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Abstract

Dislocation nucleation in homogeneous crystals initially unfolds as a linear symmetry-breaking elastic
instability. In the absence of explicit nucleation centers, such instability develops simultaneously all
over the crystal and due to the dominance of long range elastic interactions it advances into the
nonlinear stage as a collective phenomenon through pattern formation. In this paper we use a novel
mesoscopic tensorial model (MTM) of crystal plasticity to study the delicate role of crystallographic
symmetry in the development of the dislocation nucleation patterns in defect free crystals loaded in a
hard device. The model is formulated in 2D and we systematically compare lattices with square and
triangular symmetry. To avoid the prevalence of the conventional plastic mechanisms, we consider the
loading paths represented by pure shears applied on the boundary of the otherwise unloaded body.
These loading protocols can be qualified as exploiting the ’softest’ and the ’hardest’ directions and we
show that the associated dislocation patterns are strikingly different.

Keywords: crystal plasticity, dislocation nucleation, lattice invariant shear, homogenenous
nucleation, pattern formation, mechanical twinning

1. Introduction

Plastic flow in crystals is a result of the motion of crystal defects among which the dominant role
is played by lattice dislocations [1, 2, 3, 4, 5]. Understanding the mechanism of creation of dislocations
is essential for the development of the fundamental theory of crystal plasticity allowing one to control
the mechanical strength of crystalline materials [6, 7, 8, 9].

Homogeneous nucleation of dislocations in crystalline solids attracts particular attention as the
main mechanism for incipient plasticity in nanomaterials where one usually has to deal with prac-
tically defect-free crystals [10, 11, 12, 13]. Since the action of standard (heterogeneous) dislocation
sources at these scales is suppressed, the knowledge of alternative (homogeneous) dislocation nucle-
ation mechanisms is of crucial importance for the understanding of the response of such materials
which are known to demonstrate extraordinary mechanical properties due to the presence of peculiar,
micro-scale-specific deformation mechanisms [14, 15, 16].

Nucleation of dislocations signals the loss of stability of a perfect lattice subjected to sufficiently
large shear stresses [17]. The resulting symmetry breaking instability may lead to reconfiguration
of only few atomic bonds, as is the case of a nucleation of a single dislocation, or carry a large-scale
restructuring of the atomic lattice, as during a catastrophic, brittle-like, collective nucleation of a large
number of dislocations which leads to the formation of intricate dislocation patterns [18]. Although
at macro-scales such massive nucleation of dislocations can be usually neglected in comparison with
emission of individual dislocations from heterogeneities, it may be also a dominant factor in bulk
materials subjected to high intensity dynamic loadings [19, 20].

Given that the sizes associated with dislocation cores can be as small as a few lattice spacings,
the continuum theory is hardly applicable for the description of the developed (post-bifurcational)
stages of lattice instability resulting in the formation of dislocations. Therefore molecular dynamics
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simulation played an important role in uncovering the fundamental mechanisms of the nucleation of
individual dislocations, however its limited timescale still remains a significant challenge for studying
collective nucleation at experimentally relevant conditions [21]. Therefore various accelerated meso-
scale approaches have been used including the microscopic phase-field crystal theory [22, 23], the
multi-scale quasi-continuum method [24], the periodized-discrete-elasticity model [25], and the phase-
field dislocation dynamics [26]. Each of these conceptual and computational approaches was successful
in addressing a particular range of time and length scales.

Major efforts have been focused on finding the dislocation nucleation criterion [27, 28, 29]. Given
that behind dislocation nucleation is a linear instability of an elastically pre-stressed solid, many at-
tempts were made to reduce the corresponding continuum-scale criterion to nanoscale, for instance,
by using the continuum loss of strong ellipticity condition with atomic level entries [30, 31]. However,
even in the case of apparently homogeneous dislocation nucleation under micro-indenter, the molec-
ular dynamics simulations revealed complex mesoscale processes involving a large number of atoms
and producing a strong local distortion of the lattice which makes a phonon stability analysis hardly
applicable [32, 33, 34, 35]. As a result various nonlocal corrections were proposed to ’delocalize’ the
mesoscale atomic acoustic tensor and the results were extensively compared with molecular dynam-
ics simulations [36]. Despite this progress, our ability to predict the instant and the location of the
nucleation of an individual dislocation remains limited, while the first efforts to understand the corre-
sponding collective effects have started only recently [37, 18]. Moreover, little remains known about
the collective side of dislocation nucleation including the dependence of emerging patterns of cells and
walls on the crystallographic symmetry of the lattice.

The goal of this paper is to contribute to the understanding of the collective nucleation of disloca-
tions in perfect crystals as a bifurcation phenomenon with the focus on post-bifurcational development
of patterns and textures. We assume that in the absence of explicit nucleation centers, the implied
instability develops simultaneously all over the crystal and that, due to the dominance of long range
elastic interactions, it proceeds into the nonlinear stage as a cooperative avalanche which involves
self-organization of dislocations into energy minimizing patterns. We design a series of numerical
experiments where we load pristine crystals with different crystallographic symmetries beyond the
stability limit of the homogeneous state and then study the transient unfolding of the dislocation
nucleation avalanche which leads to the catastrophic stress drop as the optimal dislocational mi-
crostructure settles down. For simplicity we operate in 2D where we can systematically compare the
peculiarities of the collective nucleation in lattices with square and triangular symmetry. To avoid im-
mediate activation of the conventional plastic mechanisms, we consider the loading paths represented
by pure shears applied on the boundary of the otherwise unloaded body. These loading protocols can
be qualified as exploiting the ’softest’ and the ’hardest’ directions and we show that the associated
dislocation patterns are strikingly different.

Our main computational tool is the novel mesoscopic tensorial model (MTM) of crystal plasticity
allowing one to capture in a geometrically precise way the role of crystallographically-specific lattice
invariant shears while still operating with the macroscopic notions of stress and strain [38, 39, 37, 40,
18, 41]. The model implies the construction of an energy density respecting the global symmetry of
Bravais lattices described by the group GL(n,Z) [42, 43, 44, 45, 46].

The resulting theory can be viewed as a finite element version of nonlinear elasticity theory ac-
counting for geometrically nonlinear kinematics. The size of the elements is viewed as a physical
regularizing (cut-off) parameter bringing an internal scale into the theory. Behind such coarse-grained
approach lies the assumption that the deformation inside the meso-scale material elements can be
considered as affine and their response is characterized by an effective energy landscape which is
globally periodic due to the presence of an infinite number of equivalent lattice configurations. From
the perspective of such Landau-type continuum theory, plastically deformed crystal can be seen as a
multi-phase mixture of equivalent “phases”. Plastic yield can be then interpreted as an escape from
the reference energy well, and plastic “mechanisms” can be linked to low-barrier valleys of the energy
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landscape. Rate-independent dissipation emerges in such theory due to the fast (abrupt, at the time
scale of the loading) well-switching events describing elementary plastic slips.

The main advantage of the MTM approach is that it is formulated in terms of macroscopically
measurable quantities (stress and strain) while being able to distinguish between different crystal
symmetries including the resolution of the symmetry dependent configuration of the dislocation cores.
It can therefore account adequately for both long- and short-range interactions between dislocations.
Most importantly, it allows for topological transitions associated with dislocation nucleation and
annihilation even though the details of the corresponding “reactions” may appear as blurred on the
scale of regularization. Last but not least, in the MTM approach the interaction of dislocations with
various obstacles, including self locking and the formation of other types of dislocational entanglements
can be handled without introducing ad-hoc relations.

Using this modeling framework we show that following the loss of elastic stability plasticity develops
in the form of a system size avalanche which involves massive nucleation of dislocations which self-
organize into system size patterns. The latter involves the formation of extended low-energy patches (or
grains) undergoing pseudo-rigid rotations. Individual grains are separated by high-energy dislocation
walls. The observed deformation patterns defy conventional continuum description with its insistence
on rigid plastic mechanisms limited to crystallographically specific simple shears and the neglect of
the effects of geometrical nonlinearity. More complex picture is observed with various slip systems
activated simultaneously and finite elasticity playing an important role in the observed dislocation
patterning.

The fact that the MTM energy can be formulated for lattices with different symmetries and that
we can model general loading paths allows us to explore non-trivial deformation mechanisms peculiar
to lattices with higher and lower symmetries. To highlight these ideas we focus in what follows on
the simplest nontrivial case of 2D lattices with two types of symmetries, square and triangular. We
study systematically two fundamentally different loading directions which we consider as providing
conceptual bounds for the whole spectrum of available responses. One of them is directed towards the
lowest and another one to the highest energy barrier away from the original energy well. The resulting
breakdown of the original homogeneous state displays complex nucleation pattern with a large number
of nucleated dislocations forming a highly organized crystal texture. The ’softest’ path highlights the
role of the metastable phases in driving the complexity of the emerging dislocation arrangement. The
’hardest’ path shows in some cases the possibility of collective rearrangements of the lattice taking the
form of inelastic rotations in which dislocations play the role of invisible intermediaries.

