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• Plastics are releasing a wide variety of
chemical compounds.

• Plastic pollution research should intrinsi-
cally be highly interdisciplinary.

• We show that this is still far frombeing the
case in leachate studies.

• Plastic pollution research is essentially
structured in monodisciplinary studies.

• We praise for a systematic chemical defi-
nition of what we biologically compare.
A B S T R A C T
A R T I C L E I N F O
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Plastic is one of the most ubiquitous sources of both contamination and pollution of the Anthropocene, and accumu-
lates virtually everywhere on the planet. As such, plastic threatens the environment, the economy and human well-
being globally. The related potential threats have been identified as a major global conservation issue and a key
research priority. As a consequence, plastic pollution has become one of the most prolific fields of research in research
areas including chemistry, physics, oceanography, biology, ecology, ecotoxicology, molecular biology, sociology,
economy, conservation, management, and even politics. In this context, one may legitimately expect plastic pollution
research to be highly interdisciplinary. However, using the emerging topic of microplastic and nanoplastic leachate
(i.e., the desorption of molecules that are adsorbed onto the surface of a polymer and/or absorbed into the polymer
matrix in the absence of plastic ingestion) in the ocean as a case study, we argue that this is still far from being the
case. Instead, we highlight that plastic pollution research rather seems to remain structured in mostly isolated
monodisciplinary studies. A plethora of analytical methods are now available to qualify and quantify plastic mono-
mers, polymers and the related additives. We nevertheless show though a survey of the literature that most studies
addressing the effects of leachates on marine organisms essentially still lack of a quantitative assessment of the chem-
ical nature and content of both plastic items and their leachates. In the context of the ever-increasing research effort
devoted to assess the biological and ecological effects of plastic waste, we subsequently argue that the lack of a true
interdisciplinary approach is likely to hamper the development of this research field. We finally introduce a roadmap
for future researchwhich has to evolve through the development of a sound and systematic ability to chemically define
what we biologically compare.
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1. A foreword on plastic pollution

Plastic was initially considered a revolutionary material with nearly
infinite applications that were anticipated to propel mankind into ‘a plastic
era’ (Yarsley and Couzens, 1942). It quickly became the material
supporting a wasteful and throw-away lifestyle, ‘the savior of the
American housewife’ (Life Magazine, 1955), a description which, today,
would be, at the very least, seen as a fundamentally politically incorrect
marketing campaign. This prediction laid on the remarkable properties of
this material, which is light-weight, highly durable and versatile, and rela-
tively cheap to produce (Geyer et al., 2017). This plastic tale may, however,
only be the beginning of an endless and not so happy ending. Plastic
contamination and pollution have soon gained the other side of the same
coin. Due to plastic abuse and the waste management systems worldwide
struggling to cope the increasing influx of plastic waste (Jambeck et al.,
2015; Issufu and Sumaila, 2020), this material has become one of the
most ubiquitous sources of both contamination and pollution of the
Anthropocene. Plastic wastes are accumulating on landfills and beaches
worldwide as well as in the most remote terrestrial and oceanic locations
(van Sebille et al., 2015; Napper et al., 2020), threatening both terrestrial
and aquatic environments, the economy and human well-being on a global
scale (Marks et al., 2020; Frias et al., 2021; Kumar et al., 2021).

The extent of this pollution is such that plastics are now considered as a
key geological indicator of the Anthropocene as a distinctive stratal compo-
nent (Corcoran et al., 2014; Zalasiewicz et al., 2016; Dibley, 2018). The
term ‘Plasticene’ (i.e., sensu stricto the ‘Age of Plastics’), initially introduced
in the context of the societal implications of plastic pollution (Stager, 2011;
Reed, 2015), has since been increasingly used in the research and manage-
ment literature (e.g., Mendoza et al., 2018; Gestoso et al., 2019; Tiller et al.,
2019). The rapidly accelerating field of plastic research—and the related
diversity of new terms used by researchers, resource managers, policy-
makers, and the general public working on plastic-related issues—even
recently seeded a ‘Plasticene Lexicon’ aiming at advancing standardization
of language, and subsequently the research and concepts they describe
(Haram et al., 2020).

Yearly plastic pollution exponentially increased from 1.5million tons in
1950 to 368million tons in 2019 (PlasticsEurope, 2020) and the staggering
9 billion tons produced so far are expected to increase sixfold by the mid-
21st century (Zalasiewicz et al., 2019). Overall, 10 % of the produced
plastic is expected to end up in the ocean (Halpern et al., 2008; Barnes
et al., 2009), where ca. 80 % of the plastic litter is of terrestrial origin
(Andrady, 2011), comprising 60 to 80 % of the overall anthropogenic litter
(Derraik, 2002). In 2015, 15 to 51 trillion pieces of plastic (93,000 to
236,000 tons) were estimated in the oceans (van Sebille et al., 2015;
Isobe et al., 2021), a number that has been predicted to rise by an order
of magnitude by 2025 as, every year, 4.8 to 12.7 million metric tons of
plastic waste are continuously entering the oceans (Jambeck et al., 2015;
Williams and Rangel-Buitrago, 2022).

