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Abstract

In a recent work we introduced a semi-Markovian discrete-time generalization of the
telegraph process. We referred this random walk to as ‘squirrel random walk’ (SRW). The
SRW is a discrete-time random walk on the one-dimensional infinite lattice where the step
direction is reversed at arrival times of a discrete-time renewal process and remains un-
changed at uneventful time instants. We first recall general notions of the SRW. The main
subject of the paper is the study of the SRW where the step direction switches at the ar-
rival times of a generalization of the Sibuya discrete-time renewal process (GSP) which
only recently appeared in the literature. The waiting time density of the GSP, the ‘gener-
alized Sibuya distribution’ (GSD) is such that the moments are finite up to a certain order
r < m—1 (m > 1) and diverging for orders r > m capturing all behaviors from broad to
narrow and containing the standard Sibuya distribution as a special case (m = 1). We also
derive some new representations for the generating functions related to the GSD. We show
that the generalized Sibuya SRW exhibits several regimes of anomalous diffusion depend-
ing on the lowest order m of diverging GSD moment. The generalized Sibuya SRW opens
various new directions in anomalous physics.

Keywords: Non-Markovian random walk, telegraph (Cattaneo) process, generalized Sibuya distri-
bution, discrete-time renewal process
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1 Introduction

The telegraph process is an important model for transport where the velocity of the moving
particle remains finite with a wide range of applications in physically existing and observable
transport phenomena [15]. The classical telegraph process (Poisson-Kac process) [17, 19] is
defined as a one-dimensional motion of a particle with constant velocity where the velocity
direction is switched randomly at Poisson renewal times. The classical telegraph process is
Markovian inheriting this feature from the Poisson process. Its time evolution is governed by
the (hyperbolic) telegrapher’s (also called Cattaneo) equation avoiding physically forbidden
infinite propagation velocities of the moving particle as occurring in the parabolic standard
diffusion equation. Meanwhile, a wide range of semi-Markovian variants of the telegraph pro-
cess, including fractional generalizations were developed to model anomalous transport (see
among others [11} 12, 13, [18| 22, 26]) as well as a tempered space-fractional generalization
[2]. Compte and Metzler considered phenomenological fractional generalizations [6| 7] and
related this model with the Montroll-Weiss continuous-time random walk (CTRW) framework.
They found ballistic behavior for long times when the waiting time distribution has diverging
mean, and enhanced non-ballistic transport in cases in which the waiting time distribution
has a finite mean. Such behavior also occurs in the large-time asymptotics in our recent SRW
model [25] and in the model studied in the present paper. Further works considered the
occurrence of random velocities [32], a relativistic model and analysis of occupation times,
respectively [3| 4], Erlang distributed velocity reversals [9, [10], distribution of the maximum
[5] — consult also the references therein.

These works refer to continuous-time variants of the telegraph process. On the other
hand many real-world datasets for instance in finance refer to discrete observation times [8]].
Therefore, it appears natural to consider discrete-time variants of (generalized) telegraph
type processes calling still for thorough analytical investigation. In a recent work [25], we
introduced a discrete-time semi-Markovian version of the telegraph process, the ‘squirrel



random walk’ (SRW), which is also subject of the present paper. We chose that name since
the SRW walker (the ‘squirrel’) in a sense has a ‘weaker’ memory as in walks with a full
memory of their history such as the ‘elephant’ walker in the so called elephant random walk
(ERW) [301].

Our paper is organized as follows. In Section 2] we give a brief account for discrete-time
renewal processes and introduce pertinent generating functions for the present study. These
generating functions will be used in Section [3] where we give an outline of basic notions of
the SRW. Section [4]is devoted to a generalization of the Sibuya distribution which appeared in
the literature only recently [20]. The speciality of the ‘generalized Sibuya distribution’ (GSD)
is that it has existing integer order moments only up to a certain order. In this way the GSD
covers a wide range of behaviors from narrow to broad. In Section [5] we analyze the SRW
where the step direction is reversed at generalized Sibuya arrival times. We call this walk
the ‘generalized Sibuya SRW’. The (anomalous) diffusive features of this walk are analyzed in
Section [6l

2 Discrete-time renewal process and related generating
functions

First we consider a discrete-time counting (renewal) process as follows [23| 24} 28]:
N(t) =max(n >0:J, <t), N(0) =0, t=0,1,2... 1)

The arrival times (renewal times) J, € N = {1,2,...} (time instants of events, arrivals) are
characterized by the random variables

Jn = ZAt]’, J(] = 0, At] S N (2)
Jj=1

with IID (independent and identically distributed) strictly positive integer increments A¢; > 1
(‘interarrival times’ or ‘waiting times’ in the renewal interpretation). The renewal chain (2)
is a discrete version of a strictly increasing subordinator. We refer to the recent article [28]
elaborating essential elements of the related theory of discrete-time semi-Markov processes.
The increments follow a discrete-time probability density function (PDF)

P(AL = k) = iy, k=12, ... (3)

supported on positive integers k£ € N with ¢y = 0 ensuring strictly positive waiting times. We
employ the terms PDF and ‘density’ in both cases, discrete-time and continuous-time. The
inverse of the renewal chain (2) is the discrete-time counting process (1) which counts the
events (renewals) up to time . In the present paper we extensively use generating functions
(GFs). It is useful to introduce the GF of the waiting time density

() = ) = Y, ul <1, (4)
t=1

which fulfills z/?(u)‘ _, = 1 indicating normalization of (3) and be reminded that Y(t) is sup-

ported on non-zero integers ¢t € N. Generally, the notation
flu)=>_ ft)u' (5)
=0
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(with suitably chosen u) stands for the generating function (GF) of discrete functions f(t)
supported on ¢t € Ny. We employ E(...) = ((...)) as equivalent notations for expectation values
where we will often use -
=> f(r)i. (6)
r=1

