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On the intrinsic pinning and shape of charge-density waves in 1D Peierls systems

O. Cépas and P. Quémerais
Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France

Within the standard perturbative approach of Peierls, a charge-density wave is usually assumed to
have a cosine shape of weak amplitude. In nonlinear physics, we know that waves can be deformed.
What are the effects of the nonlinearities of the electron-lattice models in the physical properties
of Peierls systems? We study in details a nonlinear discrete model, introduced by Brazovskii,
Dzyaloshinskii and Krichever. First, we recall its exact analytical solution at integrable points.
It is a cnoidal wave, with a continuous envelope, which may slide over the lattice potential at no
energy cost, following Fröhlich’s argument. Second, we show numerically that integrability-breaking
terms modify some important physical properties. The envelope function may become discontinuous:
electrons form stronger chemical bonds which are local dimers or oligomers. We show that an Aubry
transition from the sliding phase to an insulating pinned phase occurs when the model is no longer
integrable.
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I. INTRODUCTION

In 1955, the instability of a simple linear metallic chain of equidistant atoms was predicted by Peierls [1]. Below
a critical temperature, called Peierls temperature, a new state emerges which is characterized by a lattice distortion
associated to an electronic charge-density modulation. This state is called a charge-density wave (CDW) state. The
current CDW theory is essentially based on the Fröhlich model [2] where the Hamiltonian of an electron gas is
perturbed by an electron-lattice interaction which is linear with the lattice distortion (for particularly comprehensive
reviews, see Refs. [3, 4]). The Peierls transition then results from the energy lowering of the occupied electronic
states below the Fermi level which exceeds the energy cost of the elastic distortion at low temperatures. Linear
response approximation for the electrons has been extensively used in this theory : the static electronic Lindhard
susceptibility of a one-dimensional metal χ(q, ω = 0), calculated at first-order in perturbation theory, shows a peak at
q0 = 2kF , kF being the Fermi wavevector [5]. An atomic position modulation δxq0 with wavevector q0 then induces a
proportional modulation of the electronic charge density δρq0 = gχ(q0, 0)δxq0 , where g is the so-called electron-phonon
coupling constant. The electronic energies close to the Fermi level are modified and an electronic gap opens up due
to the perturbation induced by the lattice modulation. The total energy is minimized with respect to the distortion
parameter δxq0 , also fixing the charge modulation δρq0 and the electronic gap. Below the Peierls temperature, δxq0
and δρq0 are non-vanishing and the CDW state is stabilized [3, 4]. The resulting modulation of the position of atom
i along the chain and its electronic charge are given by

δxi ∼ δxq0 cos (q0ia+ φ), (1)

δρi ∼ δρq0 cos (q0ia+ φ), (2)

where a is the interatomic distance and φ a phase. One sees that when the parameter q0a
2π is a rational number, the

charge modulation δρi and the lattice distortion δxi repeat after a period. The chain has a periodicity and the CDW
is said to be commensurate. Reversely, when q0a

2π is an irrational number, the chain has no periodicity and the CDW is
incommensurate. It was suggested by Fröhlich [2] that in the incommensurate case, the total energy does not depend
on the phase φ. In other words, there is a continuous degeneracy of the ground-state with respect to the phase, and
the charge and lattice modulation may move freely along the chain: the CDW is not pinned by the lattice, it can slide
freely. One says that the system has a Fröhlich conductivity. Reversely, in the commensurate case, this continuous
degeneracy is lost and the CDW is pinned by the lattice [6].

Most discussions on CDW systems, in one or two dimensions, are based on the above linear response scheme. Further
approximations may ameliorate the theory, for example by replacing the Lindhard susceptibility by the generalized
susceptibility obtained within the random phase approximation in order to include Coulomb interactions [7]. Other
authors have also developed strong electron-phonon coupling theories [7–10], especially for two-dimensional CDW
systems. However, these developments remain basically in the same perturbative framework for the electrons and
the results are not fundamentally modified : the CDW state results from the instability of a metal, as proposed by
Peierls.

Furthermore, whether or not the Peierls-Fröhlich theory applies to experiments remains a controversial issue. Indeed,
there is now a profusion of materials undergoing CDW transitions, where the theory can be tested. Beside well-known
quasi-one-dimensional (1D) compounds [11, 12] such as the trichalchogenides of transition metals (NbSe3 for example),
many 2D and even 3D CDWs exist. Notably, among the dichalchogenides, the commensurate/incommensurate 2D
CDW states in 1T-TaS2, 2H-TaSe2 and 1T-TiSe2 were discussed by Rossnagel [13]. Based on detailed experimental
ARPES data, he was able to show that it is the lowering of all occupied electronic bands which stabilizes the
CDW, not only the lowering of the electronic state energies close to the Fermi level. Similarly, square nets of
chalcogenides (Se or Te) are present in many binary, ternary and quaternary compounds [14, 15]. All these square nets
undergo commensurate or incommensurate Peierls distortions which are described in terms of various polychalcogenide
oligomers formation in the nets [14–18]. Here again, as noted by Patschke [15], the electronic band calculations show
that the CDW stabilization is dominated by low-lying electronic levels. Another striking example has been recently
provided by Gaspard [19]. Many covalent materials of columns 14-16 elements (examples are As, Se, Te, Br, I)
develop 3D networks of successive short and large atomic distances. These structures appear as Peierls distortions
from an unstable cubic structure. Yet, the electronic energy gain involved in these distortions goes well beyond the
simple perturbation of the levels close to the Fermi level. A last challenging example is provided by the now common
observations of 2D or 3D, static or fluctuating, CDW orders in Cu-based high-Tc superconductors [20–24]. Although
it is an ubiquitous phenomenon, the origin of these CDW orders remains elusive [25]. It however enlightens and
renews the possibility of electron-based mechanisms (i.e. with an electronic “glue”) of superconductivity in cuprates
[26–29].

Such observations contradict somewhat the simplistic Peierls-Fröhlich linearized framework. In reality, in order to
construct a more general theory of CDW, one needs first to consider models with nonlinear electron-lattice interactions.
Any realistic model is, by essence, nonlinear. The minimal number of ingredients to describe the basic chemical
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situation is then three. There is first an attractive term which gives a resonant bonding state for the electrons.
It decreases with the interatomic distance in a nonlinear way. Secondly, one needs a repulsive part to avoid the
collapse of the structure. These first two terms explain the chemical bonding of atoms in a standard way. Finally, a
pressure term is added which may represent the effect of a real mechanical pressure, or may model a chemical pressure
induced by the surrounding atoms. All these ingredients form discrete models since any atomic structure is discrete.
These models have to be studied nonperturbatively, in order to find both the distortions and the electronic energies
self-consistently and without expanding a priori around a putative metallic state.

In the present paper, we study such a nonlinear model in 1D, which was introduced by Brazovskii, Dzyaloshinskii
and Krichever [30]. We call it the BDK model and its definition is given in section II. In their original paper, the
authors have shown that for special values of the model parameters, the CDW problem can be solved exactly and
the solution explicitly written, whatever the electronic density of the chain. Owing to its theoretical importance, we
discuss and demonstrate the solution anew, partly in our own way, in section III. The remarkable result obtained
by Brazovskii, Dzyaloshinskii and Krichever is due to the connection which exists between the BDK model and
some classical integrable models [31, 32], such as the Toda lattice [33, 34] and the Volterra lattice [35] (described in
section III E). Another important point is that the BDK model appears to be a discrete version of an earlier continuous
Peierls model [36]. The exact solution of that model also results from the integrability of nonlinear equations, the
Korteweg-de Vries (KdV) equations.

The exact solution of the BDK model is such that not only the incommensurate phases are unpinned (a result that
seems to strengthen the original views of Peierls and Fröhlich [1, 2]), but also, surprisingly, so are the commensurate
phases. In other words, the discrete nature of the lattice seems to have no effect. This may justify the use of
continuous models. However, the situation is more complex and the question which naturally arises is then : what
happens beyond the range of parameters for which the model is integrable? Dzyaloshinskii and Krichever have briefly
discussed the issue [37]. They have recognized that when integrability is lost, pinning should generically occur in
the commensurate cases. They argue by using an analogy with a model previously proposed by Aubry [38], that in
the incommensurate case, two regimes should be distinguished [37]: a weak nonlinear regime where the unpinned
incommensurate phase is protected by the Kolmogorov-Arnold-Moser (KAM) theorem, and a strong nonlinear regime
-the stochastic regime- where many pinned metastable configurations could appear in the system. Soon after, Aubry
and Le Daeron [39] have shown that a sliding-to-pinned transition occurs for incommensurate ground-states by varying
the parameters in two other discrete models: the Sue-Schrieffer-Heeger (SSH) model [40] and the Holstein model [41].
These two models are intimately related to the BDK model and appear as some limit cases (see section II). The
above sliding-to-pinned transition in the incommensurate CDW ground-state is an Aubry transition, originally called
the transition by breaking of analyticity [38]. It modifies the physics of CDW systems [42]. In particular, CDWs
can hardly be described in the stochastic regime by continuous models, owing to intrinsic pinning and the presence
of many metastable states separated by local energy barriers [43]. Thanks to the similarity between the problem
of CDW energy minimization and the time evolution of a discrete dynamical system introduced by Aubry [38], the
pinning is associated with the destruction of the KAM tori of the dynamical system, when the nonlinearities become
strong enough. The concomitant apparition of chaos or stochasticity is qualitatively discussed by Dzyaloshinskii and
Krichever when integrability is lost [37].

The present paper next provides a detailed numerical study of the effect of adding perturbations that either break or
conserve the integrability of the BDK model. In the commensurate case (section IV B), we establish a phase diagram
when integrability is preserved, showing the relative energies of the exact solutions. When integrability is lost, we show
that the CDW is always pinned, as expected on general grounds, and its shape modified. In the incommensurate case
(section IV C), we find that integrability-breaking terms trigger an Aubry transition at a certain threshold, beyond
which the phase is pinned. Pinned phases are computed and have locally ordered atomic structures, which are dimers
or oligomers, distinct from the exact solutions in integrable cases. The transition between pinned and sliding phases is
found not only by breaking integrability, but also by changing the external pressure, making experimental verification
possible.

II. THE SELF-CONSISTENT ELECTRON-LATTICE BDK MODELS

A. Definition

The BDK model is a combination and a generalization of two paradigmatic tight-binding models. The first one
is due to Holstein and was called the molecular-crystal model [41], whereas the second is known as SSH model [40].
They are sketched in Fig. 1. The Holstein model in one dimension describes a chain of molecules i, each carrying an
internal vibrational degree of freedom bi which modulates the on-site electronic energy level. The electrons may move
along the chain with a constant hopping integral between molecules. The SSH model describes an atomic chain and
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bi

bi

ai ∼ 1 + α(ℓi − ℓ̄)

ℓi

ℓi

ai ∼ e−ℓi

ℓi

ai ∼ e−ℓi

a) Holstein

b) SSH

c) BDK-Volterra

d) BDK-Toda

FIG. 1. Illustration of the different models discussed in the text.

was originally introduced to explain the physical properties of polyacetylene. Contrary to the Holstein model, in the
SSH model there is a fixed on-site potential energy for the electrons, but the hopping integrals ai for the electrons to
hop from atom i to atom i+ 1 are linearly modulated by the interatomic distances `i,

ai = 1 + α(`i − ¯̀), (3)

where ¯̀ is the mean lattice spacing, and α a parameter which can be interpretated as an electron-phonon coupling
constant. The Hamiltonian of both models may be written with dimensionless variables and an overall energy scale
t, as follows:

HHolstein/t = −
∑
i,σ

(c†i+1,σci,σ + h.c.) +
∑
i,σ

bic
†
i,σci,σ + ξ

∑
i

bi
2, (4)

HSSH/t = −
∑
i,σ

ai(c
†
i+1,σci,σ + h.c.) + κ

∑
i

(`i − ¯̀)2. (5)

In these expressions, i label the sites (atoms or molecules), σ the electron spin, and (c†i,σ, ci,σ) are the usual (cre-

ation/annihilation) fermionic operators. ξ and κ are dimensionless parameters associated to the elastic energies of
the distortions. For both models, the kinetic energy of atoms is neglected and the variables {`i} (or {ai}) and {bi}
are classical ones which have to be determined self-consistently, in order to minimize the energy. The spirit of these
models is to keep the first linear and quadratic terms as an expansion in bi or (`i − ¯̀).

The BDK model [30] aims at describing the same physics of 1D chains but introduces some important differences.
It similarly has two versions that distinguish the “Volterra” case from the “Toda” case [44].

• The first BDK Hamiltonian (Volterra case) writes

H/t = −
∑
i,σ

1

2
e−

`i
2 (c†i+1,σci,σ + h.c.) + κ

∑
i

e−
λ`i
2 + p

∑
i

`i. (6)
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FIG. 2. Two-body energy (Eq. 10). It has a minimum at ` = `0, the equilibrium length of an isolated covalent bond.

It is a modification of the SSH model (see Fig. 1), in that it assumes that the hopping parameter is exponentially
decreasing with the interatomic distance,

ai =
1

2
e−

`i
2 . (7)

By definition of the tight-binding approximation [5], the ai are indeed the overlap between two successive
atomic (or molecular) wave functions and an exponential dependence is a fairly realistic choice. Its special
dimensionless form (7) is taken for the sake of commodity, in particular to match the standard definitions in the
classical integrable models. The first term in the Hamiltonian leads to an effective attraction between atoms.
The second term is necessary to describe the formation of a chemical bond (see below), it is repulsive and
exponentially decreasing. Its range is controlled by the parameter λ. The last and third term involves the
pressure p which controls the mean distance ¯̀ between the atoms. Since the distance between sites i and i+ 1
always satisfies 0 < `i <∞, the variables ai satisfy the following constraint for all i,

0 < ai <
1

2
. (8)

The model depends on bond length variables {`i} (or {ai}) that have to be self-consistently determined. An
important difference with SSH is that it does not linearize the hopping integrals around a hypothetical metallic
state. As a consequence, the issue concerning the cohesion of the chain, i.e. the formation of chemical bonds,
is treated on an equal footing with that concerning the CDW.