Beyond the above-mentioned earth-shattering figures, plastic pollution
has become a fertile research ground for scientists as diverse as chemists,
physicists, oceanographers, biologists, ecologists, ecotoxicologists,
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molecular biologists, sociologists, economists, environmentalists, conserva-
tionists, managers, policy makers, politicians, and even citizens who are in-
creasingly solicited through a variety of litter monitoring programs
(Hidalgo-Ruz and Thiel, 2015). In this context, onemay legitimately expect
plastic pollution research to be highly interdisciplinary. Using the ever-
growing topic of micro- and nanoplastic pollution and the emerging plastic
leachate research—i.e. the desorption of molecules that are adsorbed onto
the surface of a polymer and/or absorbed into the polymermatrix in the ab-
sence of plastic ingestion (Delaeter et al., 2022)—in the ocean as a case
study, we argue that this is still far from being the case, and introduce a
roadmap for future research. To address this issue in detail, we first used
the Web of Science to assess the relative status of both plastic pollution re-
search and plastic leachate research (Section 2). Subsequently, Section 3 il-
lustrates how microplastics and nanoplastics may be considered as a more
pernicious threat for marine organisms and ecosystems than macroplastics
due to both their minute size and the fact that they tend to accumulate
more persistent pollutants than large debris. In Section 4, we highlight
how leachates may be considered as a somewhat sickly child of micro-
and nanoplastic research despite their potential significant impact on ma-
rine life and ecosystems. Section 5 reviews the current state of the so-
called plastic leachate literature, highlighting how the vast majority of
the handful paper that explicitly assessed the effect of plastic leachates on
various aspects of the biology of aquatic organisms did not conduct any
sort of screening analysis on either the nature of the plastic polymer consid-
ered, their chemical content nor the nature of their leachates. Finally, in
Section 6, we discuss that, given the growing availability of screening
methods to assess the nature of plastic polymers and their chemical
contents, the future of the growing research effort devoted to assess the
effects of plastic waste lies in our ability to develop a sound and systematic
approach to chemically define what we biologically compare. To that end
we introduce a 5-step knowledge roadmap as an attempt to guide the future
development and implementation of plastic leachate research towards a
true interdisciplinary research field.

2. Plethoric plastic pollution research vs. a still anecdotal plastic
leachate research

Over the last few decades, plastic pollution has become one of the most
prolific field of research. The Web of Science (accessed June 30, 2022)
returned a total of 45,471 articles containing the words plastic
(i.e., ‘*plastic*’) and pollution (i.e., ‘pollut*’) in their topic between 1950
(the beginning of industrialization of plastic production) and 2022, a figure
that has been highly significantly exponentially growing (r2 > 0.99,
Fig. 1A). To assemble the literature search, we deliberately used the word
pollution, instead of contamination—though they are often used interchange-
ably in the ocean litter literature—as there is a critical need to separate the
anthropogenic presence of the materials (i.e., contamination) from
pollution, the adverse biological effects at one of more levels of biological
organization, that is sensu lato pollution (Borja and Elliott, 2019). Overall,
these 45,471 articles were predominantly related to 3 subject areas
(“Environmental Sciences and Ecology”, “Public Environmental and



Fig. 1.Web of Science search (accessed June 30, 2022) of the articles containing the words ‘plastic’ and ‘pollution’ in their topic between 1950 and 2022 (A), and the words
‘plastic’, ‘pollution’ and ‘leachate’ in their topic between 1950 and 2022 (B).
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Occupational Health”, and “Toxicology”; Fig. 2A). When using the words
plastic and pollution and leachate the above-mentioned figure drastically
drops down to 579 articles, which have a much more recent history
(Fig. 1B), but also appear to be spread over a wider range of research
areas (Fig. 2B). While these results may point towards a high interdisciplin-
ary trend in the areas of research dealing with plastic pollution, we develop
hereafter the idea that this is still not quite the case using the subject
area “Marine Ecology” as a case study. Instead, we highlight that plastic
pollution research rather seems to remain structured in mostly isolated
monodisciplinary studies. Using the example of emerging topics on
microplastics (i.e., particles smaller than 5 mm) and nanoplastics
(i.e., particles smaller than 100 nm), we highlight how, in the face of the
Fig. 2.Web of Science search (accessed June 30, 2022) showing the number of articles c
and the words ‘plastic’, ‘pollution’ and ‘leachate’ in their topic between 1950 and 2021 (B

3

increasing research effort assessing the effects of plastic waste, the lack of
a true interdisciplinary approach is likely to hamper the development of
this research field.

3.Microplastics andnanoplastics as the invisible portion of the plastic
iceberg

The public—and to a certain extent the scientific—perception of
plastic pollution has strongly been biased towards the description and
quantification of the presence, amount, nature and origin of large (typ-
ically>5mm) plastic debris. For instance, the ‘garbage patches’ found in
the Atlantic Ocean (Ryan, 2014) and Pacific Ocean (Lebreton et al., 2018)
ontaining the words ‘plastic’ and ‘pollution’ in their topic between 1950 and 2022 (A),
) as a function of the 25 most represented research areas.
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are some of the most infamous examples of plastic waste accumulation
in oceans, that, together with what is found on the seafloor and wash
up on beaches, is threating marine animals mostly in the form of entan-
glement, smothering and ingestion (Van Franeker et al., 2011; Kühn
et al., 2015; Li et al., 2016; Thiel et al., 2018). Despite the ever-
increasing number of scientific articles assessing plastic pollution
(Fig. 1) and the conspicuous nature of large plastic debris (Fig. 3A),
the quantification of their overall amount that either floats or accumu-
lates on seashores and at the bottom of the ocean remains a daunting
task. Global inventories are indeed (i) fundamentally limited by both
the horizontal and vertical extent of the ocean, hence de facto rely on
limited amount of actual concentration measurements, which are typi-
cally upscaled in model simulations (Cózar et al., 2014; Eriksen et al.,
2014; Lau et al., 2020; Koelmans et al., 2017), and (ii) further compli-
cated by the uneven distributions of debris (Halsband and Herzke,
2019; Lacerda et al., 2019; van Sebille et al., 2020). Coastal debris fun-
damentally undergoes cycles of beaching and remobilization (Lebreton
and Andrady, 2019) that add a temporal dimension to its geographical
unevenness. In addition, there is no standard definitions and protocols
to qualify and quantify beached debris (Browne et al., 2015;
Underwood et al., 2017). As a consequence, there still are noticeable un-
certainties in the assessment of the fate of discarded plastics (Jambeck
et al., 2015; Geyer et al., 2017; Williams and Rangel-Buitrago, 2022).

