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Distractibility and impulsivity neural states
are distinct from selective attention and
modulate the implementation of spatial
attention

J. L. Amengual1,4 , F. Di Bello1,2,4, S. Ben Hadj Hassen1,3 &
Suliann Ben Hamed 1

In the context of visual attention, it has been classically assumed that missing
the response to a target or erroneously selecting a distractor occurs as a
consequence of the (miss)allocation of attention in space. In the present
paper, we challenge this view and provide evidence that, in addition to
encoding spatial attention, prefrontal neurons also encode a distractibility-to-
impulsivity state. Using supervised dimensionality reduction techniques in
prefrontal neuronal recordings in monkeys, we identify two partially over-
lapping neuronal subpopulations associated either with the focus of attention
or overt behaviour. The degree of overlap accounts for the behavioral gain
associated with the good allocation of attention. We further describe the
neural variability accounting for distractibility-to-impulsivity behaviour by a
two dimensional state associated with optimality in task and responsiveness.
Overall, we thus show that behavioral performance arises from the integration
of task-specific neuronal processes andpre-existing neuronal states describing
task-independent behavioral states.

During our daily life, we are exposed to a myriad of situations during
which we need to select and process different kinds of sensory events
and to act accordingly. For example, we have to pay attention to the
traffic light in order to start or stop our car or focus on a unique
conversation while avoiding to listen to simultaneous irrelevant con-
versations. Attention plays a critical role in all of these situations,
implementing the selectionof the sensory cues that are relevant to our
ongoing purposes1–5 while suppressing the irrelevant information the
response to which has to be inhibited6. However, other factors inde-
pendent from thegoals of the taskare also expected to interfere, either
enhancing or degrading behavioral performance, such as fatigue7,8,
motivation6,9,10, the degree of liberal or conservative biases in response

performance11 or intrinsic fluctuations of information coding of cog-
nitive processes12. All of these factors arguably define “internal states”
that highly influence perceptual outcomes under similar sensory
conditions.

Prior electrophysiological studies in primates have focused on
how these internal states organize and influence sensory processing
and decision-making11,13,14. However, little is known on how such
internal states are organized at the neuronal population level, how
they functionally interact with attentional processes and how they
account for different patterns of behavioral performance character-
ized by either distractibility (i.e., the subject’s inattention to both task-
relevant and task-irrelevant items) or impulsivity (i.e., the subjects’
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propensity to respond to incoming stimuli irrespective of their rele-
vance). This has a high relevance to the understanding of the neural
bases of attention disorders such as attention deficit and hyperactivity
disorder (ADHD), as recent studies describe that allocation of atten-
tion is not impaired in these patients15, and other processes pre-
sumably related to the internal states describedhere couldbe affected.

The question we address in the present work is whether beha-
vioral performance during an attentional task is (non-exclusively) (i) a
direct consequence of a good or a miss allocation of spatial attention
relative to task events1,2,6,16–19, or (ii) determined by underlying internal
states that can be precisely assigned to specific functional neuronal
states of the prefrontal cortex neural population responses11. We will
focus on the macaque frontal eye fields (FEF), a brain region in the
prefrontal cortex crucial to the voluntary control of attention2,20.
Recent studies have shown thatmacaquemonkeys showed a higher hit
and false alarm rate on an attentional cued-target-detection task when
the decoded position of the attentional spotlight was closer to the
expected target or distractor location, respectively6,16,21–23. In addition,
the level of statistical shared variability between neurons recorded in
the FEF24 measured within a time interval prior to attentional orienting
by the cue (therefore, prior to any specific knowledgeof thepositionof
the stimulus to-be-attended) also predicted overt behavior of the
monkey, showing lowest noise correlations in hit trials as compared to
miss or false alarm trials21. In this respect, Nogueira and colleagues25,
show that two statistical features of the neural populations accounted
for the amount of encoded information and behavioral outcomes,

namely the degree of attentional coding and the population covaria-
bility along this attentional coding axis. All this, taken together,
strongly suggests that inappropriate behavior is only partially driven
by the quality of the orientation of spatial attention. We thus hypo-
thesize that the influence of other activity26,27 independent of spatial
attention orientation plays a critical role in behavioral performance.

To address this question, we trained two macaque monkeys to
perform a 100% validity-cued visual attention task in the presence of
distractors. We recorded multi-unit neuronal activity (MUA) from
multiple recording sites in the FEF. Usingmachine learning techniques,
we decoded the (x,y) position of the locus of attention at a high spatial
and temporal resolution before target onset, which allowed us to
classify trials based on how well attention was oriented according to
task instructions. In agreement with previous studies16,21, this metric of
the accuracy of spatial attention orientation highly predicts overt
behavioral performance in the task. However, it does not fully account
for behavioral performance. Indeed, a substantial proportion of trials
in which decoding indicated an attentional spotlight located close to
the expected target position were not successful and the target was
missed. Likewise, trials with poor decoded attention orienting could
still end up as correct trials. We thus predicted that internal states
associated with specific neuronal population states can be precisely
identified and can either enhance or interfere with spatial attention
processes. To prove our prediction, we used demixed principal com-
ponent analysis (dPCA28,29), a dimensionality reduction technique that
allows associating the variability explained by each component with
specific task- or behavior-related parameters. We thus divided our
trials based on the position of the decoded attentional spotlight with
respect to the target position (target-to-attention distance, TA; Small
TA, Medium TA, Large TA) and the behavioral performance (hit trials,
miss trials, and false alarm trials), and we extracted demixed compo-
nents the variance of which was associated with either to TA or
behavioral performance. As predicted, we identify components in the
neural population that specifically encode attention and upcoming
behavior (hit/miss), respectively, andwe show that the information for
each parameter was encoded in overlapping neuronal populations.
Importantly, we find that the smaller the overlap between these neural
subpopulations, the higher the behavioral gain associated with an
effective attention orientation, i.e., the smaller the interference
between the internal states associated with behavioral outcome and
visual attentional processes. In addition, when focusing on the neu-
ronal variability accounting for the behavioral outcome, we identify
specific neuronal subpopulations characterizing a two-dimensional
internal state associated with different levels of distractibility and
impulsivity in the responses. One of the state’s dimensions defines a
continuum of coding between distractibility (absence of response),
optimal response, and impulsivity (inappropriate response), possibly
suggesting an association with proactive inhibition and response
threshold adjustment11. A second dimension singles out optimal
response (hits) from misses and false alarms along a U-shaped rela-
tionship. Consistent with this finding, prior literature has reported
evidence suggesting that such behavioral responses might be linked
with different activity regimes described in the Locus Coeruleus30.
Therefore, activity in this dimension might correspond to the neural
signatureof the activity of thenoradrenergic system.Overall, thiswork
provides direct evidence for a functional dissociation between spatial
attention and the control of behavioral optimality, proposing a dif-
ferent framework for the interpretation of ADHD symptoms and
associated neuropharmacological therapeutic approaches.

Results and Discussion
Attentional-orienting is only partly predictive of behavior
We recorded MUA from two 24-contact recording probes that were
implanted in two macaque monkeys bilaterally in the FEF, on the
anterior bank of the arcuate sulcus, during the execution of a

Fig. 1 | Methods. A 100 % validity cued target-detection task with distractors. To
initiate the trial, monkeys had to hold a bar with the hand and fixate their gaze on a
central cross on the screen. Monkeys received liquid reward for releasing the bar
150−750ms after target presentation onset. Target location was indicated by a cue
(green square, second screen). Monkeys had to ignore any un-cued event (dis-
tractors). Monkeys were instructed to keep their gaze on the fixation point (white
dashed lines), therefore they had to detect the stimuli using selective spatial
attention (red dashed lines). B On each session, one 24-contact recording probe
was placed in right FEF (top) and left FEF (bottom). C Single MUA mean ( ± s.e.)
associated to when cue is orienting towards the preferred (black) or the anti-
preferred (gray) spatial location, during the cue-to-target interval.DDistribution of
attention modulation index (Preferred-Anti-preferred)/(Preferred + Anti-Pre-
ferred), computed over 200ms before target onset across all MUAs of all sessions.
Black histogram corresponds to channels inwhich the neuronal activity during this
time interval was significantly different between the preferred and the anti-
preferred spatial attention responses (Two-sided Wilcoxon signed-rank test,
p <0.05: black, significant difference).
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visually cued target-detection task (Fig. 1A, B). Similar to what is
described in previous studies1,2,6,21–23, these recorded neurons show
enhanced responses when attention is oriented towards their pre-
ferred receptive field (RF) location relative to when it is oriented
towards the least preferred spatial location (Fig. 1C). Themajority of
neurons are significantly modulated depending on whether atten-
tion is oriented towards their preferred or non-preferred receptive
field (Fig. 1D). This dataset has been used in prior studies from our
laboratory22,23.