• The second BDK Hamiltonian (Toda case) writes

H/t = −
∑
i,σ

1

2
e−

`i
2 (c†i+1,σci,σ + h.c.) + κ

∑
i

e−
λ`i
2 + p

∑
i

`i +
∑
i,σ

bic
†
i,σci,σ + ξ

∑
i

bi
2. (9)

It is the same as the first BDK model but it contains two additional terms which involve additional classical
variables {bi} that describe the local Holstein vibrational degrees of freedom (see Fig. 1). They also have to be
self-consistently determined.

Let us consider a first and simple example of chemical bond interactione, that of Hamiltonian (6) with two sites,
two electrons and p = 0. The hopping of electrons between the two sites at distance ` gives a bonding state of energy

− 1
2e
− `2 , which is filled by the two electrons (spin up and spin down). The electronic energy is −e− `2 and the elastic

cost κe−
λ`
2 . The total energy written in units of 2t is

W0 = −1

2
e−

`
2 +

κ

2
e−

λ`
2 , (10)

which is represented in Fig. 2, after normalization. It has a minimum at

`0 =
2

λ− 1
ln(κλ), (11)
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which is the equilibrium length of the covalent bond. The dimer is stable only when κ > 1/λ and λ > 1. We will
always consider that λ and κ satisfy these two conditions.

In the following, we are particularly interested in periodic configurations of the lattice. We call N this period which
is an integer, so that

ai+N = ai ⇔ `i+N = `i, (12)

bi+N = bi, (13)

for all i. The total number of sites is L = NS, where S is the number of unit-cells in the system. We thus have N
independent variables to determine in the Volterra case, {a1, a2, . . . , aN}, and 2N in the Toda case by addition of the
set {b1, b2, . . . , bN}.

The density per site c of pairs of electrons is taken as,

c =
r

N
, (14)

where r/N is an irreducible fraction.
When the configuration is incommensurate, the period N is infinite and c is an irrational number. In numerical

computations, it is convenient to approximate c with a sequence of irreducible rational approximants rn/Nn where

rn
Nn
→ c, (15)

when n → +∞. An incommensurate configuration is thus approximated by commensurate periodic configurations
with period N = Nn.

B. General electronic band structure for an arbitrary 1D periodic lattice

We now determine the electronic band structure of the BDK models with arbitrary nearest-neighbor hoppings {ai}
and local potentials {bi}.

For a system with a discrete lattice periodicity N , the wavevectors k can be chosen in the first reduced Brillouin
zone ]− π

N ,
π
N ]. A Bloch wave function with wavevector k may then be written as

|Ψ(k)〉 =

L∑
i=1

ψi(k)c†i,σ|0〉, ψi+N (k) = eikNψi(k), (16)

where |0〉 is the empty state and L = NS (recall that L is the total number of sites and S the number of unit cells).
The periodic boundary conditions imply ψi+L(k) = ψi(k) so that eikL = 1. We will choose S even for the sake of
simplicity so

k =
2πn

L
, with − S/2 < n ≤ +S/2. (17)

Since the first N amplitudes ψi(k) are independent complex numbers, one defines a vector,

ψ(k) ≡t (ψ1(k), ψ2(k), · · · , ψN (k)),

which satisfies the eigenequation,

H(k)ψ(k) = E(k)ψ(k), (18)

where H(k) is the N ×N square matrix defined by

H(k) =



b1 −a1 0 . . . −aNeikN
−a1 b2 −a2 0 . . . 0

0 −a2 b3 −a3
. . .

...
...

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . . −aN−1
−aNe−ikN 0 . . . −aN−1 bN


, (19)
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in the Toda case for N > 2. In the Volterra case, H(k) is the same, replacing bi by 0. Since H(k) is an Hermitian
matrix, it has N real eigenvalues Eν(k) labeled by ν = {1, · · · , N}, and N eigenvectors ψν(k). The N energy bands
{Eν(k)} completely determine the electronic structure. Also note that H(−k) = H(k)∗, which implies Eν(k) =
Eν(−k).

We show in the Appendix A that the eigenvalues are given by solving the equation,

Q(E) = cos kN, (20)

where Q(E) is a polynomial of degree N , written as

Q(E) = A0

(
EN − I1EN−1 + · · · − IN

)
, (21)

where the amplitude A0 respects A0 ≡ (−1)N
2CN

, with CN =
∏N
i=1 ai. By introducing the length of the unit-cell,

I0 ≡
N∑
i=1

`i, (22)

one gets A0 = (−1)N2N−1e
I0
2 . The other quantities Im, m = 1, . . . , N, that appear in Q(E), are polynomials in

the variables {ai}, {bi}. They can be derived explicitly at a given N , e.g. by iteration over the amplitudes of the
eigenvectors (as shown in Appendix A) or by the direct calculation of the characteristic polynomial. As an example,
for N = 3 in the Toda case, we have

I1 = b1 + b2 + b3,

I2 = a1
2 + a2

2 + a3
2 − b1b2 − b2b3 − b1b3,

I3 = b1b2b3 − b1a22 − b2a32 − b3a12.
(23)

For N = 4, in the Volterra case (bi = 0), we have

I1 = 0,

I2 = a1
2 + a2

2 + a3
2 + a4

2,

I3 = 0,

I4 = −a12a32 − a22a42.

(24)

The corresponding Q(E) with N = 4 is given in Fig. 3 (a). Note that the coefficients Im with m odd vanish. That
remains true for any even value of N in the Volterra case. As a consequence Q(E) = Q(−E), so that if Eν(k) is a
solution of Eq. (20), then −Eν(k) is another solution. The energy spectrum is symmetric with respect to E = 0. This
symmetry is not true in the Toda case, however.

In the general case, for any N , the first terms can be immediately obtained, e.g.

I1 =

N∑
i=1

bi, (25)

which is the trace of the matrix H(k). It can be chosen to be zero by adding a constant to the energy. Similarly,

I2 =

N∑
i=1

(
1

2
bi

2 + ai
2

)
− 1

2
I21 . (26)

The band structure equation (20) is an algebraic equation of degree N that has N real solutions, Eν(k). We
emphasize that the solutions Eν(k) are thus some functions of {Im}, the parameters of the equation, and not of the
individual {ai}, {bi} (only through the Im). The band structure is thus entirely determined by a number of parameters
that is smaller than the number of actual variables. Expected values of Q follow

− 1 ≤ Q(Eν(k)) ≤ 1. (27)

The positions of the energy bands can thus be deduced from the plotting of Q(E). An example with N = 4 is given
in Fig. 3 (b): it has four bands in the reduced Brillouin zone. Note that gaps separate all the bands, which is the
generic situation.

A periodic perturbation with periodicity N couples the degenerate energy states labeled by k and k± 2π
N and opens

a gap. But the perturbation also couples the states labeled by k and k ± 4π
N , k ± 6π

N , etc. This implies secondary
gaps away from Fermi energy. However, there are specific configurations, with some symmetries of the potentials and
kinetic terms, where the higher-order couplings effectively vanish, thus leaving the corresponding gaps closed.
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FIG. 3. (a) Example of the polynomial Q(E) [Eq. (21)] for a periodic problem with N = 4 in the Volterra case. (b)
Corresponding generic band structure, Eν(k), solution of Eq. (20). The bands are entirely determined by the three parameters
I0, I2, I4. Note the E → −E symmetry of the spectrum.

C. Energy to be minimized for a periodic lattice

The total electronic energy Eelec of models (6) or (9) when the chain has periodicity N is obtained by filling energy
bands Eν(k) up to Fermi energy. Including spin degeneracy, it writes

Eelec = 2
∑
k,νocc.

Eν(k). (28)

For a concentration c = r/N of pairs of electrons, the r lowest bands are fully occupied: νocc. = 1, . . . , r and the sum
over k extends in the whole first Brillouin zone. Thanks to the periodicity of variables {ai}, {bi}, the elastic and
pressure energies are equal in all S unit-cells. For example, the following sum over the L sites of the chain becomes

κ
∑
i

e−
λ`i
2 = Sκ

N∑
i=1

e−
λ`i
2 . (29)

It is thus convenient to define an energy W per unit-cell, and use 2t as the unit to eliminate the spin degeneracy
factor 2 in Eelec. The total energies of the two models write

• in the Volterra case:

W =
1

S

∑
k,νocc.

Eν(k) +
1

2
κ

N∑
i=1

e−
λ`i
2 +

1

2
p

N∑
i=1

`i. (30)

• in the Toda case:

W =
1

S

∑
k,νocc.

Eν(k) +

N∑
i=1

(
1

2
ξbi

2 +
1

2
κe−

λ`i
2

)
+

1

2
p

N∑
i=1

`i. (31)

We now consider the integrable and nonintegrable cases which differ by the values of some parameters.

1. Integrable BDK model

We first consider the case which was originally treated in Ref. [30], where the parameters were taken to be

λ = 2, κ = ξ/2λ−1. (32)
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Equations (32) restrict the space of parameters of the model but, even if they could be only accidental, they are
perfectly admissible. What matters the most is that they make the model integrable. With conditions (32), the
elastic energy writes

1

2
κ

N∑
i=1

e−
λ`i
2 = ξ

N∑
i=1

ai
2 = ξI2, (33)

using Eq. (26) with bi = 0. Similarly, the pressure can be expressed in terms of I0. Finally, one can check that the
energies W take the form,

W =
1

S

∑
k,νocc.

Eν(k) + ξI2 +
1

2
pI0 (34)

for both Volterra and Toda cases. Since Eν(k) is a function of {Im}, the conditions (32) implies that the total energy
W is only a function of {Im}. We show later that the property W = W ({Im}) makes the model integrable. A further
generalization of BDK models that keeps this particularity has been introduced later [37],

W =
1

S

∑
k,νocc.

Eν(k) +

N∑
m=0

ξmIm (35)

for both Volterra and Toda cases, where ξ0 = 1
2p and ξ2 = ξ. For m > 2, ξm are new parameters describing more

general elastic energies. The expressions of {Im} differ between Volterra and Toda cases and are given in section II B.
In particular, in the Volterra case, Im = 0 for odd m.

The main feature of integrability is that, whatever the special form the energy takes, it depends on variables
{ai}, {bi} only through Im = Im({ai}, {bi}). As a consequence, all solutions {ai}, {bi} which satisfy Im({ai}, {bi}) =
Cstm (where Cstm are some constants), are degenerate. We discuss this point in more details in section III E.

2. Nonintegrable BDK model

Second, we would like to find the solutions when the integrability is broken and test which properties hold in these
cases. Since we will mainly discuss the Volterra case, the simplest way to make the model nonintegrable is to choose
λ 6= 2:

W =
1

S

∑
k,νocc.

Eν(k) + ξ

N∑
i=1

ai
λ +

1

2
p

N∑
i=1

`i (36)

for Volterra case. Indeed, for λ 6= 2, the energy does not depend solely on the Im. Recall that, physically, λ is the
ratio of two length scales and has no reason to be equal to 2.

For the Toda model we keep the special balance between the Jahn-Teller term and elastic repulsion, κ = ξ/2λ−1,
but allow similarly, λ 6= 2,

W =
1

S

∑
k,νocc.

Eν(k) + ξ

N∑
i=1

(
1

2
bi

2 + ai
λ

)
+

1

2
p

N∑
i=1

`i (37)

for Toda case.
The models (36) and (37) are sufficient to break integrability and are more generic. The nature of the new solutions

will be addressed in section IV.

D. Nonlinear minimization equations

In order to find the chain configuration self-consistently, one needs to minimize the energy with respect to the
variables of the model, for example,

∀i, δW

δai
= 0,

δW

δbi
= 0. (38)
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These are the equations for the {ai}, {bi} that have to be solved. The difficulty is that they are nonlinear equations
in general. Explicit equations are derived in Appendix B.

For the sake of simplicity, let us focus our study on the Volterra case. One gets

δW

δ`i
= 0, (39)

for all sites i.
The linear response consists in linearizing these equations close to a non distorted uniform state, i.e. a metallic

state of lattice constant ¯̀. Writing

`i = ¯̀+ δ`i (40)

and δ`i � ¯̀, the expansion of (39) at linear order in δ`j gives∑
j

Mijδ`j = 0 (41)

where the matrix M involves the Lindhard charge or bond charge susceptibility (depending on the model which is
considered) calculated for the metal (see Appendix B). If the matrix M has positive eigenvalues, the only solution
is δ`i = 0 for all i and is a metal. When an eigenvalue vanishes, however, the metallic state is unstable. In a 1D
chain, the Lindhard susceptibility is infinite for a modulation at q0 = 2kF , so that CDW instabilities develop at q0
for infinitesimally small coupling strength.

Given that the modulation is expected at q0, one assumes in the standard Peierls approach [3, 4] that the solution
of Eqs. (39) for the bond lengths `i is given by a simple cosine Ansatz,

`i = ¯̀+ u cos(q0i¯̀+ φ), (42)

where u is the amplitude and φ a phase. For u = 0, the model is that of an undistorted metal with lattice parameter ¯̀.
This approach assumes a weak modulation, u� ¯̀. The energy spectrum is then calculated by including the resulting
perturbation, at first order in perturbation theory. The energy W of the Peierls Ansatz is calculated as function of
u and φ. Note that in the incommensurate case, the energy generally depends on u but not on φ: the energy as a
function of u and φ has a “Mexican hat” shape. The minimization of the energy with respect to u,

δW

δu
= 0 (43)

fixes the optimal modulation amplitude u and the energy gap at Fermi level: it is called the “gap equation” and results
from the special cosine Ansatz and from keeping the lowest order terms in u in the energy including a logarithmic
singularity.

In section III, we explain the exact solutions of the BDK model at integrable points without relying on the linear
response and Peierls Ansatz, which proves in general incorrect. We detail in section IV the solutions of Eq. (39) which
shape can be very different from the cosine and brings important physical consequences.

III. EXACT SOLUTION AT INTEGRABLE POINTS

In this section, we review the minimization of the total energy of BDK models, W , at the special points where they
are integrable [Eqs. (34) or (35)]. The reader not interested in the explicit derivation may skip most of it and read
the exact solutions given in section III F.

In integrable cases, since this energy W depends only on the band structure parameters Im and if we assume that
those can be varied independently, we obtain the groundstate by solving the N + 1 equations (m = 0, . . . , N),

δW

δIm
= 0, (44)

which determine, in principle, the N+1 parameters Im. This approach is different from Peierls’s one which introduces
the Ansatz (42) and minimizes the energy with respect to the sole parameter u, which, in turn, fixes the (Peierls) gap
of the band structure. Equations (44) replace the standard gap equation (43).