Microplastics (i.e., particles smaller than 5 mm; MPs), and in particular
nanoplastics (i.e., particles smaller than 100 nm; NPs), have received an in-
creasing scientific interest over the last decade (Thompson, 2015;
Koelmans et al., 2015; Gigault et al., 2018; Mattsson et al., 2018; Ferreira
et al., 2019; Gangadoo et al., 2020; Peng et al., 2020; Piccardo et al.,
2020; Sana et al., 2020). These forms of plastic litter are now virtually
found everywhere in the ocean (Chiba et al., 2018; Barrett et al., 2020).
They are also considered by far the most numerically abundant form of
solid waste on the planet (Eriksen et al., 2014) with maximum concentra-
tions ranging from 10 to 102 particles l−1 for MPs (Di Mauro et al., 2017)
—but typically in the range of 0.01 to 1 particles l−1with amarked increase
in concentrationwith decreasing size (Lenz et al., 2016; Alfaro-Núñez et al.,
2021)—and 1010 to 1012 particles l−1 for NPs (Gallego Urrea et al., 2010).
Note that microplastics have also been found in marine sediments, with
concentrations ranging from 0.04 to 13.6 particles per gram of dry sedi-
ment (Barrett et al., 2020).

Despite the increasing scientific attention towards plastic pollution and
contamination, no standard protocols exist to detect, enumerate and char-
acterize microplastics (Löder and Gerdts, 2015). This fact may explain the
observed discrepancy between MPs counts in the oceans (Andrady, 2017;
Law, 2017; Fig. 3A). The situation is even more critical for NPs as they
are still not accounted for in global plastic estimates due to a relative lack
of detection and/or quantification techniques (Gigault et al., 2016; Ter
Halle et al., 2017; Schwaferts et al., 2019; Rai et al., 2021). As such they
may represent a significant proportion of the so-called ‘missing plastic par-
adox’ that has been riddling scientists since the seminal work of Richard
Thompson's team in 2004 (Thompson et al., 2004). MPs and NPs are likely
to have been critically under-estimated, hence their abundance will
Fig. 3. Schematics of the visible and invisible portions of (A) the ‘plastic iceberg’ and (B
iceberg is made of highly conspicuous macro-debris that accumulate at the surface and
made of minute-sized debris that can barely be seen through the naked eye and often
equipment such as Fourier-transform infrared spectrometer (FTIR), Raman and micro-
the invisible part of the micro- and nanoplastic iceberg is made of the additives that a
specific tools such as pyrolysis-gas chromatography–mass spectrometry packages to ide
known plastic additives, here clockwise a plasticizer (DEHP) a UV-light stabilizer (Ch
770, 326 and 328; the two middle molecules are two common antioxidants, i.e. fro
necessitate continuous analytical development and improvement given the ever-inc
europa.eu). The thickness and the length of the black arrows in both panels are respec
our understanding of the quantity of plastic debris (A) and plastic additives (B) pr
quantification of plastic items discarded in marine ecosystems is fundamentally limite
limited amount of actual concentration measurements and upscaling model simulations
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increase with the improvement of qualification and quantification
methods. This issue is exacerbated by the ever-increasing evidence that
micro- and nanoplastic pollution is ubiquitous, ranging from high-
mountain lakes to deep-sea sediment; see e.g. Woodall et al. (2014),
Napper et al. (2020), Rowlands et al. (2021), and Pastorino et al. (2022).

MPs and NPs may represent a far more pernicious threat for marine or-
ganisms and ecosystems than macroplastics (Galloway et al., 2017). The
wide variety of deleterious effects that these smaller forms have on the en-
vironment and human health are, however, still debated (Chae and An,
2017; Galloway et al., 2017; Revel et al., 2018). In particular, it is stressed
that the acute lethal and sub-lethal damages (e.g., entanglement, smother-
ing and ingestion) caused by macroplastics to large marine organisms
with low population growth rates are barely comparable to the chronic ef-
fects MPs and NPs may have on microorganisms such as copepods which
are characterized by fast population growth rates and are fundamentally ex-
posed to plastic items at much lower concentrations (i.e., 0.01 to 1 particles
l−1; Lenz et al., 2016; Alfaro-Núñez et al., 2021) than their actual
microphytoplankton, which typically range from ca. 102 and 104 cell l−1

in offshore waters and 103 and 107 cell l−1 in estuarine and coastal waters;
see e.g., Cloern (1996), Continuous Plankton Recorder Survey Team
(2004), O'Boyle and Silke (2010) for reviews. In this context, it is noticeable
that the vast majority of studies assessing the bioavailability of various
microplastic items (i.e., beads, fibers and fragments) used concentrations
orders of magnitude above MPs environmental concentrations; see Bai
et al. (2021), their Table 1. As such, given the current limited and lack of
knowledge of MP and NP concentrations in the ocean, any attempt to com-
pare the relative effects of plastics at the base and the top of the food chain
would be at best speculative. It is nevertheless stressed that though the res-
olution of this issue warrants the need for further work, it lies well beyond
the scope of the present work.

MPs and NPs are typically divided into primary and secondary accord-
ing to their sources. Primary MPs and NPs are released into the environ-
ment as nurdles, pellets and granules, biobeads, fibers either accidently or
intentionally (Vandermeersch et al., 2015; Gasperi et al., 2018; Dris et al.,
2016; Zhang et al., 2020). These plastics are produced as intended prod-
ucts, wastes from manufacturing processes, or derivatives from the erosion
and tearing in the use of large plastic products such as tires, wheels and
boards. Noticeably, increasing amounts of NPs have been manufactured
for a variety of applications such as 3D printing, cosmetics, drug delivery
and some of them are inevitably discharged into the environment (Peng
et al., 2020). Secondary MPs are derived from the breakdown of large plas-
tic litter in the environment under the action of physical, chemical and bi-
ological forces (Thompson, 2015; Ryan et al., 2009) such as mechanical
abrasion, heat, UV-radiation light, oxidation, and biodegradation (Barnes
et al., 2009; Browne et al., 2011; Imhof et al., 2012; Rillig et al., 2017).
NPs also derive from the fragmentation and weathering of MPs (Gigault
et al., 2016; Dawson et al., 2018; Ekvall et al., 2019; Enfrin et al., 2020;
Piccardo et al., 2020; Wang et al., 2021), just as MPs are mostly derived
from the fragmentation of macroplastics.