The paper is organized as follows. We begin by introducing the GL(2,Z)-invariant energy and
discuss the resulting energy landscape (Section 2). In Section 3, we propose the criterion detecting
the instability of the homogeneously loaded lattice which reveals various features of the activated
instability modes. We then present in Section 4 the results of the numerical experiments which confirm
the validity of our instability criterion and show the post avalanche arrangement of the nucleated
dislocations. A brief description of the numerical method is given in the Appendix. Our conclusions
are summarized in the final Section 5.

2. The model

Lattice invariant shears.. The proposed model, whose simplest nontrivial formulation is for 2D Bravais
lattices which are solely considered in this paper, allows one to include plastic deformation in a
continuum elastic framework, while simultaneously accounting of the discrete nature of the underlying
lattice structure. This is achieved with the construction of an energy density whose material symmetry
properties are described by the global symmetry group of the lattice GL(2,Z). The latter is broader
than the crystallographic point group [47] and includes the lattice invariant shears accounting for
plastic slips [48, 49, 50, 51, 52, 53].

The energy density in the MTM model should be invariant of the action of the group GL(2,Z)
which is comprised of unimodular integer valued matrices m. Indeed, two basis eI and ēI describe
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Figure 1: (a) A portion of the hyperbolic surface detC = 1, points and lines corresponds to the different Bravais
lattices. The respective basis vectors ei are shown on insets. (b) A stereographic projection of the surface detC = 1 on
the Poincare disk. D is the minimal periodicity domain.

the same lattice if and only if [54]: eJ = mIJ ēI with mIJ ∈ Z. Then, we can say that all 2D simple
lattices are invariant under the action of a group GL(2,Z) = {m, mIJ ∈ Z, det(m) = ±1} . The fact
that this matrices are unimodular (i.e. det m = ±1) reflects the condition that these transformations
do no affect the volume of the lattice cell (the case det m = −1 corresponds to reflection). We
remark that the group GL(2,Z) accounts for the lattice invariance in shear, but also of invariance
under rotations and reflections and in this sense the group GL(2,Z) constitutes the finite strain
extension of the crystallographic point group [55]. Every time we multiply a lattice basis with a
matrix m ∈ GL(2,Z), we obtain a crystallographically-equivalent structure with exactly the same
energy. The resulting multiplicity of the energy wells implies that such equivalent configurations can
be interpreted as different ”phases” describing the same crystal. In such a description, dislocations
will appear as incompatible parts of the resulting ’phase boundaries’.

In the following we take for granted that the lattice energy density ϕ (ēi), where ēi = Fe0
i is

the deformed basis while e0
i is the reference basis, can be identified with a continuum strain energy

density such that φ(F) := ϕ(Fe0), with F = ∇u the deformation gradient. In view of frame indifference
requirement, the strain energy density φ must be a function of the lattice metric tensor C = FTF [56,
57]. The configuration space is then described by the three significant components of the metric
tensor: C11, C22 and C12. Every point of the surface det C = C22C11 − C2

12 = 1 corresponds to an
orbit represented by rigidly rotated lattice configurations.

Minimum periodic domain.. The global invariance of the energy suggests that we can construct the
image of C in the minimum periodicity domain D = {C ∈ det C = 1, 0 < C11 ≤ C22, 0 ≤ C12 ≤
C11/2}. The metric tensors belonging to it are associated with lattices basis characterized by the
”minimal” vectors ẽ1, ẽ2, because they are selected in such a way that: ẽ1 is the shortest lattice vector
and ẽ2 is the shortest lattice vector not collinear with ẽ1 and for which the sign is chosen in such a way
that the angle between the two is acute. This type of basis is said to have reduced form of Lagrange
[58].

To better visualize the tessellation of the configurational space into equivalent periodicity domains,
we will use in what follows the stereographic projection of the infinite surface det C = 1 on a disk with
unit radius (Poincaré disk). The mapping, which associates the configuration (C11, C22, C12) with the
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point (x, y) on the unit disk, is given by the formulas

x =
(C12
C22

)2 + (
√

detC
C22

)2 − 1

(C12
C22

)2 + ((
√

detC
C22

) + 1)2
, y =

2(C12
C22

)

(C12
C22

)2 + ((
√

detC
C22

) + 1)2
. (1)

In Fig. 1 we show the location of the minimal periodicity domain D on the hyperbolic surface
det C = 1 in the space of metric tensors and on its projection on the Poincaré disk. We highlight
there the configurations S and T which are the unique representatives of the infinite equivalence
classes of unloaded square and triangular lattices, belonging to D. The small black squares in Fig. 1
corresponding to other (not belonging to D) variants of the square lattice, while the other equivalent
variants of triangular lattices with hexagonal symmetry are represented by small red triangles. The
rectangular and the rhombic lattices with one parametric degeneracy are also located in Fig. 1 along
the continuous and dashed grey lines; the generic obliques lattices with two parametric degeneracy
are located in the open regions of the configuration.

Lagrange reduction.. For the ’equivalent’ of C inside the minimal periodicity domain we use the
notation C0. The metric tensor C0 is defined by the mapping C0 = mTCm. The task of finding
the corresponding unimodular matrix m is known as the Lagrange reduction [58]. It is a recursive
procedure which can be formulated in the form of an algorithm [58]: (i) initiate m = I; (ii) define

the following three matrices : m1 =

(
1 0
0 −1

)
, m2 =

(
0 1
1 0

)
, m3 =

(
1 −1
0 1

)
; (iii) initiate recursive

algorithm : (iv) if C12 < 0, change sign to C12, m →mm1; (v) if C22 < C11, swap these two
components, m →mm2; (vi) if 2C12 > C11, set C12 = C12 − C11, and C22 = C22 + C11 − 2C12,
m →mm3. Note that the action of the matrix m1 is related to the sign of the angle between two
lattice vectors ei and returns an acute angle, whereas the action of the matrix m2 is to swap two lattice
vectors ei. Therefore, both these two operations do not result in any change in vectors’ length and
effectively propagate the metric in the same elastic well composed of the four copies of the fundamental
domain D and therefore are not associated with a plastic strain. On the other hand, the length of
the lattice vectors is changed (shortened) under the action of the matrix m3, which indicates that the
current metric belongs to another elastic well and accumulates plastic strain.

Energy density.. Given that the energy density will be defined fully as long as it is defined in the
minimum periodicity domain and we will use for such a single period description a special notation
φD(C0) so that φ(C) = φ(mTCm) = φD(C0). By defining φD as a function of scaled variables
C̃ = C/(det1/2 C) we decouple the isochoric contribution to the energy from the volumetric one that
can be added separately. We will require φD to satisfy C2 smoothness, which ensures the continuity
of the elastic moduli. Moreover, φD must have a minimum which corresponds to the chosen crystal
symmetry. For instance, when modelling a square lattice, φD will be constructed in such a way that
minimum coincides with the square symmetry lattice (that is point C11 = C22 = 1, C12 = 0).

A general 6-th order polynomial energy φD with the required properties was introduced in [46].
The energy density is written in terms of the three invariants: I1 = 1

3(C11 + C22 − C12), I2 =
1
4(C11−C22)2 + 1

12(C11 +C22−4C12)2 and I3 = (C11−C22)2(C11 +C22−4C12)− 1
9(C11 +C22−4C12)3

and can be written as φ̃D(C̃) = β1ψ1(C̃) + ψ3(C̃) where ψ1 = I1
4 I2 − 41 I2

3

99 + 7 I1 I2 I3
66 + I3sof2

1056 and

ψ2 = 4 I2
3

11 +I1
3 I3− 8 I1 I2 I3

11 + 17 I3
2

528 . The value of parameter β1 = −0.25 (β1 = 4) must be set to ensure
that the global minimum of the energy corresponds to square (triangular) symmetry. The proposed
energy φ̃D(C̃) concerns metrics located on the surface det C = 1. To account for configurations which
also allows for a volume change, we can add a volumetric term to φ̃D(C̃). For instance, to exclude
configurations with infinite compression one can use an expression h(det C) = −K(ln det C− det C),
so that φD(C) = φ̃D(C̃) + h(det C) where the coefficient K plays the role of a bulk modulus. The
energy density φD(C) is used in all numerical experiments reported in this paper.
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Internal length scale.. Since the energy φ is non convex, the corresponding continuum elasticity prob-
lem, which is by definition scale free, is highly degenerate. The minimization in this setting can
produce infinitely fine microstructures [59] reducing the stiffness in the relaxed problem to zero [60].
This lack of convexity is a property that the MTM of crystal plasticity shares with other similar
Landau type theories. However, in contrast to the conventional Ginzburg-Landau approaches, relying
for regularization on higher gradients of the order parameters, in MTM the regularization is achieved
by spatial discretization, which reduces the space of admissible deformations to a finite dimensional
set of compatible, piece-wise affine mappings. In other words, deformation is assumed to be piecewise
linear and the elastic response is attributed to discrete material elements whose scale h defines the
resolution of the model (meso-scale) and is viewed as a physical parameter [38, 37].