As we will examine in details, it is not always true that the Im are independent parameters. There are some special
states, which play an important role, for which it is not true. These states, called the g-gap states, do not have all
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gaps opened, as in the generic case, but only a certain number g. This may be seen as the consequence of some special
symmetries of the chain configuration. In this case, the parameters Im are not all independent, so that the number
of equations (44) changes. In fact, we will see in section III C 2 that the exact solution of the model in its simplest
form (34), is the 1-gap Ansatz (g = 1) for the Toda case and the 2-gap Ansatz (g = 2) for the Volterra case.

In the generic case, the calculation of the gradients δW/δIm is done in section III A. For the g-gap Ansätze, for
which the Im are not independent quantities, the gradients are given in section III B. The resulting equations are
made explicit in section III C. The degeneracies of the solutions are discussed in section III D. Finally, as reviewed
in section III E, the expressions of the g-gap Ansätze for the chain configuration defined by variables {ai}, {bi} are
explicit, thanks to a connection with classical integrable models. The solutions are summarized in section III F.

A. Generic candidate solution: energy gradients

Let us consider first small independent changes from Im to Im + δIm, keeping the period constant, and seek the
corresponding linear change of Eν(k) at a given k. Eν(k), as a solution of Eq. (20), is solely a function of all Im
(m = 0, . . . , N), and its differential formally writes

δEν(k) =

N∑
m=0

∂Eν(k)

∂Im
δIm. (45)

We recall that the Im themselves are functions of the variables ai, bi and the δIm can be also expanded over the basis
δai, δbi by a similar expression. From Eq. (20) and the definition (21) of Q(E), we get the important relation

Q′(Eν(k))δEν(k)−A0

N∑
m=1

δImEν(k)N−m +
1

2
δI0Q(Eν(k)) = 0, (46)

for any eigenenergy Eν(k). It can be rewritten, assuming temporarily that Q′(Eν(k))) 6= 0,

δEν(k) ≡
N∑
m=0

lm(Eν(k))

Q′(Eν(k))
δIm, (47)

with the definitions of the polynomials in E,

l0(E) ≡ −1

2
Q(E), (48)

lm(E) ≡ A0E
N−m (m ≥ 1), (49)

which are of degree at most N .
The change of the electronic energy (per unit-cell) when Im are changed to Im + δIm becomes,

δEelec =
1

S

∑
k,νocc.

δEν(k) =

N∑
m=0

JmδIm, (50)

with

Jm =
1

S

∑
k,νocc.

lm(Eν(k))

Q′(Eν(k))
. (51)

The corresponding variation of the total energy (35) is

δW = δEelec +

N∑
m=0

ξmδIm =

N∑
m=0

(Jm + ξm)δIm, (52)

i.e.

δW

δIm
= Jm + ξm (m = 0, . . . , N). (53)
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This is the expression of the gradient we were looking for. An explicit illustration of the derivation in the quarter-filled
case, c = 1/4 (which will be useful in section IV B), is given in Appendix C.

In the thermodynamic limit (S → +∞ with N fixed), the sum over k in Eq. (51) can be transformed into an
integral. For a given density of electron pairs c = r/N , the electronic bands are occupied up to ν = r. Let us call E−ν
and E+

ν , respectively the minimum and maximum of the energy for the band ν. In that case, we may introduce the
density of states, ρ(E) and write ∑

k,νocc.

→
r∑

ν=1

∫ kF

−kF

Ldk

2π
=

r∑
ν=1

∫ E+
ν

E−
ν

dEρ(E), (54)

where the factor 2 for the spin has been removed from the very first definitions. When passing onto an integral over
E, the ±k degeneracy implies a factor 2, so that ρ(E) = L

π
dk
dE , which can be calculated directly from Eq. (20),

ρ(E) = (−1)ν
S

π

Q′(E)√
R2N (E)

, E−ν ≤ E ≤ E+
ν , (55)

R2N (E) ≡ 1−Q2(E), (56)

where the sign (−1)ν makes sure that the density of states is positive in each band. R2N (E) is a polynomial of degree
2N that can be factorized: each of the root of Q(E) ± 1 = 0 is a band edge (see Fig. 3), so that R2N (E) ≥ 0 and
(−1)νQ′(E) > 0 in the allowed energy bands. One obtains for Eq. (51)

Jm =

r∑
ν=1

(−1)ν
∫ E+

ν

E−
ν

dE

π

lm(E)√
R2N (E)

. (57)

Since the numerator is a polynomial and the denominator is the square-root of a polynomial, it is called a hyper-elliptic
integral when N > 2. We will omit, thereafter, to explicitly write the limits of the integrals and the sum over ν, and
use the symbolic notation

r∑
ν=1

(−1)ν
∫ E+

ν

E−
ν

dE

π
≡
∫
dE. (58)

Either written in the form of an integral, or of a discrete sum over k, Jm should be viewed as a function of all the
band parameters {In}.

B. Special g-gap Ansätze

In general, a periodic Hamiltonian system with period N has N distinct bands separated by N − 1 gaps. Some
degeneracies may happen and some of the gaps may be closed accidentally or as the consequence of some symmetry of
the chain configuration. Suppose that some gaps in the spectrum are closed. We are facing now an “inverse” problem:
what is (are) the possible chain configuration(s), i.e. the values of the local potentials {bi}, and hopping parameters
{ai}, that give rise to a particular spectrum, for which those gaps close (for a more general definition, see Ref. [46])?

1. Closing gaps, dependency relations and symmetries

In the present 1D problem, the band gaps may occur at k = 0 or at the Brillouin zone edge, k = ±π/N . Suppose
that two consecutive bands ν and ν + 1 touch,

E+
ν = E−ν+1 ≡ e, (59)

so that there is no gap there. If the degeneracy occurs at k = 0, the algebraic equation, Q(E) = 1 (obtained from
Eq. (20)), has two equal roots, i.e. a double root e. If instead, it occurs at k = ±π/N , equation Q(E) = −1 has a
double root. Wherever it occurs, e is a double root of R2N (E) ≡ 1−Q(E)2 = 0.

When an algebraic equation has a double root, its discriminant ∆ vanishes [47]. A discriminant is a nonlinear
function of the coefficients of the equation (here the Im). Here, we want to vary the coefficients from Im to Im + δIm
with the constraint that the double root remains a double root, i.e. we have the constraint δ∆ = 0, which implies

δ∆ =

N∑
i=1

(
∂∆

∂Im

)
δIm = 0, (60)
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and gives a linear dependency relation between all δIm. As an example, let us consider an equation of degree 2,
E2 − I1E − I2 = 0. The discriminant ∆ = I21 + 4I2 gives, at linear order, a dependency relation δ∆ = 0 which writes
2I1δI1 + 4δI2 = 0. This condition ensures that, however the coefficients Im vary, degenerate solutions remain so.
More generally, one may find such dependency relations at linear order in δIm, without computing the discriminants.
In our case, since a double root e of equation Q(E) = 1 is also a simple root of Q′(E) = 0, the first term of Eq. (46)
vanishes, Q′(e) = 0, and, keeping the notations defined above, one gets

N∑
m=0

lm(e)δIm = 0, (61)

which is a dependency relation of the δIm. One finds such an equation for any double root e of R2N (E).
Equation (61) should be viewed as an Ansatz for the chain configuration, when a gap is closed. To see this more

clearly, let us rewrite it as a system of equations in ai variables,

N∑
m=0

lm(e)
δIm
δai

= 0, (62)

for all sites i. Since Im are functions of {ai}, {bi}, these equations are local equations that determine some constraints
or symmetries on the hopping parameters, {ai} and the potentials, {bi}. This defines some special Ansatz of the
chain configuration. We give an explicit example in section IV B.

Equations (61) are formal conditions forcing the matrices H(k) to have a spectrum with a closed gap at e (see
also [32, 48]). More generally, similar conditions apply for other problems, for example for the continuous Schrödinger
equation [49].

2. Energy gradients with closed gaps

When the spectrum has g gaps with g < N − 1, the gradient of the energy, Eq. (50) can be simplified. Since the
{δIm} are no longer independent in that case, the gradient can be rewritten as a sum over the independent ones. In
appendix D, we prove the following result

δEelec =

g+1∑
m=0

GmδIm, (63)

which involves a sum over g + 2 independent terms, and where

Gm =

∫
dE

gm(E)√
P2g+2(E)

. (64)

gm(E) and P2g+2(E) are two polynomials defined in appendix D. Note that the expression of the integrals Gm also
simplifies. There are still hyperelliptic in general, but with a lower degree 2g+ 2. For the solution of the BDK model,
they reduce to elliptic integrals [30].

C. Gap equations become equations for the entire band structure

1. Generic case

The minimization of the energy gives

0 = δW =

N∑
m=0

(Jm + ξm)δIm, (65)

where δW stands for the differential of the function W ({Im}). For generic points in the phase space (i.e. almost
everywhere), the Im are functionally-independent [50]. It implies the linear independence of the δIm. Note that this
is so far an assumption: there may be special solutions (at nongeneric points) where the δIm are dependent. This
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occurs solely [48] for the g-gap Ansätze that will be considered below. The most generic solution, if it exists, implies
Jm + ξm = 0, i.e.

1

S

∑
k,νocc.

lm(Eν(k))

Q′(Eν(k))
+ ξm = 0, m = 0, . . . , N. (66)

These are N +1 coupled “gap equations” for the N +1 unknowns I0, . . . , IN that determine the band structure (Toda
case). In the Volterra case, only the equations with even m exist. Note that the Eq. (66) are rather formal because
Eν(k) is not known in general.

One can replace the sum over k by the integral (57) in the thermodynamic limit using the special notation defined
in (58). For the BDK model in its simplest form (ξ0 = 1

2p, ξ1 = 0, ξ2 = ξ, ξm = 0 for m ≥ 3), the “gap equations”
take the following form (N > 2): ∫

dE
EN−m√
R2N (E)

= 0, 3 ≤ m ≤ N, (67)∫
dE

EN−2√
R2N (E)

+ ξ = 0, m = 2, (68)∫
dE

EN−1√
R2N (E)

= 0, m = 1, (69)∫
dE

l0(E)√
R2N (E)

+
p

2
= 0, m = 0. (70)

In these equations, starting from m = N , the integrals involving the polynomials lm(E) are replaced by integrals
involving powers of E, using the fact that many of them vanish. Similarly, recalling that l0(E) = 1

2Q(E) is a
polynomial of degree N , but taking advantage of the fact that integrals in Eq. (67) vanish, one can replace the
integral in Eq. (70) by one involving only EN . Note that all these integrals are pure functions of {Im}.

These nonlinear equations, provided they have solutions, fix the parameters {Im} as function of the model param-
eters, i.e. fix the entire electronic band structure and the total energy of the system. They are more general versions
of the usual gap equation of CDW which controls the spectrum at the Fermi level [3].

Eventually, as shown in Ref. [30], there is no solution to this system of equations, i.e. there is no set of I0, . . . , IN
that can be extracted from the model parameters (p, ξ), because the integrals (67) have constant sign integrants and
cannot vanish. Thus, the solution cannot be at a generic point in the phase space. For the generalized BDK model
(35), however, the integrals (67) do not vanish anymore (ξm 6= 0 for m ≥ 3) and the existence of a solution remains
an open question.

2. Special Ansätze: possible metastable states

The independence of all δIm assumed above is not true in all parts of the phase space. For some special values of
the ai, bi, the δIm are dependent. We have seen that this is precisely the case if some gaps in the band structure are
closed. When only g gaps are open, one has to use Eq. (63) for the gradient to get,

0 = δW =

g+1∑
m=0

(Gm + ξm)δIm, (71)

which is a sum over the g + 1 independent δIm. Similarly,

Gm + ξm = 0, m = 0, . . . , g + 1, (72)

giving g + 2 nonlinear equations for the g + 2 independent Im.

• For the BDK model, Eq. (34) (ξm = 0 for m ≥ 3), one uses Eq. (64) for Gm and the definitions of the polynomials
gm(E) in appendix D. As above, one can replace the integrals involving gm(E) by integrals over some powers
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of E,

∫
dE

Eg+1−m√
P2g+2(E)

= 0, 3 ≤ m ≤ g + 1, (73)∫
dE

g2(E)√
P2g+2(E)

+ ξ = 0, m = 2, (74)∫
dE

g1(E)√
P2g+2(E)

= 0, m = 1, (75)∫
dE

g0(E)√
P2g+2(E)

+
p

2
= 0, m = 0, (76)

where, for example, in the second line, the integrand contains only a term in Eg−1 since all other integrals (73)
vanish. Note that these integrals exist only for g > 1.

If g > 1, following the same argument as above, there is no solution to these equations. If g = 1, only the
last three equations remain in the Toda case, and they do have a solution in general (the integrals, which are
elliptic for g = 1, can be inverted). We emphasize that this is the most important result obtained by Brazovskii,
Dzyaloshinskii and Krichever in their paper [30]: a minimum of the energy is realized for the 1-gap Ansatz, in
the Toda case. In the Volterra case, a slight modification of the argument is needed. The equations with odd m
(in particular Eq. (75)) do not exist and the solution is the 2-gap Ansatz [30] (see also Ref. [51]), which results
from the E → −E symmetry. We present numerical check of these claims afterwards.

• For the generalized BDK model, Eq. (35), with finite ξm, the integrals (73) do not vanish anymore and other
solutions with g > 1 may exist. All the Ansätze with different g become possible solutions for the minimization
equations. However, one must discard these solutions in the following cases:

– there is no solution {Im} to these equations and this g-gap Anzatz is not an extremum.

– a solution {Im} exists, but the corresponding {ai}, {bi} do not respect physical constraints, for instance
`i > 0.

– a solution {Im} exists, but is not an absolute minimum, only a local minimum or maximum. In that case,
one needs to compare its energy with that of the other solutions, in order to qualify it.

Therefore, for the generalized BDK model, many metastable states -the g-gap states- may coexist. We will
consider in section IV B the simplest example of a quarter-filled band, and discuss the various possible Ansätze.

D. An implicit solution: definition of the degenerate manifold of states

The gap equations (of the previous section) allow to find, in principle, the actual values of Im, for some given model
parameters. Once all Im are known, the ai, bi are implicitly determined by the equations

Im = Cstm , m = 0, . . . , N, (77)

where Im are polynomials of {ai}, {bi} (for examples, see Eqs. (23)-(24)). These equations define an algebraic manifold
in the phase space, of dimension 2N , spanned by the variables {ai}, {bi}. By construction, the energy W , which only
depends on {Im}, is constant on this manifold, so that it is a degenerate manifold.