MPs and NPs have a radically different impact on both marine environ-
ments and organisms than larger pieces of plastic due to their abundance,
) the ‘micro- and nanoplastic iceberg’. Specifically, the visible portion of the plastic
the bottom of the ocean, as well as along the seashore, while its invisible portion is
request tools ranging from optical microscopes to increasingly expansive pieces of
Raman spectrometers to quantify their size, shape, color and polymer. In contrast,
re released from virtually any plastic item present in the ocean, and requests very
ntify and quantify them. Note that though the identification and quantification of
imassorb 81), a flame retardant (TBBPA), and three UV-light stabilizers, Tinuvin
m top to bottom bisphenol S (BPS) and bisphenol A (BPA), this area of research
reasing number of plastic additives used by the plastic industry (see www.echa.
tively an indication of the expected quantity and the related level of uncertainty in
esent in the oceans. In addition, the question marks highlight the fact that the
d by the horizontal and vertical extent of the ocean (hence essentially relies on a
) and temporal and spatial unevenness of the distribution of plastic debris.

http://www.echa.europa.eu
http://www.echa.europa.eu


Table 1
Web of Science search (accessed June 30, 2022) of the articles containing the words ‘plastic’, ‘pollution’ and ‘leachate’ in their topic in theMarine Biology Research area. List of
abbreviations for chemical compounds. HCB: hexachlorobenzene; PAH: polycyclic aromatic hydrocarbons; PBDE: polybrominated diphenyl ethers; PCB: polychlorinated
biphenyls; PE: polyethylene; PET: poly(ethylene terephthalate); PP: polypropylene; PS: polystyrene; PUR: polyurethane; PVC: polyvinyl chloride. List of abbreviations for
analytical methods. ATR-FTIR: attenuated Total Reflection-Fourier Transform Infra-Red spectroscopy; EDS: energy dispersive spectroscopy; FTIR: Fourier Transform Infra-
Red spectroscopy; LC-MS: Liquid Chromatography–Mass Spectrometry; ICP-MS: Inductively Coupled Plasma–Mass Spectrometry; ICP–OES: Inductively Coupled Plasma–
Optical Emission Spectrometry; NMR: 1H nuclear magnetic resonance spectroscopy; UPLC-ESI-MS: ultra-performance liquid chromatography coupled with tandem mass
spectrometry, interfaced with an electrospray ionization source, operated in negative mode; TD: thermal desorption; SLE: supported liquid extraction; TXRF: total reflection
X-ray fluorescence spectrometry.

Source Plastic polymer Leachate analysis

Product type Polymer
analysis

Chemical content
analysis

Screened products Analysis

Weis et al. (1992) 100 % curbside tailinga – – Organic additives GC–MS
70 % curbside tailing and 30 % PS – – Organic additives GC–MS

Bejgarn et al. (2015) New consumer plastic items (PE, PP, PVC, PS, PET, PUR) – – – –
Nobre et al. (2015) Virgin PE granules – – – –

Unidentified stranded pellets – – – –
Gandara e Silva et al. (2016) Virgin PP pellets – – – –

Stranded pellets (42 % PE and 58 % various polymers) FTIR – – –
Li et al. (2016) Virgin PC, HDPE, LDPE, PET, PP, PS, PVC – – Organic additives HPLC-ESI
Martínez-Gómez et al.
(2017)

Virgin PS microspheres and HDPE fluff – – – –

Seuront (2018) Virgin PP pellets – – – –
Stranded pellets – – – –

Ke et al. (2019) New single-use plastic bags FTIR GC–MS/EDS – –
Oliviero et al. (2019) Virgin PVC microplastics – – Metals ICP-MS

Green toy FTIR – Metals ICP-MS
Blue toy FTIR – Metals ICP-MS
Orange toy FTIR – Metals ICP-MS

Tetu et al. (2019) Grey grocery bag (HDPE)
Textured black and yellow/green plastic matting (PVC)

–
–

–
–

Organic additives
Metals
Organic additives
Metals

LC-MS
ICP-MS/ICP-OES
LC-MS
ICP-MS/ICP-OES

Aminot et al. (2020) Beached foam-like plastic macrodebris FTIR – Brominated flame
retardants,
Plasticizer bisphenol A

UPLC-ESI-MS

Capolupo et al. (2020) Virgin PET, PS, PP, PVC, CTR – – Organic additives
Metals

GC–MS
ICP-MS

Chae et al. (2020) Virgin expanded polystyrene fragments and spheres – – Chemical and carbon content HPLC
Cormier et al. (2021) Stranded microplastics FTIR GC + ICP-MS – –
Gardon et al. (2020) Spat collectors (shade-mesh), new and aged FTIR TD/GC–MS +

SLE/GC–MS
PAHs, organic additives TD/GC–MS

Synthetic ropes, new and aged FTIR TD/GC–MS +
SLE/GC–MS

PAHs, organic additives TD/GC–MS

Langlet et al. (2020) Virgin PP pellets – – – –
Piccardo et al. (2020) Virgin PET microparticles FTIR – – –
Sarker et al. (2020) Grey grocery bag (HDPE), new and aged – – Metals ICP-MS/ICP-OES

Textured black plastic matting (PVC), new and aged – – Metals ICP-MS/ICP-OES
Trestrail et al. (2020) Oasis® Ideal floral foam ATR-FTIR – – –

Oasis® Enhanced Biofoam ATR-FTIR – – –
Thomas et al. (2020) Virgin PS and PMMA microparticles – – – –
Capolupo et al. (2021) Virgin PET, PS, PP, PVC, CTR – – Organic additives

Metals
GC–MS
ICP-MS

Gewert et al. (2021) Virgin LDPE, PP, PS and PET pellets – – – –
Koski et al. (2021) Tire wear particles from: new tire, old tires, rubber granules – – Metals ICP-MS
Lehtiniemi et al. (2021) Virgin LDPE granules – NMR Metals TXRF

Post-consumer LDPE frozen vegetable package – NMR Metals TXRF
Recycled styrene-butadiene rubber – NMR Metals TXRF

Rendell-Bhatti et al. (2021) Beached pellets FTIR – PCBs, HCB, PAHs GC-ECD
New White PVC prime plasticized pellets FTIR – PCBs, HCB, PAHs GC-ECD
Virgin LDPE FTIR – PCBs, HCB, PAHs GC-ECD