More specifically, the original lattice is coarse grained with an introduction of a uniform meso-scale
grid reproducing the symmetry of the crystal. The scale of the elements of the grid is selected to make
sure that the Cauchy-Born type energy [53, 61], computed by ab initio methods for elements in the
corresponding range of sizes, is essentially periodic in the interesting range of strains. In many crystals
the periodicity at the level of the few first energy wells can be captured already for h ∼ 10a where
a is the atomic scale. In the resulting coarse grained description, some microscopic features like, for
instance, dislocation cores will emerge as blurred because the scales smaller than h are effectively
homogenized out. While some aspects of a truly atomistic description will be then necessarily lost, for
instance, the implied cut-offs may compromise the short-range interaction of dislocation cores during
dislocation reactions, the crucial meso-scopic interactions at distances of the order and larger than h
are expected to be captured correctly. If we normalize the linear size of the macroscopic sample by
setting L = 1, we acquire a small dimensionless parameter h/L = 1/N , where N2 is the number of
the nodes in the mesoscopic finite-element grid. For instance, if h is in nm size range, the simulations
with N ∼ 103 would describe a micrometer size samples.

Computational approach.. Solution of a continuum elastic problem implies local minimization of the
energy W =

∫
Ω φ(∇y)dx which is prescribed on a reference domain Ω. We assume that the system is

loaded by an affine displacement field prescribed on ∂Ω (hard device). The conditions of mechanical
equilibrium read ∇·P = 0, where P = ∂φ/∂F is the Piola-Kirchhoff stress tensor. Using the Eulerian
i, j = 1, 2 and the Lagrangian K,L = 1, 2 indexes and assuming summation on repeated indexes, we
can rewrite the equations in the form AiKjLyj,KL = 0, where AiKjL is the tensor of the tangential

elastic moduli: AiKjL = ∂2φ0(C0)
∂FiK∂FjL

. Here C0 = mTCm, where the integer-valued matrix m can be

computed for each value of C using the Lagrange reduction algorithm.
The meso-scopic finite elelment grid is formed by a network of nodes, labelled by integer valued

coordinates a = 1, ..., N2. We assume that each element of the network is a deformable triangle and
write the displacement field in the form u(x) = uaN a(x), where N a(x) are the compactly supported
shape functions, ua are the amplitudes of nodal displacements and summation over repeated indexes
effectively extends over elements containing or bounding point x. The mesoscopic deformation gradient
is then F(x) = I + ∇u(x), and the equilibrium equations can be written in the form ∂W/∂ua =∫

Ω P(F)∇N a(x)dx = 0. The hard device loading is set through the displacement u(α) = (F̄(α)− I)x
for all nodes a on the boundary of the body ∂Ω, where F̄(α) is the applied deformation gradient
with amplitude α. We also performed simulations with periodic boundary conditions uB − uA =
(F̄(α) − I)(xB − xA), where A and B are two points periodically located on the boundary of the
body ∂Ω. The equilibrium problem can be solved by quasi-Newton method followed by the so called
NR ‘refinement’ when the initial guess is too far from the solution for Newton–Raphson method to
converge initially [18].

More specifically, to find ua we first use the L-BFGS algorithm [62] which builds a positive definite
linear approximation allowing one to make a quasi-Newton step lowering W . Such iterations continue
till the increment of total energy W becomes sufficiently small. The obtained approximate solution is
then used as an initial guess wa to solve, using LU factorization [63], the equations for the correction
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(a) (b)

Figure 2: (a) Poincaré disk showing the energy landscape for the case β = −1/4. Minima of the energy are located on
square lattice configurations. Loading paths corresponding to simple shears are illustrated in white (dashed for F(α, 0)
and dash-dotted for F(α, π/2). Grey lines are the rhombic pure shear F� (solid) and the rectangular F (dashed). (b)
Energy landscape along the loading paths F(α, 0) and F(α, π/2), the equivalent configurations of the square lattice are
illustrated on the insets below the corresponding energy wells. Energy landscape along the rectangular and the rhombic
pure shear paths F and F� are also shown for comparison.

dwa which read Kab
ij dw

b
j + Rai = 0, where Kab

ij = AiKjL(F)∂N
a

∂xK
∂N b
∂xL

and Rai = PiK(F)∂N
a

∂xK
. The

displacement field can be updated in this way till the value of the forces acting on the nodal points are
sufficiently small and then the loading parameter can be advanced again, see Appendix 1 for more
details.

3. Loading paths

In Figs. 2 and 3, we illustrate the energy landscapes in the cases when either square and a
triangular lattice is chosen as the ground state. While some details are specific of the polynomial
form of the energy density chosen in this work (say, the size of energy barriers) most of the observed
features are generic and directly related to the symmetry requirements imposed on the energy. To
illustrate the periodic nature of such energy we show in the insets its evolution along selected shearing
deformation paths.

Square lattice.. Consider first the case of a lattice with square symmetry. Slip systems correspond in
this case to the simple shear trajectories described by deformation gradients of the type

F(α, θ) = I + αR(θ)e0
1 ⊗R(θ)e0

2, (2)

where e0
i are the vectors of the reference orthonormal basis, R(θ) is an orthogonal matrix representing

a clockwise rotation at the angle θ with respect to e0
1 and α is the shear amplitude parameter. The

associated strain tensors C follow circular trajectories on the Poincaré disk. In Fig. 2 the white
continuous and dotted circles correspond respectively to shears F(α, θ = 0) and F(α, θ = π/2), which
are oriented along close packed directions. In Fig. 2(b), we illustrate the energy landscape along such
simple shear trajectories with the corresponding deformed lattice configurations shown below.

While both ’soft’ and ’hard’ simple shear loading paths were considered in detail in [18], in this
paper we focus on the pure shear paths, that is, on volume preserving deformations that shrink the
elementary cell of the crystal along one axis while elongating it along another one which is oriented in
the perpendicular direction. We consider two pure shear loading paths for which the corresponding
metric tensors C are non-generic as they are located on the boundaries of the fundamental domain

7



(a)
(b)

Figure 3: (a) Poincaré disk showing the energy landscape for the case β = 4. Minima of the energy are located on
triangular lattice configurations and simple shears form circular trajectories (shown in white). The loading paths F�
and F̄♦ are illustrated in grey (with a continuous and a dashed line respectively). (b) Energy landscape along shearing
deformation paths F̄(α, 0), F̄(α, π/3) and F̄(α, 2π/3), the shear-invariant triangular configurations are illustrated below
the corresponding energy wells. The non-symmetric energy landscapes along the two pure shear paths are shown as well
for comparison.

D. In the purely elastic regime such loading protocols transform the original square configurations
into either rectangular and rhombic loaded configurations without changing their specific volumes; in
what follows we use the notation F� for the rhombic pure shear and F for the rectangular pure shear.

Along the rhombic path the direction −(
√

2/2)e1 + (
√

2/2)e2 is shortened while the direction
(
√

2/2)e1 + (
√

2/2)e2 is elongated with the volume of the element remaining constant. Then, C� =
FT
� F� = UT

�RTRU� = U2
�, where

U� = ΨΛ1/2ΨT =

[ √
2

2

√
2

2
−
√

2
2

√
2

2

][
1
λ 0
0 λ

][ √
2

2 −
√

2
2√

2
2

√
2

2

]
(3)

is the the stretch tensor, Ψ is the orthogonal matrix whose columns are the principal directions and Λ
is the diagonal matrix with the squares principal stretches λi as eigenvalues [64]. The corresponding
deformation gradient, chosen in such a way that the lower side of the element is aligned with the
horizontal direction during the deformation process, can be written as F� = R�U�, where

F� =
1√

coshα

[
coshα sinhα

0 1

]
, R� =

1√
coshα

[
cosh(α/2) sinh(α/2)
− sinh(α/2) cosh(α/2)

]
, (4)

and α = lnλ. We note that the rhombic path is tangent to the simple shear path F (α, 0) = I+αe0
1⊗e0

2,
these two deformation directions are interchangeable in the classical linear elasticity (but not in MTM).