Convenient is to introduce the indicator function

@(Jn7t, Jn+1) - (7)

0 otherwise

which is one for N(t) = n and null else. Then, the ‘state probabilities’ (probabilities for n
arrivals up to time ¢) are given by [25] (and see [16] for a related analysis for continuous time
renewal processes)

PN (t) = n] = " (t) = (O( T, t, Jui1)) - (8)
A quantity of interest is the variable B, ; =t — J,, containing information on the persistence of
N (t) in state n and which gives a connection to the ‘aged renewal process’ [25] (and consult
[1, 16| [29] for the continuous time cases). We have (read P(A;|A4;) as the probability of A;
conditional to As)

Fu(rt,n) = P[Bu, = 7IN(8) = 1] = (64—, O(J t, Jus1)) - 9)

We consider its double GF fz(w,u) = ¥, 32, fa(r, t)w™u’ (Ju| < 1,|w| < 1) which yields

Jny1—1 ~ () At B o -
fe(w,u,n) = <w—Jn ) (wu)t> _ <uAt1+--.+Atn%> — w(u)]nw (10)

=7, 1 —uw 1 —uw

where fp(1,u,n) = [{(u)]" 4L w(“) recovers the GF of the state probabilities. In these derivations
we always use the IID feature of the At; and (4). The following two relations are related with
the SRW propagator, namely

g(t7 C17 R Cna CnJrl) = <<:L+{n+1@<‘] t J, Jrl)ClAtlil H CjAtj> ) nut € N07 |CJ| S 1 (11)
j=2
recovering for ¢; = 1 the state probabilities and

9(t, {¢}) Zg (t:Cry e vy Gni Cagr)- (12)

The function ¢(¢; (1, . . ., (u; Cnr1) in equation (11) has the GF

0 Jng1—1
GGy G Garn) =D U (G G Gal) = G G <H G o > Gt >
=0 t=Jy,
(Juf <1)

e ACLUER Y | QT

1 - uCnJrl j=1
(13)



with g(u, {Cj})‘C T — corresponding to the normalization of the state probabilities
i=1lu=

gt AGY)| —Zﬂb" =

For the SRW the particular case when (; alternate as (y;;1 = ¢; and (; = (2 is pertinent. Then
we have for (13) the GF

1— _ _
S )i’ n =2t
Gn(1; C1, C2) = (t=0,1,2,...). (14)
6 D ) [ucbucy]’ n=20+1
Summation over n yields the GF of (12) as
e (1) L - 1 — ¢(ugy) 1
g(uaChCQ)_ [ 1_u<1 +C1 1C2¢(UC1) _u<2 ‘| 1—7])(UC1)QZJ(UC2) (15)

We will come back to these GFs in the context of the SRW propagator in the subsequent
section.

3 The squirrel random walk - SRW

Here we give a brief outline of the ‘squirrel random walk’ (SRW), for an extensive study we
refer to our recent work [25]]. The SRW is a discrete-time random walk X, € Z where directed
unit steps o; € {—1, 1} are performed at integer time instants (we denote with ¢ € Ny the time
variable)

t
X, =0, t=12..., X, = 0. (16)

The directions of steps are switched at arrival times of a discrete-time renewal process N ().
A precise definition of the SRW is as follows:

(i) At uneventful time instants ¢, the squirrel performs a unit step o; = o0;,_; in the same
direction as at ¢t — 1 where this holds for ¢t > 2.

(ii) At arrival times ¢, the squirrel changes the step direction with respect to the previous
step o = —0y_1.

(iii) We define that no step is performed at ¢ = 0 in order to ensure the initial condition
Xo = 0. The first step is performed at ¢t = 1 in the direction o, = 7 if £ = 1 is uneventful
and o0, = —gy if there is an event at ¢ = 1. The direction 5, can be thought as either
prescribed or randomly chosen.

In the following, we consider 5, € {—1,1} as given. From the above it follows that the steps
can be represented as
or = Go[(—1)V® — 6,], t € Ny (17)



where the Kronecker-d;, ensures that no step is performed at ¢ = 0. Therefore, given N (¢) = n,

Xy =060 |—1+ Aty — Aty + ...+ (=1)" Aty + (=1)"(t = Jo + 1)
(18)
= X" - X

with initial condition X, = 0 and where Xt(ﬂ, Xt(*) cover the steps in G- and in the opposite
direction, respectively. Now we introduce the propagator (probability that the squirrel at time
t is sitting on X € Z) as follows

P[X, = X] = P(X,t) = (6x.x,) » XeZ, teN, (19)
with the Kronecker symbol 64 5. Now using
1 7
dap = —/ e?A=Blqyp, A BeZ
’ 271' —T
we have 1
_ WX | —ipX:
P(X.1) = 5 /_W ¢ (%) dp (20)
and with and the characteristic function writes
Py(t) = (e7#%) = g(t;e 7797, e%70), o € [—m, ). (21)

In addition, the GF P,(u) = g(u; e, ¢¥¥%) is useful where PSO(u)‘ .= = tells us that the
(p:
propagator P(X,t) is a (spatially) normalized PDF. Then we introduce

t

Pv,t) = Ny = S PN () = n)jo" (22)
n=0
which is a polynomial of degree ¢ (‘state polynomial’) since PN (t) = n)] = 0 for n > ¢ as
N (t) < t with initial condition PN (¢) = n)] = d,0. The feature P(1,¢) = 1 reflects normalization
of the state probabilities, and for v = —1 the average step is contained, namely
(00) = 50[<(—1)N(t)> — 0] = Go[P(—1,t) — dy] (23)

where d;, takes into account that no step is performed at ¢ = 0 maintaining the initial condition
Xy = 0. The GF of the average steps then takes