How large is the degenerate manifold? Is it a single point (or a few isolated points), or is there a continuous
degeneracy? Note that even the “generic” Ansatz in the current model has a very special property. Since all gaps
are opened in that case, the N + 1 (resp. N

2 + 1) nonzero Im are independent in the Toda case (resp. Volterra).
The dimension of the space is 2N (resp. N), so that the manifold associated with this Ansatz has dimension
2N − (N + 1) = N − 1 (resp. N − (N2 + 1) = N

2 − 1), which implies a large continuous degeneracy and the existence of

N − 1 (resp. N
2 − 1) zero modes (known as phasons in the CDW context). When some gaps are closed, the dimension

is, in general, less. In particular, for the 1-gap and 2-gap Ansätze, we will see that there is a single zero mode. An
exact parametrization can be given, thanks to the existence of an integrable model with explicit solutions. In this
case, the degenerate ground-state manifold is a Liouville torus, as we will see next.
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E. An explicit solution from the connection with classical integrable models

The problem has an explicit connection with classical integrable models, namely Toda or Volterra lattices.
A classical model with 2N dynamical variables is integrable in the sense of Arnold and Liouville if there are N

conserved quantities which are independent functions of the variables and in involution [31, 52]. In that case, there is
a canonical transformation to a new set of action-angle variables (Im, ϕn) where Im are the N conserved quantities

(İm = 0) and ϕn are the N angle variables with a simple time evolution, ϕn = ωn({Im})t.
It is known since the 1970’s that the Toda and Volterra lattices are classical integrable models and some analytic

solutions of the nonlinear dynamical equations are known. From this connection, as we recall below, it is known how
to construct all matrices of the form (19) (including the case when bi = 0) that have a spectrum with a given number
of gaps, i.e. it is possible to construct the g-gap potentials. They have been extensively studied in the past and many
examples are known, e.g. KdV [31, 32].

1. Integrable Toda chain

The Toda lattice is a 1D chain of N classical anharmonic oscillators governed by the following classical Hamilto-
nian [34],

H({pi}, {xi}) =

N∑
i=1

p2i
2

+ e−(xi+1−xi), (78)

where xi+1−xi ≡ `i is the dimensionless distance between two consecutive atoms at positions xi and xi+1. By noting

bi ≡
pi
2
, ai ≡

1

2
e−

xi+1−xi
2 , (79)

the nonlinear Toda equations of motion are [34, 53],

ḃi = 2(ai−1
2 − ai2),

ȧi = ai(bi − bi+1),
(80)

for i = 1, . . . , N . Periodic boundary conditions are assumed, i.e. aN+1 ≡ a1, bN+1 ≡ b1. These equations of motion
have a remarkable property, they can be rewritten as the time evolution of a pair of “Lax matrices”. The way to
construct them is given explicitly by Flashka [53], who defines H(0) and A, two matrices of size N ×N , by

H(0) =



b1 −a1 0 . . . −aN
−a1 b2 −a2 0 . . . 0

0 −a2 b3 −a3
. . .

...
...

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . . −aN−1
−aN 0 . . . −aN−1 bN


, (81)

A =



0 −a1 0 . . . aN
a1 0 −a2 0 . . . 0

0 a2 0 −a3
. . .

...
...

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . . −aN−1
−aN 0 . . . aN−1 0


. (82)

Note that H(0) is real and symmetric and A is real and antisymmetric. The important point is that the equations of
motion (80) can be recast in the form,

Ḣ(0) = [H(0), A]. (83)
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The evolution of H(0)(t) subject to this equation is unitary, i.e. H(0)(t) and H(0)(0) are related by a unitary
transformation. An immediate consequence is that the N eigenvalues of H(0) are conserved quantities when the
variables ai(t), bi(t) obey the Toda nonlinear equations (80). In other words, the spectrum of H(0) is invariant when
the variables evolve under the Toda flow. Since there are N independent conserved quantities and 2N variables, it is
a classical integrable model in the sense of Arnold and Liouville.

The connection with the BDK problem arises because H(0) is precisely the matrix defining the tight-binding
problem, Eq. (19), at k = 0. The eigenvalues of H(0) being conserved, the coefficients of its characteristic polynomial
are also conserved. They are precisely the coefficients Im, defined by Eq. (21), which are therefore also constants of
motion of the Toda chain. The Im form a set of action variables and the level sets Im = Cstm are the Liouville tori of
the classical integrable model (for corresponding angle variables, see Ref. [34]).

Back to the minimization of the Peierls problem, a solution of the Toda equations of motion, parametrized by the
time t, conserves the same Im, and since the energy W depends only on Im, W is also conserved. The configurations
ai(t), bi(t) have the same energy W than the initial configuration ai(0), bi(0). The solution of the equations of motion
thus provides continuously degenerate solutions of the Peierls model parametrized by t.

Some solutions of the Toda equations of motion are explicitly known. In particular, if the initial conditions
ai(0), bi(0) (or the Im) are such that the matrix H(k) has a single gap, then any ai(t), bi(t) define the same spectrum
with a single gap. In fact, the one-gap solution is precisely the original constant profile solution, Toda’s cnoidal
wave [33], rewritten as,

ai(t) = ā

(
ϑ3(k0i+ vt, q)ϑ3(k0(i+ 2) + vt, q)

ϑ23(k0(i+ 1) + vt, q)

)1/2

,

bi(t) = v̄ + v

(
ϑ′3(k0i+ vt, q)

ϑ3(k0i+ vt, q)
− ϑ′3(k0(i+ 1) + vt, q)

ϑ3(k0(i+ 1) + vt, q)

)
,

(84)

with ϑ3(z, q) the Jacobi ϑ-function defined by its Fourier series (see Appendix F for details),

ϑ3(z, q) = 1 + 2

+∞∑
n=1

qn
2

cos(2πnz), (85)

where z is a real number here (but could be a complex number). ϑ3(z, q) is a periodic function in z with period 1
and depends on a parameter q, called the nome, which satisfies 0 ≤ q < 1. This parameter determines the weights of
the harmonics. In the limit q → 0, the function is close to a cosine with small amplitude 2q (and at q = 0, it becomes
a constant, 1). When q → 1, on the contrary, it contains many harmonics and becomes highly distorted. Examples
of plots of ϑ3(z, q) can be found in appendix F.

At t = 0, the solution depends on some parameters. Apart from the speed of the center of mass, v̄ which describes
the collective translational motion of all atoms, the solution is characterized by a dimensionless wavevector k0, an
amplitude ā and a shape/amplitude parameter q. First, to ensure that the variables ai(t) and bi(t) are periodic in
space, ai+N (t) = ai(t), etc., one needs because of the periodicity of ϑ3(z, q),

k0 =
r

N
, (86)

where r is an integer. The other parameters can be chosen arbitrarily, and characterize a given initial condition.
In order for Eqs. (84) to be a solution of the nonlinear equations of motion (80), the parameter v has to satisfy the

condition (see Ref. [54] for a correction of the initial result of Toda),

v = ±ϑ1(k0, q)

ϑ′1(0, q)
ā, (87)

which depends on the amplitude ā and ϑ1(z, q) is defined in Appendix F.
The solution has some definite values for the conserved quantities {Im}, such as

N∏
i=1

ai(t) = āN =
1

2N
e−

∑N
i=1 `i(t)/2, (88)

which proves that the total length is conserved. One gets

ā =
1

2
e−

I0
2N . (89)



19

Furthermore, from the second Eq. (84) and the periodic boundary conditions, one finds,

I1 =

N∑
i=1

bi(t) = v̄N, (90)

which is the conservation law of the total momentum or that of the trace of the matrix H(0), since all eigenvalues are
conserved. I2 can be computed by

I2 =

N∑
i=1

ai(t)
2 −

N∑
i=1

bi(t)bi+1(t), (91)

and is conserved. Eq. (89) determines ā knowing I0, Eq. (90) determines v̄ knowing I1 and finally Eq. (91) determines
q knowing I2. The other Im, m > 2 are no longer independent parameters for the 1-gap solution, as we have seen in
section III B 1, so that there is a complete equivalence between (I0, I1, I2) and (ā, v̄, q), the parameters of the solution.

We emphasize that this is the very special cnoidal wave solution of the Toda equations of motion, which moves
without deformation and can be seen as a “soliton train” [33, 34]. It has a single gap in the spectrum (H(0) has
many doubly degenerate eigenvalues), the position of which depends on k0 [55]. Some other, multi-gap, solutions are
known, and can be expressed with multi-dimensional ϑ-functions [56]. They are more complicated and depend on
further parameters. They will not be useful in the following.

It is remarkable that all matrices H(0) with a single gap are known and take the form of Eq. (81) with {ai}, {bi}
explicitly given by Eqs. (84), where vt, noted φ below gives a free parameter for this family of solutions.

Since the exact solution of the BDK model at integrable points (in its nongeneralized version) is given by a 1-gap
Ansatz, its explicit form is necessarily given by Eqs. (84). As we have seen, its explicit parameters (ā, v̄, q) are in
direct bijection with (I0, I1, I2), extracted by solving the “gap equations”. Therefore, the Toda-BDK model gives a
continuous family of degenerate extrema, parametrized by the continuous parameter t (or φ = vt).

2. Integrable Volterra chain

Volterra nonlinear equations write [35],

ȧi = ai(ai−1
2 − ai+1

2), (92)

for i = 1, . . . , N . Periodic boundary conditions aN+1 ≡ a1 are chosen. This model is also integrable and relates to
Toda’s one [35]: the pair of Lax matrices involves the same matrix H(0) (Eq. (81)), but with bi = 0, and a matrix A
defined by,

A =


0 0 a1a2 0 . . . −aN−1aN 0
0 0 0 a2a3 . . .

−a1a2 0 0 0 . . .
. . .
0 . . . 0 0

 . (93)

The pair of Lax evolves again according to

Ḣ(0) = [H(0), A], (94)

when the variables ai obey Volterra equations. Thus, similarly to the previous section, Eq. (92) defines an isospectral
evolution: the eigenvalues of H(0) and all coefficients Im are independent of t. In particular, the energy defined by
the BDK model (34), which is a pure function of Im, does not vary in time. Any solution of (92), evolving with time,
remains at the same energy and defines a degenerate manifold of states for the BDK model.

Consider the following particular solution, which is related to Toda’s solution by a Bäcklund transformation [33],

ai(t) = ā

(
ϑ3(k0i+ vt, q)ϑ3(k0(i+ 3) + vt, q)

ϑ3(k0(i+ 1) + vt, q)ϑ3(k0(i+ 2) + vt, q)

)1/2

, (95)

where

v = ±2
ϑ1(2k0, q)

ϑ′1(0, q)
ā2. (96)
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Fixing the amplitude ā, the wavevector k0 = r
N , where r is an integer to ensure the periodicity, and the initial shape

parameter q, completely determines the initial condition that will propagate as a wave, without deformation, at speed

v. Note that the change of variables, ai = 1
2e
−`i/2 leads to the conserved averaged length ¯̀ and ā = 1

2e
− ¯̀

2 . For this
solution, the spectrum of H(0) has two gaps (as a consequence of the symmetry with respect to E = 0): it is the
2-gap Ansatz which is thus the explicit solution of the BDK model in the Volterra case. Depending on r in k0 [55],
the degenerate eigenvalues of H(0) occur in a different order. As in Toda’s case, other special solutions are known
but will not be useful here.

F. Conclusion

In conclusion of this section, the simplest BDK model at integrable points given by Eq. (34) has explicit solutions
for the ground states of the chain configuration. The ground-states form a degenerate manifold of dimension one.
The expression of the ground state is parametrized by a single continuous parameter [30]:

• Toda case: the solution is the following 1-gap Ansatz. The chain configuration {ai}, {bi} is given by Eqs. (84)
(replacing vt by φ and fixing k0 = c):

ai(φ) = ā

(
ϑ3(ic+ φ, q)ϑ3((i+ 2)c+ φ, q)

ϑ23((i+ 1)c+ φ, q)

)1/2

,

bi(φ) = v̄ + v

(
ϑ′3(ic+ φ, q)

ϑ3(ic+ φ, q)
− ϑ′3((i+ 1)c+ φ, q)

ϑ3((i+ 1)c+ φ, q)

)
.

(97)

• Volterra case: the solution is the following 2-gap Ansatz. The chain configuration {ai} is given by Eq. (95)
(replacing vt by φ and fixing k0 = c):

ai(φ) = ā

(
ϑ3(ic+ φ, q)ϑ3((i+ 3)c+ φ, q)

ϑ3((i+ 1)c+ φ, q)ϑ3((i+ 2)c+ φ, q)

)1/2

, (98)

`i(φ) = ¯̀+ ln
ϑ3((i+ 1)c+ φ, q)ϑ3((i+ 2)c+ φ, q)

ϑ3(ic+ φ, q)ϑ3((i+ 3)c+ φ, q)
. (99)

In both cases, the energy of the configuration does not depend on the free parameter φ. It ensures that the CDW can
slide between the different degenerate states at no energy cost. This result, which holds at integrable points, is valid
for both the commensurate and incommensurate CDW. An example of plot of `i, Eq. (99) is given in Fig. 4 for two
degenerate solutions (corresponding to two different values of φ).

The parameters of the solutions (ā, v̄, q), or the independent parameters {Im} are obtained by solving the nonlinear
“gap equations”. The parameters {Im} also determine the entire band structure: the Peierls gap at the Fermi level
is open (and so is the symmetric gap with respect to E = 0 in the Volterra case) while all other secondary gaps are
closed, which is a specificity of these 1 and 2-gap Ansätze. Strictly speaking, the solutions are not only extrema, but
from an analysis of small fluctuations, they are minima [57].

For the generalized BDK model at integrable points (35), all g-gap Ansätze are possible extrema: it is not known
in this case which of them is the ground state and it certainly depends on the model parameters.

