4}, hence a \mathcal{S}_{5}-invariant copy of V_{4} inside $S_{22} V_{5}$. We will show later on that this copy is unique. (This point of view from finite group representation theory is typically used in [12]. Something with the same flavour has been done in [2] for the quintic del Pezzo surface.)

We use the character table of \mathcal{S}_{5} (see for example [13]) to compute some plethysm and tensor product representations. Recall that \mathcal{S}_{5} has irreducible representations of dimension $1,1,4,4,5,5,6$ that we denote by $U_{1}, U_{1}^{-}, U_{4}, U_{4}^{-}, U_{5}, U_{5}^{-}, U_{6}$. All these representations are self-dual, being defined over the real numbers. Concretely, U_{1} is the trivial representation, U_{1}^{-}is the sign representation, U_{4} is the natural representation, $U_{4}^{-}=U_{4} \otimes U_{1}^{-}$and $U_{6}=\wedge^{2} U_{4}$. One computes that

$$
S^{2} U_{4}=U_{5} \oplus U_{4} \oplus U_{1}, \quad \wedge^{2} U_{5}=U_{4}^{-} \oplus U_{6}
$$

The last decomposition implies in particular that $\left(U_{4}^{-}\right)^{\vee} \otimes \wedge^{2} U_{5}^{\vee}$ contains a unique \mathcal{S}_{5}-invariant tensor $\theta_{\mathcal{S}_{5}}$, up to scalars.

At this point it could therefore be reasonable to reverse the whole process and start from the representation theory of \mathcal{S}_{5}. One should be able to check directly that $\theta_{\mathcal{S}_{5}}$ is generic, and then we should get $\theta_{\mathcal{S}_{5}}$-invariant descriptions of all the objects we have been studying.

Note that $S^{2} U_{4}=U_{5} \oplus U_{4} \oplus U_{1}$ allows to construct U_{5} from U_{4}, as the space of quadrics which are apolar to the obvious invariant cubic. In coordinates x_{1}, \ldots, x_{5} permuted by \mathcal{S}_{5}, the representation U_{4} is the hyperplane $x_{1}+\cdots+x_{5}=0$, the invariant cubic is $x_{1}^{3}+\cdots+x_{5}^{3}$ and the apolar quadrics are of the form $\sum_{i \neq j} a_{i j} x_{i} x_{j}$ with

$$
a_{i j}=a_{j i} \forall i \neq j, \quad \sum_{i \neq k} a_{i k}=0 \forall k .
$$

We get ten indeterminates and five independent relations, consistently with the fact that these quadrics should span a copy of V_{5}.

Inside the space V_{5} of apolar quadrics to the invariant cubic, note that we have $q_{i j, k l}=\left(x_{i}-x_{j}\right)\left(x_{k}-x_{l}\right)$ for i, j, k, l distinct integers. These quadrics are subject to the Plücker type relations $q_{i j, k l}-q_{i k, j l}+q_{i l, j k}=0$. This suggests to define the following elements of $\wedge^{2} V_{5}$:

$$
\begin{aligned}
Q_{1} & =q_{23,45} \wedge q_{24,35}, \\
Q_{2} & =q_{13,45} \wedge q_{14,53} \\
Q_{3} & =q_{12,45} \wedge q_{14,25}, \\
Q_{4} & =q_{12,35} \wedge q_{13,52}, \\
Q_{5} & =q_{12,34} \wedge q_{13,24} .
\end{aligned}
$$

Obviously, for any permutation $\sigma \in \mathcal{S}_{5}$ one must have $\sigma\left(Q_{i}\right)= \pm Q_{\sigma(i)}$. We also let, for a pair $i \neq j$ with complement p, q, r in $1 \ldots 5$,

$$
Q_{i, j}=q_{i p, q r} \wedge q_{j p, q r}+q_{i q, r p} \wedge q_{j q, r p}+q_{i r, p q} \wedge q_{j r, p q} .
$$

Proposition 5.5. The action of \mathcal{S}_{5} on $\left\langle Q_{1}, \ldots, Q_{5}\right\rangle$ gives a copy of the representation U_{4}^{-}in $\wedge^{2} U_{5}$. Similarly, the action of \mathcal{S}_{5} on $\left\langle Q_{i, j}, 1 \leq i<j \leq 5\right\rangle$ gives a copy of the representation U_{6}.