(e o]

5(u) =Y (o )u' = 5o [P(~1,u) — 1] (24)
t=0
with the GF of the state polynomial
_ 1 —
P(v,u) = $lu) <1, v <1 (25)

(1 —w)[l —vp(u)]’
The GF of the expected position (X;) then reads

B NI 10 R et ) S
X (u) =i Pl oo =10 = e o (26)

with the initial condition X m(u)} _, = (Xo) = 0. We will focus on the ‘generalized Sibuya
SRW’ where the instants of the step reversals are drawn from a generalization of the Sibuya
distribution which is subject of the subsequent section.
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4 Generalized Sibuya counting process

Here we consider a discrete time counting process N, (¢) with IID generalized Sibuya waiting-
times. The resulting generalized Sibuya distribution (GSD) was to our knowledge first intro-
duced and thoroughly studied by Kozubowski and Podgoérski [20]. In the present section we
recall the GSD in the light of discrete-time renewal processes and derive also some results
which appear to be new.

We construct the ‘generalized Sibuya counting process’ (GSP) such that it has a discrete
waiting-time PDF with ﬁnite moments up toorderr <m —1(m > 1) and diverging moments
(u)‘ _, is finite for r < m (u)‘w1 — oo for
r>m(m> 1) We derive the GSD by its waiting time GF as follows

w,\(u):Wulm[H,\(u)—(l—u)’\], 0<m—-1l<A<meN, J|ul<1 (27)
with] m = [A] and
Hy(w) = 3 (~1) ( j ) i (28)

which removes the terms with alternating signs in the expansion —(1 —u)* thus v (u) contains
all non-alternating orders u" for » > m of this expansion. One can easily verify that the sign of
these terms is (—1)™"! = sign(H,(1)) thus (27) contains only non-negative coefficients and is
of the form

Ua(u) = w7 (HAL)) T HA(u) = (1= u)Y] = u' 7" (u)
where u!~™ shifts the distribution gy (¢) by m — 1 to the left, ensuring that ¥, (t) = g\(t + m — 1)
is nonzero from ¢ > 1. The normalization factor is obtained as

1 am! il i [(A=1 ) Tm=) (1= XNm
(m —1)! gt L=, = (1) < m—1 ) T TA-NT(m) Doy

Let us remark that, although A ¢ N, integer values A\ = m are admissible retrieving ,,(u) = u
corresponding to the trivial (deterministic) counting process N,,(t) = t and coinciding with the
limit p — 1— of a Bernoulli counting process where p indicates the probability of a Bernoulli
success. By construction 1, (u) = O(u) and we employ the Pochhammer symbol

[(a+ k)
['(a)

Hy(1) =

keN
(@) =ala+1)... (a+k—1)=

1 E=0

Y

and we mention the useful features (a)i.,. = (a)r(a + k),. We notice for later use the property

dZ
WH)\(U) = <—)\>ZH)\7£(U) (29)
u
thus Hl(l) duHA( )‘ L= A(m 1) (A > 1) and H) 4(u) = 0 for £ > m. Then we can expand (28]

with respect to u — 1 as follows

Z < __ Dl d H)\(U) ey = P(m =) i ( 2\ ) r'(1 +€<1—_)\)ulz(m -0 >

£=0

1[\] indicates the ceiling function, producing the smallest integer larger than or equal to .
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Therefore, the GF (27) writes compactly as

I () = ul=" gy () = u ™ (1 _ (1(—1)#11(1 — ) +7::Z_11 ( 2 ) %(1 _ u)f> @D

The GSP waiting time PDF then writes

hat) = W(_lwm ( A )

_ A((m) T(m—A+t—1)
S T(m—=X)  T(m+1t)

(t € N) (32)

where the positiveness of this expression is easily confirmed by accounting for A =m — 1 + p,
u € (0,1) (see especially (37)). We refer the PDF (32) to as ‘generalized Sibuya distribution’
(GSD). In the large time limit we have (we employ symbol ~ for asymptotic equality and use

I(t+a) a—b
e ~t ast — o0)

Ua(t) ~ 7P?TI;(T))\) >

which holds for any A > 0. Thus the GSD covers any power-law from narrow (large \) to
broad (small \). Especially, for A € (0,1) (m = 1) recovers the fat-tailed (broad) standard
Sibuya distribution with diverging first moment [28| [31]]. The long time asymptotics (33), by
invoking Tauberian theorems, is obtained from the asymptotic expansion of (31) for u — 1—
with the relevant part ¢ (u) ~ 1 — (11{:?1); (in which we can safely neglect the integer powers
(I —u)™ (n > 0) as they do not have distributions with a long tail).

It appears instructive to consider the GSP in the light of a sequential trial scheme which
can be adopted for any discrete-time renewal process (see [24, [28]] for details). Perform
a sequence of £ = 1,2.... € N (GSP-) trials where each trial has two possible outcomes,
“success” or “fail” where we introduce the random variables Z; € {0,1} (kK > 1) with Z; = 1 if
the outcome is a success and Z;, = 0 for a fail and Z; = 0 (no trial at ¢ = 0). Then introduce the
conditional probability oy = P[Z; = 1|/{Z, = 0},<,] of a success in the kth trial given there was
no success in earlier trials. Then performing at each integer time instant ¢ a trial we have for
the GSP counting variable

(33)

t
NA(t) = Zy. (34)
k=1

Then the waiting time density v, (¢) has the interpretation as the probability of the first GSP-
success at time ¢ [24], i.e.

