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INTRODUCTION 

N-heterocyclic carbenes (NHCs), especially thiazol-2-ylidenes A 1  and 

1,2,4-triazol-5-ylidenes B,2 have long been known as organocatalysts for aldehyde 

transformations, such as the benzoin condensation, Stetter reaction, cycloadditions, 

Claisen rearrangement, etc. 3 , 4 , 5 , 6 , 7  (Fig 1a). These reactions occur via 

electron-pair-transfer processes through the so-called Breslow Intermediates 

(BIs).8,9,10,11,12 The role of the BI in single electron transfer (SET) pathways was also 

established a long time ago in biosynthesis,13 and expanded in the last decade to 

NHC-organocatalysis. 14 , 15 , 16 , 17  Among the important differences between the 

electron-pair-transfer and the SET pathways is that the first relies on the BI, whereas 

the second involves the deprotonated BI (BI-).18,19,20,21,22,23,24 Also noteworthy is the 

recent development of NHC/photoredox dual catalysis25
 involving acyl azolium salts 

BI+,26,27,28,29,30,31,32,33,34,35,36 as well as few reports37,38,39 dealing with their excited state 

(BI+*), both of which being the doubly oxidized deprotonated BI (Fig 1b). Obviously, 

the latter processes are based on the oxidizing power of the BI+ and the BI+*, whereas 



NHC-organocatalysis via SET reaction depends on the reducing ability of BI- in the 

ground state. Herein we report that the excited triplet state of BI- (BI-*) derived from 

1,2,3-triazol-5-ylidenes (mesoionic carbenes, MIC) D40 , 41  is thermally accessible, 

allowing for the catalytic distal difunctionalization of aryl aldehydes. At the formyl 

side, an oxidative esterification reaction takes place, concomitant with reduction of the 

aryl side. Here, three types of chemical transformation are demonstrated, namely 

hydro(deutero)defunctionalization, hydrogenation and reductive alkylation. (Fig. 1c). 

S

N

NN

N

N

N

N

N N

A B C D

Ar

OH

X

N

Nucleophile in 
electron-pair

transfer processes

BI

Ar

O

X

N

Reductant in single-
electron

transfer processes

BI-

N

N N

R

O-

N

N N

R

O-
4.0 kcal/mol

H

O

Nu

O
oxidative 
estification

hydrodefunctionalization

hydrogenation

reductive alkylation

D cat.

Nu

(D)BI- (D)BI-*

A)

B)

C)

This work

Ar

O

X

N

Oxidant in single-
electron

transfer processes

BI+*

*

Ar

O

X

N

BI+

and

 

Figure 1 A) Carbenes considered in this study; B) Breslow Intermediate (BI), 

deprotonated Breslow Intermediate (BI-), and acyl azolium intermediate in the ground 

state (BI+) and the excited state (BI+*); C) mesoionic carbene (D)-catalyzed distal 

difunctionalization of aryl aldehydes via the excited state of deprotonated Breslow 

Intermediate (D)BI-*. 

 

RESULTS AND DISCUSSION 

To gain further insight into the electronic properties of BIs and BI-s derived from A, 

B, C42 and MICs D, we performed density functional theory (DFT) calculations at the 

PWPB95-D3/def2QZVPP//B3LYP-D3(BJ)/6-31G** + SMD (THF) level of theory. 

The adiabatic singlet-triplet gaps for BIs derived from classical NHCs A-C are greater 



than 37.0 kcal/mol, whereas for the mesoionic carbene (D)BI,43 it is only 23.7 kcal/mol 

(Fig. 2). The same trend is observed for the singlet-triplet gap of the corresponding 

deprotonated BIs (BI-s). They vary from 26.1 to 28.7 kcal/mol for NHCs A-C, but the 

gap is strikingly as low as 4.0 kcal/mol for the mesoionic analogue (D)BI-. The small 

S/T gap for (D)BI and (D)BI- is due to the polarized exocyclic CC bond,43 which in the 

singlet state leads to a repulsion between the negatively charged carbon and adjacent 

oxygen. The SOMO of (D)BI-* has contributions from the π orbital of the triazole ring, 

the carbonyl and, interestingly, the phenyl ring. The SOMO-1 is mainly located on the 

π* orbital of the triazole ring and on the carbonyl group. From these computational 

results, we were confident that the very low singlet-triplet gap predicted for (D)BI- 

would allow access to the triplet form (D)BI-* without photoexcitation. Moreover, 

since the SOMO is at least partially located on the phenyl group of the aldehyde moiety, 

it implied that the ring has a radical anion character. Thus, we envisioned that if a 

leaving group is present on the aryl ring, it could be eliminated, affording a biradical 

(D)BR*. DFT calculations predict that such compounds would have a singlet ground 

state 14.5 kcal/mol lower in energy than the triplet and should therefore be regarded as 

the zwitterionic compound (D)ZW, which should allow for distal difunctionalization of 

aryl aldehydes.  