Along the rectangular path F the principal directions are the reference vectors e0
1 and e0

2, therefore:

F = U =

[
1
λ 0
0 λ

]
=

[
cosh(α2 )− sinh(α2 ) 0
0 cosh(α2 ) + sinh(α2 )

]
. (5)

The individual elements are then elongated along the horizontal direction e0
2 and shortened along the

vertical direction e0
1.

In Fig. 4(a), we the rhombic and the rectangular pure shear loading paths superimposed on the
energy surface of a square crystal. One can see that the rhombic path is located inside the energy
valley and can be then considered as ’soft’. Instead, the rectangular path goes against a steep energy
hill and is therefore ’hard’. The corresponding one-dimensional energy landscapes are illustrated in
Fig. 2(b).
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(a) (b)

Figure 4: (a) Loading paths F0 (dashed white) , F (dashed grey) and F� (grey). The latter two correspond to the
boundary of the periodicity domain D and describe the deformations of the square lattice towards rectangular and
rhombic configurations, respectively. (b) Energy landscape along the illustrated paths. The low energy path F� spans
the bottom of the energy barrier and crosses the high symmetry point T.

Triangular lattice.. We now consider as the reference state, where the loading path begins, the triangu-

lar lattice T. Its generating basis is given by the two vectors e41 = γ {1, 0}T and e42 = γ
{

1/2,
√

3/2
}T

,

with γ = 4
√

4/3. The shear paths are now characterized by the families of deformation gradients

F̄(α, θ) = F(α, θ)H, (6)

where H is the matrix whose columns are the basis vectors e4i , F(α, θ) is shear deformation defined
in Eq. 2 for simple shears (we recover closed-pack directions for θ = 0, π/3, 2π/3). Note that with
this parametrization, the value of the parameter α for which the lattice invariant shears for triangular
symmetry are recovered is not an integer, but instead α = nγ2 where n is integer. The energy profile
along these paths F̄(α, θ) is shown in Fig. 3(b), see [18] for more details.

Here we focus instead on pure shear loading paths originating in triangular reference state T and
corresponding to the boundaries of the minimal periodicity domain D. Along one of these paths, F̄�,
we obtain lattices with rhombic symmetry where both diagonals of the rhombus are longer than the
side; the other path, F̄♦, corresponds to the case of rhombi with one of the diagonals smaller than the
side [46]. We remark that the path F̄� originating in T describes the same deformation as the path
F� originating in S. In the case of triangular lattice, the principal directions are rotated by π/6 with
respect to the reference axes of the square lattice, therefore, in analogy with (3) one can write

Ū� = Ψ̄Λ1/2Ψ̄T =

[
cosh(α2 )− 1

2 sinh(α2 ) −
√

3
2 sinh(α2 )

−
√

3
2 sinh(α2 ) cosh(α2 ) + 1

2 sinh(α2 )

]
.

Among all such deformations the one which preserves the angle between e41 and the horizontal direc-

tion is F̄� = R(χ)Ū�, with: χ = arctan
(√

3
2

tanhα/2+2
2 tanhα/2

)−1
. This deformation is then applied to the

triangular basis e4i . Note that along the loading path F�, the crystal is driven trough a very shallow en-
ergy valley extending from the (triangular) energy minimum T towards the mountain pass represented
by the (square) saddle S and then further to another energy (square) minimum at α = 2 arcsinh(γ2/2)
(see Fig. 5). We remark that, along the ’soft’ pure shear path F̄�, the energy barrier, which has its
maximum at S (with α = arccosh(γ2)), is lower than the one along the simple shear path Fπ/3, the
one which is habitually selected as the natural ’plastic mechanism’.

The second rhombic loading path F̄♦ is obtained by applying the pure shear deformation F to

the lattice defined by the basis vectors e4i . Along the path F̄♦ which is much ’harder’ than the path
F�, the energy grows very rapidly without ever passing through any other minimum, see Figure 5 .
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Figure 5: (a) Loading path F̄π/3 (dashed white), F̄♦ (dashed grey) and F̄� (grey). The latter two correspond to the
boundary of D and describe the deformation of the triangular lattice towards different rhombic configurations. (b)
Energy landscape along the illustrated paths. The low energy path F̄� spans the bottom of the energy barrier and
crosses the high symmetry point S.

(a) (b)

Figure 6: (a) Stability (yielding) limits for the square crystal (in black). The two loading paths corresponding to simple
shear F0 (dashed white) and rhombic pure shear F� (grey) cross the stability region in similar configurations. (b)
Stability region for the triangular symmetry crystal (black). Here the difference of strain configurations at the limit of
stability is larger if we compare the loading paths corresponding to simple shear (dashed white) and pure shear (grey).

Stability limits.. With each loading path we can associate an effective stability (yield) limit obtained
under the assumption that the state is homogeneous and the discretization length scale is vanishingly
small. In other words, we imply here an instability of a perfect crystal deformed in a hard device with
the affine deformation F̄(α) applied on the boundary and search for the critical value of the loading
parameter αc at which the homogeneous state ceases to be stable. To identify the bifurcation point we

need to solve an incremental problem defined by the tangential elastic moduli AiKjL = ∂2φ
∂FiK∂FjL

It is

known that the homogeneous configuration remains incrementally stable in the above sense as long as
the Legandre-Hadamard (strong ellipticity condition) Qij(N)lilj > 0 holds [65], where we introduced
the acoustic tensor Qij(N) = AiKjLNKNL while N and l are arbitrary vectors, in the reference and
deformed configurations, respectively. The corresponding critical value of the loading parameter is
usually found from the condition detQ(N) = 0, e.g. [66]. In what follows we use an Eulerian version of
this bifurcation condition det q(n) = 0, where qik = aijklnjnl, aijkl = AiKjLFkKFlL and n = F−TN.
The Eulerian vectors n and l characterize the incipient unstability mode [67]. For instance, if n is
approximately perpendicular to l. In the post-bifurcational regime one can expect in this case the
formation of (lattice size) shear bands along the plane with normal n and with slip direction l [28].
Further development may lead to the nucleation inside the individual bands of incipient dislocation
pairs (slip embryos in 2D or dislocation loops in 3D) whose Burgers vector is aligned with l or to the
collective process resulting in activation of a micro-twin laminate with the twinning plane oriented
along n.
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Using the proposed approximate stability condition we can delineate in the configurational space
of metric tensors C a region around the reference state where the continuous homogeneous system can
be expected to be stable and interpret it as an effective ’yield surface’. To this end we need to consider
a sufficiently broad family of loading paths, for instance, the family of simple shear trajectories with
the full range of values of the shearing angle θ plus the two limiting loading paths along the boundary
of the periodicity domain D and representing pure shears (the paths F and F� for the square lattice,
and F̄� and F̄♦ for the triangular lattice). Along each of these paths we computed the first value of
the loading parameter α where the Legandre-Hadamard condition is violated for some non-trivial n
and l. This produced an effective ’yield surface’ which we illustrated by black lines in our Figures 6a
and 6b for square and triangular lattices, respectively.

(a)
(b)

Figure 7: The function det (F(α),n(ξ)) is illustrated for α = 0.001 and α = αc for the two deformation paths considered
in the case of the square crystal, that is F� (a) and F (b).

(a) (b)

Figure 8: The function det (F(α),n(ξ)) is illustrated for α = 0.001 and α = αc for two deformation paths considered in
the case of the triangular crystal, that is F̄� (a) and F̄♦ (b).

We illustrate the nature of the instability modes for square and triangular lattices loaded along
the special pure shear paths. If the potentially unstable orientation n is parametrized by the angle ξ
as n = {cos ξ, sin ξ} it is of interest to study the ξ dependence of the parameter det q(n) at different
values of α and in our Fig. 7 and Fig. 8, we show such graphs for α = 0 and αc for all four pure shear
loading paths discussed above. In the inset located to the right of each of these plots we represented
the directions n⊥ indicating the orientation of the unstable (slip) plane vis a vis the basis vectors of
the deformed crystal at the onset of instability ( along with the values of ξ). We note that for the
rectangular path F for the square and F̄♦ for the triangular lattices the unstable mode is perfectly
aligned with the horizontal plane (n⊥ is aligned with the vertical directions). The polarization vectors
l were found to be approximately perpendicular to n for all of the investigated loading directions.

We remark that the simple shear type loading paths were discussed in detail in [18] where we
showed that for square lattices the instability along the (’soft’) simple shear direction Fθ=0,α produces
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two almost simultaneous instability modes with the resulting activation of two crystallographic slip
systems. We have seen that such modes are also almost simultaneous in the case of square lattices
subjected to the (’soft’) pure shear loading F�. Moreover, the analysis of the (’soft’) path F̄� for
triangular lattices shows the analogous effect ( which is not apparent along crystallographic-oriented
simple shears). Along the generic (’hard’) shearing directions (implying both pure and simple shears),
there is only one unstable mode n which reflects the activation of a single slip system.