’l/))\(t) = O (1 —Oél)<1 —Oétfl) = Oy Stfl. (35)

Here Sy = [1*_,(1 — ;) = 3222, ., ¥u(r) is the probability of a sequence of k GSP fails (proba-
bility of no GSP success in k trials, ‘survival probability’). We point out that any discrete PDF
¥(t) indeed can be represented by such a sequential trial scheme with a; = ¥(¢)/[>X02, ¥ (r)
(see [28] for details).

Let us elaborate this structure for the GSP. Unlike in a Bernoulli trial process (character-
ized by the memoryless property a; = p independent of ¢) the GSD has a memory which is



reflected by (35) containing the complete history up to this first GSP success. Then we can
rewrite (32) in terms of Pochhammer symbols as follows

m — )\)th

alt) = )\( (m):

Now, since (a), = (a)g—1(a + k — 1), we have (m = [\])

_ A ma e A A (oA A
w’\@)_m—l—t—l (m)i—1 _m‘H—l(l m)(l m"‘l)“.(l m+t—2> e

coinciding with the representation which ad hoc was introduced by Kozubowski and Podgorski
[20] and has clearly the structure where we identify

A
m+k—1’

(36)

ay = m, k> 1 (38)
with a; = %(t)‘tﬂ = 2. Indeed m = 1 (A = p € (0, 1)) retrieves the standard Sibuya process.
We notice that if \ = m € N the trivial counting process N,,(t) = t is recovered where each trial
is a success with 1, (t) = ;. From we obtain the ‘survival probability’, i.e. the probability
of no event up to time ¢ in a GSP (which we now denote with PN, (t) =0] = S; = (IJ(AO) (1))

o A - A r F'm—A+t
o) =TI ( _ ) _(m=A),  T(m) T(m—-A+1) (39)
o m+r (m), F'm—X) T'(m+t)
with initial condition CID(AO) <t)’t:0 = 1. The large time asymptotics is obtained as
I'(m
) () ~ Y (WE _) A)H, (t — oo) (40)

where for m = 1 and A = p € (0,1) these relations recover the case of the standard Sibuya
process.
For what follows we recall the Gauss hypergeometric function defined as [33]
> T b T
2Fi(a,bicu) =) @O,

b R Zicy. 41
=~ rl (C)r ) a,0,c € K, c ¢ <0 ( )

It is sufficient to consider here a,b,c > 0 with a + b — ¢ < 0 where for large r the coefficients

decay with a power-law as (CZZ)—(? ~ constr®™=¢"1 (r — 00). In this case (4I) converges for

|u| <1 and the Gauss summation theorem holds [33]:

I(e)l'(c—a—0)
I(c—a)l'(c—10)’

The GF of the GSP survival probability (39) has then the form

2F1(a'7 bv G ]-) =

(c>a+b). (42)

3O =3 Wrlm =N o b4 m — Asmsw) (43)

m ot (m),
converging for |u| < 1 for standard Sibuya m = 1 and for |u| < 1 for m > 1 (see the asymptotic
relation (40)). Using with @&0)(/’{; —1) = 3%, ¥,\(r) and by using (42) we reconfirm (38,
namely
Ua(k)

—1
= =28 R ktm—1—Nk+m:l
g Stk Ua(r) (2 1 ))

A

= 44
k+m-—1 (44)

9



107 1

= 107
’< C

= 1071

10711 4

10—13 4

10715 J

0.0 A S —=

Figure 1: Generalized Sibuya distribution v, (¢). We depict the GSD from Eq. (32) for y = 0.3
and different m > 1. The inset shows the results in logarithmic scale for 1 < ¢t < 100, we
present with dashed lines the power-law relation o ¢~ * associated to the asymptotic result
in Eq. (33) for m = 1 and m = 10.

We evaluate the first moment of the random variable 7" having GSD (32) existing for m > 2
(A > 1), which yields

)\i (m — )\>t71 t

d -
T), =—
(T, duw’\m) - 1 t+m—1

:)\il(m—)\)tl(l_ m—1 )

-1

~+

Mi_1 m—1-+t
(45)
= A0 () L (m—1)
m— 1

also conveniently obtained by accounting for representation (31). Note that, since ¢, > 0 on
positive integers it is necessarily (7"), > 1 which is fulfilled by this relation as m = [A] > .
We also observe that when we put A = m the first moment is consistent with the behavior of
the corresponding trivial counting process (with v (¢) = ¢;;). Further, for A — oo we have

1
Trer

m—1

<T>,\ =

reflecting that, for large A\, the GSD becomes extremely narrow. Fig. [1] shows the GSD for
different values of m. Notice that with increasing m the GSD becomes more narrow, and this
is also reflected by the large time power-law scaling (33)).

