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Abstract:  55 

A universal scaling relationship exists between organism abundance and body size1,2. Within 56 

ocean habitats this relationship deviates from that generally observed in terrestrial systems2-4, 57 

where marine macro-fauna display steeper size-abundance scaling than expected. This is 58 

indicative of a fundamental shift in food-web organization, yet a conclusive mechanism for this 59 

pattern has remained elusive. We demonstrate that while fishing has partially contributed to the 60 

reduced abundance of larger organisms, a larger effect comes from ocean turbulence: the 61 

energetic cost of movement within a turbulent environment induces additional biomass losses 62 

among the nekton. These results identify turbulence as a novel mechanism governing the marine 63 

size-abundance distribution, highlighting the complex interplay of biophysical forces that must 64 

be considered alongside anthropogenic impacts in processes governing marine ecosystems. 65 

  66 
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Main Text 67 

Across all ecosystems, a fundamental scaling relationship exists between species abundance (𝐴) 68 

and body size (𝑊), whereby: 69 

𝐴 ∝ 𝑊! 70 

and the exponent 𝛼 typically approximates −0.751. This universal rule derives from resource 71 

acquisition as a function of body size1, which is a barometer for ecosystem health that simplifies 72 

interactions in complex food webs and may direct fisheries management5. However, within 73 

marine ecosystems, the exponent for this relationship often differs from that in terrestrial 74 

ecosystems2. Life-history, trophic strategies, altered productivity, and fisheries are all proposed 75 

to alter the scaling slopes of both species size-abundance distributions and individual size 76 

spectra2-4,6. Here, we quantify, empirically and with an independent model, how fishing and 77 

ocean turbulence cause qualitatively distinct breaks in the global marine size-abundance 78 

distribution.  79 

 80 

For the scaling analysis we compiled size-abundance data for 2179 species, ranging from viruses 81 

to blue whales. Analyses were undertaken on a database built from primary literature and online 82 

databases (𝑛 = 15,146	 datapoints), with secondary verification undertaken using the manually 83 

curated literature data alone (𝑛 = 1719) to ensure there was not systematic bias in the online 84 

sources (Methods); additionally, fits were undertaken through a balanced subsampling routine to 85 

ensure a diverse spread of species and sizes (Methods). As previously observed within individual 86 

size spectra3, nonlinearity was apparent in the log-transformed global size-abundance plot 87 

(Figure 1a). This coincided with a statistically verified break in the scaling value at the plankton-88 

nekton transition of 𝑙 ≃ 0.1	m (𝑙 = 0.08 m, 95% CI (0.06, 0.1)) (Methods). The marine virus to 89 
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marine invertebrate slope at 𝛼 = −0.77 is comparable to terrestrial slopes7. However, for 90 

organisms ≥ 0.1 m 𝛼 was −1.9 (Figure 1a, Table 1), representing a significant negative 91 

perturbation in the slope. A shift in biomass would only translate the line downward (i.e. change 92 

the intercept via a step break), but the large slope break evidenced by these two exponent values 93 

(Figure 1) is indicative of a more fundamental alteration in the mechanistic processes shaping the 94 

species size-abundance distribution and ecosystem structure.  95 

 96 

 97 

 98 

Data type Manually curated dataset Full dataset  Model 

Laminar -0.74 (-0.79, -0.69) -0.77 (-0.81, -0.73) -0.73 (-0.76, -0.71) 

Turbulent (raw) -2.5  (-2.7, -2.3) -1.9 (-2.0, -1.8) - 

Turbulent (fishing adjusted) -2.5 (-2.6, -2.2) -1.7 (-1.8, -1.6) -2.1 (-2.2, -2.0) 

Turbulent (adjusted) -0.94 (-1.1, -0.74) -0.56 (-0.69, -0.43) - 

Full distribution (turbulence adjusted) -0.83 (-0.88, -0.79) -0.73 (-0.76, -0.69) -0.71 (-0.72, -0.71) 

Table 1. Estimates of the scaling exponent (𝛼) with 95% confidence intervals for the empirical 99 

data (raw and adjusted) and the model simulated data, all calculated from 10,000 bootstrapped 100 

values (Methods).  101 

 102 

 103 
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  104 
Figure 1: Empirical size-abundance distribution. For consistency of units, here we use length 105 

scales rather than mass/density; it is to be noted that as the transformation of both axes is the 106 

same, the relationship between size and abundance remains unchanged (Methods). (a) Size 107 

versus abundance for viruses to blue whales. There is a break in the scaling relationship at 0.1m. 108 