Recent studies demonstrate that, on classical spatial attention
tasks as used here, while attention is on average oriented to the
cued location, it is actually intrinsically dynamic, exploring space
rhythmically both across and within trials6,23,31. Here, we use
machine learning applied to independent session recordings in
order to assess the spatial locus of the attentional spotlight from
FEF neuronal ensembles in time on independent trials (seematerial
and methods, Fig. 2A and6,21–23. This decoded attentional spotlight
is thus used as a proxy of the locus of attention. This allows us to
measure, at the single-trial level, the distance of the decoded
spotlight to the expected target position (Target-Attention dis-
tance; TA). This measure is a proxy of the focus of attention. Cor-
roborating our previous observations6,21–23, we find that the
distribution of TA distance varied as a function of the perceptual
behavioral outcome. Specifically, after equalizing the number of
hit and miss trials per each recording session, the distribution of
TA in misses is significantly shifted towards larger TA values with
respect to hits (median hits: 10.12°, IQR: 5.5; median misses: 11.02°,
IQR: 5.7, two-sided Kolmogorov−Smirnov test, D = 0.96, p = 0,
Fig. 2B). Overall, the smaller the TA, the higher the hit rate
(Friedman test Χ2 (17) = 32.44, p = 1e-15, Fig. 2C). Trials with short
TA (TA < 6°) are associated with significantly higher hit rates than
when attention is located at intermediate locations (6° < TA < 12° -
two-tailed non parametric Wilcoxon signed-rank test Z = 2.1,
p = 0.02) or far away from the expected target location (12° <
TA < 18° - two-tailed non parametric Wilcoxon signed-rank test,
Z = 2.8, p = 0.004). The hit rates for these last two TA trial cate-
gories are also different from each other (two-tailed non para-
metric Wilcoxon signed-rank test, Z = 2.3, p = 0.018). Importantly,
although TA has a strong effect on hit rates, this parameter does
not fully account for behavioral outcome. Indeed, over ~20% of
trials with short TAweremisses, and up to 65% of trials with long TA
were hits (Fig. 2B, see ref. 16). This indicates that the behavioral
accuracy is not uniquely explained by the attentional focus and
raises the possibility that other ongoing cognitive processes are
engaged in parallel and impacting performance concurrently with
the reallocation of attention.

Prefrontal neurons aremodulated both by the attentional focus
and upcoming behavioral accuracy
During spatial attention tasks, neuronal FEF responses are classically
shown to differ between correct (hit) and error (miss) trials1,6,18,19,32,33.
This is often interpreted as an indication that on error trials, attention
is not properly oriented to the instructed location. Here, for all
recorded neuronal responses, we pooled trials based on both the TA
category (close TA vs medium TA vs long TA, see the previous sub-
section) as well as based on behavioral accuracy (hit vs. miss). This TA
measure is a different metric from attention orientation towards the
preferred versus anti-preferred location on the screen, as it reflects
how close the attentional spotlight is to the expected target location,
irrespective of the actual target position (that is to say, the attentional
focus). Figure 3A shows the signal of a neuron that is tuned to beha-
vioral accuracy, with an overall higher spiking rate for hits than for
misses (Fig. 3A, blue vs green shades). In each of the hit andmiss trials,
the neuron’s activity is also tuned to the attentional focus, its activity
beinghigherwhen attention is closer to the target (Fig. 3A, dark to light
shades). As a result, the firing rate of this neuron cannot by itself
predict how close the attentional spotlight is to the target andwhether
the monkey is going to produce a hit or a miss. For example, the
neuron signals with the same level of firing rate a medium TA on
upcoming correct trials and a close TA on upcoming missed trials.
Figure 3B represents a second neuron showing the same properties,
except for the fact that its activity is lowerwhen attention is closer to as
compared to when it is far away from the target (Fig. 3B, dark to light
shades), both in hits (blue shades) and in misses (green shades).

At the population level, the closer the attentional spotlight was to
the expected target location (i.e. prior to target presentation), the
higher the spiking rate (Fig. 3C). Spiking rates were also significantly
higher on hit trials than on miss trials (Fig. 3D). Thirty-five percent
(35.8%) of recorded neuronal signals were significantly modulated by
TA (181/505), and themajority of these signals (66.8%, 121/181) showed
higher activity in trials where attention was closest to the target (−400
to −100 ms before the target onset, Fig. 3E). Independently, the
response of 18.85% of the MUAs (95/505) is significantly different
between hits and misses, 75.8% (72/95) of the MUAs having higher
spiking rates on hits (−400 to −100ms before target onset, Fig. 3F). As
a result, the distribution of the modulation index based on the TA
estimatedprior to target presentation isbiased towardspositive values
(Median = 0.046, IQR: 0.12, Fig. 3E), as well as the distribution of the
behavioral outcome modulation index in the same time interval
(Median = 0.026, IQR: 0.031, Fig. 3F).

Overall, this indicates that FEF cells encode, just prior to target
onset, both how close attention is oriented to the expected target and
whether themonkey is going to succeed on the trial or not. In order to

Fig. 2 | Impact of attentional locus on behaviour. A Attentional orientation: The
presentation of the spatial cue instructs the monkeys to orient their attention
towards the expected target location (white square). High-resolution spatial
decoding of the position of the attentional locus allows to track the position of the
attentional spotlight (yellow dot) on the screen prior the target onset (gray tra-
jectory). B Histogram of the distribution of the number of hit and miss trials as a
function of TA bins (after equalizing the number of hit andmiss trials pear each TA

bin). C Box plot showing the distribution of overall monkeys’ accuracy in target
detection (hit/(hit+miss)) as a function of the target to attention distance (TA-
step = 6 degrees). Lower and upper box boundaries reflect the 90th and 10th
percentiles, respectively, line inside box reflects the median and lower and upper
error lines show the min and max value of each distribution, respectively
(N = 18 sessions, two-tailed Wilcoxon signed-rank test, *p =0.02, **p <0.01).
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better characterize how this is organized at the single-cell level, we
compare the absolute value of the behavioral outcome and attentional
modulation indices of each individual cell. Figure 4A shows that neu-
rons fall along a continuum of combinations of attentional and beha-
vioral outcome coding strength, with neurons showing strong
attentional coding but weak behavioral outcome coding (and vice
versa), as well as, neurons encoding strongly both parameters simul-
taneously. Based on the statistical significance of each of their indivi-
dual attentional and behavioral outcome modulation indices, 19.1% of
the neurons showing significant coding strength are found to uniquely
encode behavioral outcome, 52.2% uniquely encode attention orien-
tation, and 27.5% showmixed selectivity to both parameters (Fig. 4A).
Globally, we find a significant correlation between behavioral outcome

and attentional modulation indices across all recorded neurons
(Fig. 4B, Spearman correlation, ρ = 0.35, p = 1e-27). This correlation still
held true when considering only attention modulated cells (Spearman
correlation, ρ =0.36, p =0.0079), or cells modulated by only beha-
vioral outcome (Spearman correlation, ρ =0.41, p <0.001). This thus
indicates that there is a positive relationship in how both information
(attention and behavioral outcome) are encoded at the single-neuron
level. Interestingly, this correlation is stronger when only mixed
selectivity neurons are considered (Spearman correlation, ρ =0.63,
p = 1e-12), indicating a stronger functional relationship between these
neurons and overt behavior. In the prefrontal cortex, mixed selectivity
neurons coding for both spatial attention and perception are shown to
have higher attentional modulation indices than cells coding only for

Fig. 3 | MUA activity is modulated by the distance of spatial attention to the
expected targetandbehavioral outcome. A,B SingleunitMUAactivity pooledby
TA (darker tones corresponding to smaller TA values) and upcoming target beha-
viour (hit trials blue, miss trials green) locked to the target onset (dashed vertical
line). C, D Averaged MUA activity pooled by TA (darker tones corresponding to
smaller TA values) and upcoming target behaviour (hit trials blue,miss trials green)
averaged across all task-selective MUAs of all sessions. Activity is locked to target

onset. Shadowed bands indicate the s.e. (N = 596 task-related channels).
E, F Distribution of the modulation index based on TA (E) and behavioral outcome
(F) across all task-selective MUAs of all sessions (N = 596 task-related channels).
Black histogram corresponds to channels in which the neural activity was sig-
nificantly different between the two classes (TA: Close vs Far; Upcoming target
behaviour: hit vs miss, non-parametric two-sided Wilcoxon signed-rank test,
p <0.05). Gray color indicates channels showing no significant difference.

Fig. 4 | Attentional and behavioral outcome mixed selectivity in the FEF cells.
A Scatter plot showing attentional (x-axis) and behavioral outcome (y-axis) mod-
ulation indices (absolute value) for all recorded task-related neurons (N = 596)
during the time interval −400 to −100 ms before target onset. Neurons are classi-
fied based on the significant TA (Att, red; N = 150), behavioral outcome (Outcome,
blue; N = 55) or mixed (Mix, green; N = 82) tuning. Neurons corresponding to
Fig. 3A, B are indicated by larger symbols. Pie chart shows the proportion of neu-
rons for each type of selectivity. B Bar plot indicating the spearman correlation
coefficient between attention and behavioral outcome modulation indices (abso-
lute value) for all task-related neurons (gray, N = 596), pure TA (red, N = 150),

behavioral outcome (blue, N = 55) selective neurons, and mixed selective (green,
N = 82) neurons. Asterisks indicates the significance of the correlation (Spearman
Correlation, p <0.001 for all comparisons). C Box-plot of the distribution of mod-
ulation indices of TA (red shades) and behavioral outcome (blue shades) formixed
(light shades) and unmixed (dark shades) selectivity cells. Lower and upper box
boundaries reflect the 90th and 10th percentiles, respectively, line inside box
reflects themedian and the lower andupper error lines show themin andmax value
of each distribution, respectively (** two-sided Wilcoxon rank-signed
test p =0.005).
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spatial attention, while perception-related modulation indices did not
vary between mixed selectivity and pure perception neurons34. Simi-
larly, we found that attentional modulation indices were significantly
higher in mixed selectivity cells than in pure attentional cells (Fig. 4C,
two-sided Wilcoxon rank-signed test Z = 2.8, p =0.0048). In contrast,
behavioral modulation indices did not vary between mixed selectivity
neurons and pure behavioral outcome neurons (Fig. 4C, two-sided
Wilcoxon rank-signed test Z = 1.37, p =0.11). In summary, the FEF thus
encodes spatial attention and behavioral outcome through mixed
selectivity neurons. These mixed selectivity neurons35–37 have higher
attentional modulation indices and better account for attention than
the unmixed selectivity FEF neurons.