What have we gained in doing all that? First, we get a better, more symmetric normal form for the generic θ than that of Ozeki, as

$$
\theta_{\mathcal{S}_{5}}=e_{1} \otimes Q_{1}+e_{2} \otimes Q_{2}+e_{3} \otimes Q_{3}+e_{4} \otimes Q_{4}+e_{5} \otimes Q_{1}
$$

with $e_{1}+\cdots+e_{5}=0$.
Also, we can make explicit the quadratic equations of \mathcal{C}_{4}. A character computation yields:

Lemma 5.6. The multiplicity of U_{4}^{-}inside $S^{2}\left(\wedge^{2} U_{5}\right)$ is equal to one.
So the space of quadratic equations we are looking for is uniquely defined in terms of the \mathcal{S}_{5}-action. Moreover, recall that $\wedge^{2} U_{5}=U_{4}^{-} \oplus U_{6}$. Another character computation shows that the copy of U_{4}^{-}that we are looking for inside $S^{2}\left(\wedge^{2} U_{5}\right)$ is in fact contained inside $U_{4}^{-} \otimes U_{6}=U_{4}^{-} \otimes \wedge^{2}\left(U_{4}^{-}\right) \subset U_{4}^{-} \otimes \operatorname{End}\left(U_{4}^{-}\right)$(recall that U_{4}^{-}is self-dual). So there is an obvious map to U_{4}^{-}, and dually, this says that the space of quadrics we are looking for is generated by the five quadrics

$$
C Q_{i}=\sum_{j \neq i} Q_{i, j} Q_{j}, \quad 1 \leq i \leq 5
$$

Remark. Since $\operatorname{Aut}\left(C_{3}\right)=\mathcal{S}_{6}$, certain automorphisms of the Segre primal do not lift to X_{4}. would it be possible that \mathcal{S}_{6} act on X_{4} by birational transformations?

6. The Chow Ring of X_{4}

In this section we completely determine the Chow ring of X_{4}, with its structure of \mathcal{S}_{5}-module. Let us start with the Picard group.

From the relation $3 H_{1}=H_{2}+2 E+F$ that we found on G_{1}, we compute that

$$
H_{1}^{4}=2, \quad H_{1}^{3} H_{2}=6, \quad H_{1}^{2} H_{2}^{2}=13, \quad H_{1} H_{2}^{3}=14, \quad H_{2}^{4}=12
$$

The Picard group is generated by H_{1}, H_{2} and the five components of F, which are permuted by \mathcal{S}_{5}. We deduce:

Proposition 6.1. The Chow ring of X_{4} is generated by $A^{*}(G)$ and the five divisors F_{1}, \ldots, F_{5}. As a representation of \mathcal{S}_{5}, the Picard group decomposes as

$$
\operatorname{Pic}\left(X_{4}\right) \otimes_{\mathbb{Z}} \mathbb{C}=2 U_{0} \oplus U_{4}
$$

We know by Proposition 4.1 that the middle dimensional Chow group $A^{2}\left(X_{4}\right)$ has dimension 17, and we expect that the invariant part has dimension four, with two classes coming from $G\left(2, V_{4}\right)$ and two other classes from $G\left(2, V_{5}\right)$. We will show that are all come (at least over \mathbb{Q}) from products of divisor classes.

We compute the multiplicative structure of the Chow ring by embedding it in the Chow ring of G_{1}, that we shall now describe. First, the Chow ring of G_{0} is generated by the Chow ring of $G=G\left(2, V_{4}\right)$ and the ten exceptional divisors $E_{p q}^{0}$ of the blow-up $b_{0}=B l_{0}$, such that

$$
\left(E_{p q}^{0}\right)^{4}=-1, \quad E_{p q}^{0} E_{p^{\prime} q^{\prime}}^{0}=0 \text { for }\{p, q\} \neq\left\{p^{\prime}, q^{\prime}\right\}, \quad E_{p q}^{0} \cdot b_{0}^{*} C=0
$$

for any class $C \in A^{*}(G)$ of positive degree. After this first blow-up, the five planes π_{1}, \ldots, π_{5} give five disjoint surfaces $\Sigma_{1}, \ldots, \Sigma_{5}$, each one being a plane blow-up in five points, that is a del Pezzo surface of degree 5. We denote the four exceptional lines in Σ_{p} by ℓ_{p}^{q}, whose image in G is the point $\pi_{p q}$, for $q \neq p$.

The second blow-up $b_{1}=B l_{P}$ is the blow-up of these five surfaces. We denote by F_{p}^{1} the five exceptional divisors, and by $E_{p q}^{1}$ the strict transforms of the divisors $E_{p q}^{0}$. Since $F_{p}^{1}=\mathbb{P}\left(N_{p}\right)$, for N_{p} the normal bundle of Σ_{p} inside G_{0}, we need to describe this normal bundle. Recall that when one blows up one point in a smooth variety X, creating an exceptional divisor E inside the blow-up $Y \xrightarrow{\pi} X$, the tangent exact sequence is $0 \rightarrow T Y \rightarrow \pi^{*} T X \rightarrow i_{*} T E \rightarrow 0$, where $i: E \rightarrow Y$ denotes the inclusion. Since the normal bundle of π_{p} inside the Grassmannian G is the quotient bundle Q, we get the following diagram:

Here we denoted by N_{p}^{q} the normal bundle to $\ell_{p}^{q} \simeq \mathbb{P}^{1}$ inside $E_{p q}^{0} \simeq \mathbb{P}^{3}$, which is just $\mathcal{O}_{\ell_{p}^{q}}(1) \oplus \mathcal{O}_{\ell_{p}^{q}}(1)$. We deduce the Segre class

$$
s\left(N_{p}\right)=s\left(b_{0}^{*} Q\right) \prod_{q \neq p} c\left(\mathcal{O}_{\ell_{p}^{q}}(1)\right)^{2} \in A^{*}\left(\Sigma_{p}\right)
$$

One the one hand, the Segre class $s(Q)$ equals the Chern class of the tautological bundle on G, that is $s(Q)=1-H_{1}+\sigma_{11}$, and the Schubert class σ_{11} restricts to zero
on π_{p}. On the other hand, on the del Pezzo surface Σ_{p} we have $\mathcal{O}_{\ell_{p}^{q}}(1)=\mathcal{O}\left(-\left.\ell_{p}^{q}\right|_{\mid \ell_{p}^{q}}\right.$, from which we get the Segre class $s\left(\mathcal{O}_{\ell_{p}^{q}}(1)\right)=1+\ell_{p}^{q}+2\left(\ell_{p}^{q}\right)^{2}$. Finally,

$$
s\left(N_{p}\right)=1-H_{1}+2 \sum_{q \neq p} \ell_{p}^{q}+2 \sum_{q \neq p}\left(\ell_{p}^{q}\right)^{2}
$$

We can deduce several intersection numbers, since for any class C_{3-k} of degree $3-k$ on G_{0}, we have the classical formulas

$$
F_{p}^{k+1} b_{1}^{*} C_{3-k}=\int_{F_{p}} F_{p}^{k} b_{1}^{*} C_{3-k}=(-1)^{k} \int_{\Sigma_{p}} s_{k-1}\left(N_{p}\right) C_{3-k}
$$

Lemma 6.2.

$$
\left(F_{p}^{1}\right)^{4}=8, \quad\left(F_{p}^{1}\right)^{3} H_{1}=-1, \quad\left(F_{p}^{1}\right)^{2} H_{1}^{2}=-1, \quad F_{p}^{1} H_{1}^{3}=0
$$

Note also that F_{p}^{1} does not meet $E_{r q}^{1}$ for $r, q \neq p$, but it meets $E_{p q}^{1}$ transverselly along the surface $S_{p}^{q}=b_{1}^{-1}\left(\ell_{p}^{q}\right)$. Therefore

$$
\mathcal{O}_{G_{1}}\left(E_{p q \mid F_{p}^{1}}^{1}\right)=\mathcal{O}_{F_{p}^{1}}\left(S_{p}^{q}\right)=b_{1}^{*} \mathcal{O}_{\Sigma_{p}}\left(\ell_{p}^{q}\right)
$$

Applying the previous formula to $C_{3-k}=\left(E_{p q}^{0}\right)^{3-k}$ we get:
Lemma 6.3. $F_{p}^{1} E_{r q}^{1}=0$ if $r, q \neq p$, but

$$
\left(F_{p}^{1}\right)^{3} E_{p q}^{1}=-2, \quad\left(F_{p}^{1}\right)^{2}\left(E_{p q}^{1}\right)^{2}=1, \quad F_{p}^{1}\left(E_{p q}^{1}\right)^{3}=0
$$

On the other hand, $E_{p q}^{0}$ gets blown-up along the two-skew lines ℓ_{p}^{q} and ℓ_{q}^{p}, and its strict transform $E_{p q}^{1}$ is contracted to the quadratic surface $\ell_{p}^{q} \times \ell_{q}^{p}$ in X_{4}. This surface is also the intersection of F_{p} and F_{q} in X_{4}, in particular it is contained in F_{p}. We deduce, denoting $B l_{Q}$ by c, that

$$
c^{*} F_{p}=F_{p}^{1}+\sum_{q \neq p} E_{p q}^{1}
$$

Summing up over p, we get the relation $c^{*} F=F^{1}+2 E^{1}$.
Corollary 6.4. $C_{4} \subset G\left(3, V_{5}\right)$ is the image of $G=G\left(2, V_{4}\right)$ by the linear system $\left|I_{\pi}\left(3 H_{1}\right)\right|$ of cubics vanishing along the union π of the five planes π_{1}, \ldots, π_{5}.