We emphasize that the degeneracies result, at least in the commensurate case, from the very special choice of the
BDK model W . The integrability of the Toda chain, for example, ensures that there is a canonical transformation
from {ai}, {bi} to action-angle variables {Im}, {ϕm}. A canonical transformation is a bijective nonlinear change of
coordinates [52], so that any generic model, not necessarily at integrable points, can be expressed in terms of the new
variables by

W ({ai}, {bi}) = Ω({Im}, {ϕm}). (100)

The BDK approach assumes that the model depends only on the {Im} and does not take into account the dependence
in the {ϕm}, which would lift the degeneracy of the solutions. The motion on a Liouville torus generated by the
Toda or Volterra equations implies no energy change in the Peierls model, thanks to this special choice [58]. We will
illustrate the lifting of the degeneracy for a generic model in section IV.
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FIG. 4. Example of two degenerate CDW ground states: the bond lengths `i according to Eq. (99) with φ = 0 and φ = 0.03.
The period is N = 21 sites and 2 unit-cells are shown with a density of electron pairs c = 8/21, ā = 0.25, q = 0.1. The small
zero energy deformation between the two curves is the phason mode.

IV. BEYOND INTEGRABILITY

In this section, our concern is to understand what happens when the BDK model departs from integrable points in
the parameter space. We will focus exclusively on the Volterra case, but our qualitative conclusions remain the same
in the Toda case.

On general grounds, one expects that the degeneracy of the exact solutions, parametrized by the continuous pa-
rameter φ that describes free sliding, should be lifted, because the BDK model would no longer depend solely on the
coefficients {Im} (see Eq. (100)). In that case, the states would be pinned. The situation is, however, more subtle.
The change of regime from freely sliding states to pinned states is characteristic of an Aubry transition and we will
show that such transitions occur here.

The Aubry transition, originally called the transition by breaking of analyticity, is associated to nonlinear terms in
the equations as well as to chaotic transitions [38, 59, 60]. Indeed, the minimization equations,

∀i, δW

δ`i
= 0, (101)

are essentially nonlinear equations for the chain configuration variables {`i} (for example see Eq. (B7) in appendix B).
They can be viewed as a discrete-time map (where i plays the role of discrete time) where `i is a function of the previous
`j , j < i. Since this map is nonlinear, a chaotic transition may take place when the nonlinearity is strong enough: from
the regular integrable solutions, the system can enter a stochastic regime characterized by the destruction of KAM tori
and the rising of chaotic regions in the phase space [38, 59, 60]. This is the stochastic regime qualitatively suggested
by Dzyaloshinskii and Krichever [37] for the present model. On the other hand, when the nonlinearity is small
enough, KAM tori (evolving from Liouville tori of the integrable system) may nevertheless survive in incommensurate
cases, thus preserving integrable sliding solutions. In a one-dimensional system as it is the case here, the Aubry
transition between the two regimes is characterized by the apparition of discontinuities in the envelope function of
the CDW modulation (which are nonanalyticities due to the destruction of KAM tori) [39, 42], which is defined and
computed below for the present model. Furthermore, in the stochastic regime, many metastable states emerge (at
higher energies) due to chaotic regions and coexist with the ground-state. It is important to stress that, although the
ground-states are obtained inside the stochastic (chaotic) regime, they remain either periodic (in the commensurate
case) or quasi-periodic (in the incommensurate case).

After the definition of the envelope function in section IV A, we examine two examples, a commensurate case,
c = 1/4 (in section IV B) and an incommensurate case, c = (3−

√
5)/2 (in section IV C).
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A. Definition of the envelope function, Aubry breaking of analyticity

Consider a wave with a modulated amplitude ai at site i and wavevector 2πc. The definition of the envelope
function [61] is aimed at filtering out the fast oscillations of the wave, which are necessarily discontinuous for a model
with discrete sites (such as that in Fig. 4). It will replace a fast cosine modulation, e.g. ai = u cos(2πic) by the 1-
periodic function, f(φ) = u cos(2πφ), i.e. f(ic) = ai. This definition allows one to address the issue of the continuity
or analyticity of the envelope function f .

In the incommensurate case, the wave is not periodic and c is an irrational number. There is an infinite number of
distinct amplitudes {ai}. The envelope function f is defined to be a periodic function with period 1, i.e. f(φ+ 1) =
f(φ), and

f(ic) = ai. (102)

Since the numbers ic (mod 1) cover densely the interval [0, 1] when c is irrational, the function f is well-defined.

In the commensurate case, the wave is periodic with c = r/N and period N . The wave is entirely determined by a
finite number of amplitudes {a1, . . . , aN}. The numbers φi = ic (mod 1) take N discrete values inside [0, 1], so that
the function

f(φi) = ai, (103)

is defined only at the N discrete points φi. To extend f to the entire interval [0, 1], one could choose other close
commensurabilities, for example,

cm =
mr + rp−1
mN +Np−1

. (104)

Indeed, when m increases, cm → c = r/N and the points φi = icm(mod1) fill more and more the interval [0, 1]. It
thus makes sense to define an envelope function f in [0, 1] as the limiting function when m → +∞. In practice, in
the incommensurate case as well, we consider a sequence of rational approximants of c, cn = rn/Nn (see Eq. 15), and
only define the envelope functions fn(φi) at the Nn points, φi = ic (mod 1). When n increases, the number of points
Nn increases and fn(φi) will converge onto f(φ) defined in the interval [0, 1].

At integrable points (as in section III), we have analytic solutions of the form,

ai(φ) = f(ic+ φ), (105)

where φ characterizes a given solution and f is periodic of period 1, see e.g. Eq. (98). If c is irrational, it is thus
exactly of the form (102). If c is rational, there is no difficulty since f does not depend on c and one can choose a close
irrational number for example. f is thus the envelope function. At integrable points, it is, therefore, a continuous
function, both in commensurate and incommensurate cases.

Away from the integrable regime, we will see the emergence of discontinuities in the envelope function: this is the
breaking of analyticity characterizing the Aubry transition. We will argue that it occurs abruptly for the commensurate
case. For the incommensurate case, the continuity of the envelope function may persist away from integrable points,
at least in certain regions of parameters.

B. Example of commensurate solution : c = 1/4

In this section, we consider the BDK model (Volterra case) at quarter filling c = 1/4. Since the chain has a
periodicity of N = 4 sites in this case, the present example is the simplest, yet nontrivial example where the BDK
results can be tested: the chain is defined by the only four inequivalent bond length variables, (`1, `2, `3, `4).

At integrable points, the ground state of the simplest BDK model [Eq. (34)] was argued to be the 2-gap Ansatz.
We will compare that result with the numerical one. Furthermore, we consider two kinds of perturbations: one
that conserves integrability (the generalized BDK model of Eq. (35)) in sections IV B 1-IV B 3. This allows us to
understand whether or not the other g-gap Ansätze with g > 2 could be the ground state of some generalized model.
In section IV B 4, we consider a perturbation that explicitly breaks integrability and compute the solutions numerically.
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1. Solving the “gap equations” at integrable points

At integrable points, the energy of the generalized BDK model takes the form

W =
1

S

∑
k

E1(k) +

2∑
m=0

ξ2mI2m, (106)

where only the first band (out of four) is filled. The model parameters are ξ0 = p/2, ξ2 = ξ and ξ4 (defined in
Appendix C). The model depends solely on the {Im} and the minimization leads to (Eq. (65)),

δW =

2∑
m=0

(J2m + ξ2m)δI2m = 0, (107)

J0, J2, J4 are given in Appendix C. By considering the different g-gap Ansätze, we obtain different “gap equations”.
Solving them allows to extract the optimal band structure parameters {Im}, and determine the stability of the different
phases in parameter space and the corresponding energies.

Generic 3-gap Ansatz

In the most generic case, the four bands are separated by three gaps, as in Fig. 3. We expect the distortions to be
generic in the phase space, so that all δIm must be independent. From Eq. (107) and the definitions of J0, J2, J4 in
Appendix C, the “gap equations” then write

1

S

∑
k

Q(E1(k))

Q′(E1(k))
= p, (108)

1

S

∑
k

A0E1(k)2

Q′(E1(k))
= −ξ, (109)

1

S

∑
k

A0

Q′(E1(k))
= ξ4. (110)

They are three nonlinear equations for the three unknowns I0, I2, I4. We have solved them numerically for given model
parameters. However, it is not always possible to find a set of I0, I2, I4 satisfying these equations. For example, if
ξ4 = 0, there is no solution to these equations, as originally shown by BDK. Indeed, it is clear that the left-hand-side
of Eq. (110) has Q′(E1(k)) < 0 for all k (see Fig. 3 (a)) and is therefore strictly negative: ξ4 must be negative, in order
to have a chance to have a 3-gap solution. Similarly it is also clear that p and ξ must be positive. The zone where
the three equations have a solution that, furthermore, respects the constraints (C5), is shown by the grey area in
Fig. 5. A direct way to determine it is to compute the three sums for a large sample of physically-allowed coefficients
I0, I2, I4 which values are chosen in a compact set. Outside this area, the 3-gap phase is no longer an extremum and
other phases have to be sought. Once I0, I2, I4 are known, the energy W of the 3-gap Ansatz (which depends only
on I0, I2, I4) can be computed. It is given as function of ξ4 in Fig. 6 (green circles) for p = 0.02 and ξ = 1, as an
example.

2-gap Ansatz

Consider the situation of Fig. 7 where the gap at E = 0 (k = 0) is closed. By imposing this extra condition, which
implies a condition on the {Im}, we impose a dependency relation of the δIm, as we have seen in section III B 1.
First, which symmetry of the chain configuration does correspond this degeneracy? The degeneracy implies that the
discriminant of the algebraic equation Q(E) = 1 vanishes, i.e. (see appendix C),

I4 = −2C4. (111)

Deriving this relation with C4 = 1
16e
−I0/2 leads to

δI4 +
1

2
I4δI0 = 0, (112)

which indicates that δI4 and δI0 are dependent. Note that it can be found without the explicit form of the discriminant,
thanks to Eq. (46). From the definition, I0 = −2

∑
i ln 2ai,

δI0
δai

= − 2
ai

, one obtains a series of equations,

ai
δI4
δai

= I4, (113)
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FIG. 5. Regions of existence for the various phases at c = 1/4: the 3-gap phase exists only in the grey area. The 2-gap phase
exists everywhere except in the “no solution” region where the constraints, `i > 0 for all i, are not fulfilled. The 0-gap phase
(not shown) exists wherever the other phases exist. Here, p = 0.02.

which implies that ai
δI4
δai

is a constant, independent of i. With the definition of I4, Eq. (C3) in Appendix C, these
equations become,

a1
2a3

2 = a2
2a4

2 = −I4
2
. (114)

It means that the distortions ui, away from the average, `i ≡ ¯̀+ ui satisfy

u1 = −u3 and u2 = −u4. (115)

This is a particular symmetry of the chain modulation. Any perturbation of the Hamiltonian respecting this symmetry,
whatever its strength, leaves the gap at zero energy closed [62]. This is the special 2-gap Ansatz for N = 4.

In the minimization equation (107), use the dependency relation (112) to replace δI4, and the independence of δI0
and δI2 to obtain the two “gap equations”,

J0 +
p

2
+

1

2
ξ4I4 +

1

2
J4I4 = 0, (116)

J2 + ξ = 0, (117)

which are rewritten

1

S

∑
k

1− cos kN

Q′(E1(k))
= −p− ξ4I4, (118)

1

S

∑
k

A0E1(k)2

Q′(E1(k))
= −ξ, (119)

thanks to A0I4 = −1 (which is zero discriminant condition) and Q(E1(k)) = cos kN . These are two nonlinear
equations for two unknowns variables I2 and I4, which are solved numerically. Alternatively, BDK replaces the sum
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FIG. 6. Comparison of energies for the various solutions, 0-gap, 2-gap, or 3-gap. We see that the 2-gap Ansatz is always at
lower energy, whatever ξ4. Here p = 0.02, ξ = 1. The values of ξ4 between the two dashed lines correspond to the physical
region of stability of the 3-gap state for ξ = 1 (see Fig. 5).
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FIG. 7. Band structure of the 2-gap Ansatz for N = 4: the bands have now two gaps. The gap at E = 0 is closed (compare
with Fig. 3).

over k by elliptic integrals that can be inverted with elliptic functions. It turns out that they have a solution in the
whole range of the parameter space shown in Fig. 5: the physical constraints Eqs. (C5) are also fulfilled, except in
the region called “no solution”. The energy of the 2-gap Ansatz is given in Fig. 6 (in red squares).

0-gap Ansatz (metal)

Consider finally that the gaps at k/π = 1/4 in Fig. 7 vanish (both the low energy and the high energy gaps have to
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vanish simultaneously). As above, it is possible to find an additional dependency relation from the zero discriminant.
In this case, we have an undistorted metallic chain respecting a translational symmetry with a single parameter to
optimize, its length. Its optimal energy is obtained in the thermodynamic limit and shown in Fig. 6 (black diamond).

By comparing the energies of the three considered states in Fig. 6, we see that the 2-gap Ansatz is always the lowest
energy state, whatever ξ4. It is lower than that of the metal (which proves the Peierls transition). It is also lower
than the 3-gap Ansatz in the stability region (in between the two dashed lines) where both states coexist. The two
energies are very close for ξ4 ∼ −2.5, because the third gap of the 3-gap Ansatz closes continuously and the two states
merge at the same time. These results have been confirmed by a direct numerical minimization (see section IV B 3).

All the g-gap solutions may be extrema of the energy, at the condition that the “gap equations” have a solution.
In the present example, where a perturbation ξ4 is added to the standard BDK model, the 2-gap Ansatz still remains
the lowest energy state.