Schiavo et al. (2021) Virgin PP, PE and PS – – Organic additives
Metals

GC–MS
ICP-MS

Seuront et al. (2021) Virgin PP pellets – – – –

a Curbsite tailing is ca. 80 % polyolefin (Polyethylene and polypropylene), with the remaining percentages made of poly(ethylene terephthalate), polystyrene, polyvinyl
chloride, and other plastics (Phillips et al., 1989).
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small size, high surface curvature and large surface area, which typically
enhance any surface effect such as sorption/desorption dynamics
(Mattsson et al., 2018). As such, their toxicity typically increases as their
size decreases (Anbumani and Kakkar, 2018; Sjollema et al., 2016). A
range of physical processes related to particle-algae cell wall interactions
such as adsorption, complexation and agglomeration have been reported
to hamper the integrity of phytoplankton cell walls (Shiu et al., 2020;
Casabianca et al., 2020), hinder photosynthesis and result in an increase
6

of the reactive oxygen species in algae cells (Bhattacharya et al., 2010;
Nolte et al., 2017, Bellingeri et al., 2020). Furthermore, the secretion of
extracellular polysaccharides to form algae clusters have been shown to
polymerize and concentrate microplastic beads, hence potentially influenc-
ing microplastic vertical distribution and bioavailability (Long et al., 2015,
2017). Note, however, that the abovementioned effects of MPs and NPs on
microalgae—as well as those reported on a range of invertebrates—have
only been demonstrated in the laboratory, which typically used
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concentrations of plastic that are up to 100 g l−1 or 100,000 particles l−1

for plastic leachate studies; see Delaeter et al. (2022) for a review. Notice-
ably these concentrations are orders of magnitude higher than typical envi-
ronmental concentrations, which are in the ng l−1 to μg l−1 range (Lenz
et al., 2016) or 1 to 500 particles m3 (Koski et al., 2021), and can even
reach up to ca. 17 mg l−1 in the intertidal zone (Paul-Pont et al., 2018).
Though the discrepancy between environmental and experimental plastic
concentrations has previously been pointed out (Lenz et al., 2016;
Haegerbaeumer et al., 2019), its resolution is still at the core of a sustain-
able and meaningful future of plastic leachate research and warrants the
need for further work to assess the impact of ecologically relevant NPs
and MPs concentrations in laboratory studies.

MPs and NPs also act as both sources and vectors of pollutants through
respectively the intrinsic chemical additives (usually organic), used in their
manufacture to improve their physical and chemical properties, and the
variety of extrinsic chemical pollutants, adsorbed onto their surface while
aging in the ocean (Bakir et al., 2014, 2016; Wang et al., 2021). As a result,
they tend to accumulate more persistent pollutants than large debris (Law
and Thompson, 2014), and have even been qualified as “a sink for toxic
chemicals” (Engler, 2012).

4. Leachates as the invisible portion of the micro- and nanoplastic
iceberg

Only 5 polymers—polyethylene (PE), polypropylene (PP), poly(vinyl
chloride) (PVC), polystyrene (PS) and poly(ethylene terephthalate) (PET)—
account for 90 % of the MPs and NPs found in the ocean (Andrady and
Neal, 2009; Suaria et al., 2016). These polymers, however, include numer-
ous—over 400 according to the European Chemical Agency initiative (see
www.echa.europa.eu)—chemical additives (typically organic) used in their
manufacture mainly to increase their durability. These lowmolecular weight
additives (i.e., light and heat stabilizers, antioxidants, nucleating agents, UV
stabilizers, pigment agents, antistatic molecules, flame retardants and plasti-
cizers; seewww.echa.europa.eu) are typically released in seawater fromplas-
tic polymers, as well as other chemical compounds adsorbed onto their
surface such as hydrophobic organic contaminants (e.g., polycyclic aromatic
hydrocarbons, PAHs, and polychlorinated biphenyls, PCBs) and heavy
metals. Someplastic additives such as phthalates and brominatedflame retar-
dants can reach high concentrations in coastal waters (Hermabessiere et al.,
2017; Sánchez-Avila et al., 2012) and substantially accumulate in marine or-
ganism tissues (Vered et al., 2019). For instance, 17 to 917 tons of phthalates
are expected to be released annually in the oceans from leaching PVC, PS and
PE (Suhrhoff and Scholz-Böttcher, 2016), and PE microplastics release endo-
crine disrupting chemicals (typically bisphenol A, bisphenol S, octylphenol,
nonylphenol), with estrogen-like and anti-androgen effects inducing carcino-
genesis and mutagenesis (Chen et al., 2019; Huang et al., 2021).

The chemicals associated toMPs andNPs can impact directly or indirectly
marine life (Huang et al., 2021; Wang et al., 2021). Due to their minute size,
MPs and NPs are ingested by a large range of organisms including filters
feeders such as oysters and mussels (Van Cauwenberghe and Janssen,
2014; Li et al., 2018; Green, 2016; Catarino et al., 2018; Green et al., 2019;
Abidli et al., 2019) and organisms as small as zooplankton; see Bai et al.
(2021) for a review. Once ingested, the variety of chemical pollutants, either
bounded to the polymer or adsorbed onto their surface are desorbed, cause
adverse effects and accumulate into the tissues and organs (Hahladakis
et al., 2018; Vered et al., 2019) with putative cascading effects through the
food chain (Desforges et al., 2015). In this context, these chemicals can be
thought as the Trojan Horse of plastic litter triggering toxic effects and re-
sponses in a wide range of marine organisms. NPs are probably the least
known area of marine litter, though potentially the most hazardous
(Koelmans et al., 2015) and we still barely have any idea of the quantity of
these chemicals that may be lurking below the surface of our oceans
(Fig. 3B). They are of particular concern as they aremore likely to pass biolog-
ical membranes and affect the functioning of cells including blood cells and
photosynthesis (Koelmans et al., 2015), but also inhibit fertilization and em-
bryogenesis and decrease larval performance and have intergenerational
7

effects (Tallec et al., 2018, 2019). MPs and NPs, however, release intrinsic
and extrinsic pollutants directly in seawater, which have also been shown
to have various toxic effects; see e.g., Huang et al. (2021) for a review.