We have enough information to describe the full intersection product on X_{4}.
Proposition 6.5. The nonzero intersection numbers among the divisor classes $H_{1}, F_{1}, \ldots, F_{5}$ are the following, for $1 \leq p \neq q \leq 5$:

$$
F_{p}^{4}=12, \quad F_{p}^{3} F_{q}=-2, \quad F_{p}^{2} F_{q}^{2}=1, \quad F_{p}^{3} H_{1}=-1, \quad F_{p}^{2} H_{1}^{2}=-1, \quad H_{1}^{4}=2
$$

Moreover we always have $H_{1} F_{p} F_{q}=0$ for $p \neq q$ and $F_{p} F_{q} F_{r}=0$ for $p \neq q \neq r \neq p$.
Proof. The values of $F_{p}^{3} H_{1}$ and $F_{p}^{2} H_{1}^{2}$ can be computed directly by restricting to a general hyperplane or a general codimension two section of G; then we avoid the points $\pi_{q r}$ and we are reduced to compute the self-intersection of the exceptional divisor for the blow-up of a line in a three-dimensional quadric, or a point in a surface. Then we can deduce the value of F_{p}^{4} by computing the self-intersection of $H_{2}=3 H_{1}-F$, which we know is equal to

$$
12=81 H_{1}^{2}-108 H_{1}^{3} F+54 H_{1}^{2} F^{2}-12 H_{1} F^{3}+F^{4}=162-270+60+F^{4}
$$

This gives $F^{4}=F_{1}^{4}+\cdots+F_{5}^{4}=60$, hence $F_{p}^{4}=12$. (But note that this is not equal to $\left(c^{*} F_{p}\right)^{4}=-4$, as a consequence of the fact that F_{p} contains four of the quadratic surfaces blown-up by c.)

The other intersection numbers can be computed by pulling-back by c and using Lemma 6.2.

Proposition 6.6. The square map $S^{2} A_{1}\left(X_{4}\right) \longrightarrow A^{2}\left(X_{4}\right)$ is surjective. As a consequence, the \mathcal{S}_{5}-module structure of $A^{2}\left(X_{4}\right)$ is

$$
A^{2}\left(X_{4}\right)=4 U_{0} \oplus 2 U_{4} \oplus U_{5}
$$

Proof. The decomposition of the \mathcal{S}_{5}-module $S^{2} A^{1}\left(X_{4}\right)$ is $4 U_{0} \oplus 3 U_{4} \oplus U_{5}$, the sum of three isotypic components, and the kernel of the square map must decompose accordingly.

First consider the four invariant classes $H_{1}^{2}, H_{1} F, F^{(2)}, F^{(11)}$, where

$$
F^{(2)}=\sum_{p} F_{p}^{2}, \quad F^{(11)}=\sum_{p<q} F_{p} F_{q} .
$$

Suppose that there is a relation $a H_{1}^{2}+b H_{1} F+c F^{(2)}+d F^{(11)}=0$. Multiplying successively by $H_{1}^{2}, H_{1} F_{p}, F_{p}^{2}, F_{p} F_{q}$ and using the results of Proposition 6.5, we deduce that $2 a-5 c=0, b+c=0, a+b+16 c-8 d=0,4 c-d=0$, hence $a=b=c=d=0$.

Now consider the possibility that U_{5} be contained in the kernel of the square map. We claim that U_{5} is embedded inside $S^{2} A^{1}\left(X_{4}\right)$ as the space of linear combinations $\sum_{p \neq q} a_{p q} F_{p} F_{q}$ with $a_{p q}=a_{q p}$ and $\sum_{r} a_{p r}=0$ for all p, q. Indeed, this defines an invariant five-dimensional subspace of $S^{2} A^{1}\left(X_{4}\right)$, not containing any invariant class, so it must be U_{5}. A typical element is

$$
3 F_{p} F_{q}-\left(F_{p}+F_{q}\right) \sum_{r \neq p, q} F_{r}+\sum_{s, t \neq p, q} F_{s} F_{t}
$$

If this was zero in $A^{2}\left(X_{4}\right)$, multiplying by $F_{p} F_{q}$ would imply that the intersection number $F_{p}^{2} F_{q}^{2}=0$, which is not the case.

We can conclude that the kernel of the square map must be contained in the isotypical component $3 U_{4}$ of $S^{2} A^{1}\left(X_{4}\right)$, which is generated by the three copies of U_{4} respectively obtained as the linear combinations $\sum_{p} a_{p} H_{1} F_{p}, \sum_{p} a_{p} F F_{p}$ and $\sum_{p} a_{p} F_{p}^{2}$ for $\sum_{p} a_{p}=0$. A copy of U_{4} in the kernel corresponds to a relation of the form

$$
u H_{1} F_{p}+v F F_{p}+w F_{p}^{2}=I \quad \forall p
$$

for I an invariant class. Since I is invariant, multiplying by $H_{1} F_{p}$ and $H_{1} F_{q}$ must then give the same intersection number, which gives the relation $-u-v-w=0$. Similarly, multiplying by F_{p}^{2} or F_{q}^{2} must give the same result, that is $-u+4 v+12 w=$ $-v+w$. Finally, multiplying by $F_{p} F_{q}$ or $F_{q} F_{r}$ with q, r distinct from p must also give the same result, that is $-v-2 w=0$. These three equations are linearly dependent and reduce to $u=w$ and $v=-2 w$, which proves that there is a unique copy of U_{4} in the kernel of the square map. This concludes the proof.

