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Polymers in non-uniform flows undergo strong deformation, which in the presence of persistent
stretching can result in the coil–stretch transition. The statistics of polymer deformation depends
strongly on the nature and the properties of the flow. Sultanov et al. [Phys. Rev. E 103, 033107
(2021)] have characterized the coil–stretch transition in an elastic turbulence of von Kármán flow
by measuring the entropy of polymer extension as a function of the Weissenberg number. The
entropic characterization of the coil–stretch transition is here extended to a set of laminar and
random velocity fields that are benchmarks for the study of polymer stretching in flow. In the case
of random velocity fields, a suitable description of the transition is obtained by considering the
entropy of the logarithm of the extension instead of the entropy of the extension itself. Entropy
emerges as an effective tool for capturing the coil–stretch transition and comparing its features in
different flows.

I. INTRODUCTION

The configuration of a polymer in a moving fluid drastically changes from coiled to fully stretched when the
Weissenberg number Wi, i.e. the product of the characteristic velocity gradient and the polymer relaxation time,
exceeds a critical threshold. This phenomenon is known as the coil–stretch transition [1] and is observed in both
laminar [2, 3] and random flows [4–6], even though with partially different features in the two cases. Several observables
have been used to characterize the coil–stretch transition. A natural quantity is the steady-state distribution of
polymer extensions [2–6], which changes dramatically near to the critical Wi: the mean increases rapidly, the coefficient
of variation attains its maximum value, and the peak shifts from the equilibrium extension Req to the maximum length
L (here Req is the polymer root mean square extension in the absence of flow). Another characterization considers
the equilibration time of the statistics of polymer extension [7, 8] or alternatively the autocorrelation time of the
extension [9]; near the coil–stretch transition these properties are strongly amplified that results in a critical slowing
down of the stretching dynamics. Furthermore, the transition is characterized by a maximum dispersion of the work
done by the flow to stretch polymers [10].

Recently, Sultanov et al. [11] have proposed to study the coil–stretch transition by measuring the entropy of the
polymer extension. This quantifies the “randomness” of the extension within an ensemble of polymers. By imaging
fluorescently stained T4 DNA molecules of maximum length L = 71.7µm and radius of gyration Rg = 1.5µm in an
elastic turbulence of von Kármán flow [12, 13], Sultanov et al. [11] have found that the entropy displays a maximum
near the transition. This result has a clear interpretation in terms of information. In the coiled and stretched states the
information concerning the polymer elongation reaches a maximum because the distribution of the polymer extensions
is peaked around a single value (Req and L, respectively). These states are hence minima of entropy. Conversely, the
broadening of the probability distribution of polymer elongations at the transition corresponds to a loss of information
and therefore a maximum of entropy.

Here we pursue the entropic characterization of the coil–stretch transition by examining a set of analytical and
numerical flows. Since it concentrates information on the statistics of polymer stretching in a single scalar quantity,
entropy emerges as an effective tool for comparing polymer stretching in different flows.

II. POLYMER MODEL AND FLOW CONFIGURATIONS

The polymer is modelled as a finitely extensible nonlinear elastic (FENE) dumbbell [14–16]. The evolution equation
for the polymer end-to-end vector R is

dR

dt
= κ(t) ·R− f(R)

R

2τ
+

√
R2

0

τ
ξ(t), (1)
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where κij(t) = ∇jui(t) is the velocity gradient at the centre of mass of the polymer, τ is the polymer longest relaxation

time, R0 = Req/
√

3, f(R) = (1−R2/L2)−1, and ξ(t) is three-dimensional white noise. Within this model, the radius

of gyration is Rg = Req/2 =
√
3
2 R0 and the extensibility parameter is defined as b = (L/R0)2 [14]. The dumbbell

model can in principle be refined to include effects such as hydrodynamic interactions or a conformation-dependent
drag force [14, 15]. Given that our work is focused on the entropic characterization of the coil–stretch transition,
rather than on the properties of dumbbell model itself, for the sake of simplicity we restrict to the basic version of
the model, which in any case has proved useful for a qualitative, and sometimes even quantitative, understanding of
the coil–stretch transition, in both steady [1–3, 17] and random [18–21] flows.

Calculating the entropy requires obtaining the probability density function (PDF) of the extension, P (R), from
Eq. (1), analytically or numerically. We shall consider the following set of model flows, which have been widely
employed in the study of polymer stretching and are representative of more complex situations.

