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Abstract

Practical results gained from statistical theories of turbulence usually appear
in the form of an inertial range energy spectrum E(k) ∼ k−q and a cut-off wave-
number kc. For example, the values q = 5/3 and `kc ∼ Re3/4 are intimately
associated with Kolmogorov’s 1941 theory. To extract such spectral information
from the Navier–Stokes equations, Doering and Gibbon [2002] introduced the idea
of forming a set of dynamic wave-numbers κn(t) from ratios of norms of solutions.
The time averages of the κn(t) can be interpreted as the 2nth-moments of the
energy spectrum. They found that 1 < q 6 8/3, thereby confirming the earlier
work of Sulem and Frisch [1975] who showed that when spatial intermittency
is included, no inertial range can exist in the limit of vanishing viscosity unless
q 6 8/3. Since the κn(t) are based on Navier–Stokes weak solutions, this approach
connects empirical predictions of the energy spectrum with the mathematical
analysis of the Navier–Stokes equations. This method is developed to show how
it can be applied to many hydrodynamic models such as the two dimensional
Navier–Stokes equations (in both the direct- and inverse-cascade regimes), the
forced Burgers equation and shell models.

1 Introduction

The energy spectrum of the velocity field plays an important role in fluid dynamics,
since it describes how kinetic energy distributes across scales. In turbulent flows, the
energy spectrum generally behaves as a power law in the range between the forcing
and dissipation characteristic wavenumbers, with a slope that depends critically on the
space dimension. In view of their highly fluctuating nature, turbulent flows have been
studied with statistical tools, and the form of the energy spectrum has been predicted by
using dimensional analysis, renormalization-group techniques, and stochastic or closure
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How to extract a spectrum from hydrodynamic equations

models. For a recent review of this topic, the reader is referred to Alexakis and Biferale
[2018] and Verma [2019].

Establishing a rigorous connection between the statistical theory of turbulence and
the mathematical analysis of the Navier–Stokes equations is a difficult problem [Doering
and Gibbon, 1995; Foias et al., 2001; Constantin, 2006; Doering, 2009; Kuksin and
Shirikyan, 2012; Bardos and Titi, 2013]. Let us first summarize how empirical estimates
for length scales in the statistical theory of homogeneous and isotropic turbulence have
traditionally been obtained in terms of the energy spectrum. In a d-dimensional space,
this is defined as

E(k) = cd k
d−1 TrF(k), (1)

where cd is a positive constant which depends on the spatial dimension and

F(k) =

∫
Rd
e−ik·r u(x + r, t) · u(x, t) dVr (2)

is the Fourier transform of the velocity spatial correlation function [Monin and Yaglom,
1975]. The overline denotes an ensemble average over the realizations of the velocity
field in the statistically steady state. For a statistically stationary, homogeneous, and
isotropic field, the spatial correlation does not depend on time and the position x, but
only on the separation r. For d = 3 assume that E(k) has an inertial range between
the forcing wavenumber `−1 and a cut-off wavenumber kc of the form

E(k) ∼ ε2/3`q−5/3k−q (1 < q < 3) , (3)

where

ε = ν

∫ ∞
0

k2E(k)dk (4)

is the mean energy dissipation rate. By using (3) and ignoring the energy content in the
range k > kc, the mean energy dissipation rate can be estimated as ε1/3 ∼ ν`5/3−qk3−q

c .
This, together with the empirical prediction ε ∼ U3/` yields

`kc ∼ Re
1

3−q , (5)

which can be found in Frisch [1995]. Here U is the root-mean square velocity and
Re = U`/ν is the Reynolds number. The 2n-th moment of the energy spectrum, i.e.

K2n
n =

∫∞
0
k2nE(k) dk∫∞

0
E(k) dk

(n > 1) , (6)

is then estimated as
`Kn ∼ (`kc)

1− q−1
2n ∼ Re

1
3−q−

1
2n( q−1

3−q ) . (7)

Kolmogorov’s 1941 theory sets q to 5/3, which gives

`kc ∼ Re3/4 and `Kn ∼ Re3/4−1/4n . (8)

2



How to extract a spectrum from hydrodynamic equations

Table 1: Estimates for the time average of L〈κn〉T and corresponding predictions for the inertial-range energy
spectrum. L is the box size L for d = 2 and the forcing length scale (`) in all the other cases. Unless otherwise specified,
q > 1.

System Upper bounds on L〈κn〉T E(k) ∼ k−q

3D Navier–Stokes a
3− 7

2n
` Re3− 5

2n
+ δ
n q 6 8

3

3D Navier–Stokes
with suppressed fluctuations

a
3(n−1)(p−2)
n(p+6)

− 1
2n

` Re
6np−5p+6
2n(p+6) q 6 8

3
− 2

p

2D Navier–Stokes (direct cascade) a
3
2(1− 1

n)
` Re

3
4
− 1

2n q 6 11
3

2D Navier–Stokes (direct cascade) with
monochromatic or constant ε-forcing

a
3
2(1− 1

n)
` Re

1
2 q 6 3

2D Navier–Stokes (inverse cascade) a
n/2
` Re

1
2 5

3
6 q

Burgers a
1
3
− 5

6n
` Re1− 1

2n q 6 2

Shell model a
− 1

2n
` Re

3
4
− 1

4n q 6 5
3

How can a result like (7) be achieved for the incompressible Navier–Stokes equations?
More specifically, how can the value of q be determined from the analysis? Rigorous
results for partial differential equations are conventionally expressed as estimates of
time-averages of spatial norms and not in terms of spectra. Indeed, in the language of
Sobolev norms the idea of a spectrum associated with an inertial range, as in (3), has
no meaning. How to circumvent this difficulty and extract results corresponding to (7)
for weak solutions of the three-dimensional Navier–Stokes equations was first addressed
by Doering and Gibbon [2002] twenty years ago. Moreover, in a separate but parallel
paper, Doering and Foias [2002] also addressed how length scales in the forcing can be
used to achieve estimates in terms of the Reynolds number Re instead of the Grashof
number Gr, which is less common in the statistical theory of turbulence : see (23) in
§2 for definitions of these dimensionless quantities.