Both distance of attention to expected target and overt beha-
vioral outcome account for prefrontal neuronal variability
At the neural level, a subpopulation of neurons is thus modulated
differently by the attentional focus and the upcoming behavior. This
finding suggests the coexistence of at least two different processes in
the neural activity of the FEF just prior to target presentation. In the
previous section, we showed that behavioral and attentional focus
coding was partially mixed in a subpopulation of recorded FEF

cells35–37. In order to study the interplay between neuronal sub-
populations encoding attentional focus and predicting behavioral
outcomes, we applied a dimensionality reduction to our data.
Dimensionality reduction methods are very useful to project the
neuronal population data from the high dimensional space onto a new
low dimensional manifold such that some of its dimensions (or prin-
cipal components) maximally account for a given source of neuronal
variability. We applied a principal component analysis (PCA) to FEF
neuronal responses pooled along TA categories and correct and
incorrect trials. When independently projected onto the principal
components, the neural responses for hits and misses, as well as for
close,medium, and far TAdistances, we identify afirst component that
mostly accounts for the upcoming behavioral outcomes (PC1) and a
second and a third component that substantially account for attention
to target distance (PC2 and PC3, Supplementary Fig. 1). Information
related to the upcoming behavioral outcome and TA is howevermixed
across principal components, as expected by the reported results in
the previous subsection. This is due to the fact that while PCA analyses
successfully capture the different sources of neuronal variability, this
extraction is blind to the source of the variability. That is to say, this
analysis does not allow to formally relate the extracted components to

Fig. 5 | Demixed PCA unmixes attention and behavioral outcome-related var-
iance. A Pie chart shows how the total signal variance is split among parameters:
Attention (red), behavioral outcome (blue), Interaction between attention and
behavior (dark gray), and the condition independent variance (light gray). (B, Left)
Cumulative variance explained by PCA (gray) and dPCA (black). Demixed PCA
explains almost the same amount of variance as PCA. (B, Right) Cumulative
demixed variance specific for each marginalization. C−E Demixed principal com-
ponent. In each plot, the full firing rates from −300ms to 0ms from target onset are
projected onto the respective dPCA decoder axis (attention, behavioral outcome
and interaction), as a function of trial type categories (based on TA distance and
behavioral outcome) so that there are six lines corresponding with six conditions

(see legend). Thick black lines show time intervals during which the respective task
parameters can be reliably extracted from single-trial activity (as assessed against a
95% C.I., permutation test). F For each neuron, we use the first attention- and
behavioral outcome-related demixed PCs to plot its location on the plane defined
by these two components. These components present a weight distribution that
tends to be centered and equally distributed around zero (cf. respective histo-
grams, N = 848 neurons). The scatter plot shows the relationship between the
neurons’ weights in the attention and behavioral outcome demixed component.
This correlation is significant (N = 848 electrodes, Spearman correlation, ρ =0.16,
p = 3e-4). The dot product between these components indicates that these com-
ponents were non-orthogonal (77 degrees).
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specific task- or behavior-related parameters, and therefore these
components are affected by mixed selectivity, in the sense that neu-
ronal variability assigned to a specific neuronal process could be
projected onto multiple PCA axes.

This issue is theoretically resolved by demixed principal compo-
nent analysis (dPCA28,29), which retains the main objective of dimen-
sionality reduction methods capturing almost as much variance as
possible in only few latent variables or components, similarly to what
PCA does, but without imposing orthogonality between components
as PCA does by definition. Indeed, this property of the dPCA permits
demixing the neural activity as a function of a priori-defined task
parameters. As a result, this allows to interpret the internal dynami-
cal and geometrical properties of neuronal population responses in
terms of specific brain functions inferred from task design and beha-
vior. In the following, we perform a dPCA analysis on the FEF MUA
activity with the aim to extract unmixed components accounting for
variability associated with the TA distance and the overt behavioral
outcome, respectively. To do so, we pool the trials based on two dif-
ferent conditions: Upcoming target detection (hit vs miss) and atten-
tion (TA close vs. TA intermediate vs. TA far), giving rise to six different
categories of trials. This analysis is performed on the epoch immedi-
ately preceding target presentation ([−3000]mswith respect to target
onset), thus focusing on the neuronal variability that best accounts for
cue instruction processing and behavioral outcome.

Demixed PCA succeeded in reducing the dimensionality of the
MUA data in components that held information associated with either
TA (53% of explained variance), upcoming target detection (19%) and
the interactionbetween them (23%). Little variancewas associatedwith
sources independent from these parameters or their interaction (5%)
(Fig. 5A). The overall variance explained by the dPCA components is
similar to the variance explained by the PCA components (Fig. 5B, left).
Therefore, population activity is accurately represented by the dPCA
components. Cumulative marginalized variance showed that the
majority of the variance explained by each of the parameters and its
interaction was accumulated in the first components (Fig. 5B, right).
The projection of the MUA corresponding to each of the conditions
onto each of the first dPCA components associated with TA and target
detection captures similar findings as we observed in the MUA results
(Fig. 5C, D): Just before target onset, projectedfiring rates onto thefirst
demixed attention-related component dissociates each of the atten-
tional states based on the TA, whereas the projection onto the com-
ponent associated with target detection (i.e., behavioral outcome)
shows two different states depending on whether the target was
detected or not. In addition, we found an interaction component
mostly associatedwith a neural population reflectingmixed selectivity
between attention and target detection (Fig. 5E). These observations
are globally reproduced on individual sessions (Supplementary Fig. 2).

To assess whether the tuning of each individual demixed
component was statistically significant, we used these components
as linear decoders to measure their ability to encode information
associated with attention and behavioral outcome. We used cross-
validation to measure time-dependent classification accuracy and a
shuffling procedure to assess whether the accuracy was significantly
above chance (see Materials and Methods). We found that the
attention-related component achieved a single-trial classification
accuracy of TA (TA close vs TAmedium vs TA far, chance level: 33%)
of 81%, whereas the behavioral outcome-related component
achieved a classification accuracy of 62% averaged across time
(chance level: 50%). All classification performances were assessed
against the 95% confidence interval using a random permutation
test. Interestingly, the interaction component achieved a classifi-
cation accuracy of 30% (chance level: 16.6%).

Figure 5F shows that many neurons expressing one of these
components tended also to express the other one, which is amarker of
non-orthogonality of the demixed principal components (Spearman

correlation, ρ =0.16, p = 8e-7). To confirm this, and since the demixed
components are not assumed to be orthogonal, we calculated the
angle between the first encoding components associated with atten-
tion and behavioral outcome, respectively. The absolute value of the
dot product between the attentional component and the target
detection component is 0.22, which is higher than the significant non-
orthogonality threshold of 0.123 (see ref. 28 for details). This confirms
statistically the non-orthogonality of these two components. In addi-
tion, we observed that both components were equally distributed
across the whole neuronal population, and the weights of each com-
ponent showed a clear unimodal distribution centered close to zero
(TA component, median =0.03, IQR: 0.04; behavioral outcome com-
ponent, median = 0.01, IQR: 0.047). This latter observation rules out
the possibility that components might be exhibited only by a subset
of cells.

All these results taken together point to the coexistence of two
neural mechanisms that can be assigned to the reallocation of atten-
tion and to the upcoming behavioral outcome, respectively, and that
can be reliably accessed at the signal-trial level. As expected by the
dPCA theoretical framework, this method demixes the part of
explained variance attributed to overt behavior and TA, respectively.