Extensional flow The uniaxial extensional flow u = γ(−x/2,−y/2, z) is the first configuration in which the coil–
stretch transition has been predicted [1] and observed experimentally [2]. It consists of a direction of pure stretching
and two directions of compression with magnitudes that ensure incompressibility. The Weissenberg number is defined
as Wi = γτ and its critical value is Wicr = 1/2. If the rescaled end-to-end vector ρ = R/L is expressed in spherical
coordinates as ρ = ρ(sin θ cosφ, sin θ sinφ, cos θ), then the stationary PDF of ρ is

P (ρ) ∝
(
1− ρ2

)b/2
exp

{
bWi

2
ρ2[3 cos2(θ)− 1]

}
, (2)

where b = (L/R0)2 is the extensibility parameter [14]. An integration over the angular variables yields

P (ρ) ∝ ρ e− bWi
2 ρ2

(
1− ρ2

)b/2
erf

(
i

3bWi

2
ρ

)
, (3)

where erf is the error function.
Shear flow In a linear shear flow u = (σy, 0, 0), the coil–stretch transition is not observed [22]. Owing to thermal

fluctuations, the dynamics of the polymer indeed consists of a sequence of tumbling events which in turn correspond
to as many coiling and stretching events, so that persistent stretching is never realized [23–25]. Nevertheless, it will
be instructive to study the entropy of polymer extension also in this configuration and compare its behaviour with
that observed in other flows. The Weisseinberg number is Wi = στ , and the PDF of R is now calculated numerically
by means of Brownian Dynamics simulations of Eq. (1), where the nonlinearity of the elastic force is resolved by using

Öttinger’s rejection algorithm [26].
Batchelor–Kraichnan (BK) flow In random flows, it is convenient to define the Weissenberg number as Wi = λτ ,

where λ is the Lyapunov exponent of the flow, i.e. the average stretching rate of line elements. A general theory of
the coil–stretch transition in random flows has been developed by Balkovsky et al. [19] for linear polymer elasticity
(Oldroyd-B model) and by Chertkov [20] for nonlinear polymer elasticity (FENE model). For intermediate extensions

1/
√
b� ρ� 1, the PDF of ρ behaves as ρ−1−α with α decreasing as a function of Wi and crossing zero at Wi = 1/2.

Therefore, in the limit L → ∞ the PDF of ρ is not normalizable if Wi > 1/2. This is interpreted as an indication
that the coil–stretch transition also exists in random flows and the critical Wi is again Wicr = 1/2. For finite L,
the measured slope may be affected by the nonlinearity of the elastic force, but the theory still implies an analogous
strong modification of P (R) at Wic [20].

The BK flow has been used extensively in the analytical study of turbulent transport below the viscous-dissipation
scale (see Ref. [27] and, for applications to polymer dynamics, Ref. [28] and references therein). The velocity gradient
is an isotropic tensorial white noise with correlation 〈κij(t)κkl(t′)〉 = λδ(t − t′)(4δikδjl − δijδkl − δilδjk)/3, where
i, j = 1, 2, 3. The properties of this stochastic flow allow an exact calculation of P (ρ) (see Refs. [20, 29]):

P (ρ) = c ρ2
(

1 +
2Wib

3
ρ2
)−β (

1− ρ2
)β

(4)

with Wi = λτ , β−1 = 2(b−1 + 2Wi/3), and

c−1 =

√
π Γ(β + 1)

4Γ(5/2 + β)
2F1(3/2, β; 3/2 + β + 1;−2bWi/3). (5)

Here Γ and 2F1 denote the Gamma and hypergeometric functions, respectively. In this case, the exponent of the
power-law region of the PDF is α = 2β − 3 ≈ −3(1− 1/2Wi) for b� 1.
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Isotropic turbulence Although useful for a qualitative study of the coil–stretch transition, the BK flow is Gaussian
and has zero correlation time. It therefore cannot capture all features of a fully turbulent flow. Thus, we also consider
polymers in homogeneous isotropic turbulence. To this end, we use a database of Lagrangian trajectories from a direct
numerical simulation (DNS) of the Navier–Stokes equations in a periodic cube at Taylor-microscale Reynolds number
Rλ = 111 (see Refs. [30, 31] for the details). The velocity gradient κ(t) is evaluated along 104 trajectories and is then

inserted in Eq. (1), which is again solved by using Öttinger’s rejection algorithm [26]. The values of the parameters
of the dumbbell model in the DNS are R0 = 1 and L = 18. The extensibility parameter is b = (L/R0)2 = 182. The
effect of thermal noise on the position of the centre of mass is disregarded, since thermal fluctuations are negligible
compared to the fluctuations of the turbulent velocity field. The Weissenberg number is again defined in terms of the
Lyapunov exponent. Numerical simulations of isotropic turbulence [9, 32] have shown that the core of P (ρ) behaves
has a power of ρ, in agreement with the theory of Balkovksy et al. [19].

III. RESULTS

Following Sultanov et al. [11], we introduce the entropy of the rescaled polymer elongation ρ = |R|/L as

Sρ = −
∫ 1

0

P (ρ) log[P (ρ)] dρ. (6)

The PDF of the extension is normalized as follows:
∫ 1

0
P (ρ) dρ = 1. The entropy Sρ is plotted in Fig. 1 (left panel)

as a function of Wi for the different flows described in the previous section. In all cases (except for the experimental
data) the extensibility parameter is set to a representative value of b = 182.