A summary of these ideas is the following : first write down the Navier–Stokes
equations on a periodic d-dimensional domain V = [0, L]d, where d = 2, 3

∂tu + u · ∇u = −∇p+ ν∆u + f(x) , ∇ · u = 0 . (9)

Here u(x, t) is the velocity field, p is pressure, ν is the kinematic viscosity, and f(x)
is a time-independent, mean-zero, and divergence-free body forcing. For simplicity, we
follow Doering and Foias [2002] in assuming that the forcing takes the form f(x) =
fΦ(`−1x), where `−1 is the smallest wavenumber in the forcing, f is the magnitude of
the forcing, and Φ(y) its shape. Therefore,

‖f‖2 = cn `
n‖∇nf‖2, (10)
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where ‖ · ‖2
2 =

∫
V | · |

2 dV and cn only depends on the shape of the forcing (see Doering
and Foias [2002]). The aspect ratio of the box size to the forcing scale is denoted as

a` =
L

`
. (11)

As a consequence of Poincaré’s inequality, a` > 2π. The initial velocity field is taken
mean-zero, so that u(x, t) remains mean-zero at all times. In Doering and Gibbon
[2002] the following sequence of squared L2-norms was introduced (n = 1, 2, . . . ):

Fn(t) = Hn(t) + τ 2
n ‖∇nf‖2

2 (12)

with
Hn(t) = ‖∇nu(·, t)‖2

2 . (13)

The forcing term is included for the technical reason that the analysis involves a division
of a differential inequality by Fn and thus Hn may be small on certain time intervals.
The time scales1 τn are chosen in such a way that the contribution of the forcing does
not dominate the time average of Hn in the turbulent regime so the Re-scaling of the
time averages of Fn and Hn remains the same. These technical issues are addressed in
§2. Then the following family of time-dependent ratios was introduced

κn,r(t) =

(
Fn
Fr

) 1
2(n−r)

(0 6 r < n) . (14)

The κn,r have the dimension of a wavenumber and are ordered according to κn,r 6 κn+1,r

and κn,r 6 κn,r+1, which follow from the inequality (see Lemmas 6.2 and 6.3 in Doering
and Gibbon [1995])

Fm 6 F
i
i+j

m−jF
j
i+j

m+i, 1 6 j 6 m, i > 1 . (15)

The quantities κn ≡ κn,0 play a special role because of their physical meaning. Indeed,
Parseval’s equality yields

Hn(t) = Ld
∑
k

k2n|û(k, t)|2 (16)

with û(k, t) as the inverse spatial Fourier transform of u(x, t). Hence

κ2n
n (t) =

∑
k k

2n
(
|û(k, t)|2 + τ 2

n |f̂(k)|2
)

∑
k

(
|û(k, t)|2 + τ 2

n |f̂(k)|2
) . (17)

At large Reynolds numbers, κ2n
n (t) can therefore be regarded as the 2n-th moment of the

(instantaneous) energy spectrum. The strategy in Doering and Gibbon [2002], which

1In Doering and Gibbon [2002] the τn had no n-dependence. However, the development of the
method to other cases sometimes requires this dependence so it has been introduced at this point.
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also adopted some ideas on the forcing from Doering and Foias [2002], was to find a
class of estimates of the type

〈`κn〉T 6 cnReξn , (18)

for the set of time averages 〈`κn〉T , where the brackets

〈·〉T =
1

T

∫ T

0

· dt (19)

denote a long-time average. The specific form of ξn found in Doering and Gibbon [2002]
is given in Theorem 1 and is also displayed in the first line of Table 1. The estimate
in (18) in terms of Re then allowed them to make the final step which was to compare
the exponent ξn with that in (7) that comes from Frisch [1995]

1

3− q
− 1

2n

(
q − 1

3− q

)
6 ξn . (20)

The direction of the inequality in (20) reflects that in (18). In reality, results from
statistically stationary, homogeneous, isotropic turbulence theory are being compared
with estimates of the long-time averages of ratios of Navier-Stokes spatial norms. The
value of ξn from Theorem 1 gives the range of q and this turns out to be precisely

1 < q 6 8/3 (21)

as in Sulem and Frisch [1975], where a bound on the energy spectrum was obtained by
considering a ‘shell decomposition’ of the velocity field and examining the energy flux
across wavenumbers.

Here we will endeavour to show that this method has much greater scope and can
be applied in other circumstances, such as the 2D Navier–Stokes equations (in both
the direct- and inverse-cascade regimes), Burgers equation, and shell models. Table
1 summarises the range of q for each of these cases with the details provided in the
rest of the paper. Although the spectral slopes for these systems are known, our study
shows that they can be obtained in a systematic way within the same mathematical
framework and thus confirms the wide applicability of these methods to the analysis of
hydrodynamic equations.

2 The Navier–Stokes equations in three and two dimensions

In the following, we consider the Navier–Stokes equations in both d = 3 and d = 2
dimensions. For weak solutions with initial data in L2(V), the root-mean square velocity

U = L−d/2
√
〈‖u‖2

2〉T <∞ . (22)

Suitable definitions of the Grashof and Reynolds numbers are

Gr =
f`3

ν2
, Re =

U`

ν
. (23)

5



How to extract a spectrum from hydrodynamic equations

The former is a dimensionless measure of the magnitude of the forcing, whereas the
latter is the system response. The reason for using the forcing scale instead of the
domain size in (23) is that the estimates based on these definitions of Gr and Re
remain valid in the infinite volume limit a` →∞ [Doering and Foias, 2002].

Gr and Re satisfy the bound [Doering and Foias, 2002]

Gr 6 c(Re + Re2) , (24)

which shows that the turbulent regime is achieved for Gr � 1. In Doering and Foias
[2002], the bound in (24) is also rewritten in terms of the mean energy dissipation rate,2

ε = νL−d 〈H1〉T , (25)

as
ε 6 c ν3`−4

(
Re2 + Re3

)
. (26)

In addition, Doering and Foias [2002] proved the inequality

c1f 6 c2ν
1/2`−1ε1/2 + c3ν

−1/2Uε1/2 , (27)

which, in turn, gives the lower bound

ε > c ν3`−4 Gr2

(1 + Re)2
. (28)

The L2-norms Fn include a contribution from the forcing which must not dominate
〈Hn〉T as Gr → ∞. This is achieved by suitably choosing the time scales τn. Using
Poincaré’s inequality, (10), and (28) yields

τ 2
n‖∇nf‖2

2

〈Hn〉T
6 cn L

2(n−1) τ
2
n‖∇nf‖2

2

〈H1〉T
= cn νε

−1L2(n−1)`−2nτ 2
nf

2 (29)

= cn ν
5ε−1L2(n−1)`−2(n+3)τ 2

nGr2 6 cn ν
2`−4a

2(n−1)
` τ 2

n(1 + Re)2 . (30)

Therefore, a suitable definition of τn is

τn =
ν−1`2

a
(n−1)
` (1 + Re)1+2δ

(31)

with

0 < δ <
1

6
for d = 3 and δ = 0 for d = 2 , (32)

so that
τ 2
n‖∇nf‖2

2 6 cnRe−4δ 〈Hn〉T as Gr→∞ . (33)

The non-zero δ-correction is required when d = 3 because, for technical reasons, the
forcing contribution to 〈Fn〉T needs to become negligible as Gr → ∞ [Doering and

2Estimates of time averaged quantities all have a correction term O(T−1) on their right hand side.
From now on this will be ignored.
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Gibbon, 2002]. When d = 2, the contribution of the forcing simply must not grow
faster than 〈Hn〉T [Gibbon and Pavliotis, 2007]. We shall see that the use of definition
(31) systematically improves the power of a` in the estimates of 〈κn〉T . Although this
is of little importance in most cases because generally a` = O(1), it becomes essential
in the study of the inverse-cascade regime of the 2D Navier–Stokes equations, which is
characterized by large values of a`.