Blue triangles represent plankton ranging from viruses to zooplankton and invertebrates. Green 109 

squares are fished nekton, ranging from small fish to whales. Line (i) is the best fit to the scaling 110 

of nekton. (b) Line (ii) is corrected abundance for removal by fishing, with yellow diamonds 111 

showing the fishing-corrected values. (c) Line (iii) corrects for extra foraging due to turbulent 112 
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dispersion, shown by red circles. (i) to (ii) is predominantly a vertical translation and (ii) to (iii) 113 

is a slope correction. After both corrections all points fall along a line with a slope of –0.73 (d). 114 

 115 

To find the cause of the break in the marine size-abundance relationship, we note that fishing has 116 

reduced the abundance of fish, pinnipeds, sea turtles and marine mammals by up to 99%8. We 117 

corrected for this by adjusting the abundances of impacted populations to pre-human impact 118 

estimates8. This caused a significant (𝑝 < 0.01) upward translation of the scaling line, removing 119 

the step break in the dataset and corroborating earlier findings5. However, whilst the translation 120 

is indicative of a decreased abundance of animals larger than 0.1 m, correcting for fishing did not 121 

result in a change in exponent, rather just a vertical shift in the data (Figure 1b, Table 1). The 122 

size-abundance distribution may be interpreted as an average or upper bound on local population 123 

densities2. The slope change is thus indicative of a constraint limiting nekton abundances which 124 

is not present in planktonic or terrestrial systems. To probe for a mechanistic explanation of the 125 

exponent change, we note that many aquatic organism scaling laws break at ≃ 0.1	m6,9,10; this 126 

size corresponds to the laminar-turbulent transition, where the change in the physical fluid 127 

environment causally affects the biology6,10. We subsequently tested the hypothesis that the 128 

change in scaling value is due to implicit and explicit costs associated with turbulence: that is, 129 

nekton must expend energy actively moving to match planktonic prey distributions, and that this 130 

expenditure propagates through higher trophic levels.  131 

 132 

Aquatic predators and grazers are challenged by the chaotic nature of turbulence. As absolute 133 

abundances of resources scale similarly in three-dimensional aquatic and two-dimensional 134 

terrestrial environments11, their statistical distribution is scarcer in the three-dimensional ocean. 135 
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Plankton live within patches created by an interplay of physical and biological processes12. 136 

Within these resource hotspots, plankton foraging and movement is localised and constrained 137 

within the patch, allowing them to use hunting strategies such as chemotaxis or rheotaxis to 138 

maximise their food acquisition13,14; that is, plankton move passively with the turbulence that 139 

creates the aggregations. Beyond several millimetres and up to ten centimetres is a transition 140 

zone where eddies play an increasingly important role. Whilst they are below the swimming 141 

speeds of most fish, eddies on the scale of tens to hundreds of metres cause bulk transport and 142 

dispersal. Mesoscale eddies reach hundreds of kilometres in diameter and can move organisms 143 

hundreds or thousands of kilometres15. Food may not be transported, or it may be consumed and 144 

not replaced due to low light, low temperature or other unfavourable conditions16. Thus, nekton 145 

must migrate between patches to feed, which are continually and unpredictably dispersed, 146 

meaning they have resource encounter rates that typically cannot be bettered using local 147 

information17. Nekton live at a scale where the foraging landscape is highly fragmented and 148 

disordered due to these physical processes, and operate on biological timescales which are 149 

significantly longer than eddy lifespans16,18. As they are trophically linked to the plankton, they 150 

must actively work to overcome the dispersal, ultimately increasing their locomotory costs, 151 

which also grow with prey size19. Short distance dispersal within or just beyond local habitats is 152 

difficult to quantify. However, at a global scale, physical dispersal – and consequently the spatial 153 

distribution of plankton – follows the Kolmogorov power law for the turbulent energy cascade12. 154 

The overall effect is that dispersal, encoded here as the separation distance, is a key factor in 155 

nekton survival. We propose that resource acquisition forces nekton movement to follow the 156 

turbulence-driven distribution of plankton, increasing energy expenditure20, and consequently 157 

reducing available energy for growth and reproduction, which decreases abundances. The 158 
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positioning of the break in the scaling relationship at the laminar-turbulent transition is consistent 159 

with this reasoning. Testing the hypothesis that turbulence increased the nekton slope by 160 

adjusting for the Kolmogorov power law, which affected small fish the least and large pelagics 161 

the most, removed the structural break in the distribution and resulted in a near-canonical 162 

exponent of 𝛼 = −0.73 for the entire distribution (Figure 1d, Table 1).  163 

 164 

To build a minimal model which captures this phenomenon, we note other scaling breaks for 165 

aquatic organisms6 also occur at 0.1 m due to movement changes at the laminar-turbulent 166 

transition10. The classical assumption that swimming is more energetically efficient than 167 

running21 does not consider drag, which increases with the square of velocity and carries extreme 168 

metabolic cost22,23. Research examining cost of swimming may also underestimate real-world 169 

metabolic effort for nekton as it frequently uses theoretically ‘optimal’ size-speed scaling9 rather 170 

than utilising empirical values which are steeper6. Finally, relative consumption rates are higher 171 

in oceanic than terrestrial environments, yet a steeper inverse scaling of nekton abundances in 172 

marine systems exists even at high resource densities11. This discrepancy has not been resolved 173 

but indicates there must be a significant energetic cost associated with living and feeding in 174 

oceanic environments that has not been considered. We incorporated classical formulations of 175 

swimming cost for organisms living in laminar and turbulent environments, together with 176 

foraging effort, into a size-dependent predator-prey model to assess these effects (Figure 2). In 177 

short, we expand the trophic transfer efficiency parameter, 𝜀, in the classical Rosenzweig-178 