Fig. 6 | Unmixed components account for both overt behavior- and attention-
related information. Box plot corresponding to the distribution of the cross-
validated classification accuracies of linear classifiers given by the first three
demixed principal components associatedwith upcoming behavioral outcome (A),
and with attention to target distance (TA)(B). For each parameter, the horizontal
dotted line corresponds to the theoretical chance level (50% for upcoming target
behavior, and 33.3% for attention to target distance). Gray boxplot shows the dis-
tribution of classification accuracies expected by chance as estimated by 100
iterations of shuffling procedure (maximal accuracy value obtained across all
iterations is considered). For both parameters, only the first dPC showed accuracy
values above chance level (*p <0.05, permutation test). C Box plot corresponding
to the distribution of the cross-validated classification accuracies of linear classi-
fiers given by the first demixed principal component associated with upcoming
behavioral outcome and attention to target distance using two dPCA approaches:
either demixing each parameter (upcoming behavioral outcome or attention to
target distance) independently or demixing each parameter from the other (two-
sided Wilcoxon signed-rank test, ***p =0.0008; ** p =0.01) (D). Scatter plot
between the normalized dot product between the first demixed components
associated with attention and upcoming behavioral outcome and the behavioral
gain associated with an optimal attention orientation towards the upcoming target
location (Spearman correlation, ρ = −0.55, p =0.02). All panels of this figure con-
tained independent measures corresponding of each session (N = 18 sessions), and
lower and upper box boundaries in boxplots reflect the 90th and 10th percentiles,
respectively, line inside the box reflects themedian and lower and upper error lines
show the min and max value of each distribution, respectively.
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Attentional performance depends on how attentional and
behavioral outcome information are mixed in the prefrontal
cortex
At the behavioral level, we observed an inter-session variability in how
the TA modulated the hit rate of the monkeys (Supplementary Fig. 3).
Indeed, in some sessions, attention close to the target position just
before target onset induced a large increase in hit rates relative to
when attentionwas far, while other sessions showedno clear benefit of
attention orientation on the behavioral outcome. Therefore, we asked
whether these differences in howTA affected behavior correlatedwith
how attention and behavioral performance information interacted in
the FEF. To address this question, we conducted dPCA in each session
with the aim to find, at the session level, specific attention focus and
behavior outcome components in the neural population. Similar to the
previous section, we used the first dPC in behavioral outcome (hit or
miss) and TA (close, intermediate, and far) obtained in each session as
a decoding axis to build a linear classifier to decode these two vari-
ables. We found that the first dPCs associated with each of these
parameters reliably encoded the expected information (Fig. 6A, B,
behavioral outcome, median = 58.8%, min = 54.17%, max= 65.5%;
attention to target distance, median = 54.2%, min = 45.5%, max= 73%).
All classification performances were assessed against the 95% con-
fidence interval using a randompermutation test (Fig. 6A, B, light-dark
box plot). By construction, in this dPCA, components the variance of
which is highly related to one of the two parameters of interest contain
minimal variance about the other one. Such a dPCAwould not capture
the neuronal variance that would be explained jointly by both para-
meters. To address this concern, we test whether 1) the information
contained in the behavioral outcome component obtained using this
dPCA (overt behavioral outcome and attention to target distance) is
statistically undistinguishable from that estimated from a dPCA
uniquely performed on behavioral outcome and 2) the information
contained in the TA-related component using this dPCA is statistically
undistinguishable from that estimated from a dPCA uniquely per-
formed on TA.

The total cumulated variance explained by the six first dPC of the
dPCA applied to the upcoming behavioral outcome parameter only
was 97.7% (IQR: 1.9%). When dPCA was applied to TA parameter only,
explained variance by the six first dPC was 96.1% (IQR: 4.3%). When
decoding each of these parameters using the first dPC of each of these
two dPCA (Fig. 6A, B), overall decoding accuracy across sessions was
significantly higher than when using the first components of the two-
dimensional dPCA that forced unmixed sources of variance (Fig. 6C,
Behavior vs Behavior-Attention, two-sided Wilcoxon signed-rank test,
Z = 3.3, p =0.0008; Attention vs Attention–Behavior, Two-sided Wil-
coxon signed-rank test, Z = 2.57, p =0.01). This thus indicates that
while part of the variance accounting for overt behavioral outcome
and attention to target distance are independent, the remaining part is
common to both parameters, thus resulting in a loss of decoding
accuracy when the two sources of information are demixed. This
observation indicates a functional overlap between the subspaces
generated by the two components of interest. In order to quantify this
functional overlap, for each session, we measured from the two-
parameter initial dPCA, the normalized dot product between the first
dPCs maximally related to overt behavioral outcome and to attend to
target distance (as only these dPCs showed significant encoding
information capacities for each category of interest, Fig. 6A, B). The
median normalized dot product between the axis corresponding to
the first dPC of each conditionwas0.28 (IQR: 0.33).Most interestingly,
the dot product between these two components negatively correlated
with how much attention-to-target distance accounted for behavioral
performance (Fig. 6D, Spearman correlation, ρ = −0.55, p =0.02). In
other words, the greater the functional overlap between the neuronal
populations coding for attention to target distance and overt beha-
vioral outcome, the lower the behavioral gain when attention is closer

to the target position as compared to far. This can be seen as an
interference of overt behavioral outcome-related neurons with the
actual coding of attention and suggests that optimal attentional per-
formance would be observed for minimal functional overlap between
the two neuronal populations.

Prefrontal cortex encodes different levels of behavioral
responsiveness
Although there is a very large literature on the contribution of the
prefrontal cortex to spatial attention processes, there is, to our
knowledge, no evidence of a specific neuronal process accounting for
behavioral outcomes independently from, but possibly interacting
with, attention orientation processes. In the following, we seek to
identify such a neuronal process. To this aim, we categorize neuronal
responses as a function of all different possible behavioral trial out-
comes: hit trials (in response to target), miss trials (in response to
target), and false alarms (to unexpected distractors). From a beha-
vioral perspective, these trials can be ordered as no response trials
(misses), controlled response trials (hits), and uncontrolled response
trials (false alarms). These trials will be considered in this same order
for the analysis of their distinctive neuronal correlates. The average
firing rate of FEF neurons was differentially modulated as a function of
trial type (Fig. 7A, see also6). In addition, and in agreement with pre-
vious studies21,24, noise correlationprior to stimulus onset (target onset
for hits and misses, and distractor onset for false alarms), computed
over z-scored neuronal responses, varied as a function of behavioral
outcome (Fig. 7B, solid boxes, Friedman test Χ2(18,2) = 19.11, p = 1e-6).
More specifically, hits accounted for the lowest noise correlation
values, and noise correlation were higher in false alarms relative to hits
and maximal in misses (Hits vs. Miss, two-sided Wilcoxon signed-rank
test, Z = 3.24 p = 0.001; Hits vs. FA, Two-sided Wilcoxon signed-rank
test, Z = 3.4 p =0.0007; Miss vs. FA, two-sided Wilcoxon signed-rank
test, Z = 2.63 p =0.008). The statistical relationship between the noise
correlation levels in each trial type was kept when performed on hit,
miss, and false alarm trials that were equalized for TA metrics on the
session level (Supplementary Fig. 4). Importantly, similar results were
observed when noise correlation is calculated within the period prior
to thepresentationof the cue, prior to attentional deployment (Fig. 7B,
dashed boxes, Friedman test Χ2 (18,2) = 17.44, p =0.00016; Hits vs.
Miss, Two-sided Wilcoxon signed-rank test, Z = 3.5 p =0.0005; Hits vs.
FA, Two-sidedWilcoxon signed-rank test, Z = 2.8p = 0.004;Miss vs. FA,
Two-sided Wilcoxon signed-rank test, Z = 2.86 p =0.003). Given that
these reported differences in noise correlation as a function of trial

Fig. 7 | FEF activity and noise correlation vary as a function of the type of
produced behavioral responses. A Average time evolution MUA ( ± s.e.m) across
sessions recorded during hit (blue), miss (green), and false alarm (red) trials.
Activity was locked to target (for hit and miss responses) or distractor onset (for
false alarm responses) (0ms, interval of analysis: −400 ms to 400ms). B Boxplot
representing the distribution across sessions of noise correlation values for each
type of trial computed on pre-target (solid lines) or pre-cue (dashed lines) neuronal
activities. Lower and upper box boundaries reflect the 90th and 10th percentiles,
respectively, line inside box reflects the median, and lower and upper error lines
show the min and max value of each distribution, respectively (*p <0.001,
**p <0.0001, two-sided Wilcoxon signed-rank test).
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type ariseboth during the cue to target interval aswell as in the pre-cue
period, we propose that they result from covariations in the excit-
ability of the neurons, possibly due to more global variations in
noradrenergic38 or cholinergic39–42 neuromodulation, rather than to
covariations in response latency43. In addition, this result suggests the
existence of different neural states that would predict the behavioral
outcomes before stimulus onset and independent of ongoing atten-
tional processing.