Finally, when d = 2 and d = 3 the Fn satisfy the following ‘ladder’ of differential
inequalities as Gr→∞ (see qualifications in Appendix A) :

1

2
Ḟn 6 −νFn+1 + cn

(
‖∇u‖∞ + τ−1

n

)
Fn . (34)

Now we shall see that estimates for 〈κn〉T differ, leading to different ranges of q.
Throughout this paper c and cn denote dimensionless, generic constants.

2.1 Three examples involving the 3D Navier–Stokes equations

The main result of Doering and Gibbon [2002] is an estimate for the time average of
κn for weak solutions of the 3D Navier-Stokes equations.3

Theorem 1 (Doering and Gibbon [2002]). For n > 2 and 0 < δ < 1
6
,

`〈κn〉T 6 cn a
3− 7

2n
` Re3− 5

2n
+ δ
n as Gr→∞ . (35)

Remark 1. Comparing the exponents of Re in (35) and (7) gives

1− q−1
2n

3− q
6 3− 5

2n
+
δ

n
, (36)

whence

q 6
8

3
+

2δ

3(n− 1)
. (37)

Thus, for every value of n, we find that 1 < q 6 8
3

as advertised in Table 1.

Doering and Gibbon [2002] also investigated how the energy spectrum is modified when
the spatial fluctuations of the velocity gradients are suppressed through the assumption

‖∇u‖∞ ≈ c L−3/p‖∇u‖p , 2 6 p 6∞ . (38)

For p = 2, this means that as Re increases, the maximum velocity scales as the root-
mean square velocity. Higher values of p correspond to a milder suppression of fluctu-
ations, and (35) is recovered for p =∞. It can also be shown that decreasing p in (38)
corresponds to a stronger and stronger suppression of intermittency in the multifractal
description of turbulence [Dubrulle and Gibbon, 2022].

With approximation (38), Theorem 1 is modified as follows4

3The difference in the power of a` compared to the original version of the theorem is due to the use
of definition (31), which gives an extra factor a−1

` in the estimate of 〈κ21〉T : `2〈κ21〉T 6 c a−1
` Re1+2δ as

Gr→∞. The rest of the proof is unchanged.
4The exponent δ can be set to zero when assumption (38) is used.
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Theorem 2 (Doering and Gibbon [2002]). Under assumption (38) and for n > 2

`〈κn〉T 6 cn a
3(n−1)(p−2)
n(p+6)

− 1
2n

` Re
6np−5p+6
2n(p+6) as Gr→∞ . (39)

If the energy spectrum is as in (3), an argument analogous to that used for p = ∞
shows that the scaling in Theorem 2 is consistent with

1 < q 6
8

3
− 2

p
. (40)

In particular, p = 2 yields the Kolmogorov spectrum q = 5/3. More generally, by
altering the value of p in the range 2 6 p 6 ∞ we find that the upper bound of q,
designated as qub, lies in the range

5

3
6 qub 6

8

3
. (41)

These methods have also been applied to magnetohydrodynamic turbulence to show
that the Iroshnikov–Kraichnan total-energy spectrum can be excluded when there is no
cross-correlation between the velocity and magnetic fields [Gibbon et al., 2016].

The bounds on 〈κn〉T come out from scaling arguments and, for n = 1, yield the
estimate LRe−3/4 for the Kolmogorov scale, which is universally acknowledged to be
sharp [Gibbon, 2019]. This suggests, although does not prove, that the all hierarchy is
sharp.

2.2 The 2D Navier–Stokes equations

Consider the Navier–Stokes equations on the periodic square V = [0, L]2. The defi-
nitions introduced in §1 extend unchanged to two dimensions (d = 2). However, the
absence of vortex stretching leads to a different estimate for the time average of κn.

Two-dimensional turbulence is characterized by a dual cascade consisting of a direct
cascade of enstrophy (defined as ‖ω‖2

2 with ω = ∇×u) from `−1 to high wavenumbers
and an inverse cascade of energy from `−1 to low wavenumbers [Kraichnan and Mont-
gomery, 1980; Kellay and Goldburg, 2002; Tabeling, 2002; Boffetta and Ecke, 2012].
The enstrophy cascade ends at a cutoff wavenumber kc, beyond which enstrophy is
dissipated by viscosity. In an unbounded domain or in a bounded domain before statis-
tical equilibrium is established, the energy cascade continues to extend to ever smaller
wavenumbers, and a quasi-steady spectrum forms at wavenumbers between the inverse
integral scale and `−1.

We study the spectra of the two cascades separately by considering first the case
` ∼ L/2π (direct cascade) and then ` � L (inverse cascade). Bounds on the en-
ergy spectrum for the dual cascade in 2D turbulence have been provided by Tran and
Bowman [2003, 2004].
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2.2.1 Direct cascade of enstrophy

The following theorem5 describes the behaviour of 〈κ2
n〉T as Gr→∞ while a` = O(1).