 

Figure 2 A) Singlet/triplet gap of BIs and BI-s derived from carbenes A-D; B) SOMO 

and SOMO-1 of (D)BI-*, isovalue is 0.05; C) Postulated reaction sequence leading to 

the formation of the zwitterionic compound (D)ZW, allowing for difunctionalization of 

aryl aldehydes. 

 



 We capitalized on the potent leaving group ability of sulfonyl groups through 

single-electron reduction 44  to check our hypothesis. We first reacted 

4-sulfonylbenzaldehyde 1a with methanol in the presence of 10 mol% of a 

1,2,3-triazolium salt as precatalyst, using a base to generate in situ the corresponding 

mesoionic carbene D and to deprotonate the ensuing Breslow Intermediate. With 

4,5-unsubstituted triazolium Cata and Catb, methyl benzoate 2aa was formed in 42 and 

38% yield, respectively (Figure 3, entries 1-2). The leaving group was quantitatively 

recovered as benzenesulfinic acid (PhSO2H). The yield in 2aa significantly increased 

to 65 and 74% by using ester substituted triazolium salts Catc and Catd, (entries 3-4), 

which have proven to be the best catalysts for the previously reported MIC-catalyzed 

arylacylation of alkynes via SET.45 Classical-NHCs were less efficient; only very low 

yields were obtained (entries 5-7). Base and solvent screening showed t-BuOK and 

t-BuOMe (MTBE) to be the best choices (entries 8-12). Reducing the amounts of 

MeOH or decreasing the reaction temperature gave lower yields (entries 13-15). A 

control experiment in the dark gave the same yield, which revealed that this reaction did 

not proceed via photoexcitation (entries 16). Note that the transformation of the 

4-sulfonylbenzaldehyde 1a into methyl benzoate 2aa, involved a reductive 

desulfonylation at the aryl group and an oxidative esterification at formyl carbon, and is 

therefore overall redox-neutral. 



 

Figure 3 Optimization of the reductive desulfonylation and oxidative esterification. 

aReaction carried out in 0.3 mmol scale. Yields were determined by 1H spectroscopy 

with CH2Br2 as internal standard. Isolated yield is given in parentheses. b1.0 equiv 



MeOH was used. c3.0 equiv MeOH was used. dTemperature was changed from -15 oC 

to 0 oC. eThe reaction was performed in dark. 

 

The scope of the MIC-catalyzed hydrodefunctionalization reaction was 

investigated under the optimized conditions. Treatment of 1a with CH3OD and CD3OD 

gave deuterated products 2aa-D1 and 2aa-D4, respectively. Note that the only partial 

deuteration at the phenyl ring is due to the presence of the formyl-H and MIC+-H, 

which are exchangeable. Different nucleophiles were next employed. The yields 

decreased as the chain length and steric hindrance of the alcohols increase. Primary 

alcohols gave benzoate 2aa-2ae in 30-71% yields. For secondary alcohols, only 

cyclopropanol gave the corresponding benzoate 2af in 37% yield, while other alcohols 

gave trace products. When ethanethiol was employed with ethanol as proton source, 

S-ethyl benzothioate 2ag could be isolated in 47% yield. We extended our 

investigations to sulfonyl-substituted aryl aldehydes 1b-1e. When bromo, 

trifluoromethyl and methyl substituents were embedded on 4-sulfonylbenzaldehyde, 

using CH3OD as deuterium source, the corresponding deuterodesulfonylation products 

2b-D1 – 2d-D1 were isolated in 43-80% yields with deuteration levels of 50-53% at the 

4-position. 5-Sulfonyl-2-thiophenecarbaldehyde 1e gave deuterated product 2e-D1 in 

73% isolated yield. Other sulfonyl groups, such as methylsulfonyl (1f) and 

aminosulfonyl (1g) were converted less efficiently, giving benzoate 2aa in 30 and 42% 

yield, respectively. Interestingly, the sulfonyl group can be placed in a more distal 

position, as shown by the desulfonylation of 1h, 1i and 1j which gave 2h and 2i in 27, 

38 and 25 % yield, respectively.  