MacArthur predator-prey model to account for energy diversion toward locomotion (Equation 1). 179 

In this equation, each parameter scales according to the length 𝑙 of the organism (m), allowing it 180 

to be solved across the full size range.  181 
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𝜕𝑥
𝑑𝑡 = 𝑟𝑥 A1 −

𝑥
𝐾C −

𝜑𝑥𝑦
ℎ + 𝑥	

𝜕𝑦
𝑑𝑡 =

𝜀𝜑𝑥𝑦
ℎ + 𝑥 − 𝛿𝑦 

 

(1) 

Capturing the shift in movement energy budgets from the laminar to the turbulent regime is 182 

achieved by using the relation 𝜀 ∝ 𝑙"#"$(&"') (24). The exponent 𝑐 accounts for the scaling of 183 

swimming cost relative to basal metabolic rate, and the term 𝑞(𝐹 − 𝐷) depicts resource search 184 

effort (Figure 2) (refer to Methods for the complete derivation). 185 

 186 

Including locomotion cost for simulated predator-prey combinations from primary producers to 187 

blue whales reproduced the empirical results. Calculating the slope for model equilibria 188 

abundances in the turbulent regime resulted in a value of −2.1, consistent with the data (Figure 189 

3a, Table 1). For the laminar model, and the turbulence-corrected predator-prey formulation 190 

across the entire data set, the slopes were −0.77 and −0.73 respectively, matching the empirical 191 

results (Figure 3b, Table 1). In our model, living in a turbulent fluid regime impacts the system 192 

by translating the predator abundances downward. This means prey support fewer predators in a 193 

turbulent environment than they would in viscous or terrestrial regimes because of the increased 194 

energetic costs of foraging in turbulence. Increasing locomotion energy budgets decreases 195 

biomass transfer to higher trophic levels where reduced prey availability places even more 196 

restrictions on energetic resources19, pushing large marine organism abundances closer to an 197 

unviable population threshold where natural population fluctuations also render them more 198 

vulnerable to extinction25.  199 

 200 

 201 
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 202 

Figure 2: Energy partitioning - organisms have a finite energy budget which is split 203 

between movement and creation of new biomass. (a) A search effort term 𝑞(𝐹 − 𝐷) is 204 

described by the scaling of swimming speed (𝑞), as well as parameters 𝐹 and  𝐷, which denote 205 

resources’ fractal dimension (space-filling amount) and the physical dimension of the search 206 

space respectively. (b) Energy not spent on locomotion is utilised in reproduction and creation of 207 

new biomass. (c) Transport/swim cost (𝑇)) is defined as power, 𝑃, divided by speed 𝑢. In the 208 

laminar regime, power for viscous paddlers, such as copepods, is described by length (diameter) 209 

𝑙, speed, and viscosity 𝜇. Viscous undulatory swimmer power (i.e. larvae or small fish) is given 210 

by kick frequency 𝑓, kick amplitude 𝑎, length, and viscosity 𝜇. In the turbulent regime power is 211 

described by kick frequency and amplitude, frontal area 𝐴 and fluid density 𝜌. We use these 212 

formulae to calculate size scaling exponents for swimming cost. The values can then be used in 213 

the master equation (Equation 1) to capture changes in energy partitioning across the size range. 214 

 215 
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    216 

Figure 3: Rosenzweig-MacArthur model results. (a) Plankton (dark blue) with fishing corrected 217 

empirical data (yellow), the laminar model simulated data (𝑙 < 0.1 m, pale blue) and turbulent 218 

model simulated data (𝑙 ≥ 0.1 m, red). (b)  Fishing and turbulence corrected data (purple 219 

circles), are shown with the model simulated data (pale blue) superimposed over the data-fitted 220 

regression line.  221 

 222 

As our model includes a parameter for resource density, direct impacts of overfishing may also 223 

be incorporated. We find that whilst heavy fishing could theoretically perturb the size-abundance 224 

scaling value by decreasing resource saturation 𝐹, the search effort multiplier 𝑞 is 225 