10



4.1 Bernoulli time-changed with GSP and scaling limits

Before we return to the SRW it appears instructive to highlight some connections of the GSP
with pertinent counting processes which have recently appeared in the literature and to con-
sider scaling limits to continuous-time. To this end we introduce the composed counting
process Np(N,(t)) where Np is a Bernoulli process and N, a GSP independent of A/z. This
composition is a Bernoulli counting process time-changed with a GSP where Bernoulli trials
are performed at arrival times of the GSP (which describes a random clock). For outlines on
such compositions we refer to [23} 24, 27]. The GF of the waiting time PDF of this composition
is given by

_ vl i (u)
g (u) = vplihn(u)] = ————— (46)
¢ £+ 1— n(u)
with the Bernoulli waiting time GF ¢5(u) = : i with £ = 2 where p denotes the probability

of success in each single Bernoulli trial. The limit p — 1— (i.e. £ — o0) N(N,\(t)) = Ni(¢)
retrieves the GSP. In the Sibuya case m = 1 the composed process Np(N,(t)) contains the
so called ‘fractional Bernoulli counting process’ (of type A). The fractional Bernoulli counting
process was introduced in [28] and has the waiting time GF

o ¢

e (1) = P (u)] L[ = (1—w)Y, X e (0,1). (47)

Tet(-uw
Evoking Tauberian arguments, the long-time asymptotics of the waiting time density of the
composed process can be obtained by expanding (46) for ©« — 1— and considering only the
lowest non-integer order in 1 — u (see (31)), namely

- _ IE/\(U) N T W) ~ 1 — 1 — )
el = 1Ty~ ) ~ 1 ) (48)

where 1/p is the mean waiting time in a Bernoulli process. We skip in this asymptotic relation
all integer orders in 1 — u. Hence, we get the density of the composed process

N )y
tlpH\(1)  pI'(m —A) ’

Xag(t) = (t —= oo) (49)
having the same tail of the GSD (33)) up to the multiplier 1/p (Bernoulli mean).

Now we can define a well-scaled limit to continuous time ¢t € hNy — R, where (see [23] for
a thorough outline of such continuum limit procedures)

I (o—hs
hs) _ hm gOhnwk(e ) (50)

0 Eoh 4 1 — iy (eh9)

e (8) = }g% Xaem (e

with the scaling assumption £(h) = §h" (§ > 0 is an arbitrary constant independent of the
time increment h and of the physical dimension sec™). The scaling exponent n has to be
chosen such that this limit exists. Then, accounting for (3I) with u = ¢ — 1— we have the
asymptotic relation

) 1 — hrs* 4+ o(hY), (A€ (0,1))
Ua(e™") ~ (51)
1—h(T), s+ o(h), (A>1)
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with (T'), given by (45). Therefore, there exist only two possible limits for (50), namely for
m = 1 (standard Sibuya case) we have n = A € (0, 1) thus we obtain for that limit

$o

= > 1 2
Y A€ (0,1) (52)

)AO\,&J (3)
which is the Laplace transform of the Mittag-Leffler density, obtained in [28] as the continuous
time limit of fractional Bernoulli to the fractional Poisson renewal process (see e.g. [21]] among
the many papers on the subject). For m > 1 this limit exists only if we choose n = 1 thus we
get (by introducing the new constant time scale constant ¢, = &,/ (T),)

_ G
Co—l-s’

)2>\7§0(S) A>1 (53)
which is the Laplace transform of the exponential density x. ¢ (t) = (oe ! of the standard
Poisson process. For m > 1 the composition NVz(N,(t)) converges in the above defined scaling
limit to the standard Poisson process.

These features also come into play when we consider the scaling limit of the expectation
of the rescaled GSP renewal chain n*pJ,(f) — Jy for n — oo (see Eq. (2)) and choose exponent
p such that this limit exists

(A)
—eh\ 1. EWAS
(o) = Jim (oxn (220 )

e Ae(0,1)

- S

= lm[hi(e )" =

n—o0

e A>1

where we use the IID feature of the interarrival times together with (4) and we have to choose
p = 3 for m = 1 (standard Sibuya) and p = 1 for m > 1. Hence n™*J® — J, is a stable
subordinator.

5 Generalized Sibuya SRW

5.1 Large time asymptotics of the expected squirrel position

Here we explore the diffusive features of the generalized Sibuya SRW where the step direc-
tions are switched at GSP arrival times. To this end consider first the large time asymptotics
of the expected position. From (31) we have in the asymptotic expansion three cases

1—(1—u), 0<i<1

N 1—(T), (1 —u)

1
da(u) = ~ @ W el —wl el —wY,  1<a<o

(u—1-).

(1 —uw)+o[(1—u)?, X>2
(55)

12



We denote with the symbol o7[(1—u)] = as(1—u)?+a3(1—u)3.. a power series in (1—u) containing
solely integer powers of orders larger than one. Further we use o[(1—u)*] < (1—u)* asu — 1—.
The constant BéA) is positive (existing for A\ > 2) and yields with (31)

A 1 d® -
BYY = o), (A>2,m>3)

1 —-m—1- -m d _ 1-m d2 =

= o | (L= m)(=m)u™ g (u) + 21 = mpu™"—-ga(w) +u' ") || (56)
m—1)(m— A m— A\

! X ) (T)a ;
O—1)(h—2) N—2

where the non-negativeness of By can be seen from m = [X]. Since BY" = y00, 11y, (1)

this coefficient contains also the second moment of the GSD

where (7)) was determined in (45). Further of interest is the variance existing for A > 2
(m > 3) which yields

V= (0 (O = Sy = B8 (58)

The GSP variance coincides with the expression given in [20] (see there Definition 1 with
Remark 4 and Eq. (22) in that paper and identify m = v + 1, A = « in their notation). Recall
that we mainly consider A ¢ N and bear in mind that integer values A = m are admissible
defining the deterministic counting process N,,(t) = t where for A\ — m— (m > 3) the variance
exists and is vanishing.