In the extensional flow, Sρ displays a narrow maximum at Wi near critical, i.e. the coil–stretch transition is marked
by a strong amplification of the entropy of ρ. This behaviour reflects the fact that, at both small and large Wi, the
PDF of ρ is dominated by a peak (near to either 1/

√
b or 1), whereas only in a narrow range of Wi around Wicr the

PDF has a broader shape. A large variety of polymer configurations is thus observed at the coil–stretch transition,
as can be appreciated by direct inspection of the time series of ρ [8, 33].

In the shear flow, Sρ starts growing in an appreciable way only when Wi is significantly greater than Wicr. However,
it eventually reaches values higher than for the extensional flow. This is consistent with the distributions of the
extensions that have been observed in experiments [22, 23] and numerical simulations [34, 35]. The aforementioned
tumbling events indeed entail continuous recoiling and restretching of the polymer. Therefore, fairly large Wi are
required to strech polymers appreciably, and since the tumbling frequency increases with Wi [23–25], the distribution
of the extensions becomes broader and broader as Wi grows. A pronounced maximum at extensions comparable to L
only forms for Wi as large as 200 [35], and only then is Sρ expected to start decreasing.

Coming to the random case, Sρ displays a maximum for both the BK flow and isotropic turbulence. At small
and moderate Wi, the two curves are remarkably close despite the idealization of the BK flow. It has indeed been
shown in Ref. [36] that the shape of P (R) and the exponent of the power-law intermediate region P (R) ∼ R−1−α for
R0 � R� L are largely insensitive to the correlation time of the flow up to correlation times of the order of λ−1. At
large Wi, the behavior differs: Sρ saturates in the BK flow, whereas it decreases in isotropic turbulence. The reason
for this is that if the flow is turbulent and Wi is sufficiently large, P (R) displays a power-law intermediate region
together with peak near to L [9]. The development of this sharp peak causes the reduction of Sρ at increasing Wi. In
contrast, such a peak is absent in the BK flow, because a time-decorrelated velocity field is less effective in stretching
polymers up to their maximum length [29] .

Figure 1 (left panel) also shows a qualitative comparison with the experimental data of Sultanov et al. [11]. This
comparison requires some caveats. First of all, the experimental points have been translated vertically, which corre-
sponds to using the extensibility parameter b of the dumbbell model as fitting parameter [2, 17]. Indeed, the entropy
Sρ defined from the PDF of the rescaled elongation ρ = R/L can be expressed in terms of the entropy of P (R/R0)
as Sρ = SR/R0

− log(b)/2, where SR/R0
=
∫
P (R/R0) log(P (R/R0)) d(R/R0), therefore a vertical translation of the

entropy is equivalent to a change of b. In particular, the observation that S
(dumb)
ρ ' S

(exp.)
ρ + ∆Sρ corresponds to

fitting the experimental data with a dumbbell with equivalent extensibility b(fit) = b(exp.)[exp(−∆Sρ)]
2. Thanks to

this simple relation, the comparison of the entropy curves provides a useful tool to determine the parameter b of the
dumbbell model which fits the experimental data. A precise, quantitative comparison between the experiment and the
theory is not possible because the Weissenberg number was defined in a different way in the two cases. However, the
analysis shows that the experimental data are qualitatively compatible with the entropy of a dumbbell in a random
flow with extensibility parameter b ≈ 302. The latter estimate is obtained from the entropy shift ∆Sρ = 0.33. The

corresponding value of the ratio (L/Rg)
(fit) ≈ 34.5 is not far from the experimental value (L/Rg)

(exp.) = 47.8.
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FIG. 1. Left: Entropy of ρ vs Wi for different flows. In all cases (except for the experimental data) the extensibility parameter
is set to b = 182. The experimental data have been translated vertically by ∆Sρ = 0.33, which corresponds to a fit to a
dumbbell with b ≈ 302. Right: Entropy of y = ln ρ for the BK and turbulent flows and for the same parameters as in the left
panel.

Let us now come back to the comparison between the entropy curves in random flows and extensional flows. In both
cases, the maximum of Sρ is an indication of an increased randomness of the polymer configuration in the transitional
regime. However, there are some important differences in the behavior of Sρ observed in random flows with respect
to that of extensional flows. First, for a comparable value of Wi the entropy is always greater in random flows. This
is because in random flows P (ρ) has a power-law intermediate region and is therefore broader. Second, the maximum
of Sρ is much wider, since in random flows the transition from the coiled to the stretched state is much less sharp [4].
Third, the maximum of Sρ is located at a value of Wi larger than Wicr = 1/2. To understand this latter point, it is
necessary to examine the power-law behaviour of P (ρ).