Threefolds. Consider the two families of divisors in X_{4} given by sections of H_{1} and H_{2}, respectively. Since a general hyperplane section in $G\left(2, V_{4}\right) \simeq \mathbb{Q}^{4}$ will avoid the ten points $\pi_{p q}$, the first ones are just blowups of five disjoint lines in \mathbb{Q}^{3}. For the same reason, the second ones, say Z_{3}, are isomorphic with their images in $G\left(3, V_{5}\right) \cap$
H_{2}, which are codimension two degeneraci loci defined by the condition that the morphism $\wedge^{2} V \rightarrow V_{4}^{\vee}$ has rank exactly two. Its image is then the pullback from $G\left(2, V_{4}\right)$ of the dual quotient bundle Q^{\vee}. In particular we get an exact sequence

$$
0 \rightarrow \mathcal{O}(1,-2) \rightarrow p_{2}^{*}\left(\wedge^{2} V\right) \rightarrow p_{1}^{*} Q^{\vee} \rightarrow 0
$$

on Z_{3}. This shows in particular that $\mathcal{O}(-1,2)$, the restriction of $2 H_{2}-H_{1}=$ $5 H_{1}-2 F$, is generated by sections on Z_{3}. The image in Z_{3} is the closure of the planes $U \subset V_{4}$ such that the image of $S^{2} U \rightarrow \wedge^{2} V_{5} \simeq V_{5}$ is isotropic with respect to some three-form on V_{5}. This defines a section of $\wedge^{3}\left(S^{2} U\right)^{\vee}=\operatorname{det}\left(U^{\vee}\right)^{3}$, so that the image of Z_{3} in $G\left(2, V_{4}\right)$ is a singular cubic hypersurface.

K3 surfaces. By taking sections of $H_{1} \oplus H_{2}$ in X_{4}, we get a family of smooth K3 surfaces S in X_{4}. We denote by $h_{1}, h_{2}, f_{1}, \ldots, f_{5}$ the restriction to S of the divisors $H_{1}, H_{2}, F_{1}, \ldots F_{5}$.
Proposition 6.7. The intersection numbers of these divisors in S are

$$
h_{1}^{2}=6, \quad h_{2}^{2}=14, \quad h_{1} h_{2}=13, \quad h_{1} f_{i}=1, \quad h_{2} f_{i}=5, \quad f_{i} f_{j}=-2 \delta_{i j} .
$$

Proof. This is an immediate consequence of the computations above, since for two divisors A, B on X restricting to a, b on S, we have $a b=A B H_{1} H_{2}$.

An obvious consequence is that $h_{1}, f_{1}, \ldots, f_{5}$ are linearly independent. Moreover, the curves $C_{i}=F_{i} \cap S$ are (-2)-curves on S, mapping to lines on $G\left(2, V_{4}\right)$ and to rational quintics in $G\left(2, V_{5}\right)$. The divisor $5 h_{1}-h_{2}=2 h_{1}+f$ should contract these five (-2)-curves to the five singular points of a surface \bar{S}. Note that this is a divisor of degree 34 , so \bar{S} could be a degeneration of a smooth K3 surface of genus 18. Mukai described the generic such K3 surface as the zero locus in $O G(3,9)$ of five sections of the rank two spinor bundle. What is the connection? Note that we have a family of surfaces of dimension $5+9=14=19-5$, which is coherent with the expectation that imposing 5 nodes on a K3 surface of genus 18 should give five independent conditions.

7. The Igusa quartic and the Coble fourfold

Given a linear form h on V_{5}, there is an associated quadratic form Q_{h} on V_{4} :

$$
Q_{h}(v)=h \wedge \theta(v) \wedge \theta(v) \in \wedge^{5} V_{5}^{\vee} \simeq \mathbb{C}
$$

Proposition 7.1. The quartic $\operatorname{det}\left(Q_{h}\right)=0$ is the Igusa quartic in $\mathbb{P}^{4}=\mathbb{P}\left(V_{5}^{\vee}\right)$.
Proof. Recall that the generic point of the Segre cubic $C_{3} \subset \mathbb{P}\left(V_{5}\right)$ is the kernel of one of the two-forms $\theta(v)$, and that we can get this kernel as the line generated by $\theta(v) \wedge \theta(v) \in \wedge^{4} V_{5}^{\vee} \simeq V_{5}$. At this generic point, the affine tangent space to the Segre cubic is therefore the hyperplane of V_{5} generated by the vectors of the form $\theta(v) \wedge \theta(w) \in \wedge^{4} V_{5}^{\vee} \simeq V_{5}$. This hyperplane is defined by a linear form $h_{v} \in V_{5}^{\vee}$ that vanishes on these vectors, which exactly means that $h_{v} \wedge \theta(v) \wedge \theta(w)=0$ for any $w \in V_{5}$. In other words, $Q_{h_{v}}(\theta(v), \theta(w))=0$ for all $w \in V_{5}$, which means that $\theta(v)$ belongs to the kernel of the quadratic form $Q_{h_{v}}$. In particular the latter is degenerate.