Now with (26) and (55) we obtain for the GF of the expected squirrel position the asymp-
totic relation

SO = ol(1 - )7 <A<l
X)\(u) =

Go(1 — u) 2 1 2

(59)
The first line in this relation corresponds to standard Sibuya. In order to capture the leading
contributions for large times, by Tauberian arguments, we have respectively picked up the
lowest integer and non-integer orders in 1 — v [Remark: For 1 < A < 2since -1 < A -2 <0
we have o;(1 —u)™t = ¢o + c1(1 —u) + ... € o(1 — u)*~2? which is consistent with our previous
result [25] - see Eq. (26) and identify with By = —1/H,(1) > 0 for A € (1,2)]. This yields

%0 (2 M) 0 1-A

5 7l _>2F(2—>\)t , 0<A<l1
(X(0) ~ - (60)

5’0 _ (2 — >\)t 5’0 5’0t -

S UWh = A+ ooy = 2 T = A+ s = A1



R
08] — A=125

o — A=1.50

e ]

~ 0.61 A=1.75

=

~ 0.21

T

e

—0.21
-4 ]

Figure 2: Large time behavior of the expected position (6I) for A < 2, A = 2, and A > 3. The
case A = 3 (red curve) corresponds to an asymptotically unbiased walk with (X%(oo» =
Dashed lines denote (X, (00)).

For A € (0,1) (standard Sibuya) the squirrel escapes to infinity along the direction of oy by
a t'~*-power law. Physically this can be interpreted by the occurrence of very long waiting
times between the step reversals. For narrower GSDs with A > 1 (shorter waiting times with
existing mean (7'),) the squirrel remains trapped close to the departure site where the value
(Xx(00)) = 2((T)» — 2) is approached by a t~*~!-power law term which has opposite sign
to 6o (see (G1)). For A = 3 we have (T);5 = 2 and (X, 5(c0)) = 0 where the walk is in the
large time limit unbiased (in the average any second step is reversed). For A < % (i.e.m =2
and p < 0.5 with (7', > 2) the waiting times between the step reversals are still relatively
long (the GSD being relatively broad) where (X,(c0)) has the same sign as &y. In this case
the squirrel does not escape in 6(-direction, but in the average remains trapped on the same
side of the departure site (sign((X,(c0))) = 6o). This behavior changes for A > 3 which means
shorter waiting times between the step switches and narrower GSD ((T'), < 2): the sign of
(Xx(o0)) changes and becomes opposite to oy. We can see this more closely if we rewrite

for \>1(A=m—1+pandpe(0,1))as

Fo L(t+3—m—p) T(m)
(X)) N—ggt§:5<m_3+M+ T(t+1) FO—M) A 61)
m=[\]>2 (61
_L m — M ~m=2)
- Q(m—2+u)< 3+2M+F(1—u)t )

This relation is plotted in Figure [2] for three values of A € (1,2) including the asymptotically
unbiased case A = % where the squirrel approaches the departure site with a —60(7rt)*%—law.
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6 Anomalous diffusive features
In this section we analyze the mean square displacement (MSD) which we denote with (X3%(¢))

(with respect to the initial position X,(0) = 0) and especially focus on the large time asymp-
totics. The MSD is given by

(X3(t) = <§t: Xt: amar2> =2Xt:i (0,0) Xt:< 2

ri=1ro=1 r=1s=1 r=1
t t
= 2K,\(t) —t = —t+ 23 > (=) teN (62)
r=1s=r

t t—r t

= 423 3 ((=1)MOR) — 23 (1) OR)

r=0 k=0 k=0

where comes into play the new quantity
Ni(r;s —r) = Ny(s) — Na(r), s>r>0 (63)

of the so called aged (generalized Sibuya) counting process N, (r; k) and N, (0; k) recovers the
original GSP. Aged renewal processes have been introduced and analyzed for continuous-time
renewal processes [/1, (16| 29] and only recently for discrete time counting processes [25]. We
emphasize that the aged renewal process N (r; k) (apart of the Markovian cases, Bernoulli
and Poisson) depends on the ‘aging parameter’ r and is different from the original counting
process N (k) reflecting non-markovianity of the latter. To evaluate (see [25] for more
details) it is useful to consider first the G:

w)=> > wu <UN(T¢)>, lul, Jw| <1, |v| < 1. (64)

7=0t=0
We further introduce the auxiliary function h,(r,t) = O(t — r) XL ", <UN (’";k)> and its double GF

t—r

ho(w,u) =33 wru(t—r) Y. (V)

r=0t=0 k=0

—Zu ZZ wu) <N(7"k> (65)

s=0 k=0r=0

B Go(uw, u)
 1-u

where in the second line we substitute ¢ = r» + s and introduced the discrete Heaviside step
function O(s) = 1 for s > 0 and O(s) = 0 else (especially ©(0) = 1). We then can write for the

MSD GF
U

X®(u) = 2K (u) — a—ure

(66)

2We suppress here ) in Ny (¢) to emphasize that this deduction holds for any discrete-time renewal process.
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where o = = >9°, tu' and with (65) we have

(1-

= = = g— g—1(0
K(u):h_l(l,u)—h_l(O,u): g 1(u7u> _g 1( 7u>' (67)
1—u 1—u
To evaluate this relation we need to determine g,(w, ) which is the GF of the state polynomial
of the aged counting process

Z Z u'w” Z PN mlo™ = i V"D (1) (68)
t=0 7=0 m=0

where &™) (u) stand for the double GF of the state probabilities P[N(7;t) = m] of the aged
process N (7;t) which we determine as

[e.9]

Z < @(Jn7 T, Jn+1)@(Jn+m7 t + T, Jn+m+1)> , m > 0

n=0
™ (y Z Z u'w (69)

t=0 7=0 0

S (00T Jpi1)O(Jps —t —7 = 1)),  m=0.