Theorem 3 (Gibbon and Pavliotis [2007]). For n > 2

L2〈κ2
n〉T 6 cna

3(1− 1
n)

` Re
3
2
− 1
n [ln(a2

`Re)]
1
2
− 1
n as Gr→∞ . (42)

It follows that

L〈κn〉T 6 cna
3
2(1− 1

n)
` Re

3
4
− 1

2n [ln(a2
`Re)]

1
4
− 1

2n . (43)

We want to compare this bound with a practical estimate for LKn (see (6) for the defi-
nition) under the assumption that ` ∼ L/2π. Consider the mean enstrophy dissipation
rate

ην = νL−2 〈H2〉T . (44)

This is bounded [Alexakis and Doering, 2006, Gibbon and Pavliotis, 2007] and, at large
Re, can be estimated as

ην ∼
U3

`3
. (45)

The flow is assumed to be isotropic and to have an energy spectrum of the form

E(k) ∼ η2/3
ν `3−qk−q (`−1 6 k 6 kc) (46)

with 1 < q < 5. The mean enstrophy dissipation rate can be obtained from the energy
spectrum via the relation [Monin and Yaglom, 1975] :

ην ≈ ν

∫ kc

`−1

k4E(k)dk ∼ νη2/3
ν `3−qk5−q

c , (47)

where the contributions coming from wavenumbers k > kc have been ignored. Combin-
ing (45), (46), and (47) yields

`kc ∼ Re
1

5−q . (48)

By plugging (46) into (6) and using (48), we find :

LKn ∼ `Kn ∼ (`kc)
1− q−1

2n ∼ Re
1

5−q−
1
2n( q−1

5−q ). (49)

We now compare (49) with (43) and conclude that the Reynolds-number scaling of Kn

is consistent with that of 〈κn〉T provided that

q 6
11n− 12

3n− 4
. (50)

5There is a small difference in the powers of a` and ln Re between (42) and the original version of
the theorem. This is due to the choice of τn, which modifies the estimates of 〈κ21〉T and 〈κ22,1〉T . With
definition (31), as Gr→∞

L2〈κ21〉T 6 c a`Re and L2〈κ22,1〉T 6 c a2`Re .
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Since this must hold for all n > 2 and the right-hand side of (50) is a decreasing function
of n, we find that

1 < q 6
11

3
. (51)

Remark 2. The bound in (50) can also be derived by comparing the high-Re scaling

of the 2(n − 1)-th moment of the enstrophy spectrum with the bound for 〈κn,1〉2(n−1)
T

obtained in Gibbon and Pavliotis [2007].

Remark 3. The bound in (50) agrees with a practical estimate of Sulem and Frisch
[1975] and a rigorous result of Eyink [1996]. The exponent −11/3 also describes the
energy spectrum of spiral structures in two-dimensional turbulence [Gilbert, 1988].

In numerical simulations of isotropic turbulence, the following two types of forcing
are commonly used : (i) strictly monochromatic forcings with a single wavenumber `−1

and (ii) forcings that maintain a constant energy injection rate ε, i.e.

f = ε L2 Pu
‖Pu‖2

, (52)

where the operator P projects the velocity field on a finite set of spatial modes. For
these forcings, it is possible to derive a more stringent bound on q. Indeed, as Gr→∞
the general estimate for the mean enstrophy dissipation rate [Alexakis and Doering,
2006, Gibbon and Pavliotis, 2007]

〈H2〉T 6 c ν2`−4a2
`Re3 (53)

is replaced with [Alexakis and Doering, 2006]

〈H2〉T 6 c ν2`−4a2
`Re2. (54)

Using (54) in the proof of Theorem 3 yields the following result.

Theorem 4. For n > 2 and a monochromatic or a constant-energy-input forcing

L2〈κ2
n〉T 6 cna

3−3/n
` Re [ln(a2

`Re)]1/2−1/n as Gr→∞ . (55)

By comparing (55) with (49), we find that for these types of forcing

q 6 3 +
2

n− 1
, (56)

which yields for every n
1 < q 6 3 . (57)

Note that, up to logarithmic corrections, Kraichnan’s prediction for the energy spectrum
in the enstrophy-cascade range is E(k) ∼ k−3 [Kraichnan, 1967, 1971]. Alternative
proofs of Kraichnan’s scaling for the direct-cascade regime were provided by Eyink
[2001], Foias et al. [2002], Tran and Dritschel [2006].
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2.2.2 The inverse cascade of energy

To investigate the regime of the inverse cascade, we study the behaviour of 〈κn〉T in the
limit in which a` →∞ while the Reynolds number based on the characteristic velocity
at the forcing scale is O(1). More precisely, consider u2

f = L−2〈‖uf‖2
2〉T , where

uf (x, t) =
∑
|k|>`−1

eik·xû(k, t) , (58)

and define

Ref =
uf`

ν
. (59)

The direct cascade of enstrophy is negligible when the forcing wavenumber is compa-
rable to the viscous dissipation wavenumber and therefore Ref ∼ 1 [see Alexakis and
Biferale, 2018]. Furthermore, if the energy spectrum E(k) ∼ k−q for L−1 6 k 6 `−1 and
is negligible otherwise, it can be shown that [Smith and Yakhot, 1994, Tran, 2007]

U2 = aq−1
` u2

f (60)

and hence
Re = a

(q−1)/2
` Ref . (61)

Therefore, in the regime considered here, Re ∼ a
(q−1)/2
` . We can now prove a bound on

〈κn〉T which is relevant to the energy cascading range.

Theorem 5. If E(k) is steeper than k−5 and Ref = O(1), then for n > 1 and as
a` →∞

L2〈κ2
n〉T 6 c an` Re . (62)

Proof. Recall that from (33)

〈F2〉T 6 c 〈H2〉T 6 c ν2`−4a2
`(Re2 + Re3) , (63)

where the bound on 〈H2〉T can be found in Alexakis and Doering [2006] and Gibbon and
Pavliotis [2007]. Using the tighter bound for monochromatic or constant-energy-input
forcings would not change the result in this case.

In addition, the following form of the Brezis–Gallouët inequality holds [Doering and
Gibbon, 1995]

‖∇u‖∞ 6 c F
1/2
2 [1 + ln(Lκ3,2)]1/2 . (64)

Now note that, as a` →∞, the Fn satisfy the same ladder as in (34) (see Appendix A).
Thus, following Gibbon and Pavliotis [2007], we divide through the ladder by Fn and
time average. We then use (64) together with κn,r6 κn+1,r 6 κn+1,n for 2 6 r < n and
Jensen’s inequality on the logarithm to find

L2〈κ2
n,r〉T 6 c L2ν−1〈F2〉1/2T [1 + ln(L2〈κ2

n,r〉T )]1/2 + c an+1
` (1 + Re). (65)

11
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By using (61) and (63), we can see that the first term on the right-hand side behaves

as a
3+3(q−1)/4
` Re

3/2
f , whereas the second behaves as a

n+1+(q−1)/2
` Ref . Since Ref = O(1),

n > 3, and q < 5, the second term dominates over the first. For n > r > 2 and in the
limit a` →∞ while Ref = O(1), we thus find

L2〈κ2
n,r〉T 6 c an+1

` (1 + Re). (66)

By adapting the proofs of Gibbon and Pavliotis [2007] in the manner described in
Appendix A, it is also possible to show that as a` →∞