2. Implicit solution: degenerate manifold of states

Once the parameters I0 (or C4), I2, I4 are known for given model parameters (as shown in the previous section),
one can obtain the distortions, ai. They can be obtained by solving the equations,

I2 = a1
2 + a2

2 + a3
2 + a4

2, (120)

I4 = −a22a42 − a12a32, (121)

C4 = a1a2a3a4, (122)

where I2, I4, C4 are given constants. Three equations in a 4D space (a1, a2, a3, a4) define, in general, a 1D manifold.
All points on this curve have the same Im and are therefore degenerate: they are all equally valid solutions. It is easy
to use Eqs. (121) and (122) to eliminate a3 and a4 and obtain two possible solutions,

I2 = a1
2 + a2

2 − I4
2

(
1

a12
+

1

a22

)
±
√
I24 − 4C2

4

2

(
1

a12
− 1

a22

)
, (123)

which defines two curves in the (a1, a2) plane, when I4 6= −2C4 (Fig. 8, left) or one when I4 = −2C4 (Fig. 8, right).
The solution for (a1, a2) is anywhere on these curves, and (a3, a4) are simply obtained from

a1
2a3

2 =
−I4 ±

√
I24 − 4C2

4

2
, (124)

a2
2a4

2 =
−I4 ∓

√
I24 − 4C2

4

2
. (125)

We note that a1a3 6= a2a4 when I4 6= −2C4 and can be interchanged by symmetry (they play the same role in the
translation). When I4 = −2C4,

a1
2a3

2 = a2
2a4

2 = −I4
2
, (126)

which is the symmetry responsible for the absence of zero-energy gap in the spectrum of the 2-gap state, already
discussed in Eq. (114). One can define an order parameter,

M = a1
2a3

2 − a22a42 = ±
√
I24 − 4C2

4 , (127)

that is zero in the 2-gap phase and nonzero in the 3-gap phase.
In both cases (2 or 3 gaps), the solutions lie in a 1D manifold (with one or two curves), so there is a continuous

degeneracy that can be characterized by a single zero-energy phason mode. The solutions are unpinned commensurate
CDW. The metal (or 0-gap) state is obtained from the 2-gap one when the “radius” of the 1D manifold vanishes.
Indeed, the right-hand-side of Eq. (123) has a minimum which is reached at the uniform state a1

4 = a2
4 = − I42 when

I4 = −2C4. This minimum is represented by a point (in black on the diagonal a1 = a2 of Fig. (8). The degenerate
manifold continuously evolves when the gaps successively close, by the coalescence of the two curves onto a single one
and the shrinking of the remaining curve onto a point.

In summary, for commensurate quarter filling, the distortions are nonzero but the modulation can be continuously
deformed without energy cost. The sliding property results from the special choice of the energy that depends only on
the Im of the band structure. For larger N , the degenerate manifold is of higher dimension, and one has, in general,
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FIG. 8. Degenerate 1D manifolds showing the possible values of a1, a2 for the 3-gap Ansatz (left) and the 2-gap Ansatz (right,
continuous line) for p = 0.02, ξ = 1 and ξ4 = −2 [Eq. (123)]. The discrete blue points are from direct numerical minimization
starting from random configurations (section IV B 3), and fall precisely onto the calculated line. The black point is the
optimal metal (same parameters). Away from integrability (λ 6= 2), the continuous degeneracy is lifted since all the random
configurations fall onto the same set of discrete points, related by translation symmetry: pink points for λ = 1.98, 1.95, 1.9, red
points for λ = 2.03, 2.06, 2.1 (same other parameters).

more phason modes. For given model parameters, we have found that the lowest energy state is the 2-gap state. This
approach allows one to visualize the degenerate chain configurations, even for the higher-energy Ansätze.

We now solve numerically the minimization problem for the variables ai, instead of solving the nonlinear “gap
equations” and taking a solution from the degenerate manifold. This allows one to check whether the lowest energy
state found in section IV B 2, is indeed a minimum. Since one knows, from the Volterra classical integrable model,
the exact form of the distortions that give a spectrum with 2 gaps, one can compare the numerical solution with the
exact one. Furthermore, one can modify the model, such as adding terms that cannot be expressed in terms of the
{Im} and observe how the commensurate phases acquire some pinning, as generally expected.

3. Numerical minimization compared to the exact solution

For a given set of model parameters at integrable points, we find the ground-state configurations of the chain
(a1, a2, a3, a4) by a direct numerical minimization of the energy W (see appendix E). The various solutions are
obtained by minimization of many randomly distorted chains as initial conditions: many degenerate solutions are
thus obtained. For example, for p = 0.02, ξ = 1, ξ4 = −2, the solutions are shown in Fig. 8 (right) in blue points:
they fall perfectly onto the expected degenerate manifold of the 2-gap Ansatz (in solid line). Once the {ai} are known,
the values of Im are computed and are in perfect agreement with those extracted by solving the “gap equations”.
Furthermore, we find that the 2-gap phase is always the ground state, as originally shown by BDK for ξ4 = 0. When
ξ4 varies, the 3-gap phase is never found as a minimum, although it corresponds to a higher-energy extremum in the
parameter region delimited by the grey area in Fig. 5. It may be either a maximum or a metastable state with a small
basin of attraction.

In Fig. 9, we plot directly the four ai for various degenerate solutions (in blue solid circles). Numerically, the
points are obtained by fixing the first distortion a1 to various exact values and let the other distortions relax in the
minimization procedure. Fixing a1 is done here for representation purpose, so as to plot as a function of a phase φ.
The exact result for the 2-gap Ansatz is given by Eq. (98):

ai(φ) = ā

(
ϑ3(ic+ φ, q)ϑ3((i+ 3)c+ φ, q)

ϑ3((i+ 1)c+ φ, q)ϑ3((i+ 2)c+ φ, q)

)1/2

, (128)
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FIG. 9. Various degenerate solutions for the CDW distortions a1, . . . , a4 in the integrable case (λ = 2): numerical results (blue
circles) and exact results (lines). Here p = 0.02, ξ = 1, ξ4 = 0 → I0 = 6.321, q = 0.225. In the nonintegrable case (λ 6= 2), the
solutions are non degenerate and are shown by the four pink points (λ = 1.9) -the middle point is twice degenerate, and by the
four red points (λ = 2.1) -the two points are twice degenerate, corresponding to the structures shown in Fig. 11.

for i = 1, . . . , 4. The parameters of the solution are all fixed (except φ): c = 1/4 ensures that the single gap opens

at the Fermi energy; ā = 1
2e
− I0

2N , I0 and I2 were obtained from section IV B 1 by solving the “gap equations”. Since

I2 =
∑N
i=1 ai

2 is a function of q, the parameter of the ϑ3 function, q is numerically determined. Therefore, in the
exact solution above, there is no free parameter left, except φ which reflects the continuous degeneracy, i.e. the
one-parameter family of ground states. The four curves ai(φ) are plotted in Fig. 9 and are in perfect agreement with
the numerical results, thus confirming that the 2-gap Ansatz is the ground state at integrable points.
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FIG. 10. Envelope functions defined by Eq. (105) at the integrable point λ = 2 (continuous blue curve) and computed
numerically at λ = 1.99: the points for c = 11/43, 21/83, 31/123 (magenta, orange, red) converge onto the limit envelope
function of c = 1/4 (discontinuous dashed line at the limit). The four points for c = 1/4 at λ = 1.99 are also shown (large pink
points). Here p = 0.02, ξ = 1. There is thus an abrupt Aubry transition at λ = 2 in this simple commensurate case c = 1/4.

Two special configurations have to be noticed. First, note that a change of φ by φ+1/4 corresponds to a translation
of the bonds, so that in Fig. 9 the same translated configurations are found. At φ = 0 (or equivalently at φ = 1

4 ,
1
2 ,

3
4 ),

the configuration consists of two neighboring short bonds of equal length (a trimer) followed by two long bonds of equal
length. At φ = 1

8 = 0.125 (or at equivalent points), the configuration has a single short bond (a dimer) surrounded
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by two equal-length bonds, followed by a longer bond. As we have emphasized, these configurations are degenerate
with many others.

The envelope function f , defined by Eq. (105), is thus directly obtained from Eq. (128). f is periodic with period
1, and continuous in this integrable case. It is represented by the solid line (for λ = 2) in Fig. 10.

4. Numerical minimization for nonintegrable cases: Aubry transition

We now consider the BDK model (36) away from integrable points,

W =
1

S

∑
k

E1(k) + ξ

N∑
i=1

ai
λ +

1

2
p

N∑
i=1

`i. (129)

When the ratio of length scales λ 6= 2, the model does not depend solely on the {Im} and is no longer integrable.
The minimization of W is therefore now exclusively numerical: the bond lengths {`i} (or {ai}) are self-consistently
determined numerically (see Appendix E).

For λ < 2, we find the chain configuration shown in Fig. 11 (left): the four atoms are represented in their effective
positions (atom 1 is fixed at the origin). The short bond (here between atoms 2 and 3) is represented by a thick line
and corresponds to the formation of a dimer, where the pair of electrons ensures the covalent bonding: the unit-cell,
shown by a dashed rectangle, is periodically repeated, giving a

L1SL1L2L1SL1L2 . . . (130)

sequence, where L1 and L2 are two different long bonds and S is the short dimer bond. The electronic density is
stronger on the two sites of the dimer, but nonzero elsewhere and is shown in Fig. 11 by the color code. Contrary to
the integrable case, starting the minimization from many random configurations always leads to the same solution,
up to the four translations (which move the strong bond to any one of the four bonds). The continuous degeneracy
has been lifted and one of the solutions has now the lowest energy: the solution corresponds to a slight modification
of the solution φ = 1

8 . The comparison is given in Fig. 9 where this solution is indicated by pink circles (the middle
circle corresponds to the two equal distortions). Similarly, in Fig. 8, the new solution, instead of being continuously
degenerate, corresponds to four discrete pink circles, which can exchanged thanks to the translational symmetry.

It is still possible to define an envelope function f , as explained in section IV A. For c = 1/4, the numbers ic (mod 1)
take only four values, 1/4, 1/2, 3/4, and 1 (= 0 (mod 1)), so that f can be defined only at those four points by
f(1/4) = a1, f(1/2) = a2, f(3/4) = a3 and f(1) = a4. They are represented by the large pink points in Fig. 10.
To define the function outside these points, consider the commensurabilities cm = (m + 1)/(4m + 3), in particular
11/43, 21/83, 31/123 which are closer and closer to c = 1/4. The points icm (mod 1) fill more and more densely the
interval [0, 1] when m increases and a true envelope function can be defined by the limit of successive set of points
and is represented by a dashed line in Fig. 10. At λ = 1.99, that limiting function is not a continuous smooth curve
but has clear abrupt steps. At λ = 2, the envelope function, represented by a solid line in Fig. 10 is continuous. The
lifting of the degeneracy away from integrable points is associated with the opening of discontinuities in the envelope
function. An Aubry transition occurs abruptly at λ = 2 in the commensurate case.

For λ > 2, the situation is different: the degeneracy is also lifted but the structure selected is different (see Fig. 11,
right). A trimer is formed with a sequence of bonds

LSSLLSSL . . . , (131)

i.e. two short (S) and two long (L) bonds repeating. The points a1, a2 are also shown in Fig. 8, they are slightly
away from the degenerate manifold and at a different place than for λ < 2. It is also reported in Fig. 9 by the red
circles, and corresponds to the φ = 0 structure. The envelope function can be defined as in the previous paragraph
and is also discontinuous.

Importantly, in both cases, the continuous degeneracy is lifted and the structure, therefore, cannot be deformed
continuously at constant energy. The gap at k = 0 (as in Fig. (12), right) is now open as in the 3-gap solution, but, with
a difference in the configurations and no continuous degeneracy. Thus, in this generic case away from integrability,
we find what one expects from general arguments: a definite set of distortions related by discrete symmetries, while
all the gaps are opened and there is no degeneracy: the commensurate CDW is pinned. The integrable case at λ = 2
thus appears as a special point where not only the two configurations at λ < 2 and λ > 2 become degenerate, but,
also appears a continuous manifold of degenerate states, thus allowing the structure to be continuously deformed at
no energy cost. It has the peculiar property that a commensurate charge-density wave achieves Fröhlich conductivity.
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FIG. 11. Solution in the nonintegrable case, λ 6= 2. λ < 2 (left): the pair of electrons ensures a strong covalent bond between
sites 2 and 3 (dimer), other bonds are weaker. λ > 2 (right): the pair of electron occupies a trimer, other bonds are weaker.
The unit-cell (dashed rectangle) with N = 4 atoms is periodically repeated. The density of electrons is indicated by the color
scale, it is strong in red and weaker in blue. The integrable case appears as a special point where dimer and trimer, as well as
continuous configurations between them, are degenerate. Here, p = 0.02, ξ = 2, ξ4 = 0.
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FIG. 12. Band structure of the commensurate CDW at quarter filling (filled band showed with red points) for the integrable
case λ = 2 (left) and nonintegrable case λ = 1.6 (right). The gap at E = 0 opens when λ < 2 and the CDW gets pinned.
Here, p = 0.02, ξ = 2, ξ4 = 0. The black lines are the band structure for the uniform structure with the same averaged length
(metallic state), for comparison: not only the Peierls gap opens at the Fermi energy but all energy levels are affected.

To show more clearly the lifting of the continuous degeneracy, we continuously deform the solutions. In this purpose,
we fix the length of the strong bond to a given value ` with `min ≤ ` ≤ `max, where `min is the length of the strongest
bond (S) in the ground state and `max that of a weaker bond (L or L1), and minimize the energy W numerically. For
` = `min or ` = `max, we have W = Wmin. In Fig 13, we plot the difference of energy W −Wmin as a function of `.
For λ = 2, we see that changing ` in the specified range does not change the energy: this is the continuous degeneracy
of the integrable case. For λ 6= 2, the degeneracy is lifted and the energies of the intermediate configurations with
`min < ` < `max are higher. There is an energy barrier which is necessary to deform the CDW, called the Peierls-
Nabarro barrier. Note that it can be weak near λ = 2, since it continuously vanishes. To interpret its magnitude, it
is interesting to compare with the the dimer case. Consider three sites: sites 1 and 2 are separated by the vacuum
length, `0 (defined in Eq. (11)) and site 3 is at a larger distance. What is the energy needed to transfer the first
bond onto the second? In the limit when the total length becomes large enough, it is the energy corresponding to the
separation of the two bound atoms (using Eq. (10) with ` = `0),

W −Wmin =
1− 1

λ

(ξλ)
1

λ−1

. (132)

For λ = 1.9 and ξ = 1 (as chosen in Fig. 13), one gets W −Wmin = 0.2321, which is considerably larger than the
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FIG. 13. Energy barrier of Peierls-Nabarro to transfer a strong bond (with its electrons) onto the next bond, for λ = 1.9, 2, 2.1.
The barrier vanishes at the integrable point λ = 2 and the commensurate CDW is unpinned. Here, p = 0.02, ξ = 1, ξ4 = 0.

magnitude of the barrier at p = 0.02. At larger pressures, when the Peierls gap becomes smaller, the barrier of
the three site problem can be considerably smaller. The small amplitude shown in Fig. 13 is thus the result of a
combination of large pressures and proximity to the integrable point (where the barrier vanishes).