5. On the lack of interdisciplinarity in leachate research

A Web of Science search (accessed June 30, 2022) based on the words
plastic, pollution and leachate in the subject area “Marine Ecology” returned
120 articles. Among these articles, only 27 (Table 1) explicitly assessed
the effect of plastic leachates sensu Delaeter et al. (2022)—i.e., the desorp-
tion of molecules that are adsorbed onto the surface of a polymer and/or
absorbed into the polymer matrix in the absence of plastic ingestion—
from a range of virgin and aged plastic items on marine organisms ranging
frommicrobes to large molluscs and crustaceans. Note that we deliberately
excluded studies that were conducted on leachate solutions where plastic
items were kept in suspension as they are implicitly potentially biased by
the challenge to decipher the physical effects due to the presence of plastic
particles from the chemical effects that can be exclusively related to the
leachate, hence were not considered as dealing with leachate sensu
strictissimo. The effects of plastic leachates were addressed through the con-
sideration of various biological parameters including gene expression,
physiology, behaviour, individual and population growth; see Delaeter
et al. (2022) for a detailed review of the various effects (including the
lack of effect) of various plastic leachates on invertebrate organisms rang-
ing from microscopic organisms such as cyanobacteria and microalgae to
large molluscs and crustaceans. As such, the observed effects of plastic
leachates on marine invertebrates have not been rehearsed in the present
work. Note, however, that the reported effect (or lack of effect) of plastic
leachates are extremely difficult to synthesized as they are fundamentally
organism-dependent, polymer-dependent and dose-dependent (Delaeter
et al., 2022). Specifically, the effect of a given dose of a given polymer on
a given organism may differ depending on the scrutinized physiological
and biological process. For instance, the leachates of the same dose of poly-
propylene (PP) and polyethylene terephthalate (PET) respectively decrease
and have no effect on the growth of the marine diatom Skeletonema
costatum (Piccardo et al., 2020). Similarly, the leachates from virgin poly-
propylene pellets affect the motion and aggregation behaviour and byssal
thread production of four species of intertidal mussels in species-specific
ways (Seuront et al., 2021); see Delaeter et al. (2022), their Table S1 for a
review of the effects (and lack of effects) of plastic leachates on marine
microbes and invertebrates. Noticeably, 33 % of the 27 articles (i.e., 9)
that addressed the issue of the effect of plastic leachates onmarinemicrobes
and invertebrates did not conduct any sort of screening analysis on either
the nature of the plastic polymer considered, their chemical content or
the nature of their leachates (Table 1). More specifically, nearly 50 % of
these articles (i.e., 13) did not attempt to assess the nature of the so-called
leachate (Table 1). Among the 18 papers assessing the type of the plastic
polymer considered, its chemical content or the nature of its leachates,
nine did not identify the polymer used in the assay. This may, however,
reasonably be considered as aminor limitation especially when virgin poly-
mer particles or single-use products of known origin and composition were
used (Table 1). Only four papers run screening analyses of the chemical
content of the plastic employed in the manipulative experiments,
i.e., new single-use plastic bags (Ke et al., 2019), new and aged spat collec-
tors and synthetic ropes used in in pearl-framing gear (Gardon et al., 2020),
stranded microplastics (Cormier et al., 2021), and virgin low-density poly-
ethylene, post-consumer LDPE frozen vegetable package and recycled
styrene-butadiene rubber (Lehtiniemi et al., 2021). Finally, when leachates
were screened (i.e., in 14 of the 27 papers returned by our literature sur-
vey), the screening essentially targeted either trace elements or organic
additives, but barely both, tough exceptions exist (Tetu et al., 2019;
Capolupo et al., 2020, 2021; Schiavo et al., 2021); see Table 1. For some,
the screening was specifically directed towards specific chemical
compounds such as brominated flame retardants, plasticizer bisphenol A
or polycyclic aromatic hydrocarbons (PAHs; Table 1). There is now
unequivocal evidence that exposure to most of the abovementioned

http://www.echa.europa.eu
http://www.echa.europa.eu
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chemicals is fundamentally hazardous—typical examples being heavy
metals, phthalates, alkylphenols, PAHs and pesticides such as PCBs; see
Balcioglu (2016), Honda and Suzuki (2020) and Zhang et al. (2021) for
recent reviews—which further emphasizes the need to characterize the
chemical composition of leachates.

The relative lack of chemical screening analyses reported here in studies
addressing the effects of plastic leachates on marine organism—but the
same reservation applies to the lack of identification of plastic polymers
and polymer chemical screening—is potentially detrimental to a compre-
hensive and realistic understanding of the effect of plastic leachates on
marine life, hindering the development of the field of research on plastic
pollution. Specifically, our concern here is that comparing results obtained
without chemical screening of leachates are at best questionable, as is any
idiosyncratic false analogy epitomized by the idiomatic comparison of
apples and oranges. The potential consequences of these limitations are
discussed hereafter based on three papers reporting the effect of virgin
and stranded pellets on the embryonic development of the sea urchin
Lytechinus variegatus (Nobre et al., 2015) and the brown mussel Perna
perna (Gandara e Silva et al., 2016) and the antipredator response of the
intertidal gastropod Littorina littorea (Seuront, 2018). Note, however, that
the criticisms implied by the following statements and analyses do not
detract from the central point of their work.

Nobre et al. (2015) found that the leachate from PE pellets impair
embryonic development in the sea urchin L. variegatus, in contrast to the
leachate fromunidentified stranded pellets. The authors subsequently legit-
imately emphasized the need to avoid direct loss of virgin plastic pellets
into marine habitats during manufacturing and transport. In contrast,
Gandara e Silva et al. (2016) observed a higher relative toxicity of leachate
from beached pellets (42 % PE and 58 % made of other, unspecified poly-
mers) in comparison to virgin PP pellets to mussel embryo. Finally,
Seuront (2018) found that the behavioural vigilance and predator avoid-
ance behaviour of L. littorea were impaired and inhibited when exposed
to leachate from virgin PP pellets and stranded unidentified pellets (later
identified as PE pellets following FTIR analysis; Seuront, unpublished
data), respectively. The observed discrepancies from these three examples
alone highlight how the toxic effects detected by naively comparing
beached vs. virgin pellets may be potentially driven bymuchmore complex
undetermined differences between their leachate treatments. These include
(i) the release of different additives by the virgin and weathered pellets
which were made of a different polymer, (ii) the release of different
quantities of additives depending on the weathering time, (iii) the pollut-
ant's affinity to the plastic polymer and to the leaching, chemical cocktail
(as opposed to a single-chemical solution), and (iv) the period of time
that the plastic persists in the environment; see e.g., Teuten et al. (2009).
Apart from a proper identification of polymer type and chemical content
of stranded pellets, a chemical screening of the leachate solution would
have contributed to clear and precise hypotheses and decipher any
indistinct results by demixing apples and oranges.