1

2
Ḟ0 6 −νF1 +

F0

2τ0

and
1

2
Ḟ1 6 −νF2 +

F1

2τ1

, (67)

which imply

L2〈κ2
1〉T 6 c a`(1 + Re) and L2〈κ2

2,1〉T 6 c a2
`(1 + Re) . (68)

The advertised result follows from using (66) and (68) in

〈κ2
n〉T =

〈(
Fn
F1

)1/n(
F1

F0

)1/n
〉
T

6 〈κ2
n,1〉

(n−1)/n
T 〈κ2

1〉
1/n
T . (69)

We now move to the practical estimate for the moments of the spectrum. We remind
the reader that we are assuming that `� L and `−1 ∼ kc, so that the contribution from
the spectrum at wavenumbers in the enstrophy cascading range is negligible. Assuming
that E(k) ∼ k−q with 1 < q < 5 in the range L−1 6 k 6 `−1, we find

L2nK2n
n ≈

∫ `−1

L−1

k2nE(k)dk∫ `−1

L−1

E(k)dk

∼
(
L

`

)2n+1−q

, (70)

or
LKn ∼ a

1−(q−1)/2n
` . (71)

In order to compare (71) with the mathematical bound for L〈κn〉T , we recall (61) and
the assumption Ref = O(1). Thus, (71) can be recast as

LKn ∼ a
1−(q−1)/2n−(q−1)/4
` Re1/2 (72)

and the practical estimate for LKn is consistent with the bound for L〈κn〉T if

q >
2 + 5n− 2n2

n+ 2
. (73)

12
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Since the right-hand side is a decreasing function of n, this means that the constraint
on q is fixed by the n = 1 case, i.e.

q >
5

3
. (74)

This lower bound agrees with an earlier result of Tran [2007] and with Kraichnan’s
prediction for the energy cascading range [Kraichnan, 1967, 1971]. That the bound is
obtained for n = 1 rather than considering the large-n limit is consistent with the fact
that the inverse energy cascade is a large-scale phenomenon.

3 Burgers equation

All the quantities introduced in §2 can be defined analogously for the Burgers equation
by taking d = 1 on the periodic interval V = [0, L]

∂tu+ u ∂xu = ν∂2
xu+ f . (75)

In particular, we can again set δ = 0 in the definition of τn.

The following two lemmas can be proved by adapting the proofs for the 3D Navier–
Stokes equations [see Doering and Gibbon, 2002] to the Burgers equation :

Lemma 1. For n > 1 and as Gr→∞, the Fn satisfy the ladder in (34).

Lemma 2. There exists a positive constant c such that, as Gr→∞,

`2
〈
κ2

1

〉
T
6 c a−1

` Re . (76)

We now prove the analogue of Theorems 1 and 3 for the Burgers equation.

Theorem 6. For n > 2, as Gr→∞

`2
〈
κ2
n

〉
T
6 cn a

2
3
− 5

3n
` Re2− 1

n . (77)

Proof. The inequality

‖∂xu‖∞ 6 c ‖∂xu‖1/2
2 ‖∂2

xu‖
1/2
2 6 c F

1/4
1 F

1/4
2 (78)

turns the ladder in (34) into

1

2
Ḟn 6 −νFn+1 + cn

(
F

1/4
1 F

1/4
2 + τ−1

n

)
Fn. (79)

By dividing through by Fn, time averaging, noting that the forcing term is subdominant
and can therefore be ignored, and using the Cauchy–Schwarz inequality, we find

〈
κ2
n+1,n

〉
T
6
cn
ν

〈
F

1/4
1 F

1/4
2

〉
T

=
cn
ν

〈(
F2

F1

)1/4

F
1/2
1

〉
T

=
cn
ν

〈
κ

1/2
2,1 F

1/2
1

〉
T
6
cn
ν
〈κ2,1〉1/2T 〈F1〉1/2T

(80)

13
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and hence, by using Jensen’s inequality,〈
κ2
n+1,n

〉
T
6 cnν

−1〈κ2
2,1〉

1/4
T 〈F1〉1/2T . (81)

The estimate of Doering and Foias [2002] for the mean energy dissipation rate, and
consequently the corresponding estimate for 〈F1〉T , also hold for the Burgers equation.
As Gr→∞, we thus have 〈F1〉T 6 c〈H1〉T 6 c ν2`−3a`Re3. Inserting this estimate into
(81) with n = 1 yields as Gr→∞〈

κ2
2,1

〉
T
6 c `−2a

2/3
` Re2 . (82)

Together (81) and (82) give〈
κ2
n,1

〉
T
6
〈
κ2
n+1,n

〉
T
6 cn `

−2a
2/3
` Re2. (83)

We also have

〈
κ2
n

〉
T

=

〈(
Fn
F0

) 1
n

〉
T

=

〈(
Fn
F1

) 1
n
(
F1

F0

) 1
n

〉
T

=

〈
κ

2(n−1)
n

n,1 κ
2
n
1

〉
T

6
〈
κ2
n,1

〉n−1
n

T

〈
κ2

1

〉 1
n

T
.

(84)
Therefore, by using (83) and Lemma 2, we find〈

κ2
n

〉
T
6
〈
κ2
n,1

〉n−1
n

T

〈
κ2

1

〉 1
n

T
6 c `−2a

2
3
− 5

3n
` Re2− 1

n . (85)

We assume again that the flow is isotropic, the forcing is large-scale with ` ∼ L/2π,
and the energy spectrum is as in (3) with 1 < q < 3. By proceeding as for d = 3 (see
§ 1), we find

`kc ∼ Re
1

3−q (86)

and
`Kn ∼ (`kc)

1− q−1
2n ∼ Re

1
3−q−

1
2n( q−1

3−q ). (87)

Therefore, after comparing (87) with Theorem 6, we conclude that the scaling of `Kn

is consistent with that of `〈κn〉T provided that

1 < q 6 2 . (88)

Remark 4. The energy spectrum of the Burgers equation for a large-scale forcing is
known to behave as k−2 [e.g. Frisch et al., 2013, Boritchev, 2014]. A k−2 energy spec-
trum is also found in the decaying Burgers equation [Tran and Dritschel, 2010].
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4 Shell models

In the ‘Sabra’ shell model [L’vov et al., 1998], the velocity variables uj are complex and
satisfy the system of ordinary differential equations6

u̇j = i(a1kj+1u
∗
j+1uj+2+a2kjuj+1u

∗
j−1−a3kj−1uj−1uj−2)−νk2

juj+fj, j = 1, 2, 3, . . . ,
(89)

where u∗j is the complex conjugate of uj, ν is the kinematic viscosity, fj are the forcing
variables, and kj = k0λ

j with k0 > 0 and λ > 1. The ‘boundary conditions’ are
u0 = u−1 = 0, while the coefficients a1, a2, a3 are real and such that a1 + a2 + a3 = 0.
This ensures that the kinetic energy