~0.17	(relative to mass). This means it is a slow parameter, which also reaches an asymptotic 226 

value as 𝐹 → 0. Hence, whilst fishing removes biomass, our integrated model indicates it could 227 

only perturb the size-abundance scaling law by ≈ −0.2 before the asymptote is reached. This is 228 

an order of magnitude less impact than turbulence effects, and entirely consistent with what we 229 

observe with our data (Table 1). 230 

 231 

a b 
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A complicating factor with our analysis is that organisms and biomes are not fixed physical or 232 

chemical variables. Their characteristics can change in response to environmental pressures. 233 

Ecosystem-wide size shifts in size-abundance relationships may be exacerbated by compensatory 234 

genetic changes, particularly when they have occurred under strong selection pressures such as 235 

fishing. Such a fisheries-induced evolution (FIE) causes further size reduction and earlier 236 

maturation age26, which could alter the scaling relationship. To assess the relative impact of FIE, 237 

we extracted data from 113 time series for 10 commercially exploited species of fish, and 238 

assessed global changes in size and age at maturation. There was a mean decline of 11% in size 239 

or age at maturity, when accounting for gender, species, and length of study (Methods). The 240 

results from 10 of the 14 studies led to the conclusion that these changes were attributable to 241 

fishing pressure26. In considering FIE’s contribution to universal size-abundance scaling, the 242 

breadth and size of our dataset gives insight into the signal-to-noise ratio for this problem. It 243 

would be extremely challenging to detect shifts in a global scaling law over the restricted size 244 

range of 0.1 to 2 m used for FIE impacts. While prior research suggests that FIE can perturb 245 

local scaling properties27, we argue an 11% impact (or even significantly greater) would not be 246 

enough to shift the global size-abundance scaling value of nekton by −1 or more. We conclude 247 

that scaling alterations occurring due to FIE would be small relative to the turbulence effect 248 

explored in this paper. 249 

   250 

Global size-abundance laws provide a different form of ecological insight to that given by local 251 

scaling behaviour, as they capture macroscale, aggregate processes rather than examining small-252 

scale drivers such as inter- and intra-specific trait variation2. In this context, we introduce 253 

turbulence, and its impact on energy and movement cost for large organisms, as a novel but 254 
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important process to consider for ocean ecosystems. Climate change impacts have the potential 255 

to exacerbate these costs, as current and predicted increases in ocean surface energy28 will 256 

increase nekton foraging and locomotion costs29, whilst warming temperatures increase 257 

respiration rates, reduce global primary productivity30, and cause greater resource patchiness31, 258 

forcing increased movement cost. Turbulence may thus reduce the capacity of nekton to 259 

withstand fishing pressure as we begin to observe oceanic anthropogenic impacts classically 260 

associated with terrestrial systems, including loss of large apex predators, shifts to smaller size, 261 

and a faster onset of sexual maturity. We propose that a deeper understanding of the role 262 

physical mechanistic processes play in structuring marine ecosystems will be necessary when 263 

formulating strategies to preserve biodiversity and retain the productivity of ocean resources in 264 

future. 265 

  266 
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347 

Methods 348 

The reader may refer to Extended Data, Table S4 for symbol definitions used throughout the 349 

Methods. All statistical testing was conducted in MATLAB R2019b (Mathworks), and code is 350 

available at https://github.com/jcmckerral. 351 

Data 352 

Data sourcing and aggregation 353 

To assess the size-abundance scaling relationship, we examined data for over 2100 species, 354 

encompassing over 800 genera (bacteria/viruses excluded from diversity counts) (Extended Data, 355 

Table S1, S7). For quality purposes, we undertook analysis with two datasets. The first was 356 

manually curated from over 200 articles to ensure there was not systematic bias within database 357 

sources, and consists of 1719 size-abundance pairs across 700+ species (Extended Data, Table 358 

S1). The second dataset expands on the first via the inclusion of a further 13,455 entries 359 

predominantly sourced from online databases, for a total of 15,174 data points (Extended Data, 360 

Table S7). Five databases were used: IMOS (flow cytometry and zooplankton)32,33, Tara Oceans 361 

(flow cytometry)34, Phytobase35 for phytoplankton, a global diatom database36, and a reef fish 362 

dataset37. Size data was taken from the same source as the abundance data, or if it was not 363 

included, we assigned the average adult size for that taxon referenced from WoRMS38, 364 

fishbase39, or (36) for diatoms. All database entries which dated pre-2000 were removed to 365 

reduce the chance of methodological/quality control problems being introduced from older data. 366 

For Phytobase entries, any data with the flags ‘unrealistic day or year’ and ‘presumably 367 

sedimentary’ were deleted; we note this particular database is otherwise well suited to this 368 
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application as capturing local diversity patterns is not critical for global size density analyses2. 369 