Our prediction is that these different trial types will differentially
impact neuronal variability along a reduced number of behavioral
outcome dimensions. To test this, we apply a dPC analysis to this
neuronal datawith the aim to find specific components in the neuronal
population accounting for specific aspects of the variance associated
with these different trial types. We focus on the epoch immediately
preceding the target or distractor presentation ([−300 0] ms with
respect to target or distractor onset), i.e., on the neuronal variability
that best accounts for upcoming target/distractor processing. This
dPCA thus respectively ranks the demixed principal components
based on their explained variance either attributed to overt behavior
(trial type) or to components independent from behavior. Figure 8A, B
shows the projection of the high-dimensional MUA activity averaged
over the three trial types (responses in hit, miss, and false alarm trials)
onto each of the two first dPCs for one representative session. Across
sessions, we found that these two dPCs associated with trial type
accounted for two independent processes, and for 90.03% (IQR = 5.99)
of the explained variance. The angle between these two components
was 85.7 degrees (IQR = 6.33), and did not pass the test of non-
orthogonality (see ref. 28). Importantly, both components were
equally distributed across the whole neuronal population, and the
weights of each component showed a clear unimodal distribution
centred close to zero (dPC1 component, median = 0, IQR: 0.02; dPC2
component, median =0.01, IQR: 0.031). This latter observation rules
out the possibility that components might be exhibited only by a
subset of cells (Supplementary Fig. 5). Projection of MUA activity onto
the first component (Fig. 8C) showed that hit trials were in a different
state as compared to bothmisses and false alarms (Friedman test, test

Χ2 (18,2) = 27.1, p =0; Hit vsMiss, Two-sidedWilcoxon signed-rank test,
Z = 3.7, p = 0.0002, Hit vs FA; Hit vs FA, Two-sided Wilcoxon signed-
rank test, Z = 3.7, p = 0.0002; Miss vs FA, Two-sided Wilcoxon ranked
test, Z = 0.28, p =0.7). Note that this projectionmimics the results that
we have obtained from the noise correlation analysis in these types of
trials (Fig. 7B). The projection of MUA activity onto the second com-
ponent (Fig. 8D) contrasts with the U-shaped curve identified in the
first dPC, as MUA activity in each trial type organizes along a linear
relationship (Friedman test, Χ2 (18,2) = 27.1, p =0.0006, Hit vs Miss,
Two-sided Wilcoxon signed-rank test, Z = 2.4, p =0.01; Hit vs FA, Two-
sided Wilcoxon signed-rank test, Z = 3.2, p =0.001; Miss vs FA, Two-
sided Wilcoxon ranked test, Z = 2.9, p =0.002). When using each of
these two components as axes for decoding trial types, we find that
performance in decoding trial types is above the 95% C.I. (Fig. 8E).
Decoding performance is, however, significantly higher for the first
component comparedwith that for the second component (Two-sided
Wilcoxon signed-rank test, Z = 3.9 p = 8e-5).

A U-shaped relationship between behavior on the one hand and
amplitude of the stimulus-evoked response or noise correlations, on
the other hand, has already been described by others44. In order to
better characterize the relationship between these two identified
components (U-shaped dPC1 and linear dPC2, respectively) and noise
correlation, wemeasured noise correlation levels in the three different
trial types after removing the variance explained by one of the two
components and projecting the pre-target activity contained in the
rest of the components back onto the original data space. The differ-
ences in noise correlation between trial types vanishes when removing
the variance associated with dPC1 but not when removing the variance
associated with dPC2 (Supplementary Fig. 6a). This result indicates a
functional link between noise correlation levels and the activity
represented by the dPC1. Likewise, in order to better characterize the
relationship between these two identified components (U-shaped
dPC1 and linear dPC2, respectively) and stimulus-evoked response, we
removed the variance associated with either the dPC2 (linear compo-
nent) or the dPC1 (U-shaped component) estimated in the pre-target
period, and we projected the stimulus-evoked response back onto the

Fig. 8 | Demixed PCA unmixes variance associated with trial types (hit, miss,
and FA) in two independent components. A, B MUA activity from the three
different trial types (hit trials in blue, miss trials in green, and false alarm trials in
red), computed on pre-target (solid lines) or pre-cue (dashed lines) neuronal
activities, projected onto the first (A) and second (B) components that maximally
explain trial type in one representative session, during the time period of −300ms
to 0ms locked to the stimulus onset.C,DBoxplot representing themedian and the
interquartile range of the projected MUA activity onto the first (C) and the second
(D) demixed components across sessions (two-sided Wilcoxon signed-rank test
*p <0.001; **p <0.0001). E Box plot corresponding to the distribution of the cross-

validated classification accuracies of linear classifiers given by the two demixed
principal components associated with trial types shown in (A) and (B) (two-sided
Wilcoxon signed-rank test, ***p = 8e-5). The horizontal dotted line corresponds to
the theoretical chance level (33.3%). The Gray boxplot shows the distribution of
classification accuracies expected by chance as estimated by 100 iterations of the
shuffling procedure (maximal accuracy value obtained across all iterations is con-
sidered). Lower and upper box boundaries in boxplots reflect the 90th and 10th
percentiles, respectively, the line inside the box reflects the median, and lower and
upper error lines show the min and max value of each distribution, respectively.
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original dataset space (Supplementary Fig. 6b). While firing rates
extracted from miss trials and false alarm trials in post target time
interval (corresponding to the stimulus-evoked responses) after
removing the variance explained by the dPC1 did not differ relative to
the original neuronal response, we observe that the firing rate differ-
ences during the time interval corresponding to the evoked response
betweenmiss trials and false alarm trials vanishes whenwe remove the
variance explained by the dPC2. This is mostly accounted for by a
change in the pre-target activity (Supplementary Fig. 6b). This indi-
cates thatnoneof the twodPCs account for the evoked response to the
target but that dPC1 specifically accounts for pre-target differences in
noise correlations and dPC2 specifically accounts for pre-target dif-
ferences in average firing rate.

Crucially, all reported observations remained unchanged when
the dPCA was applied on pre-cue activities, prior to task-related
attention orientation (Fig. 8, dashed symbols, Supplementary Fig. 6).
The only observed difference is a less marked linear trend in dPC2
between miss, hit, and FA trials in pre-cue as compared to pre-target
analysis, although this difference disappears when the dPCA is per-
formed on cumulated session data (Supplementary Fig. 7) rather than
on single-session data (Fig. 8). In addition, we testedwhether the firing
rates projected in these twodPC (per each trial type)were linked to the
activity obtained in the previous trial (irrespective of the trial type of
the preceding trial). In this context, we found that the firing rate pro-
jected in the behavior-related components correlated with the activity
of the preceding trial projected in the same space (Supplementary
Fig. 8). These results indicate that the demixed components identified
based on behavioral outcome can be identified irrespective of specific
task-related processes and describe a neuronal process that extends
across trials. This nicely dovetails with previous findings suggesting a
low-frequency dynamics of the activity of a state linked to sensory
processing efficiency, encompassing multiple trials over temporal
scales of several minutes12,45. Likewise, none of the results reported in
this section changedwhenperformedonhit,miss and false alarm trials
thatwereequalized forTAmetrics on the session level (Supplementary
Fig. 4). Overall, this thus indicates that, independently from cued
position or attention orientation in the trial (TA), the different trial
types are associated with a distinct structure in neuronal variability
that can be tracked before target onset, but also prior to cue pre-
sentation. This strongly suggests that these specific neuronal states
can be associated with distinct behavioral states that are predictive of
behavioral outcome.

Discussion
In the present work, we show that the accurate performance in a visual
attentional task does not exclusively dependonattentional orientation
signals, but also on the integration of these signals with pre-existing
activity associated with neural states that modulate different levels of
distractibility (defined as an absence of responses) and impulsivity
(defined as inappropriate responses), optimality and responsiveness,
that directly affect how attentional processes are implemented. We
show that these two distinct behavioral markers, i.e., optimality and
responsiveness, are implemented in two functionally different neuro-
nal population components, the variance of which is partially depen-
dent with the variance associated with the decoded position of the
attentional spotlight relative to the target. These components are not
orthogonal, indicating an overlap in how neuronal populations
implement the information from each of these two components.
Importantly, smaller overlap was associated with enhanced behavioral
gain of efficient attention orientation (Fig. 9A). Furthermore, we find
that this behavior-related neural state is two-dimensional, indicating
that activity in the FEF associated to this neural state possibly reflect
the effect of the activation of two independent input sources (Fig. 9B).
Overall, these results indicate that the behavioral outcome during a
covert attentional task can be attributed to multiple neuronal

processes in addition to spatial orientation processes and is a con-
sequence of the interaction between task-specific computations with
global neural states associated with different levels of impulsivity and
distractibility that, in turn, influence the access to attention
information.

FEF contains mixed-selectivity cells that simultaneously encode
overt and covert behavior
At the neuron level, we show that both individual neurons and popu-
lation activity have higher spiking rates prior to target onset in
upcoming hit trials thanobservedduring the sameperiod in upcoming
misses. These results are in line with prior studies showing slight dif-
ferences between the firing rates of the FEF cells based onwhether the
targetwas reportedor not16,18,19.While thesedifferences areoften taken
as a signature of spatial attention orientation, we further report that
pooling trials based on attention to target distance, spiking rate of
selective cells increased as closer was the attentional spotlight to the
expected position of the target, in agreement with previous studies
indicating that FEF plays a key role in attentional control1. These results
indicate that FEF neural population encodes both upcoming target
behavior and attention to target distance. FEF cells show different
coding strength for each parameter, some preferentially encoding one
of these two parameters (25.2% attention cells vs 9.2% upcoming per-
ception cells) and some encoding both parameters simultaneously
(~14%; mixed selectivity cells). These mixed selectivity cells have been
reported in different brain areas such as the prefrontal cortex36,37,
parietal cortex46 and visual cortex47, and they represent a signature of
high-dimensional neuronal representation of relevant information37.
An important question in this context is whether the neuronal
dimension encoding upcoming behavior interferes with attentional
coding or whether it organizes independently (orthogonally). This is
discussed next.