E =
∞∑
j=1

|uj|2 (90)

is conserved when ν = 0 and fj = 0 for all j. Moreover, the time-averaged energy
dissipation rate is

ε = ν

〈
∞∑
j=1

k2
j |uj|2

〉
T

. (91)

The forcing is assumed to be of the form fj = Fφj−jf , where F is a complex constant,
φp is time independent,

∞∑
p=0

λ−2p|φp|2 = 1, (92)

and φp = 0 for p < 0 and p > jmax − jf . Therefore, kf = k0λ
jf and kmax = k0λ

jmax

are the minimal and maximum wavenumbers of the forcing, respectively. Under these
assumptions and if the initial energy is finite, the shell model has globally regular
solutions [Constantin et al., 2006]. Finally, Gr and Re are defined as in §1 with U =√
〈E〉T , ` = k−1

f , a` = kf/k1, and f = |F|.
The shell-model analogues of Hn and Fn are

Hn =
∞∑
j=1

k2n
j |uj|2 , Fn = Hn + τ 2

n

∞∑
j=1

k2n
j |fj|2, (93)

and τn is as in (31) with δ = 0. As in the case of the Navier–Stokes equations, the
definition of τn ensures that 〈Fn〉T and 〈Hn〉T scale in the same way as Gr→∞. Indeed,
ε satisfies an inequality analogous to (27) (see (B.8) in Appendix B) which gives the
same lower bound as in (28). Using a shell-model version of Poincaré’s inequality

ε 6 νk
−2(n−1)
1 〈Hn〉T . (94)

6The results would be the same for the Gledzer–Ohkitani–Yamada (GOY) shell model [Gledzer,
1973, Yamada and Ohkitani, 1987].
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we find

τ 2
n

∞∑
j=1

k2n
j |fj|2 = bnν

−2k2n−4
f a

−2(n−1)
` (1 + Re)−2f 2

= bnν
2k

2(n+1)
f a

−2(n−1)
` (1 + Re)−2Gr2 (95)

6 c bnν
−1k

2(n−1)
f a

−2(n−1)
` ε 6 c bn〈Hn〉T ,

where

bn =

jmax−jf∑
p=0

λ2np|φp|2 (96)

and the constant c depends on φj but not on the magnitude of the forcing |F| (see
Appendix B). It was proved in Vincenzi and Gibbon [2021] that, analogously to the
Navier–Stokes equations,

Gr 6 c(Re + Re2) (97)

and as Gr→∞
〈H1〉T 6 c ν2`−4Re3 . (98)

In addition, as Gr→∞ the Fn satisfy the same ladder of differential inequalities as in
(34) with ‖∇u‖∞ replaced with sup16j6∞ kj|uj| :7

1

2
Ḟn 6 −νFn+1 + cn

(
sup

16j6∞
kj|uj|+ τ−1

n

)
Fn. (99)

In shell models, the energy spectrum is defined as E(kj) = k−1
j 〈|uj(t)|2〉T [Yamada and

Ohkitani, 1987]. Therefore, in the limit Gr→∞, the quantity κ2n
n = Fn/F0 behaves as

the ratio of the (2n+ 1)-th to the first moment of the instantaneous energy spectrum.
To obtain the Re-scaling of 〈κn〉T , we first need the shell-model analogue of Lemma 2.

Lemma 3. As Gr→∞,
k−2
f 〈κ

2
1〉T 6 c a−1

` Re. (100)

Proof. The energy evolution equation for the shell model is

dE

dt
= −2νH1 +

∞∑
j=1

(fju
∗
j + f ∗j uj) . (101)

We add and subtract b1ντ
2
1 k

2
ff

2 to the right-hand side and apply the Cauchy–Schwarz
inequality to the forcing term to obtain

1

2
Ḟ0 6 −νF1 + b1ντ

2
1 k

2
ff

2 + b
1/2
0 fH

1/2
0 (102)

7Vincenzi and Gibbon [2021] proved the ladder for shell models with a single time scale τ . The
proof can be easily modified to include an n-dependent time scale by following the same approach as
in Appendix A.
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An application of Young’s inequality with parameter gτ 2
0 yields

1

2
Ḟ0 6 −νF1 +

H0

2gτ 2
0

+

(
g

2
+
b1νk

2
f

b0a2
`

)
b0τ

2
0 f

2, (103)

where we have used τ1 = a−1
` τ0 and g is such that the coefficients of H0 and b0τ

2f 2 are
the same :

g =−
b1νk

2
f

b0a2
`

+

(
b2

1ν
2k4
f

b2
0a

4
`

+
1

τ 2
0

)1/2

=
1

τ0

{
− b1

b0a`(1 + Re)
+

[
b2

1

b2
0a

2
`(1 + Re)2

+ 1

]1/2
}
.

(104)

Therefore, as Gr→∞ we find g ∼ τ−1
0 and (103) becomes

1

2
Ḟ0 6 −νF1 + c τ−1

0 F0 . (105)

By dividing by F0 and time averaging, we finally get

〈κ2
1〉T 6 c ν−1τ−1

0 . (106)

The lemma is proved by replacing the definition of τ0.

Lemma 4. For n > 1, as Gr→∞

k−2
f 〈κ

2
n,1〉T 6 cnRe3/2 . (107)

Proof. Dividing through (99) by Fn, time averaging, and ignoring the subdominant
forcing term yields〈

κ2
n+1,n

〉
T
6 cnν

−1

〈
sup
16j

kj|uj|
〉
T

6 cnν
−1
〈
F

1/2
1

〉
T
6 cnν

−1 〈F1〉1/2T . (108)

The advertised result is obtained by using (98), 〈F1〉T 6 c 〈H1〉T , and 〈κ2
n,1〉T 6

〈κ2
n+1,n〉T .

The estimates in the above lemmas can be used to prove the following theorem :

Theorem 7. For n > 1, as Gr→∞

k−1
f 〈κn〉T 6 cna

−1/2n
` Re3/4−1/4n . (109)

Proof. The proof is analogous to that of Theorem 1 in Doering and Gibbon [2002]. To
achieve this, first note that

〈κn〉T 6

〈
κ

2n
2n−1
n

〉 2n−1
2n

T

=

〈
κ

2(n−1)
2n−1

n,1

(
κ2

1

) 1
2n−1

〉 2n−1
2n

T

6 〈κn,1〉
n−1
n

T

〈
κ2

1

〉 1
2n

T
, (110)

and then use the estimates from Lemmas 3 and 4.
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Remark 5. The scaling of 〈κn〉T is the same as in Theorem 2 for p = 2. This strength-
ens the parallel which was drawn in Vincenzi and Gibbon [2021] between shell models
and the Navier–Stokes equations with suppressed velocity gradient fluctuations (p = 2).