For the flow cytometry data, any entries which had not undergone or passed quality control 370 

checks were removed.  371 

 372 

Next, we outline pooling information for taxonomic/sampling groups. For most nekton, 373 

abundance estimates were given at the species level, with the exception of hard-to-differentiate 374 

taxa, e.g. striped/common dolphins. Unless the data had been provided that way by the primary 375 

source, no averaging or grouping was undertaken. For bacterial and viral abundances, we elected 376 

to use flow cytometric data rather than DNA-based methods, as the high variance in copy 377 

numbers of marker genes in prokaryotes precludes reliable estimates. (Note that size 378 

measurements for bacteria and viruses were given by microscopy-based sources, not flow 379 

cytometry.) In addition, defining ‘species’ grouping is inherently problematic for microbes. No 380 

manually curated data was aggregated unless that was its original format. For the databases, we 381 

pooled according to the following principles. Firstly, we took taxa abundance averages by year 382 

and location. A single location was taken to be one station, or the same degree of 383 

latitude/longitude. We averaged at the lowest available taxonomic level (usually genus for 384 

organisms <5E-4m, and species for anything larger), and selected taxa which, together, provided 385 

>90% of the total abundance of that sample to avoid skewing with singletons; this also aligns 386 

with the principle of size-abundance distributions often being representative of abundance 387 

average or upper bounds2. The exceptions to this pooling rule were for targeted flow cytometry 388 

counts of abundant cyanobacteria (Prochlorococcus, Synechococcus), which we included as is.  389 

 390 
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Abundance data is localised, hence spatial and temporal variation across local snapshots captures 391 

natural variability of populations across space and time. Therefore, the inclusion of data from 392 

different environments, e.g. tropical/temperate, or low/high biomass regions, or across different 393 

sampling efforts, is suitable – and even desirable – as the goal is to build the universal 394 

distribution, which should ideally contain a broad spread of data2. Given the similarity between 395 

the manually curated and complete database results, and the generally well-behaved nature of the 396 

model statistics (Figures S1-S3), we elected not to transform or apply other corrections to the 397 

data. We acknowledge there is certainly variance introduced from species trait differences, and 398 

potentially from inconsistencies from underlying experimental methods. However, these impacts 399 

would remain with noise factor of this dataset. Furthermore, whilst more targeted studies can be 400 

sensitive to this variance due to scaling size range and data limitations (e.g. bony fish, at ~3 401 

orders of mass magnitude)2, fitting the scaling exponent over 23 orders magnitude, with this 402 

quantity of aggregated data, drastically mitigates the effect of any one source of error. Notably, 403 

the noise was sufficiently low for a strong statistical signal without the need for any 404 

manipulation, which could introduce other errors or biases, and reduce transparency of the result. 405 

Standardisation and units 406 

Due to the large mass range (> 23 orders of magnitude), measuring uncertainty in the body mass 407 

of microorganisms40, and to ensure units were consistent in downstream analyses, we used body 408 

length, 𝑙 (m), as the measure of organism size. To accurately compare data sets where abundance 409 

measurements were presented either as species numbers per unit volume or per unit area, and to 410 

account for organism behaviour, we calculated the separation distance, 𝑑 (m), between 411 

organisms as a proxy measurement for abundance. To calculate separation distances, it was 412 

assumed the spatial distribution of organisms followed a Poisson distribution. Thus, the 413 
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separation distance for organisms where abundance was measured per unit area was given by 414 

𝑑 = 𝐶"* +⁄ , and per unit volume, 𝑑 = 𝐶"* -⁄ . Under the assumption that organism mass is 415 

approximately proportional to organism volume, the transformation of both axes in the size-416 

abundance plot is the same. Therefore, our standardisation to length does not change the 417 

empirical scaling values, nor does it disproportionately impact one part of the distribution, but 418 

instead ensures consistency with units in the physics-based processes and derivations used in the 419 

analyses. We acknowledge that organism mass and length generally do not have a perfect cube 420 

root relationship. However, this is a standard transformation utilised when investigating 421 

bioenergetics of swimming organisms9; we also note that any deviation from a cube root 422 

relationship would be applicable across the full distribution and therefore not change the key 423 

outcomes of our analysis relating to the structural break. 424 

 425 

We now discuss the raw data and the potential errors that may have arisen due to this 426 

standardisation. Plankton data was near universally presented by volume; we note that plankton 427 

distributions are by definition patchy and this variance far exceeds that of methodological error. 428 