We have thus proved that the generic point of the projective dual variety of the Segre cubic is contained in the quartic hypersurface $\operatorname{det}\left(Q_{h}\right)=0$. But this projective dual is well-known to be the Igusa quartic in $\mathbb{P}\left(V_{5}^{\vee}\right)$, and these two quartics have to coincide.

This yields a simple determinantal representation of the Igusa quartic. Using Ozeki's representative we get

$$
Q_{h}=\left(\begin{array}{cccc}
2 h_{1} & -h_{2} & -h_{3} & -h_{5} \\
-h_{2} & 2 h_{3} & -h_{4} & 0 \\
-h_{3} & -h_{4} & 2 h_{5} & -h_{1} \\
-h_{5} & 0 & -h_{1} & 2 h_{3}
\end{array}\right)
$$

whose determinant is readily computed to be
$-\operatorname{det}\left(Q_{h}\right)=4 h_{3}^{4}+4 h_{3}^{2}\left(3 h_{1} h_{5}-h_{2} h_{4}\right)-4 h_{3}\left(h_{1}^{3}+h_{5}^{3}+h_{1} h_{4}^{2}+h_{2}^{2} h_{5}\right)+\left(h_{1} h_{2}-h_{4} h_{5}\right)^{2}$.
One can consider inside $\mathbb{P}\left(V_{5}^{\vee}\right) \times G\left(2, V_{4}\right)$ the locus J_{5} of pairs $([h], U)$ such that U is isotropic with respect to Q_{h}. Recall that $O G_{Q}(2,4)=\mathbb{P}^{1} \cup \mathbb{P}^{1}$ is the disjoint union of two smooth conics when Q is non degenerate. When Q is a quadratic form of corank one on V_{4}, the corresponding orthogonal Grassmannian $O G_{Q}\left(2, V_{4}\right)$ is a single conic (while if Q has corank two, $O G_{Q}\left(2, V_{4}\right)$ is the union of two planes meeting at one point, defined by the kernel). This means that the Stein factorization of the projection of J_{5} to $\mathbb{P}\left(V_{5}^{\vee}\right)$ is $J_{5} \rightarrow C o b_{4} \rightarrow \mathbb{P}\left(V_{5}^{\vee}\right)$ where $C o b_{4}$ is the double cover of $\mathbb{P}\left(V_{5}\right)$ branched over the Igusa quartic: that is, the Coble fourfold [8].

On the other hand, denote by $\mathcal{Q}_{X_{4}}$ the pull-back to X_{4} of the rank two quotient bundle on $G\left(3, V_{5}\right)$. The \mathbb{P}^{1}-bundle $\mathbb{P}\left(\mathcal{Q}_{X_{4}}\right)$ over X_{4} has a natural map to $G\left(2, V_{4}\right) \times$ $\mathbb{P}\left(V_{5}^{\vee}\right)$ and we claim that its image is precisely J_{5}. Indeed, a generic element $(U, V \subset H)$ of $G\left(2, V_{4}\right) \times F l\left(3,4, V_{5}\right)$ belongs to $\mathbb{P}\left(\mathcal{Q}_{X_{4}}^{\vee}\right)$ when V, hence H, contains the kernels of all the two-forms $\theta(v), v \in U$. But if h is a linear form defining H, the condition that H contains the kernel of $\theta(v)$ exactly means that $h \wedge \theta(v) \wedge \theta(v)=0$, hence our claim. Moreover the projection map $\mathbb{P}\left(\mathcal{Q}_{X_{4}}^{\vee}\right) \rightarrow J_{5}$ is birational, being clearly bijective outside the five special planes in $G\left(2, V_{4}\right)$. So we get a diagram

where the south-west arrow is a conic bundle, at least generically. But the picture does not seem to recover the small resolutions of Cob_{4} described in [8].

8. Local Rigidity

Since $V_{4}^{\vee} \otimes \wedge^{2} V_{5}^{\vee}$ is prehomogeneous, we expect that X_{4} has strong rigidity properties. What we can prove is the following statement.