By analogy with (6), we now define K2n
n as

K2n
n =

∑∞
j=1 k

2n
j 〈|uj|2〉T∑∞

j=1〈|uj|2〉T
=

∑∞
j=1 k

2n+1
j E(kj)∑∞

j=1 kjE(kj)
. (111)

We also assume kf = k1 and that there exists kc = k0λ
jc such that E(kj) decays rapidly

for kj > kc, while
E(kj) ∼ Ak−qj , 1 6 j 6 jc (112)

with 1 < q < 3 and A ∼ ε2/3k
q−5/3
f ∼ U2k

q+1/3
f at large Re. In addition

ε = ν
∞∑
j=1

k3
jE(kj) ∼ νAk3−q

c , (113)

whence kc/kf ∼ Re
1

3−q . We thus find

K2n
n ∼ k2n+1−q

c kq−1
f (114)

and hence
Kn/kf ∼ Re

1
3−q−

q−1
2n(3−q) . (115)

We now follow the approach used for the Navier–Stokes and Burgers equations and
compare the Re-scaling of Kn and 〈κn〉T . The two scalings are consistent if

1 < q 6
5

3
. (116)

Remark 6. Numerical simulations show that, in the turbulent regime, the GOY and
Sabra shell models display a k−5/3 inertial-range spectrum [Yamada and Ohkitani, 1987,
L’vov et al., 1998]. Moreover, in the inviscid unforced case, they possess fixed-point so-
lutions with an energy spectrum scaling as k−5/3 [Bohr et al., 1998]. Finally, Cheskidov
et al. [2007] proved the k−5/3 scaling of the energy spectrum for a dyadic model of the
3D incompressible Euler equations.

5 Summary and conclusion

This paper has developed the method of Doering and Gibbon [2002] in which a sequence
of time-dependent wavenumbers, or inverse length scales κn(t), was originally used to
extract a spectrum from the 3D Navier–Stokes equations. These wavenumbers are
ratios of volume integrals of velocity derivatives. For the 3D Navier–Stokes equations,
and a version of them where large fluctuations of the velocity gradient are suppressed,
Doering and Gibbon [2002] provided rigorous bounds for the time average of κn(t) in
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terms of Re. The wavenumbers κn(t) are interpreted as moments of the energy spectrum
and the bounds on the time average of these were then used to infer the slope of the
energy spectrum in the inertial range of a turbulent velocity field. Since the κn(t) are
based on Navier–Stokes weak solutions, this approach connects empirical predictions of
the energy spectrum with the mathematical analysis of the Navier–Stokes equations.

We have extended these methods to other hydrodynamic equations that display
a turbulent regime at high Re, namely the 2D Navier–Stokes equations, the Burgers
equation, and shell models. The results are summarized in Table 1. Previous predictions
for the energy spectrum are recovered within the same mathematical framework, which
confirms the appropriateness of 〈κn〉T as quantities suitable for the rigorous study of
the energy spectrum of hydrodynamic partial differential equations.
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A Proof of the Fn ladder

Consider the ladder of inequalities for n > 1 [Doering and Gibbon, 1995] :

1

2
Ḣn 6 −νHn+1 + cn‖∇u‖∞Hn +H1/2

n ‖∇nf‖2 . (A.1)

In the case d = 2 the time differentiation of the higher order Hn is legal because the
Navier-Stokes equations are regular. In the case d = 3 the result is formally true if
one assumes there is a solution with sufficiently long interval of regularity. We proceed
on this basis noting, however, that the estimates for the time-averages achieved in this
paper can be shown to be true for weak solutions [Gibbon, 2019]. In turn, these are
based on the work of Foias et al. [1981].

Add and subtract ντ 2
n+1‖∇n+1f‖2

2 to obtain

1

2
Ḟn 6 −νFn+1 + cn‖∇u‖∞Fn +H1/2

n ‖∇nf‖2 + ντ 2
n+1‖∇n+1f‖2

2 . (A.2)

Now apply Young’s inequality with parameter gτ 2
n to the last two terms of the right-

hand side and use τn+1 = a−1
` τn and ‖∇n+1f‖2 = c `−2‖∇nf‖2 :

H1/2
n ‖∇nf‖2 + ντ 2

n+1‖∇n+1f‖2
2 6

1

2gτ 2
n

Hn +
gτ 2

n

2
‖∇nf‖2 + ντ 2

n+1‖∇n+1f‖2
2 (A.3)
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=
1

2gτ 2
n

Hn + τ 2
n

(
g

2
+

c ν

a2
``

2

)
‖∇nf‖2

2 . (A.4)

In order to have the same coefficients for Hn and τ 2
n‖∇nf‖2

2 and thus form Fn, we must
take

g = − c ν

a2
``

2
+

(
c2ν2

a4
``

4
+

1

τ 2
n

)1/2

=
1

τn

− c

an+1
` (1 + Re)1+2δ

+

[
c2

a
2(n+1)
` (1 + Re)2(1+2δ)

+ 1

]1/2
 .

(A.5)

As Gr→∞ or a` →∞, we find g ∼ τ−1
n for all n > 1.

B Proof of an inequality for ε in shell models

The proof of the analogue of (27) for shell models follows the strategy used by Doering
and Foias [2002] for the 3D Navier–Stokes equations. First define the constants

Bλ = [(|a1|+ |a2|)λ−1 + |a1 + a2|],

CM =
∞∑
m=0

λ2mM |φm|2, (B.1)

DM = sup
m>0

λ−m(2M−1)|φm| ,

where M is any real number such that CM and DM are bounded. In particular, the
following equality [Vincenzi and Gibbon, 2021] will be useful later :

∞∑
j=1

k2M
j |fj|2 = CMf

2k2M
f . (B.2)

Now multiply Eq. (89) by k−2M
j f ∗j , sum over j, and average over time:

∞∑
j=1

k−2M
j |fj|2 =

〈
ν
∞∑
j=1

k2−2M
j ujf

∗
j

〉
T

−

〈
i
∞∑
j=1

k−2M
j f ∗j (a1kj+1u

∗
j+1uj+2 + a2kjuj+1u

∗
j−1 − a3kj−1uj−1uj−2)

〉
T

. (B.3)

Rearranging the terms in the first time average on the right-hand side and using the
Cauchy–Schwartz inequality and (B.2) yields∣∣∣∣∣∣