Volume-based measurements in the reef fish dataset were based on study areas <30m deep and 429 

already undergone significant quality controls for accuracy; we did not undertake any further 430 

corrections. We assumed volume-based data for small nekton in the manually curated literature 431 

data did not require further adjustments. We acknowledge some small amount of error may have 432 

been introduced under this assumption in the event that depths were incorrectly measured, but 433 

note that (a) in the context of incorrectly measured depths, the cube root transformation reduces 434 

the impact of that error and (b) the data covers approximately 0.5 of an order of (length) 435 

magnitude, meaning that impacts on the full distribution would be minimal, particularly after 436 
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log-transformation. For marine megafauna, only studies using standard methodologies according 437 

to transect/aerial surveys were included. It is to be noted that most of the length- or area-based 438 

abundance measurements in the dataset were aerial survey data of marine mammals, and not of 439 

benthic organisms.  440 

Power law model fitting methods 441 

To determine the scaling relationship across the dataset, organism length was plotted against the 442 

inverse of the separation distance 1 𝑑⁄  (m-1) on a logarithmic scale, so that 𝑑 ∝ 𝑙"., where 𝜏 is a 443 

scaling exponent. Note that we consider a global, bivariate, size-abundance distribution more 444 

commonly applied in terrestrial settings, and not the univariate size distribution often studied in 445 

aquatic environments2. As the data is bivariate, the methods developed for univariate distribution 446 

fits are not directly applicable41. Regression methods are standard for the bivariate case, and may 447 

be used provided the dependent variable contains higher measurement error than the independent 448 

variable42. Therefore, following a residuals analysis, the models for plankton and nekton were 449 

fitted using ordinary least squares on the log-transformed data (residuals plots provided in 450 

Figures S1-S2). For the fits, a balanced subsampling routine was used to ensure an even spread 451 

of data across the distribution and improve fit quality43. We did not use a naive with-replacement 452 

bootstrapping routine as this would simply bias the sampling towards whichever data (taxa 453 

and/or sizes) were most frequent in our database. Furthermore, as large databases typically had 454 

large groups of data clustered together (e.g. Figure 1a, where various clumps of data may be 455 

observed), subsampling mitigated against one database, taxon, or size class dominating the fit. 456 

The data was stratified by organism sizes, and by taxa. We then randomly sampled 𝑚 data points 457 

(without replacement) such that the quantity of data per (log)bin was uniform across the full size 458 

range and balanced the probabilities of sampling from different taxonomic groups. The optimal 459 
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subsampling size 𝑚 is denoted by 𝑚 = 𝑘𝑛/, where 𝑛 is the size of the dataset being drawn from, 460 

𝑘 = 3, and 𝜅 = 0.5 (43, 44). We then generated 10,000 parameter estimates for each model, 461 

where each estimate was created from subsampled data, for the laminar regime 𝑙 < 0.1, turbulent 462 

regime 𝑙 ≥ 0.1, or complete size range. Percentile confidence intervals (95%) were created from 463 

the bootstrapped statistics. Representative linear model statistics are available in Tables S5-S6, 464 

and bootstrap histograms in Figure S3. For the 𝛼-estimates from the Rosenzweig-Macarthur 465 

simulated data, we randomly generated 𝑚 datapoints (matching the empirical subsample sizes) 466 

for the laminar, turbulent, and full size ranges. Confidence intervals were generated from fitted 467 

linear models on 10,000 model runs for each 𝛼-estimate.  468 

 469 
Structural break  470 

We used MATLAB’s fminbnd function to find the segmented regression breakpoint which 471 

minimised MSE. This was bootstrapped for a percentile-based confidence interval on log-472 

transformed, subsampled data (sampling method as for regressions).     473 

 474 
Correction for Fishing 475 

To investigate the impact of fishing on the observed scaling relationships, organisms were 476 

assigned to groups of impacted large marine animals according to standard conventions8. These 477 

included organisms such as fish, sharks, pinnipeds, whales, sea turtles and sea birds. Separation 478 

distances were corrected for each group to reflect theoretical historical abundance values, 479 

assuming losses ranging between 50 and 99.7%8,45. Where no specific loss estimate was 480 

available, the mean decline for all large marine species (89%) was allocated8. 481 

 482 

 483 

  484 
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Correction for Aquatic Turbulence 485 

The influence of aquatic turbulence on the scaling relationship for nekton was addressed by 486 

applying a phenomenological correction for the −5/3 relationship arising from the Kolmogorov 487 

power-law of the inertial subrange of the energy spectrum46. The spectral energy density, a proxy 488 

of the variance of the variable under consideration, i.e. turbulent velocity fluctuations in the 489 

framework of fully developed turbulence, is given by 𝐸(𝑘) = 	𝐶0𝜀+ -⁄ 𝑘"1 -⁄ ,  where 𝐶0 is the 490 

Kolmogorov constant (~1.5) , 𝜀 is the turbulent kinetic energy dissipation rate and 𝑘 is the wave-491 

number (2𝜋 𝑒𝑑𝑑𝑦	𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟⁄ , rad.𝑚"*)46,47. Here we approximate this relationship as 𝐸(𝑘) ∝492 