Note that ©(J,,,; — 1 — ¢t — 7) indicates that J,,;; — 1 > t + 7, i.e. that a state n at time 7 still
persists at time ¢+ 7. Using the IID feature of the At and O(J,,,t+7, Jo11) = O(J, — 7, t, Juy1—7)
this yields

ulp(uw) =)l - il = ()
) ooy Ta o 70
M (y) = (70)
L[ 1w -dw) ]
=) [T=w ™ (u—w)l - o))’ |
Now we can evaluate (68) to arrive at
L (1= v)u ) )]
i (I—w)(l=u)  (1-w)lu—w)l-vdw)] [1-vw)]
Go(w,u) = (71)
I (1 —=2v)u dip(u) S
(I=w)?  (1—w[l-v]l-d)] du '
This relation contains the GF of the state polynomial Gu(0,u) = ?ZEL”) W of the original

counting process N (t) = NV (0;¢). Then we obtain for which determines the MSD GF (66)
the expression

. 1 1 dy)
K(u) = - _ 2u W)
(1 =w)® (1 —u)(1 =[] du
Now consider the large-time asymptotics of the MSD for the case when N (¢) = N, (¢) is the
GSP where we denote then (72) with K(u). Using (55) for u — 1 and d%(“ =32 tha(t)ut~

. w<u>]2) . (72)
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we have

A1 —u)M, 0<A<l1
) A A-1 A-1
dw(%\?iu) _ <T)/\+H/\(1)(1—u) +or(1) +o[(1 —u)* ], l<A<?2 (> 1-)
(1), — 2B (1 —u) + gL~ Fer(l) + ol -, A>2

(73)
where 0;(1) is an expansion containing only integer powers (1 —u)"” with n > 1. Thus we obtain
(u—1-)

Raw) — 1 2u i dipp(w) 11— @(u)
(I—wu)®  (1=u)2(1 = (u)(I+da(u) du (1T —u)?1+s(u)
1 B A )\(1 — u) B 1 (1 _ u))\—Q

=y (1 110w [0 —um> 20— 30— u)
=1 -=MN1—-u)?+o[(1—u)?, Ae(0,1)
- (1 — @*) (1—u)?— ﬁ(l —u)* 4 o[(1 —u)7?, M€ (1,2)

™)

(1—u)™ (1 + <B;>A — @%) + o[(1 —u)™?], A > 2

(74)
where only the first two terms in (7Z2) contain the relevant orders. Inversion of (74) yields
(t = o0)

Mt{ 0<i<1
2
(T) A1 3 A1 5
1— t— t — t 1<A<?2
K(t) ~ ( 2 Hy(D)({IHIA— N Hy ()T LE—n)
By (1),
1+ —— |t A>2
( (T)r 2
(75)
The MSD then scales as
(1— N2, 0<A<1
A—1
— 3 l<A<?2
(X3(t)) = 2K, (t) — t ~ HA(I(T)aI'(4 = A) (76)




where all quantities are non-negative and with the GSD variance Vy = (T?), — ((T")»)? deter-
mined in (58) and the mean waiting time (7'), in (45). Hence this relation writes

(1— N2, D<A<1
2A—1) 55
X2t~ Ta—w, 0 1A o) (77)
A(m — X)
(A—l)(A—2)t’ A> 2.

In view of the power-laws governing the expected position one can see that (X3(¢)) >
(X3(t))?. Therefore, the MSD (77) dominates the large-time asymptotics of the spatial variance
of the squirrel motion. The normal diffusive behavior occurring for A > 2 brakes down at the
limits A = m— (m > 3) where we have V,,_ = 0 (see - (58)) with deterministic oscillatory
squirrel motions. Contrarily to these cases the limit A = 2— is non-deterministic which is
expressed by (X7 (t)) = 2t (see (77)) corresponding to persistent normal diffusion (Brownian
motion) of the squirrel with spatial Gaussian limiting distribution of propagator (20). The
limiting cases A = n— and A = n+ (n € N) exhibiting respectively distinct behaviors are
considered in the Appendix more closely.

We identify three different diffusive large-time regimes for the generalized Sibuya SRW:

(i) A ballistic superdiffusive regime when the GSD is broad with 0 < A < 1 (standard Sibuya)
with a t>-law.

(ii) A superdiffusive regime for 1 < \ < 2 with a t*~*~law with scaling exponent 1 < 3—\ < 2.

(iii) A normal diffusive regime when the GSD is narrow for A > 2 with emergence of Brownian
motion.

These results are consistent with those obtained in our recent paper [25] by considering
general asymptotic features of discrete-time renewal processes. Superdiffusive large time
regimes of these types were also reported for continuous time Cattaneo transport models
[6, [71. The generalized Sibuya SRW of the present study covers for different ranges of A\
the whole spectrum from anomalous-ballistic (i), over anomalous (ii) to normal (Brownian)
diffusion (iii).