〈
ν

∞∑
j=1

k2−2M
j ujf

∗
j

〉
T

∣∣∣∣∣∣ = νf

∣∣∣∣∣∣
〈
∞∑
j=1

(kjuj)(k
1−2M
j φ∗j−jf )

〉
T

∣∣∣∣∣∣
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6 ν1/2ε1/2
√
C1−2M fk1−2M

f . (B.4)

The second time average can again be estimated by using the Cauchy–Schwartz in-
equality. Consider for instance the term with coefficient a1 :∣∣∣∣∣∣

〈
ia1

∞∑
j=1

k−2M
j f ∗j kj+1u

∗
j+1uj+2

〉
T

∣∣∣∣∣∣ =
|a1|f
λ

∣∣∣∣∣∣
〈
∞∑
j=1

u∗j+1(kj+2uj+2)(k−2M
j φ∗j−jf )

〉
T

∣∣∣∣∣∣
6
|a1|
λ

( ε
ν

)1/2

DM+ 1
2
Ufk−2M

f .

(B.5)

Likewise we have∣∣∣∣∣∣
〈
ia2

∞∑
j=1

k−2M
j f ∗j kjuj+1u

∗
j−1

〉
T

∣∣∣∣∣∣ 6 |a2|
λ

( ε
ν

)1/2

DM+ 1
2
Ufk−2M

f (B.6)

and ∣∣∣∣∣∣
〈
ia3

∞∑
j=1

k−2M
j f ∗j kj−1uj−1uj−2

〉
T

∣∣∣∣∣∣ 6 |a1 + a2|
( ε
ν

)1/2

DM+ 1
2
Ufk−2M

f . (B.7)

By combining (B.2) and the bounds in (B.4) to (B.7), we find

C−Mf 6 C
1/2
1−2M ν1/2ε1/2kf +BλDM+ 1

2

( ε
ν

)1/2

U . (B.8)
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C. Foias, C. Guillopé, and R. Temam. New a priori estimates for the Navier–Stokes
equations in dimension 3. Comm. PDE, 6:329–359, 1981.

C. Foias, O. Manley, R. Rosa, and R. Temam. Navier–Stokes Equations and Turbulence.
Cambridge University Press, Cambridge, 2001.

C. Foias, M. S. Jolly, O. P. Manley, and R. Rosa. Statistical estimates for the Navier–
Stokes equations and the Kraichnan theory of 2-d fully developed turbulence. J. Stat.
Phys., 108:591–645, 2002.

U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press,
Cambridge, 1995.

U. Frisch, S. S. Ray, G. Sahoo, D. Banerjee, and R. Pandit. Real-space manifestations
of bottlenecks in turbulence spectra. Phys. Rev. Lett., 110:064501, 2013.

22



How to extract a spectrum from hydrodynamic equations

J. D. Gibbon. Weak and strong solutions of the 3d Navier–Stokes equations and their
relation to a chessboard of convergent inverse length scales. J. Nonlin. Sci., 29:
215–228, 2019.

J. D. Gibbon and G. A. Pavliotis. Estimates for the two-dimensional Navier–Stokes
equations in terms of the Reynolds number. J. Math. Phys., 48:065202, 2007.

J. D. Gibbon, Gupta A, G. Krstulovic, R. Pandit, H. Politano, Y. Ponty, A. Pou-
quet, G. Sahoo, and J. Stawarz. Depletion of nonlinearity in magnetohydrodynamic
turbulence: Insights from analysis and simulations. Phys. Rev. E, 93:043104, 2016.

A. D. Gilbert. Spiral structures and spectra in two-dimensional turbulence. J. Fluid
Mech., 193:475–497, 1988.

E. B. Gledzer. System of hydrodynamic type admitting two quadratic integrals of
motion. Sov. Phys. Dokl., 18:216–217, 1973.

H. Kellay and W. I. Goldburg. Two-dimensional turbulence: a review of some recent
experiments. Rep. Progr. Phys., 65:845–894, 2002.

R. H. Kraichnan. Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10:
1417–1423, 1967.

R. H. Kraichnan. Inertial-range transfer in two- and three-dimensional turbulence. J.
Fluid Mech., 47:525–535, 1971.

R. H. Kraichnan and D. Montgomery. Two-dimensional turbulence. Rep. Progr. Phys.,
43:547–619, 1980.

S. Kuksin and A. Shirikyan. Mathematics of Two-Dimensional Turbulence. Cambridge
University Press, Cambridge, 2012.

V. S. L’vov, E. Podivilov, A. Pomyalov, I. Procaccia, and D. Vandembroucq. Improved
shell model of turbulence. Phys. Rev. E, 58:1811–1822, 1998.

A. S. Monin and A. M. Yaglom. Statistical Fluid Mechanics, volume 2. MIT Press,
Cambridge, MA, 1975.

L. M. Smith and V. Yakhot. Finite-size effects in forced two-dimensional turbulence.
J. Fluid Mech., 274:115–138, 1994.

P.-L. Sulem and U. Frisch. Bounds on energy flux for finite energy turbulence. J. Fluid
Mech., 72:417–423, 1975.

P. Tabeling. Two-dimensional turbulence: a physicist approach. Phys. Rep., 362:1–62,
2002.

C. V. Tran. Constraints on inertial range scaling laws in forced two-dimensional Navier–
Stokes turbulence. Phys. Fluids, 19:108109, 2007.

23



How to extract a spectrum from hydrodynamic equations

C. V. Tran and J. C. Bowman. On the dual cascade in two-dimensional turbulence.
Physica D, 176:242–255, 2003.

C. V. Tran and J. C. Bowman. Robustness of the inverse cascade in two-dimensional
turbulence. Phys. Rev. E, 69:036303, 2004.

C. V. Tran and D. G. Dritschel. Vanishing enstrophy dissipation in two-dimensional
Navier–Stokes turbulence in the inviscid limit. J. Fluid Mech., 559:107–116, 2006.

C. V. Tran and D. G. Dritschel. Energy dissipation and resolution of steep gradients
in one-dimensional burgers flows. Phys. Fluids, 22:037102, 2010.

M. Verma. Energy Transfers in Fluid Flows. Cambridge University Press, Cambridge,
2019.

D. Vincenzi and J. D. Gibbon. How close are shell models to the 3D Navier–Stokes
equations? Nonlinearity, 34:5821–5843, 2021.

M. Yamada and K. Ohkitani. Lyapunov spectrum of a chaotic model of three-
dimensional turbulence. J. Phys. Soc. Japan, 56:4210–4213, 1987.

24