C. Example of incommensurate solution : c = 2− ϕ

We now consider an incommensurate filling, which we choose to be c = 3−
√
5

2 = 2 − ϕ ≈ 0.38197 . . . , where ϕ is
the golden number. In order to study this case, we approximate c by a sequence of commensurate fractions rn/Nn
obtained from continued fraction:

c ∼ 0

1
,

1

2
,

1

3
,

2

5
,

3

8
,

5

13
,

8

21
,

13

34
,

21

55
,

34

89
,

55

144
, . . . . (133)

This sequence converges to c (Fig. 14), with an error smaller than 1/N2
n [45]. Various chains of period Nn with rn pairs

of electrons will be considered and Nn → +∞ corresponds to the incommensurate limit. The numerical minimization
is done for the BDK Volterra model at λ = 2 (integrable case) and away from the integrable point at λ 6= 2.

1. Integrable case

In the integrable case, λ = 2, we have minimized numerically the energy of various chains with the successive
rational approximants of c. In Fig. 15 (top), we plot (`i − ¯̀)/¯̀, where `i are the optimal distortions obtained and ¯̀

the average bond length, versus ic (mod 1) at p = 0.006, ξ = 2 and for various rational approximants of c. When
the approximant gets better, the numbers irn/Nn (mod 1) fill more and more the [0, 1] segment, allowing to visualize
more clearly the envelope function. The envelope function clearly appears continuous. On the other hand, the exact
solution for the bond length `i is given by Eq. (99),

`i(φ) = ¯̀+ ln
ϑ3((i+ 1)c+ φ, q)ϑ3((i+ 2)c+ φ, q)

ϑ3(ic+ φ, q)ϑ3((i+ 3)c+ φ, q)
, (134)

where i = 1, . . . , L. Here and above, we have chosen a given φ which reflects the simple possible translations. The

averaged bond length ¯̀ is known from the numerics. The parameter q = 0.248 is deduced from I2 =
∑N
i=1 ai(φ)2. The

envelope function is given by Eq. (134) (shown by the solid line in Fig. 15 (top)). The agreement between numerical
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3 − 5
2

FIG. 14. The first rational approximants of 3−
√
5

2
given by Eq. (133).

results and the analytic result of BDK is excellent (there is no free parameter). It confirms that the 2-gap Ansatz is
the ground state in this incommensurate case at integrable points.

The continuity of the envelope function ensures that the energy barriers for the CDW to slide are vanishingly small.
Indeed, to transfer the strongest bond (and its electrons) on the next one, one finds a slightly weaker bond (by a
vanishing quantity in the incommensurate limit) somewhere along the chain: a new state, obtained by translating the
original state so that the slightly weaker bond is placed on the original strongest bond, has almost the same energy. A
very small barrier (vanishingly small in the incommensurate limit) has to be overcome. By iterating this procedure,
one understands that there is no energy barrier to elongate the first bond (and reduce the second bond).

2. Nonintegrable case: Aubry transition

Away from integrability when λ is decreased to λ = 1.9, one sees in Fig. 15 (bottom) that the envelope function is
no longer continuous but has gaps at several places. This is the breaking of analyticity, which occurs in other similar
models [39, 42, 43]. The chain configuration can be described in the limit of small pressure (e.g. p = 0.006). For
a rational approximant c = r/N , there are r short bonds which form distinct local dimers or strong covalent bonds
in the unit-cell of N sites (see Fig. (16) when c = 5/13). This explains the r lower distinct values of (`i − ¯̀)/¯̀ in
Fig. 15 (bottom). The dimers occur in a special sequence (see Fig. (16)) which corresponds to a uniform structure
(the definition of uniform structures is found in Ref. [63]): this way, the pairs of electrons located on each dimer gain
the most energy.

This analysis only stands for low enough pressures. When the pressure increases, as shown in Fig. 17, the discon-
tinuities in the envelope function decrease and vanish above some critical pressure. The envelope function becomes
continuous in the incommensurate limit and the phase is sliding as in the integrable case. This is an Aubry transition
from a high-pressure unpinned phase to a low-pressure pinned phase. It is similar to that occurring in the SSH model
as function of pressure [39, 42] or electric field via an electromechanical effect [43]. The corresponding band structures
are shown in Fig. 18: the main Peierls gap does not change much but the secondary gaps are clearly visible at small
enough pressures. While the transition is an insulating to metal transition, the electronic gap remains open, but the
deformation of the incommensurate CDW leads to Fröhlich conductivity.

The order parameter of the Aubry transition can be taken as the main gap in the envelope function (as in Fig. 17).
It is plotted as a function of pressure in Fig. 19. While it shows a smooth crossover for c = 5/13, one sees that
the crossover is much sharper for c = 34/89, which indicates the onset of a transition in the incommensurate limit:
the order parameter vanishes linearly with pressure (except for a very slow convergence of the minimization at the
transition). The energy is, however, continuous at the transition (see the inset of Fig. 19). The Peierls-Nabarro
barrier also vanishes at the transition. The barriers and their evolution as a function of pressure are shown in Fig. 20.
As in the commensurate case, the barriers increase slowly in the pinned phase and remains much smaller than the
zero-pressure limit.
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FIG. 15. Envelope functions of the optimal bond lengths for the incommensurate CDW with various rational approximants.
Top: integrable case (λ = 2), continuous cnoidal wave. We show the exact result (solid line) from Eq. (134). Bottom:
nonintegrable case (λ = 1.9), discontinuous envelope. Here p = 0.006, ξ = 2.

At strong pressures, the length of the chain must be small and each bond is compressed. It turns out that not only
the averaged bond length is small but the distortions around the average `i − ¯̀ = δ`i are small. For example, for
p = 0.1, the result of the numerical minimization [64] is given in Fig. 21. Both in the integrable and nonintegrable
cases, we find a standard cosine CDW. In the integrable case, the exact solution can be expanded when q → 0, by
keeping the first term in the Fourier series of ϑ3(z, q) [Eq. (85)],

`i = ¯̀+ u cos(2πic+ φ), (135)

where u = 8q sin(πc) sin(2πc) → 0 and φ a phase. The Peierls Ansatz is exact in this limit. Since u � ¯̀, the model
can be expanded around a true metallic state and the perturbative approach summarized in section II D is essentially
correct.

What makes the Peierls approach break down at smaller pressures with the emergence of discontinuities in the
envelope function? This is precisely a regime where the nonlinearities in δ`i become important. When δ`i get larger,
the Hamiltonian acquires a large modulated perturbation. The minimization equations (39) get larger nonlinear terms
in δ`i and define real nonlinear maps. In these maps, the growing nonlinearities are eventually responsible for the
destruction of the KAM tori. It is therefore not sufficient to treat the problem in perturbation theory, nor to restrict,
as it is done in the standard Peierls approach, the effect of the modulated potential to the energy levels close to the
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FIG. 16. Ground state configuration for a chain of period N = 13 filled with 5 pairs of electrons (c = 5
13

), in the nonintegrable
case (λ = 1.9) and low enough pressure (here p = 0.006) to be below the Aubry transition : the CDW form local dimers (five
strong covalent bonds with the five pairs of electrons). The scale on the right is the electronic density.

Fermi energy. We have in particular observed that the whole spectrum is modified with respect to that of the metallic
state (see e.g. Fig. 12). The linear response and the choice of the Peierls Ansatz obviously miss the nonlinear regime.

Although it is difficult to represent the KAM tori in such high-dimensional phase-space, we show some sections
of them by plotting ai+1 as a function of ai, i = 1, . . . , N , in Fig. 22. For λ = 2 and a given pressure (Fig. 22
(left)), the set of points corresponding to the exact solution forms a regular “trajectory” and corresponds to a section
of the Liouville torus on which the solution takes place. When λ = 1.9 (at the same pressure), one sees that the
torus is destroyed. Similarly in Fig. 22, right, one sees the effect of the external pressure at nonintegrable points:
regular trajectories corresponding to continuous solutions still exist, they are sections of the KAM tori, but eventually
at smaller pressures, the KAM tori are destroyed. This is another representation of the Aubry transition, which
emphasizes the connection with nonlinear dynamical systems.

It is also important to stress that the SSH Hamiltonian (see Fig. 1) is a linearized version of the BDK model but
also exhibits an Aubry transition [39]. The energy and the minimization equations remain nonlinear in the local
modulation amplitudes. However, the SSH model breaks down at strong couplings when the distortions become large
enough: the hopping amplitude changes sign. The BDK model does not suffer such a setback: the hopping remains
well-defined. This allows the chain to remain stable in the weak pressure regime where the averaged bond length and
the modulation amplitudes get larger. Thus the chain can be connected to the zero pressure limit, where the atoms
form isolated molecules: this is the “anti-integrable” limit (in the language of Aubry and Abramovici [59]) where the
physics is local. This limit does not exist in the SSH model.

Note, however, that, when the Aubry transition takes place, the amplitudes of the distortions can be much larger
than experimentally observed: this suggests that the intrinsic pinning would occur at too strong energy scales. Pinned
CDWs with much smaller amplitudes can be achieved in some other nonlinear models. Indeed, in order to get an
Aubry transition, the nonlinearities need to be above a threshold: this does not imply that the distortions should be
large, only the local gradients. The local gradients can be sufficiently large if the Hamiltonian contains electron-lattice
interactions that are strong nonlinear functions of the atomic distance. An example of such a model will be provided
in a further publication [65].
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FIG. 17. Envelope functions for the c = 34
89

approximant of the incommensurate case, for different pressures p, showing an
Aubry transition from a continuous to a discontinuous envelope function. Here λ = 1.90, ξ = 2.

V. CONCLUSION

While a 1D Peierls system develops a 2kF charge-density wave at low temperatures, the shape of its envelope
function is an interesting issue, both theoretically and experimentally [66]. We have emphasized here that the shape
depends on the interaction terms and energy parameters and implies qualitative physical consequences.

First, for the BDK model at integrable points, we have confirmed numerically that its ground-state is a cnoidal
charge-density wave (1-gap state in the Toda case, 2-gap state in the Volterra case), as originally predicted [30]. The
other g-gap Ansätze, which develop more zero-energy phason modes, cannot be excluded for a generalized BDK model:
we have investigated in details the example of the quarter-filled chain, and found that, although the g-gap states could
be metastable, the cnoidal wave remains the ground state in that case. The BDK model thus provides an interesting
example of a nonlinear model where the shape of the CDW can be explicitly calculated in a nonperturbative regime.
It reduces to the Peierls cosine shape in the perturbative regime.
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FIG. 18. Energy bands in the unfolded Brillouin zone for the c = 34
89

approximant of the incommensurate case, for different
pressures p showing gap openings at low pressures. λ = 1.90, ξ = 2.

Second, when integrability is broken, we have explained that the commensurate phases are pinned, as expected
on general grounds. The absence of pinning at integrable points and for the commensurate phases results from the
fine-tuning of the model, which consists of defining a constant energy on a Liouville torus of the underlying classical
integrable model.

Now, in the incommensurate case and thanks to KAM theorem, two situations arise:

• At strong pressures, the bonds are contracted and their lengths weakly modulated. The resulting modulated
potential implies weak nonlinearities in the ground state equations. There is no fundamental difference with
the integrable case and this reflects the KAM theorem in the weak nonlinear regime. The envelope of the wave
remains continuous and close to a cnoidal wave. The incommensurate CDW phase is sliding. It corresponds to
a dynamical strong-pressure fixed-point and to Peierls-Fröhlich phase.

• At weak pressures, the bonds are elongated and more strongly modulated. The modulated potential being
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larger, the nonlinearities become important. The system enters the nonlinear stochastic regime in which the
KAM tori are broken. The envelope function of the wave is discontinuous. The CDW phase is intrinsically
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FIG. 22. Ground state solutions represented in some sections of the phase-space (ai+1, ai), i = 1, . . . , N . Left: a section of the
Liouville torus (λ = 2) and its destruction at λ = 1.9, for p = 0.006, ξ = 2 and c = 55/144. Right: persistence of KAM tori at
strong pressures away from integrable points and its eventual destruction at small pressures, with the same data as in Fig. 17.

pinned. Atoms tend to form some oligomers (like dimer or trimer local structures): the system has evolved
towards an “anti-integrable” limit. It corresponds to a dynamical weak-pressure fixed point. Many metastable
states with local defects emerge at higher energies.

In the incommensurate case, an Aubry transition (which is not a crossover) takes place between these two regimes.
This is a form of transition to chaos in which Liouville (KAM) tori of the integrable model are destroyed [38]. The
resulting pinning of these states appears as an intrinsic nonlinear mechanism. In this case, the Peierls approach
breaks down because the modulated potential is strong and must be treated nonperturbatively: the band structure
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is strongly affected as a whole, even far from the Fermi energy, which is confirmed by some recent experimental
results [13]. These states with discontinuous envelope functions could explain the observed charge-density waves and
their pinning. Eventually, the exact states with continuous envelope functions found in the BDK model at integrable
points do not exhaust the physical possibilities of Peierls systems.
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Appendix A: Equation for the electronic band structure of a 1D problem

How do we compute the energy bands of a 1D periodic tight-binding model with arbitrary nearest neighbor hoppings
and potentials? In this appendix, we show that the electronic bands Eν(k) satisfy an algebraic equation of the form:

Q(E) = cos kN, (A1)

where N is the period and Q(E) a polynomial of degree N .
Let us consider a Bloch-wave function with wavevector k, amplitude ψi(k) at the site i and eigenvalue E = Eν(k) =

Eν(−k). It satisfies the eigenequation for all sites i,

− aiψi+1(k)− ai−1ψi−1(k) + biψi(k) = Eψi(k). (A2)

The successive amplitudes can be obtained by iteration:(
ψi+1(k)
ψi(k)

)
=

(−1)

ai

(
E − bi ai−1
−ai 0

)(
ψi(k)
ψi−1(k)

)
. (A3)

Starting from ψ1(k) and ψ2(k), we iterate the relation over one period N , and we get(
ψN+2(k)
ψN+1(k)

)
=

(−1)N

CN

(
p1(E) p2(E)
p3(E) p4(E)

)(
ψ2(k)
ψ1(k)

)
≡ T

(
ψ2(k)
ψ1(k)

)
, (A4)

where CN =
∏N
i=1 ai. pi(E) are polynomials in E with real coefficients: p1(E) is of degree N , where the coefficient of

EN is 1. p4(E) is of degree N − 1. For a Bloch wave function, one has ψi+N (k) = eikNψi(k), i.e.(
ψN+2(k)
ψN+1(k)

)
= eikN

(
ψ2(k)
ψ1(k)

)
. (A5)

This vector t (ψ2(k), ψ1(k)) is an eigenvector of the matrix T with eigenvalue eikN .
The same result holds for the wavevector −k and in that case, the eigenvector is t (ψ2(−k), ψ1(−k)) with the

eigenvalue e−ikN . Eventually, one gets the two eigenvalues of the 2× 2 matrix T , eikN and e−ikN , which gives

eikN + e−ikN = Trace(T ) = 2 cos(kN). (A6)

By defining

Q(E) =
1

2
Trace(T ), (A7)

one gets Eq. (A1). On the other hand, half the trace of T is given by

Q(E) =
(−1)N

2CN
(p1(E) + p4(E)) = A0(EN − I1EN−1 + · · · − IN ), (A8)

which is Eq. (21).