As mentioned earlier, in random flows the P (ρ) displays a power-law in the intermediate region 1/
√
b � ρ � 1

which scales as P (ρ) ∼ ρ−1−α, where the exponent α turns from positive to negative at Wicr. Therefore, at the
transition P (ρ) ∼ ρ−1. Given that α decreases monotonically with Wi, it is rather at Wi > Wicr that P (ρ) ∼ ρ0 and
the PDF of ρ is the broadest [9, 29]. Since Sρ is a measure of the randomness of ρ, it is therefore natural that in
random flows Sρ reaches its maximum value at Wi > Wicr. This fact explains the behavior of Sρ. However, it also
raises the issue of an apparent discrepancy between the critical Wi for the coil–stretch transition and the value of Wi
at which Sρ is maximum. How to reconcile these two different thresholds?

In a random flow, the time-dependent PDF P (ρ, t) satisfies the diffusion equation

∂P

∂T
=

∂

∂ρ
[ρf(Lρ)P ] +

∂

∂ρ
ρ2K(ρ)

∂

∂ρ

P

ρ2
, (7)

where statistical isotropy has been assumed, time has been rescaled as T = t/2τ , and the stretching term has been
modelled à la Richardson via the eddy diffusivity K(ρ) = Kρ2 + b−1. The coefficient K depends on the the Reynolds
and Weissenberg numbers in a way that is specific to the particular random flow. However, its explicit expression is
not needed for the discussion below.

Eq. (7) can be recast as a Fokker–Planck equation with drift coefficient D1(ρ) = 4Kρ−ρf(Lρ) + 2/bρ and diffusion
coefficient D2(ρ) = Kρ2 + b−1. The associated Itô stochastic equation is

ρ̇ = D1(ρ) +
√

2D2(ρ) ξ(t), (8)

where ξ(t) is white noise. Note that, for the BK flow, Eqs. (7) and (8) hold exactly with K = 2Wi/3 [29]. One
important property of Eq. (8) is that the amplitude of the noise depends on ρ. This follows from the fact that if
the flow is random, the velocity gradient in Eq. (1) plays the role of a multiplicative noise. However, to be able to
use Wi as a control parameter for the coil–stretch transition, it is desirable to move to a representation where the
amplitude of the noise is independent of the stochastic variable, i.e. a stochastic equation with additive noise only.
This is achieved by considering a transformation of variable of the form [37]:

y ∝
∫

dρ√
D2(ρ)

=
1√
K

ln[Kρ+
√
K(Kρ2 + b−1)] + const. (9)
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Around the coil–stretch transition, the coefficient K is O(1). For ρ� 1/
√
b Eq. (9) thus gives

y ∼ ln ρ. (10)

Now note that the PDF of y is related to that of ρ via the relationship P (y) ∝ ρP (ρ). Therefore, according to the
theory of Balkovsky et al. [19], at Wi = Wicr the core of P (y) is flat and the entropy of y,

Sy = −
∫
P (y) log[P (y)] dy, (11)

is expected to reach its maximum value. This suggests that, for random flows, it may be more appropriate to
characterize the coil–stretch transition by measuring the entropy of y rather than that of ρ.

Figure 1 (right panel) shows Sy vs Wi for the BK flow and isotropic turbulence. The experimental data have not
been included because calculating P (y) from P (ρ) would require a higher resolution of the small extensions than
that available in the experiment [recall that P (y) ∼ ρP (ρ)]. As expected, Sy is maximum at Wi = Wicr, which
confirms that in random flows Sy provides a convenient characterization of the coil–stretch transition. The differences
between the BK flow and isotropic turbulence that have been discussed earlier obviously also manifest themselves in
the behaviour of Sy.

IV. SUMMARY AND CONCLUSIONS

In a non-uniform flow, polymers can be highly deformed by the local velocity gradients. However, the statistics of
the deformation and the way it varies with Wi depend very sensitively on the properties of the flow. In particular,
substantial differences are observed between laminar and random velocity fields. An entropic characterization of the
coil–stretch transition has been recently proposed by Sultanov et al. [11] for an elastic-turbulence von Kármán flow.
We have further developped this approach by examining a set of flows that have been regarded as benchmarks for the
study of polymer stretching, in both the laminar and the random case.

This study confirms that the dependence of entropy on Wi provides a useful characterization of the change in
the statistics of polymer extension that occurs near the coil–stretch transition. Moreover, it allows a quantitative
comparison between flows with different stretching properties. This characterization is particularly relevant to prac-
tical situations where limited statistics is available. Entropy is indeed less sensitive to statistical fluctuations than
quantities such as the slope of P (ρ) or the correlation time of ρ(t) which have been used previously to describe the
coil–stretch transition.
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