4. Numerical experiments

In this section we present the results of our numerical simulations. Their main goal is to provide first
evidence of the efficiency of MTM in addressing various sub-continuum problems in crystal plasticity.
Throughout this section we use the version of the model, the numerical algorithm and the loading
protocols described in the previous sections.

Dislocation cores.. To interpret the obtained data in experiments involving large number of disloca-
tions, it is important to be able to identify and resolve the structure of individual dislocation cores.
That is why we begin with consideration of an isolated dislocation trapped by the discreteness of the
meso-scopic lattice in the center of a sufficiently large unloaded crystal.

(a) (b)

Figure 9: (a) Dislocation structure in the case of square lattice: (1) energy near the core, (2) Cauchy stress σxy, (3) a
detail of the elements triangulation, (4) elements strain projection on C space, color bar shows the energy level both in
(a) and (b). (b) Dislocation structure for the triangular symmetry crystal. Pictures are analogous to (a).

As we have already mentioned, dislocations can appear in MTM when different variants of the
same lattice (different phases) are present simultaneously. Consider, for instance, the coexistence in
the square lattice of the reference phase S = F(θ = 0, α = 0) and the phase S0

1 = F(θ = 0, α = 1) which
is different from the reference phase by an elementary lattice invariant shear. A single dislocation is
obtained in the configuration where a semi-infinite single layer of elements in phase S0

1 is embedded in
an infinite lattice of elements in phase S, see Fig. 9(a). Far away from the area around the terminal
point of the sheared (slipped) layer of elements, which represents the dislocation core, the lattices are
perfectly compatible because all such elements lie in the bottoms of the corresponding energy wells.
Elements in the core region lie outside the energy wells and have therefore nonzero elastic energy.

To obtain in a numerical experiment an isolated dislocation we used a square domain (with 200×200
finite element nodes) and applied on its boundary the displacement field reproducing anticipated

far field continuum asymptotics (Volterra dislocation, [68]), ux = b
2π

[
arctan y

x + xy
2(1−ν)(x2+y2)

]
and

uy = b
2π

[
1−2ν

4(1−ν) ln(x2 + y2) + x2−y2
4(1−ν)(x2+y2)

]
. The configuration of the nodes was then allowed to relax
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elastically till the local minimum of the energy was reached. As a result of such relaxation an isolated
dislocation core was formed in the middle of the domain whose different representations (energy, stress,
deformation) are shown in Fig. 9(a) for the case of square lattice and in Fig. 9(b) for the case of
triangular lattice. In Figs. 9 (a-4,b-4) we show the corresponding core structures in the configurational
space of metric tensor.

From the deformed configuration of the elastic elements shown in Fig. 9(a-3), one can see the
sheared layer to the left of the (square) dislocation core representing the (square) energy well S0

1 while
the elements in the same layer but located on the right side of the dislocation core are in reference
(square) well S. Similarly, we see in Fig. 9(b-3) that the (triangular) dislocation core can be viewed as
a domain boundary separating the coexisting elements of the two neighboring (triangular) energy wells
T1

0 and T. The presence of all these energy wells becomes even more clear as one looks at the values of
the components of the metric tensors C11, C12, C22 at the elastic elements which allows one to represent
the structure of a core as a (in reality, somewhat blurred) trajectory in the configuration space, see
our Fig. 9(a-4) and Fig. 9(b-4). While the initial and the final points in such trajectories are located
at the bottoms of the corresponding energy wells, the trajectories themselves represent a mountain
pass type connections between the wells. In the case of square crystals such trajectory ensures that
the maximal elevation is minimal but apparently, this is not the case for triangular crystals. This
confirms that while for both square and triangular lattices most of the transitions takes place close to
the bottoms of the energy valleys, the fine structure of the barriers is manifestly symmetry dependent.

Thus, in the case of the square lattice, the trajectory describing a dislocation core appear to consist
of two separate segments (shown in grey in Fig. 9(a-4) representing pure shears of the type F� studied
in the previous section. Each of them connects the corresponding square wells (the reference well S
and the equivalent well S−1

π/2 = Fπ/2(α = −1) reachable by an elementary lattice invariant shear) with

the shallow local minimum (almost a monkey saddle for our choice of the potential, see [37]) describing
the triangular (hexagonal) lattice T. Here the configuration T, whose presence in the core structure
is also suggested also by the configuration of the elements shown in Figure 9 (1c), plays here the role
of a stacking fault while the pure shears can be interpreted as the analogs of Shockley partials, see
for instance [69, 70, 71]. Note that the naively favored simple shear trajectory F0 (shown in white in
Figure 9 (1-d)) delivers, as we have seen before, a slightly higher barrier and is therefore avoided by
the solution of the energy minimization problem.

The structure of the dislocation core in triangular lattices is different. Thus, the corresponding
mountain pass type trajectory in the configurational space (shown in white in Fig. 9(b-4)) follows the
simple shear path F̄0. An alternative trajectory consisting of two pure shear segments and passing
through the square energy configuration S (shown in gray in Fig. 9(b-4)) is not taken by the system
despite being characterized by a lower energy barrier (see Fig. 5).

Collective nucleation of dislocations.. Now, instead of the specially designed non-affine boundary
conditions ensuring the emergence of a single dislocation, we consider generic affine loading paths and
study the symmetry breaking decomposition of the homogeneous state. More specifically, we assume
that the system is driven quasi-statically and therefore evolves through a sequence of equilibrium
configurations. In the absence of pre-existing defects (pristine crystal), the initial evolution of the
system from the unloaded reference state is elastic till the corresponding elastic branch of equilibria
ceases to exist. At the point of instability the dissipative branch-switching event, accompanied by a
macroscopic stress, drop takes place. It takes the form of a system size avalanche leading to collective
nucleation of a large number of dislocation and a global slip-induced reorganization of the crystal
lattice.

Consider, for instance, the case of a square domain Ω with N = 100 × 100 nodes and assume
that the applied affine deformation is a homogeneous simple shear F̄(α, φ) with fixed orientation φ,
and the shear amplitude α playing the role of the loading parameter. By changing this parameter in
increments of 10−4, we can advance the displacement field u(α, φ) = (F̄(α, φ) − I)x for all nodes on
the boundary of the body ∂Ω till the first instability occurs signaling the homogeneous dislocation
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(a) (b)

Figure 10: Energy-strain relations obtained in numerical experiments for a crystal with square symmetry: (a) and for a
crystal of triangular symmetry (b). Simulated domains are formed by N × N nodes with N = 100, loaded with affine
boundary conditions. Red stars display the critical parameters calculated analytically.

nucleation. The incremental solution algorithm allowing one to see the unfolding of the avalanche in
the fast computational time is detailed in the flowchart shown in Appendix A. In [18] we showed that
the resulting (post-avalanche) dislocation pattern depends on the orientation of the applied simple
shear with a strong difference between the dislocational configurations obtained in the cases of soft
and hard loading directions. In the present paper, we illustrate results obtained along the pure shear
loading protocols using periodic boundary conditions where the system was loaded starting from a
stable reference configuration till the point of instability close to the theoretically predicted elastic
instability, see Fig. 10a and Fig. 10b. Results obtained along the same loading paths but the fixed
boundary conditions are comparable in terms of observed collective dislocation mechanisms, but since
they tend to display a stronger influence of the boundaries we are not discussing them here in detail.

Here we report the results of the numerical experiments obtained for the pure shear loading proto-
cols discussed in the previous section. These loading paths are of particular interest since they include
the ’softest’ and the ’hardest’ loading directions which correspond to the ’shortest’ and the ’longest’
distance to instability’, respectively. These loading paths are also highly symmetric which suggests
that the post avalanche dislocation patterns may have some particular features. Thus, as we have
already seen, among the two pure shear loading directions, one is always directed towards the energy
maximum and can be expected to produce regular micro-twin microstructures. Another one is aiming
directly at the mountain pass where the corresponding saddle point may foment the generation of
disorder.

Square lattices.. We start with the case of a square lattice loaded along the ’soft’ rhombic loading
path F�. The fragment of the post-instability pattern, shown in Fig. 11(a); the colors in this image
representing the physical space indicate the level of the Cauchy stress σxy. The observed simultaneous
activation of both available slip systems is compatible with the emergence of two unstable modes in
the linear analysis which suggests dislocation nucleation along the planes with two types of normals
ni. We note the concurrent initiation of the horizontal and vertical slip systems has been already
observed in [18] for the case of the simple shear loading path Fθ=0.This is not surprising since the two
paths corresponding to simple and pure shear cross the stability boundary in configurations which are
very close to each other in C space.