6. A plea for an interdisciplinary approach to micro- and nanoplastic
pollution

Evenwhen scientific knowledgewas in its very early infancy, Paracelsus
stated in ca. 500 CE a noticeably still currently held, convenient and
undistracting toxicological truth ‘all things are poisons at the right dose’. In
this context, especially when referring to leachate studies, it appears critical
to identify the so-called ‘things’ we are dealing with as well as the related
‘dose’. The resolution of these specific issues is at the core of what we
believe is the future of plastic pollution research. It is also timely given
recent incentives to improve the quality and relevance of plastic-related
research and to set-up new research priorities to inform policies aimed at
reducing the harm of plastic pollution to biota, including:

(i) the increasing awareness of the scientific community on the need to
shift our focus from one that solely describes levels and geographic
location of plastic contaminations to one that identifies ecological
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effects and solutions of plastic contamination and predicts impacts to
the projected increase of plastic litter (Borja and Elliott, 2019),

(ii) the acknowledged need to raise the publication bar for microplastic
research through harmonized methods and quality assurance prac-
tices, and more incentive for journals, editors and reviewers to be
more proactive in ensuring clear, repeatable methods of research
articles, an absolute prerequisite to contribute to a constructive and
factual discourse on plastic pollution (Provencher et al., 2020),

(iii) the growing demand from reviewers for the inclusion of polymer types
to microplastic particles in environmental and biological samples, and
plastic particle chemical characterization as a condition of final manu-
script acceptance (Ivar do Sul, 2021), even though itmay remain legit-
imate to consider that stating “we found the amount Q of litter at location
X” is appropriate—hence worthy of publication—depending on the
nature of the study and the scientific question.

As an example, the number of timely papers focusing on the potential
environmental impact of face masks as a potential source of plastic pollu-
tion has been blooming following the beginning of the COVID-19 pandemic
(Benson et al., 2021; Chowdhury et al., 2021; Schofield et al., 2021); yet
none of them assessed the nature of the materials leaching from them in
the environment. Noticeably, the same limitation applies to the body of
research devoted to another major form of anthropogenic litter, cigarette
butt leachate in terrestrial, freshwater and marine environments
(Micevska et al., 2006; Slaughter et al., 2011; Booth et al., 2015; Gill
et al., 2018; Caridi et al., 2020; Green et al., 2020). This knowledge gap
was also glaring in the recent second and third yearly conference of the
Research Group “Polymers and Oceans”, respectively held online from
February 8–11, 2021 and in-person from June 27–29, 2022. The objectives
of this research group that includes 240 researchers from 56 laboratories
were “to develop new avenues of interdisciplinary research. To involve all the
concerned scientific communities: chemists, physicists, biologists, ecologists,
ecotoxicologists, oceanographers, economists and sociologists to support le
development of multi-scale and transdisciplinary approaches” (see https://
www.gdr-po.cnrs.fr). Specifically, it appears that descriptive studies
assessing the presence, quantification and future of plastic particles in var-
ious estuarine and marine systems are still well represented. There is also a
clear dichotomy between the studies focusing on the ecological effects of
plastics on various organisms (e.g. phytoplankton, zooplankton, bivalves
and fish), and the development and improvement of screening methods
to e.g. microplastic characterization through GT pyrolysis coupled with
mass spectrometry, mass spectrometry quantification of small (25 μm–1
mm) microplastics or the characterization of additives using Gas Chroma-
tography/Mass Spectrometry-Orbitrap. The former noticeably did not use
the latter in their approach, and vice versa. We are well aware that
assigning polymer types to single micro- and nanoparticles, screening the
nature and quantity of the chemicals (i) bounded to virgin polymers and
new consumer plastic products and adsorbed onto their surface once
discarded in the marine environment, and (ii) released by these plastic
items is a daunting task; this requires significant laboratory time, as well
as expensive and specialized knowledge of the concepts and methods
specific to polymer chemistry. The tools and techniques needed to qualify
and quantify the chemicals leaching from plastic polymers are, however,
now virtually available (particularly in western countries and/or in large
research facilities) to any scientists working in a marine laboratory, hence
the chemical screening needed to improve the relevance of the leachate
solutions used in the type of papers reported in the present work is only
at a stone's throw from becoming an indissociable component of any
leachate-based biological assay. It is nevertheless stressed that the tools
needed to screen the chemical composition of plastic polymers and their
leachates are still relatively expansive, ranging from ca. $25,000 for a
Fourier-transform infrared spectrometer (FTIR), $50,000 for a micro-
Raman spectrometer and in the range $250,000–500,000 for a pyrolysis-
gas chromatography–mass spectrometry package (Primpke et al., 2020),
not tomention the relative lack of uniformity in themethods used to detect,

https://www.gdr-po.cnrs.fr
https://www.gdr-po.cnrs.fr
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enumerate and characterize microplastics (Löder and Gerdts, 2015). Small
research groups and research groups based inmany parts of Asia andAfrica,
where the issues related by plastic pollution are of growing concern (e.g.
Matsuguma et al., 2017; Kapinga and Chung, 2020; Marnn et al., 2021;
Akindele and Alimba, 2021), may not have the financial resources to
purchase the needed tools. This situation may limit the research efforts by
those who do not have access to the so-called ‘standard’ facilities, and
ultimately be detrimental to the progress and evolution of the field of
plastic pollution. This limitationmay be overcome though the development
of collaboration with other disciplines and/or laboratories mastering the
needed tools, which (i) further strengthen our plea for more interdisciplin-
ary in micro- and nanoplastic pollution research, and (ii) is very much in
line with the recent claim to develop both collaboration and infrastructure
in African research on micro- and nanoplastic pollution (Nel et al., 2021).