Proposition 8.1. X_{4} is locally rigid and has finite automorphism group.
Proof. Local rigidity is equivalent to the vanishing of $H^{1}\left(T X_{4}\right)$. In order to check this, as usual we rely on the normal exact sequence, which yields an exact sequence of cohomology groups

$$
H^{0}\left(T G_{\mid X_{4}}\right) \longrightarrow H^{0}\left(E_{\mid X_{4}}\right) \longrightarrow H^{1}\left(T X_{4}\right) \longrightarrow H^{1}\left(T G_{\mid X_{4}}\right) .
$$

So local rigidity will follow from the following statements, to be proved separately:
(1) $H^{1}\left(T G_{\mid X_{4}}\right)=0$;
(2) $H^{0}\left(E_{\mid X_{4}}\right)=V_{4}^{\vee} \otimes \wedge^{2} V_{5}^{\vee} /\langle\theta\rangle$;
(3) $H^{0}\left(T G_{\mid X_{4}}\right) \longrightarrow H^{0}\left(E_{\mid X_{4}}\right)$ is surjective.

The third statement follows from the fact that $\mathbb{P}\left(V_{4}^{\vee} \otimes \wedge^{2} V_{5}^{\vee}\right)$ is prehomogeneous under $P G L\left(V_{4}\right) \times P G L\left(V_{5}\right)$, more precisely from the fact that the orbit of $[\theta]$ is open, since this implies that the image of the natural differential $\mathfrak{s l}_{4} \times \mathfrak{s l}_{5}=H^{0}(T G) \longrightarrow$ $V_{4}^{\vee} \otimes \wedge^{2} V_{5}^{\vee} /\langle\theta\rangle$ sending X to $X(\theta) \bmod \theta$ is surjective; since this morphism can also be defined by restricting first to X_{4} and then composing with the morphism we are interested in, the latter must also be surjective.

In order to prove the second statement we twist by E the Koszul complex resolving the structure sheaf of X_{4}. By standard cohomological arguments, it is enough to check that $H^{0}\left(G, E n d_{0}(E)\right)=0$ and $H^{i}\left(G, E \otimes \wedge^{i+1} E^{\vee}\right)=0$ for any $i>0$. For the first claim, observe that

$$
\operatorname{End}_{0}(E)=\operatorname{End}_{0}(U) \oplus \operatorname{End}_{0}(V) \oplus \operatorname{End}_{0}(U) \otimes \operatorname{End}_{0}(V)
$$

is in fact acyclic. For the second claim, check that $E \otimes \wedge^{i+1} E^{\vee}$ is also acyclic for any $i>0$. Similarly, in order to prove the first statement we need to check that $H^{i+1}\left(G, T G \otimes \wedge^{i} E^{\vee}\right)=0$ for any $i \geq 0$, which is again a straightforward application of Bott's theorem.

By the same type of arguments (or using a computer to check that $\chi\left(T X_{4}\right)=0$), we deduce that $H^{0}\left(T X_{4}\right)=0$, which implies that the automorphism group is discrete, hence finite since X_{4} is Fano.

The question remains open, whether X_{4} is also globally rigid, which would be remarkable for a Fano fourfold with such a big Picard number. The first thing to check is whether X_{4} remains smooth when we degenerate θ to the codimension one orbit. If yes, we would get a similar situation to the case of codimension two linear sections of the spinor tenfold (which has Picard number one, though).

Another question one may ask is whether the quotient bundle restricted to X_{4} is rigid. In other words, is the morphism to $G\left(3, V_{5}\right)$ uniquely defined?

9. Higher dimensions

Let us briefly describe the higher dimensional models.
Proposition 9.1. X_{6} is a rational Fano sixfold of index one and Picard rank two.
The projection of X_{6} to $G\left(3, V_{5}\right)$ is birational, with non trivial fibers isomorphic to \mathbb{P}^{1} over the smooth locus of C_{4}, and to \mathbb{P}^{2} over its ten singular points.

The projection to $\mathbb{P}\left(V_{4}\right)$ is a \mathbb{Q}^{3}-bundle outside P_{0}, with five four-dimensional fibers over P_{0}.

From this description and that of X_{4}, we deduce that in the Grothendieck ring of varieties one has the relation $\left[X_{6}\right]+L^{3}\left[Y_{0}\right]=\left[G\left(3, V_{5}\right)\right]+L\left[X_{4}\right]$. This yields the Poincaré polynomial of X_{6},

$$
P_{X_{6}}(t)=1+2 t+8 t^{2}+9 t^{3}+8 t^{4}+2 t^{5}+t^{6}
$$

Proposition 9.2. X_{8} is a Fano eightfold of pseudo-index three, while X_{8}^{\prime} is Fano eigthfold of index three.
Proposition 9.3. The projections of X_{8}, X_{8}^{\prime} to $G\left(2, V_{5}\right)$ are dual \mathbb{P}^{2}-fibrations over the complement of a del Pezzo surface of degree five, the exceptional fibers being isomorphic to $\mathbb{P}\left(V_{4}\right)$ and $G\left(2, V_{4}\right)$ respectively.