𝑘"1 -⁄ , providing a dimension of 𝑚"*(47). The spatial distribution of plankton has been 493 

observed to follow the same power law12,48, and the separation distance 𝑑 as a function of size 494 

(both units in m) may therefore be considered as an implicit measure of the effect of dispersion 495 

due to turbulence. Thus, by considering 𝑑 ∝ 𝑘"1 -⁄  we undertook a phenomenological correction 496 

for the abundances of nekton, whose foraging effort is impacted by the turbulent dispersal of 497 

plankton, by subtracting the Kolmogorov power law, intersecting at 𝑙 = 0.1	m, and calculated an 498 

adjusted scaling value for the entire data range.  499 

Rosenzweig-MacArthur model 500 

We used the classical Rosenzweig-MacArthur model to investigate the effect of turbulence on 501 

population dynamics and size-abundance relationships for consumer and resource pairs, from 502 

phytoplankton to whales. This formulation allows us to use previously defined allometric laws to 503 

generate a global size-abundance distribution. Despite the number of assumptions inherent in 504 

allometry, we note that macro-scale models parameterised by size have been found to outperform 505 

those which are defined based on species-specific traits and are also significantly more 506 

parsimonious49. To maintain consistency in units across empirical data, model, and adjustments, 507 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.459351doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.459351
http://creativecommons.org/licenses/by/4.0/


 

24 
 

size was given by (standardised) length in m and abundance was defined as organisms per meter 508 

(𝑛.m"*), i.e. the inverse of separation distance, rather than mass (kg) and biomass (density, 509 

kg.m"-). The base ordinary differential equation contains strictly positive parameters and is 510 

described by:  511 

𝜕𝑥
𝑑𝑡 = 𝑟𝑥 A1 −

𝑥
𝐾C −

𝜑𝑥𝑦
ℎ + 𝑥	512 

𝜕𝑦
𝑑𝑡 =

𝜀𝜑𝑥𝑦
ℎ + 𝑥 − 𝛿𝑦 513 

where 𝑥 and 𝑦 are resource and consumer (predator) abundances, respectively. The parameter ℎ 514 

denotes the half saturation, whereas 𝐾 is the carrying capacity, 𝑟 and 𝛿 are birth and death rates, 515 

𝜀 the conversion efficiency, and 𝜑 the maximal consumption rate.  516 

 517 

Each of the parameters follows scaling models according to the size (𝑙, m) of the resource (𝑙2) or 518 

consumer (𝑙3), such that 𝑖 = 𝑖4𝑙5!, for some parameter 𝑖, coefficient 𝑖4 and exponent 𝜎6. Scaling 519 

properties can change according to factors such as primary production rates, temperature, habitat 520 

complexity, among many others3. A constant temperature was assumed, and resource-consumer 521 

size ratios between 0.01 and 0.5 (corresponding to prey-predator mass ratios of 1E-6 and 0.1 522 

respectively), as scaling laws can change when the predator is smaller than the prey. Exponents 523 

were given by representative values from previous research, which was typically specialised on 524 

deriving empirical scaling for that specific parameter (Extended Data, Table S2). As our dataset 525 

ranges over more than 23 orders of mass magnitude, where there was some variability across 526 

literature scaling models, our study used the exponent values which were most consistent across 527 

the size range. Values chosen were (i) frequently reported with consensus (𝑟, 𝛿, 𝜑7 , 𝐾), (ii) mid-528 
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range (ℎ) or (iii) specifically calculated for aquatic vertebrates (𝜑8). Noting that rate-related 529 

parameters (𝑟, 𝛿, 𝜑7,8) will scale faster with length than mass, the scaling values are given as 530 

follows: 𝑟 = 𝑟4𝑙2"4.;1; 	𝐾 = 𝐾4𝑙2"4.;1; ℎ = ℎ4𝑙3"4.;1; 𝜑7 =
<"#
=$
𝑙3"4.;1; 𝛿 = 𝛿4𝑙3"4.;1; 	𝜀7 = 𝜀7#𝑙3

* >⁄ . 531 

(Length scaling values of −3/4 are equivalent to mass scaling values of  −1/4	.) We assumed 532 

carrying capacity scales according to -3/4 as per null metabolic expectation, but note here that it 533 

does not impact equilibria values in the Rosenzweig-Macarthur system of ODEs (although it 534 

does affect behaviour of the limit cycle). The scaling values for two parameters change between 535 

the viscous and turbulent regime (organism length >0.1 m): 𝜀8 = 𝜀8#𝑙3
"*.- and 𝜑8 =

<"#
="
𝑙3"4.;1.  536 

Please refer to Extended Data, Table S2 for literature sources for exponents, and the biophysics 537 

section below for the derivations of 𝜀 scaling exponents. Under this parameterisation, there is a 538 

switch to a positive maximal consumption rate (𝜑) in the turbulent regime. This has been 539 

previously noted in the functional response literature. Whilst invertebrates and microorganisms 540 

typically scale with a −0.75 (length) exponent, which matches null model predictions derived 541 

under metabolic theory, data for macroscopic fauna in aquatic environments display positive 542 

scaling; our derived ≈ 0.55 exponent falls within observed empirical ranges11,49,50 . Refer to 543 