Functional subpopulations associated with attention and
upcoming behavior overlap
In the last decade, dimensionality reduction techniques have been
applied on high-dimensional neural recordings involving a big number
of recorded neurons, in order to provide a low-dimensional data-
representation containing the functional structure of the data48. In
particular, this approach allows to describe how independent cogni-
tive functions are implemented in any given neuronal population,
whether they areexpected to interact or not and, if applicable,whether
this interaction interferes with behavior or not. Due to the mixed-

Fig. 9 | Schema of the neurophysiological underpinnings explaining the rela-
tionship between covert attention and overt behavior. A Behavioral gain pro-
duced by the good allocation of attention with respect to expected target position
varies as a function of the level of overlap between the functional population
associated to covert attention (blank ellipses) and overt behavior (textured ellip-
ses). B This latter component is associated with two pre-existing neuronal states
describing two task-independent behavioral states, reflecting the degree of dis-
tractibility (no response)-to-impulsivity (inappropriate response) or responsive-
ness of the subject (linear) as well as degree of behavioral optimality in the task (U-
shaped).
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selectivity observed at the neuronal level, dimensionality reduction of
our data using PCA, resulted in partially mixed selectivity of the three
principal components with respect to our parameters of interest. In
order to find a low-dimensional decomposition of the population data,
that is interpretable in terms of our variables of interest, we applied
demixed-principal component analysis to our data28,29. With this
method, we found two specific components that were associated with
either upcoming behavior or attention to target distance. Importantly,
we found that these two components could be used as a decoding axis
for target perception and attention, respectively, indicating that the
reported source of the variance was functionally meaningful. Two
important findings were achieved by the application of this method.
First, we found a component specifically associated with the interac-
tion between covert attention and overt behavioral response. This
component successfully decoded both parameters simultaneously,
which is a signature of non-linearmixed selectivity37. Non-linear mixed
selectivity is advantageous as it allows the information to be explicitly
distributed acrossmultiple neurons. In the present context, thismeans
that information related to how close the attentional spotlight is to the
target is encoded differently as a function of the upcoming target
behavior prior to the target onset. This thus indicates the existenceof a
neuronal state that impacts in the way the FEF encodes attention
information. A second finding relies on the non-orthogonality of the
linear readouts of behavioral outcome and covert attention related
components. In order to associate each component to a specific
known source of variance, demixed-PCA relaxes the assumption of
orthogonality between components29. Therefore, components that
contain variance attributed to different parameters might be non-
orthogonal. This is exactly what we found in our data. Our analysis
revealed that components encoding attention and upcoming behavior
were statistically non-orthogonal, which predicts that encoded infor-
mation for each parameters is, at least partially, overlapped. In
agreement with our prediction, we found that subtracting the variance
attributed to one parameter impacted the decoding performance of
the other parameter negatively. We predicted that such overlapwould
impact how the two parameters functionally interact. Accordingly, we
found a correlation between the degree of functional overlap between
these two parameters and the behavioral gain (reported by the hit rate
variation) resulting from attention being closer to compared to distant
from the target. In other words, the higher was the overlap at the
neuronal level, the higher was the interference at behavioral level
between the orientation of the spatial attention and the behavior-
related state encoded by the prefrontal neuronal population (Fig. 9A).
This result indicates that responding to ormissing the target might be
not only a consequence of the localization of the attentional spotlight
with respect to the stimulus, but also a consequence of how such
behaviorally-related neural state affects the implementation of atten-
tional control. In this context, a precise behavioral definition of this
behavioral outcome state-related component becomes paramount.

FEF encodes two independent neuronal states associated with
behavioral outcome in the trial
Prior studies have shown that task-independent neural states might
influence different aspects on how information is encoded in a neural
population and, hence, its impact in behavior11,12,21. For example, the
level of shared noise correlation between neurons predicts subjects’
behavior21,25,49. In particular, Astrand and colleagues21 show that high
levels of noise correlation predict misses and false alarm responses,
while hit responses are produced when noise correlation level is low.
Importantly, these levels of noise correlation predict behavioral out-
come irrespective of spatial orientation processes. This is in line with
yet other studies which have identified different states in the popula-
tion activity associated with differences in evoked responses and
correlated variability44. This suggests that these levels of correlation
possibly describe a functional state of the prefrontal neuronal

population. The present work reproduces these observations on an
independent dataset and extends these results. Using demixed prin-
cipal component analysis on data locked to the stimulus onset (locked
to the target for hit and miss responses, and locked to the distractor
onset for false alarm responses) we found a two-dimensional repre-
sentation of the population in the FEF that encoded upcoming beha-
vioral responses to task-relevant (target) and task-irrelevant
(distractor) stimuli. Specifically, we found two demixed components
that contained significant information about upcoming behavior at
trial bases. Importantly, these two components were close-to-
orthogonal (~86 degrees), indicating that these components share
no significant variance. The projection of the firing rates related to
each behavioral condition onto each of these two different demixed
behavior-related components showed different activations across the
different types of trials. When projected onto the first component,
normalized firing rates of each condition showed a U-shape, in which
lower activity state corresponded to hit trials, whereas the activity in
miss and false alarm trials showed higher activity states. In contrast,
projection of the activity from each of the three behavioral conditions
onto the second demixed component revealed a linear decrease of the
activity state, being higher in miss trials, intermediate in hit trials and
minimal in false alarm trials. Overall, this points to two independent
neuronal processes contributing to behavioral outcome in addition to
the classically-described attentional orientation (Fig. 9B). None of the
two components account for the evoked response to the target.
However, theU-shaped component specifically accounts for pre-target
differences in noise correlations and the linear component specifically
accounts for pre-target differences in average firing rate. Importantly,
these two processes did not depend on the implementation of spatial
attention following cue presentation, but rather expressed themselves
at a longer time scale. Indeed, they could be reliably identified both
before cue onset andduring the cue to target interval.Wepropose that
these two neuronal functional states map onto two distinct behavioral
states that impact overall performance in the task. This is
discussed next.

U-shaped state of inattention, in-task behavior, and
distractibility
The U-shape observed in the projection onto the first behavioral out-
come component of FEF neuronal population firing rates accounts for
the U-shape observed for noise-correlation levels associated with the
same behavioral conditions (Fig. 9B, Supplementary Fig. 6a). This
indicates that the dPCA captures specific variance explained by the
different levels of shared variability between neurons within the same
population. How is this U-shape functional component generated?We
argue that these different states represented by each trial type corre-
spond to different patterns of activity of the noradrenergic neurons in
the locus coeruleus (LC-NE), a subcortical structure that is described to
playa critical role in adaptive behavioral decision-making50 and arousal
(see below). Indeed, prior studies have shown that these LC neurons
are projected onto themedial and posterior prefrontal cortex via well-
identified anatomical pathways and are thus expected to modulate
neuronal activity in these regions51. In this context, Aston-Jones and
Cohen30 propose that two different modes of LC activity might cor-
respond to different patterns of performance in attention tasks. A first
phasicmode is described, inwhich LC-NE cells showa phasic activity in
response to task-relevant stimuli. Within thismode, LC-NE cells show a
moderate level of tonic discharge associated with high levels of task
performance. A second tonic mode is described, which has been
associated with poor performance, whether characterized by high
levels of distractibility orbyhigh levels of inattention. In addition, prior
studies in mice have found that molecular down-regulation of phos-
phoinositide 3-kinases enzymes in LC-NE cells results inboth increased
levels of tonic activity and increased levels of inattention52, compatible
with symptoms associatedwith attentiondeficit hyperactivity disorder
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(ADHD). Thus, LC-NE activity organizes along U-shaped curve similarly
to what we described in the FEF first behavioral outcome component,
such that its tonic baseline activity is high during inattention (misses),
low during optimal behavioral (hits, in-task) and high again during
distraction (false alarms). We would thus like to propose that this
component is associated with the level of optimal (in-task) behavioral
regime as described in the Locus Coeruleus noradrenergic neurons30.

Prior studies have argued that the different levels of theNE system
might mediate arousal states53,54. However, other studies refine the
understanding of the LC-NE function by relating it with optimization of
reward-seeking behavior30. Indeed, although the term arousal is
broadly used to describe amental state associatedwith different levels
of consciousness and alertness, it has proven difficult to link it to
specific neurobiological mechanisms30. Therefore, we would like to
remain cautious when trying to associate our findings with different
levels of arousal, in the absence of more direct causal evidence (see
below). Indeed, the causality of the relationship between the FEF
U-shaped functional component that we report in our data and LC-NE
tonic discharge rate that we suggest here is very indirect at this stage
and will have to be tested experimentally.