We can readily deduce that X_{8} and X_{8}^{\prime} have pure cohomology, with Poincaré polynomials

$$
\begin{aligned}
& P_{X_{8}}(t)=1+2 t+4 t^{2}+6 t^{3}+11 t^{4}+6 t^{5}+4 t^{6}+2 t^{7}+t^{8} \\
& P_{X_{8}^{\prime}}(t)=1+2 t+5 t^{2}+11 t^{3}+13 t^{4}+11 t^{5}+5 t^{6}+2 t^{7}+t^{8}
\end{aligned}
$$

Of course $X_{6}, X_{8}, X_{8}^{\prime}$ inherit the same symmetries as X_{4}. E. Fatighenti and F. Tanturri checked the necessary vanishing conditions to establish, as for X_{4}, that they are also infinitesimally rigid.

References

1. A. Avilov, Automorphisms of singular three-dimensional cubic hypersurfaces, Eur. J. Math. 4 (2018), no. 3, 761-777.
2. I. Bauer and F. Catanese, s_{5}-equivariant syzygies for the del Pezzo surface of degree 5, Rend. Circ. Mat. Palermo 70 (2021), no. 1, 97-120.
3. T. Beckmann and P. Belmans, Homological projective duality for the Segre cubic, arXiv:2202.08601 (2022).
4. V. Benedetti, S.A. Filippini, L. Manivel, and F. Tanturri, Orbital degeneracy loci and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 169-206.
5. M. Bernardara, E. Fatighenti, and L. Manivel, Nested varieties of K3 type, J. Éc. polytech. Math. 8 (2021), 733-778.
6. M. Bernardara, E. Fatighenti, and F. Tanturri, A database of Fano fourfolds, in preparation.
7. M. Bhargava, Higher composition laws. IV. The parametrization of quintic rings, Ann. of Math. (2) 167 (2008), no. 1, 53-94.
8. I. Cheltsov, A. Kuznetsov, and K. Shramov, Coble fourfold, s_{6}-invariant quartic threefolds, and Wiman-Edge sextics, Algebra Number Theory 14 (2020), no. 1, 213-274.
9. D. Djokovic, Orbit closure diagram for the space of quadruples of quinary alternating forms, J. Algebra 303 (2006), no. 2, 847-868.
10. I.V. Dolgachev, Classical algebraic geometry, Cambridge University Press, Cambridge, 2012, A modern view.
11. _ Corrado Segre and nodal cubic threefolds, From classical to modern algebraic geometry, Trends Hist. Sci., Birkhäuser/Springer, Cham, 2016, pp. 429-450.
12. _, Quartic surfaces with icosahedral symmetry, Adv. Geom. 18 (2018), no. 1, 119-132.
13. I.V. Dolgachev, B. Farb, and E. Looijenga, Geometry of the Wiman-Edge pencil, I: algebrogeometric aspects, Eur. J. Math. 4 (2018), no. 3, 879-930.
14. H. Finkelnberg, Small resolutions of the Segre cubic, Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 3, 261-277.
15. L. Gruson, S.V. Sam, and J. Weyman, Moduli of abelian varieties, Vinberg θ-groups, and free resolutions, Commutative algebra, Springer, New York, 2013, pp. 419-469.
16. A.C. Kable and A. Yukie, A construction of quintic rings, Nagoya Math. J. 173 (2004), 163-203.
17. (2004), no. 3, 277-295.
18. M.M. Kapranov, Chow quotients of Grassmannians. I, I.M. Gelfand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29-110.
19. W. Kraskiewicz and J. Weyman, Geometry of orbit closures for the representations associated to gradings of lie algebras of type e_{6}, f_{4} and g_{2}, arXiv:1201.1102 (2012).
20. A. Lascoux, Syzygies des variétés déterminantales, Adv. in Math. 30 (1978), no. 3, 202-237.
21. L. Manivel, Configurations of lines and models of Lie algebras, J. Algebra 304 (2006), no. 1, 457-486.
22. L. Manivel and E. Mezzetti, On linear spaces of skew-symmetric matrices of constant rank, Manuscripta Math. 117 (2005), no. 3, 319-331.
23. I. Ozeki, On the microlocal structure of the regular prehomogeneous vector space associated with $\mathrm{SL}(5) \times \mathrm{GL}(4)$, Publ. Res. Inst. Math. Sci. 26 (1990), no. 3, 539-584.
24. M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155.

Institut de Mathématiques de Toulouse ; UMR 5219, Université de Toulouse \& CNRS, F-31062 Toulouse Cedex 9, France

Email address: manivel@math.cnrs.fr