In this context, we claim—especially given the intrinsic interdisciplin-
ary nature of microplastic research, and beyond the question of the perti-
nence of keeping publishing descriptive studies about the presence of
plastics in virtually any location on Earth (see Borja and Elliott (2019) for
an in-depth discussion on this specific issue)—that it is of utmost impor-
tance for microplastic research to bridge the gap between studies focusing
on the biological and ecological effects of plastic pollution and characteriz-
ing and quantifying the intrinsic and extrinsic chemicals behind the
observed so-called effects. We believe this is a legitimate plea for a few fun-
damental reasons. Firstly, plastics research is likely to play a pivotal role to
the future of the Anthropocene, essentially due to the extreme persistence
of plastic polymers in the environment, an intrinsic and unique property
which is missing in most (if not all) anthropogenic particles (Andrady,
2015). Secondly, a significant amount of research has been centered around
their persistence in the environment, and their subsequent impacts on
marine health (Duis and Coors, 2016; Chatterjee and Sharma, 2019) notice-
ably through the interactions between various microplastic debris
(Galloway et al., 2017) and between microplastics and persistent organic
pollutants (Lohmann, 2017; Rodrigues et al., 2019). As a consequence,
and as previously stressed in the context of both microplastic monitoring
(Gago et al., 2018; Cutroneo et al., 2020) and the assessment of environ-
mental and health impact of MPs (Coffin et al., 2021), standardized proto-
cols and open collaboration between different fields are at the core of the
future of microplastic leachate research.

Finally, because a founding principle behind any scientific approach is to
use a common acknowledged nomenclature, assessing the effect of plastic
leachates on a specific organismwithout chemically screening these leachates
does not holdmorewisdom than assessing theflavor of an apple by tasting an
orange. As such, studies focusing on the biological and ecological effects of
plastic leachates can only be comparable — and ultimately be credible and
survive the test of time — if they are based on a sound assessment of the
chemicals present within and released from plastic polymers to form the so-
called leachate solutions in the form of the following ‘5K’ roadmap:

(i) Know your plastic particle. The characterization of the size, shape,
surface charge and morphology plastic particles is fundamental as
these properties significantly drive key processes such as the dynamics
of adsorption/desorption and absorption/desorption through e.g.
their surface/volume ratio. These properties are typically character-
ized through a combination of light scattering and optical techniques.
The former are typically used to characterize physical properties such
as size and particle size distribution; see Xu (2015). In turn, the latter
provide information on the morphology of a particle through three
groups of particle imaging techniques, such as optical microscopy,
electron microscopy and scanning probe microscopy; see Zhou and
Wang (2007), Michler (2008) and Schmid et al. (2013) for reviews;

(ii) Know your plastic polymer. The identification of the polymer requires
the use of spectroscopic methods. When MP particles are larger than
500 μm, analyses are typically conducted on a particle-by-particle
basis with attenuated total reflection Fourier transform-infrared
spectroscopy (ATR-FTIR). In contrast, smaller particles are collected
on filters and identified with focal plane array micro-FT-IR (FPA-FT-
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IR) or Raman microspectroscopy with particles down to 10 μm to 1
μm (Schwaferts et al., 2019);

(iii) Know the chemical content of your polymer. This includes the molecules
that are either absorbed into the polymermatrix such as the seemingly
ever-increasing family of additives that enter the composition of plas-
tics when manufactured (e.g. light and heat stabilizers, antioxidants,
nucleating and antistatic agents, flame retardants, plasticizers and col-
orants) and adsorbed onto the surface of the polymer post-
manufacture such as heavy metals, Polychlorinated biphenyls
(PCBs), Polycyclic aromatic hydrocarbon (PAHs), Dichlorodiphenyl-
trichloroethane (DDT), and Polybrominated diphenyl ethers (PBDE).
These chemical compounds can now routinely be assessed through a
range of relatively well-established gas chromatographic-mass spec-
trometric methods; see e.g. Schwaferts et al. (2019) for a review;

(iv) Know the chemical content of your leachate. The chemical screening of
leachate solutions, though still noticeably lacking in ca. 50 % of the
studies identified in our literature survey (see Table 1), is nevertheless
accessible through a range of coupled chromatographic and spectro-
metric methods such as gas chromatography–mass spectrometry, liq-
uid chromatography-mass-spectrometry, and inductively coupled
plasma–mass spectrometry and inductively coupled plasma–optical
emission spectrometry; see e.g. Tetu et al. (2019), Capolupo et al.
(2021), Koski et al. (2021), Lehtiniemi et al. (2021) and Rendell-
Bhatti et al. (2021) for recent examples;

(v) Know your dose. This is probably the most challenging component of
the present roadmap as the relevance of any biological assay relies
on the use of environmentally realistic amounts of particles and/or
chemicals (Lenz et al., 2016; Delaeter et al., 2022), which are typically
highly variable in time and space.

Note, however, that despite the range of analytical methods available to
characterize the chemical content of both plastic particles and their leachates,
there is no a priori single protocol but amultitude of approaches that covers a
complex field, requiring specific methods for samples of different types (e.g.
virgin pellets vs. weathered pellets) and sizes (e.g. microplastic vs.
nanoplastic particles). In addition, the type of analytical methods to be used
is also fundamentally driven by the scientific question to be addressed (not
to mention the chemical compound of interest), which warrants the need
for increased interdisciplinary research efforts. Based on the examples of
the evolution of ecotoxicology towards a fully interdisciplinary research
area (e.g., Jorgensen, 2010; Zhou et al., 2019), and how the collaborations
between two fields as different as archaeology and marine biology have sig-
nificantly improved our understanding of past, present and futuremarine (es-
pecially coastal) ecosystems—see e.g. Crumley (2021), McCormack et al.
(2021) and Slade et al. (2021)—it is stressed that our journey to understand
the effect ofmicro- andnanoplastic pollution on life in the oceanhas to evolve
through the development of a sound and systematic ability to chemically
define what we biologically compare.
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