Linear state of executive control and responsiveness
The second demixed component of the dPCA performed on beha-
vioral outcome showed a negative linear trend between the level of
activation state and behavioral responsiveness, defined as the prob-
ability of the subject issuing a behavioral response to a stimulus.
Accordingly, miss trials correspond to low responsiveness trials, hit
trials to optimal responsiveness trials and false alarm trials to high
responsiveness trials. Along this component, higher levels of activity
were observed inmiss trials, followed by intermediate levels of activity
in hits and low activation in false-alarms. The neural state defined by
this seconddPCAcomponent is thus inversely associatedwith the level
of impulsivity in the response. Our current data cannot allow us to
provide clear-cut responses on the origin of this state. It could arise
locally in the FEF. Alternatively, it could originate fromoutside the FEF.
Overall, we propose that this component is associatedwith the level of
executive control (or responsiveness) exerted by the subject in the
task (Fig. 9B). Recent studies suggest that the level of impulsivity in
motor responses during attentional tasks is associatedwith the activity
of the claustrum, a brain region located deep to the insular cortex and
extreme capsule with anatomical projections toward multiple cortical
brain areas including motor, visual, auditory and prefrontal
cortices55,56. In particular, the activity of this area has been shown to
play a critical role in attention. Goll and colleagues55 posit that the
claustrum might act to control the output from the cortical repre-
sentation of the sensory modalities. It has been shown that electrical
activation of the claustrum causes irresponsiveness57, while its deac-
tivation prevents tuning down the output from cortical modalities
irrelevant to the ongoing task55. Other studies have shown that the
claustrum-prefrontal cortex pathway regulates methamphetamine-
induced impulsivity, suggesting a critical role of this pathway in
regulated impulsivity-related disorders58. Our results are compatible
with the hypothesis that the level of responsiveness state observed in
our data reflects the level of motor impulsivity in attentional tasks and
is driven by the claustrum. This will need to be addressed in future
studies.

Physiological correlates of the behavior-related components
In the previous section, we have argued that the different levels of
activation of the neural states associated with optimality and respon-
siveness contribute to the processing of sensory information and its
behavioral consequences. However, there is a lack of consensus on
which physiological mechanisms might correlate with such state
changes and account for either an optimal or sub-optimal sensory
encoding or behavioral performance. Prior studies have shown that

pupil size might be a potential candidate as a proxy of these fluctua-
tions in the state, as it has been shown that it impacts both the sensory
evoked response, the spontaneous activity of cortical responses41, as
well as on membrane potential level59. Indeed, McGinley and
colleagues59 have shown, in mice, that optimal signal detection beha-
vior and evoked responses occur at intermediate arousal (measures by
pupillometry) when pre-decision membrane potentials are hyperpo-
larized, revealing a cortical physiological signature of the inverted-U
relationship between performance and arousal. Relating to these
findings, we have recently described consistent low-frequency fluc-
tuations in the pupil size from human data recorded during the
execution of an exploration task, in the order of a few cycles per hour.
These rhythmic fluctuations are linked with different behavioral states
characterized by differences in detection times as well as in prefrontal
attention and perception information capacity12 and, possibly, the
activity of the noradrenergic system60.

Another possible physiological correlate of the activity reflecting
these neural states could be the global network influence on the local
functional connectivity. In this context, Snyder and colleagues61

showed that spike count correlation in area V4 of the macaque cor-
related with certain properties of the EEG, and specifically with the
level of alpha-band oscillatory activitymeasured in different regions of
the occipital cortex, as well as with the reaction times during a spatial
attention task. Relevant to the present discussion, this relationship
between the EEG alpha oscillation and the spike count correlation and
behavior were U-shaped. Other studies have shown the same inverted
U-shape relationship between EEG oscillations during attention-
demanding detection tasks and performance62–64.

All in all, our results are in line with previous studies showing a
non-monotonic relationship between different levels of activity linked
with brain state, measured with different physiological measurements
and specific behavioral regimes.

Implications in attention deficit and hyperactivity dis-
order (ADHD)
The present work provides consistent evidence on how different
neural states associated with levels of distractibility and impulsivity
interact with dynamic, ongoing computations in the attentional sys-
tem to produce behavior. We believe that these observations have a
profound implication in the way we understand how the attentional
system works and, more particularly, how it can dysfunction. One
clinical condition affecting the attentional system is attention deficit
and hyperactivity disorder (ADHD), with a prevalence of 7.5% of the
worldwide population65. This disorder is specifically characterized by a
dysfunction of attention as well as by inappropriate levels of hyper-
activity, distractibility and impulsivity66.Many studies point that ADHD
patients show abnormal results in neuropsychological tasks targeted
tomeasure sustained and focused attention67,68, however other studies
do not find significant differences in tasks requiring orienting of
attention comparedwith healthy population15. Thiswould indicate that
selective visual attention remains functionally intact in these patients
and, in line with our results, their behavioral symptoms might arise
from the dysfunction of non-attentional neural populations, interfer-
ing with the subject’s access to attentional information. In addition,
prior studies have found that ADHD patients show hyperactivation of
the LC-NE system69, as well as higher activation in claustrum70, which
correspond to a compromised state of alertness and increased pro-
cessing of task-irrelevant information, respectively. This thus hints
towards an abnormal interaction between attention orientation pro-
cesses and other independent processes associated with aberrant
distractibility and impulsivity behaviors observed in these patients.
However, more studies are needed to confirm the implications of our
findings in such a clinical domain.

In conclusion, we report converging evidence indicating that the
access to attention-related processes in the FEF is driven by the activity
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of a two-dimensional neural state that might be explained by the
independent activation of afferent brain regionsmodulating the levels
of distractibility and impulsivity as well as the levels of behavioral
responsiveness. This finding sheds light onto the understanding of the
computational mechanisms of the attentional system, and it is
expected to have profound implications in the development of reha-
bilitation strategies to ameliorate inattention and impulsivity symp-
toms in ADHD patients.

Methods
Subjects and surgical procedures
Two adult male rhesus monkeys (Macaca mulatta), weighing 8 kg
(monkey D, 6 years old) and 7 kg (monkey HN, 7 years old), con-
tributed to this experiment. Both monkeys underwent a unique sur-
gery during which two MRI-compatible recording chambers were
implanted over the left and the right FEF hemispheres, respectively, as
well as a head fixation post. A 0.6mm isomorphic anatomicalMRI scan
was acquired post-surgically on a 1.5 T Siemens Sonata MRI scanner,
while a high-contrast oil-filled 1mmx1mm grid was placed in each
recording chamber in the same orientation as the final recording grid.
This allowedprecise localization of the arcuate sulcus and surrounding
gray matter underneath the recording chambers. The FEF was defined
as the anterior bank of the arcuate sulcus, and we specifically targeted
those sites in which a significant visual and/or oculomotor activity was
observed during a memory-guided saccade task at 10° to 15° of
eccentricity from the fixation point. All surgical and experimental
procedures were approved by the local animal care committee
(C2EA42-13-02-0401-01) approved by the French Ministry of Research
and in compliance with the European Community Council, Directive
2010/63/UE on Animal Care.

Endogenous cued detection task and experimental setup
The task is a 100% validity endogenous cued luminance change
detection task (Fig. 1A). The animals were placed in front of a PC
monitor (1920 × 1200 pixels, refresh rate of 60 Hz) with their heads
fixed. Stimulus presentation and behavioral responses were con-
trolled using Presentation® (Neurobehavioral Systems, Inc.). To
start a trial, the monkeys had to hold a bar placed in front of their
chair, thus interrupting an infrared beam. The appearance of a
central fixation cross (size 0.7° × 0.7°) at the center of the screen,
instructed the monkeys to maintain their eye position (Eye tracker -
ISCAN, Inc.) inside a 2° × 2° window, throughout the duration of the
trial, so as to avoid aborts. Four gray landmarks (LMs size 0.5°×0.5°)
were displayed, simultaneously with the fixation cross, at the four
corners of a hypothetical square having a diagonal length of ~28°
and a center coinciding with the fixation cross. The four LMs (up-
right, up-left, down-left, down-right) were thus placed at the same
distance from the center of the screen having an eccentricity of ~14°.
After a variable delay from fixation onset, ranging between 700 to
1200ms, a 350ms spatial cue (small green square - size 0.2° × 0.2°)
was presented next to the fixation cross (at 0.3°), indicating the LM
in which the rewarding target change in luminosity would take
place. Thus, the cue presentation instructed the monkeys to orient
their attention towards the target in order tomonitor it for a change
in luminosity. The change in target luminosity occurred unpredic-
tably between 750 to 3300ms from cue onset. In order to receive
their reward (a drop of juice), the monkeys were required to release
the bar between 150 and 750ms after target onset (hit). To test the
monkeys’ ability at distractor filtering, on half of the trials, one of
the two distractor typologies was randomly presented during the
cue-to-target delay. In ~17% of the trials (D trials), a change in
luminosity, identical to the awaited target luminosity change, took
place at one of the three uncued LMs. In these trials, the distractor D
was thus identical in all respects to the expected target, except for
being displayed in an uncued position. In ~33% trials (d trials), a local

change in luminosity (square) was displayed at a random position in
the workspace. The size of the local change in luminosity was
adjusted so as to account for the cortical magnification factor,
growing from the center to the periphery. In other words, d dis-
tractors had the same size as D distractors when presented at the
same eccentricity as D. The absolute luminosity change with respect
to the background was the same for both d and D. Themonkeys had
to ignore both distractor typologies (correct rejections – RJ).
Responding to such distractors within 150 to 750ms (false alarm -
FA) or at any other irrelevant time in the task interrupted the trial.
Failing to respond to the target (miss) similarly aborted the
ongoing trial.