The obtained dislocation pattern can be understood further if we represent it in the configurational
space of metric tensors, see our in Fig. 11(b). In the homogeneous elastic state all configurational
points were in the same location which depended parametrically on the loading parameter α. After
the effective yield surface was reached the configurational points spread over the configurational space
with most of them concentrating in the three equivalent energy wells corresponding to the reference
square lattice S, and the equivalent square lattices F0(α = 1) and Fπ/2(α = −1) which differ from
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Figure 11: (a) Post-instability pattern for the rhombic path F�, colors show the level of the Cauchy stress σxy. (b)
Inset highlights the presence of both vertical and horizontal dislocations. (c) Distribution of Ci points in configuration
space show the dominant presence of the three wells S, S1

0 and S−1
π/2. The elements on the low energy valleys connecting

wells corresponds to dislocation cores.

Figure 12: Schematic representation of the saddle-like structure of the triangular phases in the square symmetry crystal.
When the reference square configuration (1) is loaded along the energy valley, the systems encounters the triangular
phase (a) and here splits along two different slip system, thus involving two additional wells (2) and (3). This splitting
mechanism presents every time a square phase is loaded towards a triangular one.

the reference lattice by lattice invariant shears along the two perpendicular slip direction. Since the
corresponding states have zero energy, such a localization indicates the formation of unloaded square
lattice patches (grains) which differ only by rotation. The points outside the energy wells are mostly
located inside the energy valleys connecting the reference lattice S with equivalent configurations
F0(α = 1) and Fπ/2(α = −1), and corresponding to the horizontal and vertical dislocation core
structures. Those structures are not exactly built as the pairs of pure shear partials studied above
because they form grain boundaries (dislocation walls) where dislocation interaction is strong.

We remark that the discussed coupling between the slip systems is not postulated phenomenologi-
cally, as it is usually done in conventional continuum theories of crystal plasticity, but emerges directly
from the postulated global symmetry of the energy landscape. We illustrate this point in our Fig. 12
where we show the zoom in on the schematic energy landscape in the configurational space around
the reference energy well S. This figure emphasizes the presence of the valleys which represent the
classical ’plastic mechanisms’ and direct the flow of configurational points away from the energetically
expensive purely elastic deformation. It shows that an exit from the narrow stability neighborhood
of the point S (elastic domain) leads to the flow of the configurational points towards the degenerate
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saddle regions corresponding to the triangular lattice with the higher symmetry than the symmetry
of the reference state; we note the triangular lattice automatically corresponds to a critical point due
to the global symmetry of the energy landscape.

For instance, suppose that the system is driven along the rhombic loading path F�. It is then
forced directly towards the mountain pass around the point T where the system is confronted with
a (binary) choice between moving either towards the (square) well F0(α = 1) or the (square) well
Fπ/2(α = −1) or, as in real numerical experiments, moving in both directions simultaneously while
activating in this way both slip systems (here we are not talking about the configurational points that
simply relax into the reference state). In the case of a less symmetric loading path, like for instance,
the simple shear path Fθ=0, the choice will be slightly biased with both slip systems still available
due to the superior symmetry of the saddle region. It is clear that when the system is loaded beyond
the first avalanche, a succession of similar binary choice enhances the complexity in the developing
pattern even further.

Figure 13: (a) Post-instability pattern for the rectangular path F , colors indicate the level of the Cauchy stress σxy.
(a) The insets allow one to visualize the π/4 rotated structure, the triangulation reveals the shearing mechanism behind
such apparent rotation. (c) Distribution of Ci points in configuration space show the splitting of the system between
the wells Rπ/4S1

0 and R−π/4S−1
0 .

We now discuss the ”hard” loading path F corresponding to driving through the imposed on the
boundary affine rectangular pure shear. We recall that in this case the square elements of the reference
lattice are deformed elastically into rectangles with progressively higher energy cost. As we have also
seen before, the instability of the ensuing rectangular lattice leads to the formation of the sheared
layers oriented perpendicular to the long axis of the rectangles which is a horizontal direction and
with their shear amplitude aligned with the vertical direction. The direction of the shear presents a
binary choice between the (square) energy wells S0

1 = F(θ = 0, α = 1) and S0
−1 = F(θ = 0, α = −1)

which suggests micro-twinning mechanism of instability.
The post avalanche configuration obtained in the corresponding numerical experiment is illustrated

in Fig. 13. The analysis of the physical state reveals the system size pattern where patches of the
original square lattice structure appear to be rotated at π/4. The dislocation rich high energy defects
serve again as the boundaries separating these grains, see Fig. 13(a). The deformed configuration of the
elements inside the grains shows that the apparent rotation is produced by the fine lamination of the
(almost) unloaded states from the different energy wells S0

1 and S0
−1, see Fig. 13(b). The implied two-

well redistribution is clearly visible in the configurational space, shown in Fig. 13(c), where we see that
these two wells are almost equally populated with almost no elements flipping back into the original
energy well S. This type of accommodation through inelastic rotation can be easily understood if we
observe that the two sheared state configurations constituting the micro-twin laminate, F = R(π/4)S0

1

and G = R(−π/4)S0
−1 satisfy the compatibility condition [54] F = I + (a⊗ n) G, where aT = (0, 2)
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and nT = (1, 0), see Fig. 14(a). Note that the normal to the twinning plane n coincides with the
instability direction predicted by our approximate stability analysis.

In Fig. 14(b) we show the distribution of the configurational points immediately following the
onset of instability, when the avalanche is only unfolding. It suggests that a highly inhomogeneous
configuration precedes the development of the micro-laminates disguised as uniformly rotated grains.
The eventual equilibration is achieved through the advancement of a dynamic front. Inside such a
transition front the apparent rotation of the lattice is achieved through transverse motion of dislo-
cations which nucleate inside the computational domain but ultimately annihilate on the boundary
[41].

Figure 14: (a) The twinning mechanism behind the apparent rotation. The instability develops with a redistribution
of the elements between the energy wells Rπ/4S1

0 and R−π/4S−1
0 . (b) A snapshot of the developing instability, showing

the early evolution of the system towards the two equivalent wells.

Triangular lattices.. Consider now the ’soft’ pure shear loading protocol F̄� applied to a triangular
lattice. In Fig. 15(a) we show a fragment of the post avalanche pattern in the physical space; the
corresponding distribution of the configurational points is presented in Fig. 15(b). As in the case
of ’hard’ pure shear loading of a square crystal, here we again see the emergence of slip on two slip
systems (out of three available in general). We recall that also according to the linear stability analysis
two slip directions are activated simultaneously. Interestingly, and differently from the case of square
symmetry, in our numerical experiments involving triangular lattices loaded by simple shears along
the closest crystallographic directions to F̄�, for instance F̄π/3 or F̄0, such double activation of two
slip systems does not take place [18]. This is related to a structurally different organization of the low
energy valleys around the reference states for square and triangular crystals and the resulting different
mismatch between the critical stability thresholds along simple and pure shear loading paths.

Note first that in the case of triangular lattices, the loading paths F̄π/3 and F̄� intersect the
boundary of the elastic (stability) region in the configurational points that are rather distant from the
point where such crossing takes place for the pure shear path F̄� while in the case of square lattices
all three paths cross the stability boundary at almost the same point (compare Fig. 5 and Fig. 4). In
other words, the triangular lattice, driven along the path F̄�, becomes unstable in the middle of the
energy valley, quite late vis a vis the instability under the simple shear protocols F̄0 and F̄π/3. The
fact that this happens close to the saddle S facilitates the coupling between the slip systems oriented
at the angles θ = π/3 and θ = 0.

Note next that while the simple shear loading paths F̄π/3(α) and F̄0(−α) are distinct, they intersect
not only at α = 0 (at the reference energy well T) but also at α = γ2 ( at the equivalent energy well
T−1

2π/3, where the pure shear loading path F̄� ultimately leads. The fact that the two simple shear
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Figure 15: (a) Post-instability pattern observed on the rhombic path F̄�, colors indicate the level of the Cauchy stress
σxy. The inset shows a detail of the triangulation revealing the activation of two slip systems. (b) Distribution of Ci

points in configuration space show that the majority of points lies in the low energy valleys connecting T with T−1
0 and

T−1
π/3. Since these two configurations differs by a rigid rotation only, the paths are overlapping.

paths are ultimately getting closer to the main driving direction contributes to the ultimate activation
of both slip systems.