7 Conclusions

In the present paper we have studied a semi-Markovian discrete-time generalization of the
telegraph (Cattaneo) process where the waiting times between the step reversals follow the
generalized Sibuya distribution - GSD. We called this walk the generalized Sibuya SRW. It
turns out that the presented model has a large flexibility to cover a wide range of behaviors in-
cluding superdiffusive-ballistic, superdiffusive and normal diffusive transport. We have shown
that these features are solely governed by the “broadness” of the GSD waiting time density.
For follow-up research an interesting subject is the analysis of scaling limits to continuous
time and space which define new semi-Markovian generalizations of telegraph (Cattaneo)
processes.
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Moreover, variants of SRW models in multidimensional spaces appear to be interesting
directions. For instance in problems where a walker is moving with constant velocity in a D-
dimensional infinite space and changing its velocity direction randomly at the renewal times
of a discrete-time counting process such as the GSD or others. The class of generalized
Sibuya SRW and similar models open various new directions in random walk theory, general
fractional calculus and non-Markovian dynamics in complex systems.
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A Appendix

Let us discuss here the behaviors emerging in the limiting cases A —+ n— and A — n+ (n € N),
respectively.
(@ A=2+0(\ =2+ e with ¢ — 0+ and m = 3): Then we have (T)sy = 5= ~ 2— # (T)o_ =

1+
s~ 1+ and Vo ~ GG A2 o 4 thus

Vore 2
~Z 7
Thare "¢ 7 (78)

i.e. for A = 2+ the MSD (77)

<X22+5<t) ~ <X22+E(t) - <X2+6(t)>2 N> ~ %t — OO

is singular where the average position (Xo,.(t)) ~ —f—fg — 0, see (61). In the limit A = 2+
emerges for large observation times Brownian diffusion (according to case (iii)) where the
squirrel position is in the average on the departure site, but with extremely large fluctuations.
We observe in (77) that the normal diffusive behavior is not singular at the limits A = n+

(n € N) for n > 2 and it is also different at the limit A = 2— which we consider next.

b)A=2-0(\ =2 —€ewith e —» 0+ and m = 2): Let us compare this limit with (a). We then

have Hy (1) = qri5kg; = € — L and o = 1 — e with (77)
1 —e¢€
X2)V (X2 ) —( Xy V22— e 3 9ot 79
(X5 ) ~ (X5 ) — (Xpo) NCETS (79)

where with (6I) we see that (X,_)* = 1 < (X?_,). This limit corresponds to Brownian motion
of the squirrel and is different from the (deterministic) trivial oscillatory motion of the case
A = 2 and is also different from the fast Brownian motion emerging in the limit A = 2+ of (a).

It is worthy of mention that relation can be re-derived in the following different way. GF
(27) has for A = 2— the form

Vy_c(u) = u[e 1+ 22— —u)— (1 —u)* (80)

1
(- 1)
with small € > 0. For ©« — 1— we have

Uy c(u) =1 - (1—u)*“+o(1 —u). (81)

(1 —u)+

1—c¢ 1—c¢
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Now consider the second derivative

_ 1d® - 1 B .
be(u) = 5o5¥a-c(u) ~ 52— )1 —u)™ ~ (1 - u) (82)
inversion yields a Dirac d-distribution b.(t) = (% ~ tr(; — 0,(t) concentrated at ¢t = 0+.

Although the second derivative does not exist at « = 1 we can define it in a distributional
(Gel’fand-Shilov) sense [14] to define constant BQ) for the (‘forbidden’) limit

B = hpa (1) ~ / 5. (t)dt = 1. (83)
0
We hence have for the GSD variance
Vo ~ 2BPT) 4 (T, — (T): =2 (84)

which takes us with (76) and (7"),_ = 1+ back to relation (79)). )
In fact what we are using in (81) is that the asymptotic expansion of Yo_o(u) for u — 1—

captures the dominating contribution of the GSD power-law tail ¢y () ~ % namely
1 o0 T3 00 d?
_~2BE) / B A ~/ 5, () r2dr = 2 85
Ve 2 1—€)Jo T )F(e —2) T +(T>d72T T (85)

€

where we use G'elfand-Shilov distributional relation FL—:Z) — j_j25+(7> which only captures

the information of the highest moment (7?), .. The contribution (85) is in a sense due to
the power law tail of r?e—:; of 1s_(t) which is dying out for ¢ — 0+ and which is null for the
deterministic case with the exact value A = 2.

In the same way we can consider the mth moment in the limit A = m— for any m € N. We then

have for the tail (33) the distributional relation

(m—¢e)l(m-1! dm et am
e (t) ~ I o (=) — — (1) ——6, (¢ 86
which leads to the finite limiting value for the mth moment
(o) dm
(™) ~ / P (T)dr = D(m+1),  meN. (87)
0 T
For m = 1 this yields (T');- = 1 and is different from singular limiting case (7). = * — oc.

For a further discussion of the (standard Sibuya) limit A = 1—, we refer to our recent paper
[25].

Now it is instructive to compare A\ = n— with A = n+ where n € N. In the latter case we have
m = [n+]| = n+ 1 thus (33) takes the form

n+e)l'(n+1)
['(1—¢)

Uppe(t) ~ e (88)

which remains ‘broad’ behaving as ¢t =" when ¢ — 0+ (contrarily to the limit A = n—, see (86)
for n = m). Therefore the nth moment

0 T(n+ 1
(T™) ye ~ / (ydr ~ D e (89)
0

€
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has a 1/e-singularity.

Considering now again n = 2 the two limits A = 2— and A = 2+, their difference becomes clear
when we look at the tails of the GSD where m(2+) = 3 = m(2—) + 1. Finally we have

22+¢)

—3—e¢
TI— e)t . (90)

1224—e(t) ~

Contrary to ¢, ¢(t) the PDF remains broad for ¢ — 0. Therefore,

224¢€) oo 5 2(24¢€) 70 4
IQ o~ (/‘ 3—¢ 2d — . 91
< >2+ 1—!(1 o E) 0 g T T F(l i 6) (—6) ’0 € ( )
Then we further have (7). = 15 = 2— < (T?)y;. thus

2
V2+€ <T >2+5 ~ 2 (92)

(Tyore  (Tyare €

bringing us back to (Z8).
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