Electrophysiological recordings and spike detection
Bilateral simultaneous recordings in the FEF in both hemispheres
were carried out using two 24-contact Plexon U-probes (Fig. 1B).
The contacts had an interspacing distance of 250 μm. Neural data
was acquired using a Plexon Omniplex® neuronal data acquisition
system. The data was amplified 500 times and digitized at
40,000 Hz. Neuronal activity was high-pass filtered at 300Hz and a
threshold defining the multiunit activity (MUA) was applied inde-
pendently for each recording contact and before the actual task-
related recordings started.

Decoding procedure
Training procedure. In prior studies, we showed that the endogenous
orienting of attention (Fig. 1C) can be reliably decoded from the FEFs
activity using a regularized optimal linear estimator (RegOLE) with the
same accuracy as exogenous visual information21,23,71–73. Here, we used
the same approach to train a RegOLE to associate the neural responses
prior to target onset ([−220 + 30] from target onset), based on a leave-
one-out training/testing procedure, with the attended location, i.e.,
with the expected target presentation LM, based on cue information.
Neural responses consisted in a vector containing the MUA signals
collected at each of the 48 recording contacts during this pre-defined
pre-target onset epoch. Our general objective here was to have as
precise as possible an estimate of the attention position before a
specific visual event, averaging activities over large enoughwindows to
have a reliable single-trial estimate of the neuronal response on this
window, while at the same time a not-too-large time window to have a
reliable estimate of where attention was placed by the subject at a
specific time in the task22,23,73.

The RegOLE defines the weight matrix W that minimizes the
mean squared error of C=W*(R+b), where C is the class (here, four
possible spatial locations), b is the bias, and R is the neural
response. To avoid over-fitting, we used a Tikhonov regularization71

which gives us the following minimization equa-
tion kW*ðR +bÞ � Ck2 + λ*kWk2 .

The scaling factor λ was chosen to allow for a good compromise
between learning and generalization. Specifically, the decoder was
constructed using two independent regularized linear regressions, one
classifying the x-axis (two possible classes: −1 or 1) and one classifying
the y-axis (two possible classes: −1 or 1).

Testing procedure. In order to identify the locus of attention at the
moment of target or distractor presentation in the 20 next new trials
following the initial training set, the weight matrix defined during
training were applied to the average neuronal activity recorded in the
150ms prior to the target. The described training (over 200 previous
trials) / testing (over 20 novel trials) procedure was repeated after
every 20 correct responses by re-training the decoder with the new
database composed of the last 200 correct trials. This continuous
updating of the weight matrix W is implemented in order to minimize
the impact of possible uncontrolled changes in the recorded signal
during a given recording session onto the decoding procedure.
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Estimating the (x,y) spatial locus of the attentional spot-
light (AS)
As in Astrand et al.21, the readout of the RegOLE was not assigned to
one of the four possible quadrants by applying a hardlim rule, as
usually done for classification purposes. Rather, it was taken as
reflecting the error of the decoder estimate to the target location, i.e.,
in behavioral terms, as the actual (x,y) spatial estimate of the locus of
the attentional focus to the expected target location. We show here
and elsewhere21,23 that this (x,y) estimate of the attentional spotlight
(AS) accounts for variations in behavioral responses. In order to ana-
lyze how thedistanceof thedecoded attentional spotlight to the target
affected both behavior and neuronal MUA responses, we computed,
for each target presentation, thedistance between thedecodedAS and

the target (TA) as follows: TA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxAS � xtÞ2 + ðyAS � ytÞ22
q

where xAS and

yAS correspond to the Cartesian coordinates of the attentional spot-
light (AS), and xt and yt correspond to the Cartesian coordinates of the
target position (T).

Characterizing MUA selectivity
In order to quantify the magnitude of the modulation of FEF individual
neurons to different task variables, we computed three different
indexes per neuron, as follows: 1) RF-based attention index, pooling
trials based on whether the cue oriented attention in the preferred
spatial location within the neuron’s receptive field (RF), or non-
preferred spatial location outside the RF, considering only correct
trials, 2) Hit/missmodulation index: pooling trials based onwhether the
monkey produced hits or misses, irrespective of the TA distance or cue
position, 3) Attentional spotlightmodulation index, pooling trials based
on whether the target to focus of the attention distance was smaller
than 6° or larger than 12°, considering only correct trials. For this latter
measurement, we binned the trials in three different categories: TA
close (0°<TA ≤6°), TA medium (6°<TA ≤ 12°) and TA far (12°<TA < 18°).
For each of these trial categories, the modulation index was defined as

MI = ðFRclass1�FRclass2Þ
ðFRclass1 + FRclass2Þ where FRclass1 and FRclass2 correspond to the

median firing rate of each for each of the two classes defining the
index. Firing rates were computed on the [−250 – −50] ms pre-target
epoch, z-scored with respect to a [−100 – 0] ms pre-cue epoch. For
each category, significant difference between the neuronal firing rate
in each class was assessed using a Wilcoxon non-parametric test. In
addition, for each of these trial categories, data were averaged from
−400 ms to 400ms locked to the target onset and median MUA
activity as well as standard error (s.e.) was computed across all MUA
channels and all sessions.

Noise correlation measurements
In order to quantify the spiking statistics of the FEF activity associated
with different overt behavioral outcomes (hit, miss, false alarm, correct
rejection to distractors in hit, and correct rejections to distractors in
miss trials), we measured the noise correlation between the MUA
activities on the different simultaneously-recorded signals. For each
session and for each channel, we defined intervals of interest of 200ms
previous to the stimulus onset (target or distractor). For each channel i,
and each trial k, the average neuronal response ri (k) for this time
interval was calculated and z-scored within this time interval. Noise
correlations betweenpairs ofMUA signals during the interval of interest
were defined as the Pearson correlation coefficient between the z-
scored individual trial neuronal responses of each MUA signal over all
trials. Only positive significant noise correlations are considered.

Demixed PCA
Recent research points that neural function is built on population
activity patterns rather than on independent modulation of individual
neurons48. These patterns reflect the coordination of responses across

neurons that corresponds to a specific neural mechanism underlying
behavior35. The population activity structure can be estimated by
applying a dimensionality reduction technique to the recorded activ-
ity, such as principal component analysis (PCA). Using thismethod, we
can extract a number of latent variables (principal components) that
capture independent sources of data variance, providing a description
of the statistical features of interest48. However, thismethod is blind to
the source of variability of the data and hence does not take task- or
behavior-related parameters into account, mixing these sources of
information within each of the extracted latent variables28,29.

Our goal here is to describe how much variance in the neural
population can be explained by spatial attention and the overt beha-
vioral outcomeand their interaction. Todoso,weperformedademixed
principal component analysis28 which captures the maximum amount
of variance specifically explained by defined sources of variability in
each extracted latent variable (or component) and reconstructs the
time course of the category-specific response modulation. In a first
dPCA analysis, trials were thus segregated as a function of classes of TA
distance (TA close, TA medium, TA far) and, within these classes, trials
were pooled into two possible trial outcome classes (hit or miss). This
thus resulted into a six different conditions. In a different analysis, we
extracted attention and overt behavior-related components by unmix-
ing each of the two categories from category-independent variability in
two distinct dPCA analyses (one targeting attention, and the other on
overt behavior). In a last dPCA analysis, trials were segregated in three
possible classes of trial (hit, miss, false alarms).

Procedures for dPCAanalysiswere performedusing theMATLAB©

(The Mathworks Inc., Natick, Massachusetts) written scripts available
from28. Spike trainswere filteredwith aGaussian kernel (δ = 30ms) and
averaged over all trials to obtain smoothed average pre-stimulus
(target or distractor, 400ms before target onset to 0ms) MUA firing
rate for each channel in each condition and each session. In this case,
dPCA decomposes data into latent variables that estimate indepen-
dently over time both the variance attributable to the specific cate-
gories of interest (attention or overt behavior) as well as the variance
independent of any of the considered category. We consider the 20
demixed components that accounted for > 90% of the total variance in
all sessions. Last, we used the decoding axis of each dPC assigned to
each category (attention or overt behavior) as a linear classifier to
decode the different types of trial (details of this procedure are fully
described in28. This method allows the understanding of the capacity
of each demixed component to classify a trial between the classes of a
given category. To extract the statistical significance of this accuracy,
we shuffled 100 times all available trials between classes and we
thereby computed the distribution of classification accuracies expec-
ted by chance. For each session, the chance-level was considered as the
maximal accuracy value obtained across all randomizations.

Thedifferent components extractedby thedPCAare not assumed
to be orthogonal, therefore, we calculated the dot product between
each encoding axis related to attention or overt behavior that showed
significant levels of decoding accuracy for the corresponding cate-
gory. Because the coordinates of the components reflect the level of
contribution to the activity of each neuron, the size of the dot product
values between two components indicates that neurons that con-
tribute to one component tend also to contribute in the other com-
ponent. Therefore, the dot product between two components can be
interpreted as a marker of functional overlapping between the two
different components. For each session, we calculated the dot product
between the pairs of encoding (showing above chance-level accuracy)
demixed principal components relative to attention and overt beha-
vior. We considered the absolute value of the dot product.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability
Source data are provided with this paper.

Code availability
Codes supporting these results are available upon reasonable request
to the corresponding author.
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