40

Appendix B: Energy gradients and nonlinear minimization equations

We calculate the gradient of the energy with respect to the classical variables {ai} (local hoppings) and {bi} (local
potentials) and obtain the minimization equations.

In the Hamiltonian (9), let i be an arbitrary site, where bi is changed into bi + δbi, let other bj , j 6= i, unchanged.
At first order, one gets the following perturbation:

δH/t = δbi
∑
σ

c†iσciσ + 2ξbiδbi. (B1)

At first order in perturbation theory, it gives an energy correction δW = 〈δH〉/(2St),

δW =
1

2S
δbi
∑
σ

〈c†iσciσ〉+
ξ

S
biδbi. (B2)

The gradient is

δW

δbi
=

1

2S

∑
σ

〈c†iσciσ〉+
ξ

S
bi, (B3)

and the minimization equations δW/δbi = 0 write

2ξbi = −
∑
σ

〈c†iσciσ〉 (B4)

where
∑
σ〈c
†
iσciσ〉 ≡ ni is the electronic density at site i. The linear response consists of linearizing these equations, for

example, when the instability of a metal is studied. In this case, using bj = b̄+ δbj , one has ni = n
(0)
i +

∑
j δbj

∂ni
∂bj
≡

n
(0)
i +

∑
j χijδbj where χij is the electronic susceptibility of the metal. In general, these equations are coupled

nonlinear equations, the right-hand-side being a nonlinear function of {aj}, {bj}. The aim of the present paper is to
point out the effects of the nonlinearities and solve the nonlinear equations.

Similarly for the hopping variables ai = 1
2e
− `i2 , or the bond length `i, consider a change `i → `i + δ`i for a site i,

leaving `j , j 6= i unchanged. The corresponding energy change at first-order is

δW =
1

8S
e−

`i
2 δ`i

∑
σ

〈c†i+1σciσ + h.c〉 − λ

2S
ξ(

1

2
e−

`i
2 )λδ`i +

p

2S
δ`i, (B5)

and the gradient writes

δW

δ`i
=

1

4S
ai
∑
σ

〈c†i+1σciσ + h.c〉 − λ

2S
ξai

λ +
p

2S
. (B6)

The extrema should satisfy δW/δ`i = 0, i.e.

λξai
λ =

1

2
ai
∑
σ

〈c†i+1σciσ + h.c〉+ p, (B7)

which involve the bond charge
∑
σ〈c
†
i+1σciσ+h.c〉, which is also a nonlinear function of the classical variables. Eqs. (B7)

and (B4) form coupled nonlinear equations for {ai} (or {`i}) and {bi}.

Appendix C: Energy gradients, explicit example of c = 1/4

We illustrate the derivation of the energy gradients δW/δIm in the Volterra case at quarter-filling, c = 1/4, for
which the periodicity of the chain is N = 4.

We have seen that to obtain the energy bands and the characteristic polynomial of H(k), it is convenient to define
the polynomial Q(E), Eq. (21), which writes, for N = 4,

Q(E) = A0(E4 − I2E2 − I4). (C1)
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It only involves even powers of E (giving a E → −E symmetry), so the only nonzero Im terms are

I2 = a1
2 + a2

2 + a3
2 + a4

2, (C2)

I4 = −a22a42 − a12a32, (C3)

C4 = a1a2a3a4. (C4)

We use also A0 = 1
2C4

and C4 = 1
16e
− I02 . A generic example of plot of Q(E) is given in Fig. (3) (a). Because the

model makes sense only when `i > 0, i.e. ai = 1
2e
− `i2 < 1

2 , the coefficients follow

0 < I2 < 1, −1

8
< I4 < 0, 0 < C4 <

1

16
. (C5)

For N = 4, we can explicitly solve the algebraic equation,

Q(E) = cos kN. (C6)

The solutions are the four energy bands (supposing I22 ≥ 4(−I4 + 2C4)):

Eν(k) = ±

√
1

2

(
I2 ±

√
I22 + 4(I4 + 2C4 cos 4k)

)
. (C7)

A plot of the energy bands is given in Fig. 3 (b): the four bands are separated by three gaps. They are symmetric
with respect to E = 0, thanks to the special symmetry mentioned above. Note that the energy bands are expressed
in terms of I2, I4, C4.

At c = 1/4, the lowest band (ν = 1) is filled and the others empty. One wants to minimize the generalized BDK
energy,

W =
1

S

∑
k

E1(k) +

2∑
m=0

ξ2mI2m, (C8)

The model parameters are ξ0 = 1
2p, ξ2 = ξ and ξ4. The gradient of the energy writes

δW =
1

S

∑
k

δE1(k) +

2∑
m=0

ξ2mδI2m. (C9)

We follow the same procedure than that leading to Eq. (50) and get

1

S

∑
k

δE1(k) =

2∑
m=0

J2mδI2m, (C10)

where

J0 = − 1

2S

∑
k

Q(E1(k))

Q′(E1(k))
, (C11)

J2 =
1

S

∑
k

A0E1(k)2

Q′(E1(k))
, (C12)

J4 = − 1

S

∑
k

A0

Q′(E1(k))
, (C13)

which are sums over k in the first Brillouin zone. J0, J2 and J4 are functions of I0, I2 and I4. With these definitions,
Eq. (C9) writes

δW =

2∑
m=0

(J2m + ξ2m)δI2m, (C14)

Eventually, the energy gradients are given by

δW

δI2m
= J2m + ξ2m ∀m = 0, 1, 2. (C15)
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Appendix D: Energy gradients for g-gap Ansätze

In this appendix, we find the expression of the gradient of the energy of the integrable model for the special g-gap
Ansätze. The general expression Eq. (50) can be expressed in terms of the remaining independent δIm, leading to
Eq. (64).

Suppose that the spectrum has g gaps (instead of N − 1), which means that N − 1− g gaps are accidentally closed.
In other words, the polynomial of degree 2N ,

R2N (E) = 1−Q(E)2, (D1)

the zeros of which gives the energy of the band edges, has N − 1− g double roots, ei (which correspond to degenerate
band edges). It can be written,

R2N (E) = P2g+2(E)

N−1−g∏
i=1

(E − ei)2, (D2)

where P2g+2(E) is a polynomial of degree 2g + 2.
On the other hand, each closed gap (corresponding to a double root ei) gives a relation of the form (Eq. 61),

N∑
m=0

lm(ei)δIm = 0, (D3)

where

l0(E) ≡ −1

2
Q(E), (D4)

lm(E) ≡ A0E
N−m ∀m ≥ 1. (D5)

The double roots can then be factorized out of the polynomial,

N∑
m=0

lm(E)δIm =

g+1∑
m=0

δAmE
m

N−1−g∏
i=1

(E − ei), (D6)

where the δAm can be explicitly obtained by expanding and identifying the coefficients of the successive powers of E,
from EN , EN−1 down to EN−g−1,

−1

2
A0δI0 = δAg+1, (D7)

A0δI1 −
1

2
A0I1δI0 = δAg − δAg+1

N−g−1∑
j=1

ej , (D8)

. . . (D9)

A0δIg+1 −
1

2
A0Ig+1δI0 =

g+1∑
m=0

αmδAm. (D10)

This system of g + 2 equations is directly invertible thanks to its triangular form. For example, one finds that δAg+1

is simply proportional to δI0 from the upper equation. Then, from the second equation, δAg is a linear combination
of δI0 and δI1, etc. down to δA0, which is a linear combination of all δIm from m = 0 to g + 1. One finds that

δAm =

g+1∑
j=0

βm,jδIj , (D11)

for m = 0, . . . , g + 1. δAm are thus linear combinations of, at most, g + 2 independent δIm. We have βm,j = 0 for
j +m > g + 1 and, using s1 =

∑
j ej and s2 =

∑
i 6=j eiej ,

βg+1,0 = −1

2
A0, (D12)

βg,0 = −1

2
A0(I1 + s1), βg,1 = A0 (D13)

βg−1,0 = −1

2
A0[(I1 + s1)s1 + s2 + I2], βg−1,1 = A0s1, βg−1,2 = A0, etc. (D14)
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When the system has only g gaps, the gradient of the electronic energy, given by Eq. (50), simplifies, thanks to
Eqs. (D2) and (D6), into

δEelec =

∫
dE

∑g+1
m=0 δAmE

m√
P2g+2(E)

. (D15)

By using Eq. (D11), we get (renote the indices)

δEelec =

g+1∑
m=0

GmδIm. (D16)

where

Gm =

∫
dE

gm(E)√
P2g+2(E)

, (D17)

gm(E) =

g+1∑
j=0

βj,mE
j , (D18)

which is the expression given in Eq. (64). If the number of gaps corresponds to the generic case, g = N − 1, the
expression reduces to (50). When g < N − 1, thanks to the dependency relation, the gradient (D16) can be expressed
as a sum over the g + 2 independent variables δIm only.

Appendix E: Numerical gradient descent algorithm used for the minimization

The numerical minimization is a standard gradient descent algorithm. Suppose that you want to minimize a function
W of some variables {xi}. The steepest descent consists in updating the variables downhill, by a finite amount in
the negative direction of the local gradients. For this, one needs to compute the gradients δW/δxi at each step and
iterate the equations,

x′i = xi −
δW

δxi
δt, (E1)

where δt is a small numerical increment, until the gradient is smaller than a given threshold. It is equivalent to solving
a first-order (overdamped) dynamical equation of motion

∂xi
∂t

= −δW
δxi

. (E2)

While this method allows one to find a local minimum, it is possible to find distinct minima starting from random
configurations, i.e. exploring the phase space.

In the present problem, one needs to minimize the energy W which is a function of {ai} (or {`i}) and possibly
{bi}. The respective gradients δW/δbi and δW/δ`i are calculated in Appendix B. Numerically, they are computed as
follows. Let us introduce the Bloch wave function |Ψν(k)〉 with mode ν having energy Eν(k) and complex amplitude
ψi,ν(k), one gets ∑

σ

〈c†iσciσ〉 = 2
∑
k,νocc.

|ψi,ν(k)|2, (E3)

where the factor 2 comes from the spin degeneracy. The sum is up to the Fermi energy (the sums over k are performed
numerically and using the k → −k symmetry). The gradient (B3) writes

δW

δbi
=

1

S

∑
k,νocc.

|ψi,ν(k)|2 +
ξ

S
bi. (E4)

Similarly for the second gradient (B6), one finds

δW

δ`i
=

1

S
ai
∑
k,νocc.

Re[ψ∗i+1,ν(k)ψi,ν(k)]− λ

2S
ξai

λ +
p

2S
. (E5)
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These quantities are computed by diagonalizing the matrix. To get the local extremum, the variables are updated
according to

b′i = bi −
δW

δbi
δt, (E6)

`′i = `i −
δW

δ`i
δt, (E7)

until the gradients are smaller than a given threshold, typically 10−7. The number of iterations needed to reach this
precision depends on the parameters, and varies from 104 to 106 near the Aubry transition where the convergence is
slow.

Appendix F: Definitions of Jacobi ϑn(z, q)-functions

Jacobi ϑn(z, q)-functions are important analytic functions which play a special role in the theory of elliptic functions
(see, for instance, Ref. [67]). In particular, Jacobi ϑ3(z, q) function is defined by its Fourier series,

ϑ3(z, q) =

+∞∑
n=−∞

e2iπnzqn
2

= 1 + 2

+∞∑
n=1

qn
2

cos(2πnz), (F1)

with z ∈ C. q is a complex parameter, called the nome, and such that |q| < 1 to ensure that the series converges. The
parameter q is sometimes noted q = eiπτ , where τ is a complex number in the upper half-plane, =m(τ) > 0, so that
|q| < 1. Higher harmonics become rapidly small when |q| → 0. By a direct calculation, one finds that, for n and m
integers,

ϑ3(z + n, q) = ϑ3(z, q), (F2)

ϑ3(z +mτ, q) = e−iπm
2τ−2iπmzϑ3(z, q). (F3)

The function ϑ3 is periodic with period 1 (by definition) but not elliptic. One finds that ϑ3( 1+τ
2 , q) = 0 and that the

only zeros of the function are off the real axis (because the imaginary part of τ is strictly nonzero).
In this paper, we are only interested in z ∈ R and q ∈ R. Some examples of plots of ϑ3(z, q) are given in Fig. 23 for

q = 0, 0.1, 0.5, 0.9.
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FIG. 23. ϑ3(z, q) periodic function (with period 1) for z ∈ R and q = 0, 0.1, 0.5, 0.9.

When q is small, one finds

ϑ3(z, q) = 1 + 2q cos(2πnz) +O(q4), (F4)
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and so ϑ3 is very close to a cosine modulation with amplitude 2q. When q increases, the modulation amplitude around
1 increases, and the shape is deformed, becoming more and more localized around zero (and, by periodicity, around
any integer). ϑ3(z, q) never strictly vanishes for z ∈ R, since its zeros are in the complex plane.

Other Jacobi ϑn(z, q)-functions are defined by

ϑ1(z, q) = eiπτ/4+iπ(z+1/2)ϑ3(z +
1

2
+
τ

2
, q)

= q
1
4 eiπ(z+1/2)[1 + 2

+∞∑
n=1

(−1)nqn
2+n cos(2πnz)], (F5)

ϑ2(z, q) = eiπτ/4+iπzϑ3(z +
τ

2
, q), (F6)

ϑ4(z, q) = ϑ3(z +
1

2
, q) = 1 + 2

+∞∑
n=1

(−1)nqn
2

cos(2πnz). (F7)
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