The scope of the MIC-catalyzed hydrodefunctionalization and esterification of aryl 

aldehydes is not restricted to the sulfonyl functionality. Esters can also be used as the 

leaving group, as shown by the formation of the toluoate 2i in 21% yield. Fluoride is 

also an attractive leaving group, since the reductive defluorination of 

trifluoromethylarenes is a versatile strategy for the construction of 

difluoromethylarenes.46 When 4-trifluoromethyl substituted aryl aldehydes 1l were 

employed, the corresponding 4-difluoromethylbenzoates 2l was formed in 42% 



isolated yields. The 4-deuterodifluoromethylbenzoate 2l-D1 was obtained in 40% yield 

and 60% deuteration level, using CH3OD as deuterium source. When the 

trifluoromethyl group was placed in the ortho-position, the corresponding 

2-difluoromethylbenzoate 2m was obtained in 22% yield. Interestingly, when two 

trifluoromethyl groups were placed on the ortho- and para-positions, reductive 

defluorination selectively occurred on the ortho-position, giving 

2-difluoromethyl-4-trifluoromethylbenzoate 2n in 38% yield. Using CH3OD as 

deuterium source, the deuterated analogue 2n-D1 was isolated in 35% yield with 70% 

deuteration level.  



 



Figure 4 Scope of the MIC-catalyzed hydrodefunctionalization and esterification of 

aryl aldehydes. Reactions were carried out in 0.3 mmol scale. b3 equiv. EtOH, 2.5 equiv 

tBuOK, and 1.0 equiv EtSH were used. Isolated yields are given. cTemperature was 

changed from -15 oC to 0 oC. dCatc (20 mol%) was used as catalyst, 90 oC for 5 h. eCatc 

(20 mol%) was used as catalyst, 50 oC for 5 h. 

 

We were curious to test whether the MIC-catalyzed distal difunctionalization of aryl 

aldehydes could be extended to other types of reduction processes. We first chose the 

hydrogenation reaction of azo compounds (Fig. 5). Under the optimized conditions, in 

the presence of methanol as the NuH agent, 4-azobenzaldehyde 3a was converted into 

the corresponding hydrazine 4a in 90% yield. By using CD3OD as deuterium source, 

the deuterated product 4a-D3 was obtained in 87% yield with a high deuteration level of 

95%. Ethanol can also act as the NuH, affording 4b, which was isolated in 67% yield. 

Azo derivatives with different substituents 3c-3f also gave hydrazine derivatives 4c-f in 

47-76% yields. The azo group can also be placed in meta- and even a more distal 

position, giving the target products 4g-4h in 50-61% yields. Note that these results 

allow to rule out a two-electron pathway via p- or o-quinodimethane. 47  These 

hydrogenation reactions can also be extended to other unsaturated substrates. When 

4-benzoylbenzaldehyde 5 was used, the benzoyl group was reduced to the 

α-hydroxylbenzyl group while the formyl group was oxidized to an ester, giving 6 

which was isolated in 40% yield. A dearomatization reaction was also observed for 

9-anthraldehyde 7, giving 9,10-dihydroanthracene-9-carboxylate 8 in 32% yield.48,49 
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Figure 5 MIC-catalyzed hydrogenation reactions. Reactions carried out in 0.3 mmol 

scale. Isolated yields are given. aCD3OD was used. bEtOH was used.  

 

 Lastly, we wanted to demonstrate that the process could allow for C-C bond 

formation, therefore adding complexity to aryl aldehydes (Fig. 6). To this end, we 

reacted 4-iodobenzaldehyde 9 under the optimized catalytic conditions with alkenes 10 

in the presence of methanol. Gratifyingly, 2-vinylpyridine derivatives (10a-c), 

2-vinylbenzothiazole (10d), and even methyl methacrylate (10e) reacted smoothly with 

4-iodobenzaldehyde 9, generating the desired products 11a-e in 37-55% yields. Note 



that in these cases, the second inversion of state could occur either just after the 

cleavage of the carbon-iodine bond, or after the addition to the alkene. 

 

Figure 6 C-C bond formation, adding complexity to aryl aldehydes. 

 

CONCLUSIONS 

Photochemical reactions involving direct excitation of a substrate to its triplet state are 

well explored. 50  Recently, this area experienced a renaissance by exploiting a 

photosensitizer as a catalyst for energy transfer.51 ,52 ,53  This work shows that the 

combination of aryl aldehydes with carbenes leads to low S/T gap adducts (Breslow 

Intermediates and their deprotonated forms) due to the radical-stabilization effect of 

carbenes.54 The S/T gap is especially small with mesoionic carbenes, which results in 

their low activation energy and viability of thermal excitation. The resulting triplet state 

of deprotonated Breslow Intermediates enables tandem distal functionalization of aryl 

aldehydes. The reactivity of these biradicals is significantly different from that of the 

aforementioned photo-excited triplet substrates, which have a high activation energy, 

high reactivity and limited reaction patterns (Fig. 7). Synthetic strategies, based on the 

thermal accessibility of triplet states of other carbene-derived intermediates, such as 

azolium enolates, dienolates and homoenolates, are under current investigation. 
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Figure 7 Carbenes, especially MICs, lead to adducts featuring low-lying triplet states.  
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