(a) (b)

Figure 16: (a) Schematic representation of the saddle-like structure of the square phases in the triangular symmetry
crystal. An extra dimension (here showed with vertical lines) needs to be included to observe rotated wells along the
same orbit, that in these case intervene when considering the shears aligned with the crystallographic planes (oriented).
Here we consider the reference triangular phase (1), loaded towards the square phase (a). The system ends up activating
two slip system whose corresponding wells are distinguished by a rigid rotation. (b) Pure shear (Eq. 7) and simple
shears F̄π/3(α = γ2), F̄0(α = −γ2) leads to formation of different patterns comprised of energy wells distinguished solely
by a rigid rotation; (c) The symmetric rotations disguising two simple shears as one pure shear

We remark that, while activation of the two slip systems is clearly visible in physical space, see
Fig. 15(a), it is less apparent from the spreading of the cloud of configurational points in the space
of metric tensors, see Fig. 15(b) where we see that at the saddle S about half of the elements flip
back to the original well S while another half advances to the new well T−1

2π/3. However, the two

states F̄π/3(α = γ2) and F̄0(α = −γ2), which occupy the same point T−1
2π/3 in our conventional

configurational space of metric tensors, differ by a rigid rotation.
To explain this point we recall that even though the two configurations may belong to the same

energy well, they may correspond to different points of the orbit of this well and formed by rotations
which leave the metric tensor unchanged [54]. In Fig. 16 we illustrate by a scheme, a likely mechanism
of the simultaneous activation of the two slip systems. While the horizontal plane in this scheme
represents our conventional configurational space of metric tensors (see also the inset to the left of the
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Figure 17: Post-instability pattern for the rhombic path F̄�, observed with fixed boundary conditions.

scheme), the vertical direction mimics a one-parameter space of rigid rotations which we neglected in
all previous considerations. When the triangular lattice T, marked as (1), evolving along the energy
valley, reaches the saddle describing the square lattice S, marked as (a), two rotations of the same
amplitude but of different signs start to develop as the system continues to evolve along the energy
valley down from the saddle S towards the energy well T−1

2π/3, while fully maturing as symmetric slips

along the close packed directions θ = π/3 and θ = 0.
In Fig. 17 we show, for comparison, the post-avalanche pattern in the same setting but with fixed

affine boundary conditions. While it has the same elementary local dislocational patterns as in the
case of the periodic boundary conditions, the global organization is largely shaped by the influence
of the boundaries. This and other finite size effects will be considered in more detail in a separate
publication.

Figure 18: (a) The emerging inhomogeneous configuration at the point of instability, characterized by a pattern of
weakly rotated triangular lattices; the corresponding distribution in configuration space is illustrated in (b). Below: the
post-avalanche structure takes the form of a double dislocation nucleation along crystallographic planes π/3 and 2π/3.
In (c) we show the pattern in the physical space, along with an inset of the triangulation, while in (d) we show the
distribution of Ci among finite elements in configuration space.

Finally, consider a triangular lattice driven using the ’hard’ loading protocol F̄♦ representing
rhombic pure shear. In this case the system is moved away from the energy well T along the steep
energy hill acquiring progressively increasing elastic energy. As in the case of the ’hard’ pure shear
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loading of a square lattice, the eventual instability of the homogeneous configuration of the elastically
deformed triangular lattice can be expected to resolve into a symmetric (micro-twin?) mixture of the
two triangular lattices corresponding to the energy wells T−1

2π/3 and T1
π/3.

The results of our numerical experiment are reported in Fig. 18. We first show in Fig. 18(a-b) the
initial (elastic) stage of the instability when the system still remains in the vicinity of the reference
state T while developing periodic modulation oriented in accordance with the predictions produced
by the theoretical study of the linear elastic instability. While such modulation does not involve the
anticipated activation of the two symmetry related energy wells, the increasingly pronounced periodic
patterning resembles a somewhat blurred micro-twin structure involving a mixture of the energy
wells T−1

2π/3 and T1
π/3 , see Fig. 18(a). These two wells are in fact compatible and can in principle

mix (laminate) to produce a rotation of the original triangular lattice. The corresponding twinning
equation is analyzed in Appendix B.

However, under further loading, this highly ordered inhomogeneous configuration does not evolve
into an organized micro-twin laminate as in the case of similar loading protocol for square crystals.
Instead, at the advanced stage of the avalanche, some elements flip back to the reference energy well
T and the incipient periodic pattern breaks down with a massive nucleation of dislocations of the
two types: connecting either the wells T and T−1

2π/3 or the wells T and T1
π/3. During this breakdown

process we observe sharp drop in stress and energy as the two slip systems are activated simultaneously.
The avalanche ends with a formation of a complex arrangement of self-locked dislocations, see Figure
18(c). The final configuration in the space of metric tensors is represented by the three symmetric
energy wells almost equally populated.

Figure 19: Post-avalanche pattern for a triangular lattice deformed along the simple shear loading path with θ = 54
degrees, see Eq. 6, which shows variously oriented dislocation-free grains

The observed differences in the character of the collective dislocation nucleation phenomenon along
the ’hard’ loading paths in triangular and square lattices are probably related to the higher symmetry
of the former. Thus, in triangular lattices due to the more ’compact’ structure of the effective yield
surface, the instability of a homogeneous states takes place at lower levels of elastic energy which is
then less available for the restructuring of the lattice. Therefore, instead of micro-twinning, aimed at
the reduction of the energy globally, the system mimizes the energy locally by producing an intricate
network of self-jammed dislocational entanglements. In other words the breakdown of metastability
simply does not release enough energy to access the micro-twinned configuration, which requires major
rearrangement.

Interestingly, our numerical experiments showed that using a specially designed loading protocol,
the local micro-twinning can be achieved, see Fig. 19. Here one can see that the overall pseudo-rigid
rotation inside a grain can be reached by complex micro-twinning which involves coexistence of the
three unloaded triangular lattices corresponding to the bottoms of the energy wells, T, T−1

2π/3 and

20



T1
π/3, which are separated by semi-coherent grain boundaries oriented at either zero or 60 degrees, in

accordance with the theoretical prediction made in our Appendix B.

5. Conclusions

In this paper we have presented new insights on homogeneous nucleation of dislocations in 2D pure
crystals by emphasizing the collective nature of this phenomenon. These insights became possible due
to the use of the novel mesoscopic tensorial model (MTM) of crystal plasticity which combines the
advantages of pseudo-macroscopic description of plastic flows in terms of stresses and strains with
the ability to describe short range interaction of dislocations and even resolve the crystallographic
symmetry sensitive aspects of the structure of their cores. In contrast to some other mesoscopic
approaches, the MTM does not require any dislocation-specific phenomenological entries and relies
almost exclusively on the global symmetry of the lattice. This symmetry goes beyond the conventional
point group and accounts in a geometrically exact way of lattice invariant shears.

The phenomenon of the homogeneous nucleation of dislocations presents a convenient background
for testing the access of MTM to the crucial mesoscopic features of crystal plasticity. Previously, such
nucleation in 2D was modeled as a localized event resulting in the formation of a topologically neutral
pair of dislocations of opposite signs. Here we show that in the absence of defects and inhomogenities,
the dislocation nucleation in pristine simple crystals unfolds as a system size avalanche. Due to the
dominance of long range elastic interactions, it emerges as a collective phenomenon, involving a large
number of dislocations, and leading to the formations of intricate patterns of global nature. We showed
that some important peculiarities of such patterns may sensitively depend on the crystallographic
symmetry of the lattice.

To highlight the importance of crystal symmetry in the process of homogeneous nucleation of
dislocations we considered two main classes of simple lattices amenable to modeling in 2D: the lower
symmetry square lattice and the higher symmetry triangular lattice. The possibility of defining general
loading protocols allowed us to compare for both types of lattices the two archetypal loading paths:
along the maximally ’soft’ direction and along the maximally ’hard’ direction.

Driving in the ’soft’ direction reveals a non-trivial coupling between several slip systems allowing
the crystal to accommodate the applied loading by forming a relatively regular patterns of dislocation
walls. The important role in such coupling is played by the metastable phases: triangular lattice T
during the plasticity of square crystal S and vice versa. While in the case of plasticity of square crystal
the implied branching of the energy valleys at the location of the triangular lattice T is immediately
apparent, the situation is less simple in the case of plasticity of triangular crystals where the branching
at the location of the square lattice S is between the different points of the orbit of the same lattice
T1
π/3
∼= T−1

0 .
Instead, driving in a ’hard’ direction, produces in crystals with lower symmetry a regular pattern of

mutually misoriented patches (or grains) where plastic deformation takes the form of micro-twinning
disguised as rigid rotation [41]. Thus the collective nucleation of dislocation in the case of square
crystals, ultimately resulting in a formation of laminates, proceeds through the propagation of a front.
The latter involves the transverse motion of individual dislocations which are finally expelled to the
boundary of the crystal leaving behind a fully unloaded but inelastically rotated original lattice. Such
perfectly organized pattern fails to develop in triangular crystal, where it is replaced by a more complex
network of jammed dislocation self-locks. Apparently, due to the higher symmetry of the crystal in
this case, the dislocation generating instability takes place at the lower levels of stress which prevents
global rearrangement replacing it with more local self-organization of individual slips.

Our exploratory study shows the strength of the MTM in dealing with the micro-structural aspects
of crystal plasticity. This model can be potentially developed with no phenomenology at all if the
periodic potential is constructed by ab initio methods. The natural future target of the model is the
study of the mechanical fluctuations accompanying plastic yield. To be realistic the model should be
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moved from 2D to 3D where it should be able to reproduce the experimentally observed peculiarities
of plastic fluctuations in FCC, BCC and HCP crystals.
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Appendices

A. Appendix: Numerical algorithm

1: Generation of finite element mesh of the body Ω and identification of boundary nodes on the boundary of the body ∂Ω.
2: Initialization of the displacement vector u = 0 for all nodes a.
3: Set loading through the displacement u(α) = (F̄(α)− I)x for all nodes a on the boundary of the body ∂Ω, where F̄(α) is the

applied deformation gradient with amplitude α.
4: Start the iterative L-FBGS minimization algorithm:
5: Construct a deformation gradient F in each finite element.
6: Construct a metric tensor C = FTF in each finite element.
7: Perform Lagrange reduction to calculate the reduced metric tensor CD and the m matrix in each finite element.
8: Calculate the first Piola-Kirchhoff stress tensor.
9: Obtain nodal forces.

10: Obtain the total strain energy.
11: Obtain the new displacement vector ut at iteration t such that W t < W t−1

12: Ends minimization at iteration t when W t −W t−1 < tol
13: Start Newton algorithm with the displacement vector ut obtained after the termination of L-FBGS minimisation algorithm
14: Construct a deformation gradient F in each finite element.
15: Construct a metric tensor C = FTF in each finite element.
16: Perform Lagrange reduction to calculate the reduced metric tensor CD and the m matrix in each finite element.
17: Calculate the tensor A.
18: Calculate the stiffness matrix K and the residual forces R.
19: Perform a Newton step.
20: Obtain the new displacement vector ut at iteration t such that the vector norm of residual forces |Rt| < |Rt−1|.
21: Ends the Newton-Raphson at iteration t when |Rt| − |Rt−1| < tol
22: Increase the loading amplitude: α→ α+ δα
23: Go to step 3

B. Appendix: Twinning relations

Suppose that the constant deformation gradients G and H correspond to two equivalent minima
of the strain-energy φ(C). To generate piece wise affine continuous deformation, across an invari-
ant discontinuity plane they must satisfy on such a plane the kinematic (Hadamard) compatibility
conditions [54]:

RH = G + a⊗ n∗ = G (I + a∗ ⊗ n∗) = (I + a⊗ n) G (7)

where R ∈ SO(2) is a rotation. The Eulerian vector a (normal to the discontinuity plane) and covector
n must satisfy a · n = 0; their Lagrangian counterparts are a∗ = G−1a and n∗ = GTn. If we assume
further that det H = det G = 1 and exclude reflections, the deformation gradients satisfying (7) form
a mechanical twin. If, in addition, the rotation R belongs to the point group of the lattice, such
twinning structure produces the undistorted zero energy configuration. The resulting microtwinned
laminates are sometimes referred to as pseudotwins [54].

The twinning equation (7) was studied extensively, see for instance [72]. It was shown that (7)
admits either no solutions or two solutions. The two solutions exist when the matrix G−THTHG−1 6=
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I and its ordered eigenvalues µ1 < µ2 are such that µ1µ2 = 1. In that case, the two solutions are given
explicitly by the formulas:

a = ρ

(√
µ2(1− µ1)

µ2 − µ1
v1 + κ

√
µ1(µ2 − 1)

µ2 − µ1
v2

)
, (8)

n =
1

ρ

(√
µ2 −

√
µ1√

µ2 − µ1

)(
−
√

1− µ1v1 + κ
√
µ2 − 1v2

)
, (9)

where v̂1 and v̂2 are the normalized eigenvectors of G−THTHG−1, ρ > 0 is a constant ensuring that
|n| = 1 and κ = ±1. Once a and n are known, the rotation R can be obtained directly from (7).
First, we consider the compatibility of the two nearest wells reachable by deforming the original
triangular phase using the deformation gradients:

Case 1. H =

(
1 γ2

0 1

)
and G =

(
1 −γ2

0 1

)
. They correspond to the zero degree shear defined in

Eq. 2 such that H = F(γ2, 0) and G = F(−γ2, 0).

Case 2. H =

(
1 γ2

0 1

)
and G =

(
0.5

√
3/6

−
√

3/2 1.5

)
. The phase G is accesible by deforming the

original triangular phase by G = F(−γ2, π/3).

Case 3. H =

(
0.5

√
3/6

−
√

3/2 1.5

)
and G =

(
0.5 −

√
3/6√

3/2 1.5

)
. The phase G is accesible by deforming

the original triangular phase by G = F(−γ2, 2π/3).

Case 4. H =

(
1 −γ2

0 1

)
and G =

(
0.5 −

√
3/6√

3/2 1.5

)
.

We found that for each of the cases described above, the twinning equation admits solutions
summarized below for each case:

Case 1. Solution corresponding to κ = 1 is given by

aT = {−1.74574, 1.51186} nT = {0.654654, 0.755929}, (10)

and the corresponding rotation angle is 98.2132 degrees. . For κ = −1, the solution is different

aT = {−2.3094, 0} nT = {0,−1}. (11)

We found that R = 1.

Case 2. Solution corresponding to κ = 1 is given by

aT = {0.436436, 2.26779} nT = {0.981981,−0.188982}, (12)

and the corresponding rotation angle is 38.2132 degrees.. For κ = −1, the solution is

aT = {−1.1547, 2.} nT = {−0.866025,−0.5}. (13)

The corresponding rotation angle is 60 degrees.

Case 3. Solution corresponding to κ = 1 is given by

aT = {1.1547005, 2} nT = {0.8660256,−0.5}, (14)

The corresponding rotation angle is ±120 degrees. The solution corresponding to κ = −1 is

aT = {−0.436436, 2.26779} nT = {−0.9819805,−0.188982}, (15)

The corresponding rotation angle is 21.7868 degrees.
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Case 4. Solution corresponding to κ = 1 is given by

aT = {1.1547005, 2} nT = {0.866025,−0.5}, (16)

The corresponding rotation angle is 60 degrees. The solution corresponding to κ = −1 is

aT = {−0.436436, 2.26779, } nT = {−0.9819805,−0.188982}, (17)

the corresponding rotation angle is 38.2132 degrees.

The results given above suggest that micro-twinning is possible in triangular lattices since there are
several cases for which the rotation R belongs to the point group of the triangular lattice. However, as
opposed to the case of square lattice, we did not observe any micro-twinning patterns in our numerical
experiments in triangular lattices. One possible explanation is the strong misalignment, in the case
of triangular lattices between the orientation of the macro-modulations and the lattice vectors when
the critical loading is approached. Instead, in the case of square lattices we observe lattice scale
modulations corresponding to the wave vectors at the boundary of the Brillouin zone present already
in the original unstable mode, which is a perfect arrangement to generate a micro-laminate, see [18]
for a detailed explanation on developing instability modes.

Second, we study the compatibility of the two nearest wells with the original triangular lattice that

we take as identity G = 1. We have again 4 cases to consider (i) H =

(
1 γ2

0 1

)
, (ii) H =

(
1 −γ2

0 1

)
,

(iii) H =

(
0.5

√
3/6

−
√

3/2 1.5

)
, (iv) H =

(
0.5 −

√
3/6√

3/2 1.5

)
.

Case 1. Solution corresponding to κ = 1 is given by

aT = {0.57735, 1.} nT = {−0.866025, 0.5}, (18)

and the corresponding rotation angle is 60 degrees. . For κ = −1, the solution is given by

aT = {1.1547, 0} nT = {0.,−1}. (19)

We found that R = 1.

Case 2. Solution corresponding to κ = 1 is given by

aT = {−0.57735, 1.} nT = {0.866025,−0.5}, (20)

and the corresponding rotation angle is 60 degrees. . For κ = −1, the solution is given by

aT = {−1.1547, 0} nT = {0.,−1}. (21)

We obtain R = 1.

Case 3. Solution corresponding to κ = 1 is given by

aT = {0.57735, 1} nT = {0.8660256,−0.5}, (22)

We obtain R = 1. The solution corresponding to κ = −1 is

aT = {−0.57735, 1} nT = {−0.8660256,−0.5}, (23)

The corresponding rotation angle is 60 degrees.
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Case 4. Solution corresponding to κ = 1 is given by

aT = {0.57735, 1} nT = {0.866025,−0.5}, (24)

The corresponding rotation angle is 60 degrees. The solution corresponding to κ = −1 is

aT = {−0.57735, 1} nT = {−0.866025,−0.5}, (25)

the corresponding rotation is R = 1.
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