Extended Data, Table S2 for more information. 544 

 545 

The parameter scaling coefficients were standardised against phytoplankton/zooplankton models 546 

to ensure the boundary value for primary producers was feasible. The smallest primary producer 547 

(i.e. 0.7 − 1	𝜇m in length) was assumed to be the cyanobacterium Prochlorococcus51. For 548 

coefficients, biomass was divided by species mass to obtain the number of organisms. Model 549 

equilibria were calculated using analytical formulae solutions.  550 
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 551 

Locomotion cost: biophysics derivations for the model 552 

To derive the biophysics portion of the model we integrate models across several disciplines. We 553 

use scaling of mass throughout this section to remain consistent with the literature, unless 554 

otherwise specified. To account for movement cost in the Rosenzweig-MacArthur system, we 555 

consider locomotion energy budgets across the whole size range (bacteria to whales). If 556 

movement energy usage scales equivalently to basal metabolic processes, its impacts would not 557 

be noticeable. However, if it scales differently, some of the energy previously used to create new 558 

biomass would instead be diverted to locomotion. Alternately, if locomotion were to become 559 

more efficient, additional energy could be provided for biomass. This can be seen by examining 560 

the gross metabolic power of an organism: 561 

𝑃?@ABB = 𝑃CDBDE + 𝑃EA#AFA86AG ∝ 𝑀C +𝑀EA# 562 

Normalising by 𝑃CDBDE results in:  563 

𝑃?@ABB
𝑃CDBDE

= 1 +
𝑃EA#AFA86AG
𝑃CDBDE

∝ 	1 + 𝑀EA#"C	 564 

If there is a discrepancy between the power exponents, the (relative) locomotory power 565 

consumption will change across the size distribution.  566 

 567 

This deviation can be captured within the parameter for biomass transfer efficiency 𝜀. To achieve 568 

this, we use a classical ecological relation, which links basal and locomotory metabolic cost to 569 

abundance24,52: 570 

𝑁 ∝ 𝑀"C"#H$(&"') 571 
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In this master equation, 𝑁 is the population abundance, and 𝑐 is the relative transport cost 572 

scaling. We have 𝑐 ∶= 𝑝 − 𝑏, where 𝑏 is basal metabolic scaling, and 𝑝 is the scaling of transport 573 

cost (𝑇)) defined below. The term 𝑞(𝐹 − 𝐷) describes search effort, including 𝑞, swim speed 574 

scaling, and the parameters 𝐹 and 𝐷, which describe density/fragmentation and dimensionality of 575 

the resource space.  Note that if the term – 𝑐 + 𝑞(𝐹 − 𝐷) equates to zero, classical population 576 

dynamics apply. That is, the standard Rosenzweig-MacArthur system, with a typical value of 𝜀 577 

e.g. the prey-predator size ratio. However, when it is non-zero, it captures the shift in locomotion 578 

energy allocation across the size distribution. This provides the following relationship for 𝜀: 579 

𝜀 ∝ 𝑀"#H$(&"') 580 

In the subsequent derivations for the exponents of 𝜀, we use empirical swim speed scaling results 581 

from Andersen et al.’s (2016) review of marine scaling laws: 1/4 and 1/6 for viscous and inertial 582 

swimmers respectively. This is important because it suggests the scaling of real-world nekton 583 

swimming speed is steeper than what would be theoretically derived for maximum efficiency. 584 

‘Optimal’ speed scaling would be given as 5/24 and 1/12 for viscous and inertial regimes 585 

(calculated according to methods in Bale et al. 2014 Supplementary Information, under the 586 

assumption of a 3/4 basal metabolic law).  587 

 588 

 589 

Search effort scaling (𝑞(𝐹 − 𝐷)) 590 

The parameter 𝑞 is the scaling of swimming speed. The dimensionality of the space, 𝐷, is taken 591 

as 3 for the turbulent regime. In the laminar/viscous regime, we consider 𝐷 = 𝐷I = 2.4, to 592 

account for the patch constraint and the fact that organisms can use local information to optimise 593 
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their hunting strategies24. We set the fractal dimension of the space, 𝐹, to a mid-range value of 594 

1.924. 595 

 596 

Transport cost scaling (𝑝, 𝑐) 597 

In this section, 𝜇 and 𝜌 denote the viscosity and density of the liquid respectively. For the 598 

purposes of this study, we assume all physical fluid properties are constant as changes in 599 

transport cost due to pressure, salinity, or temperature fluctuations at depth or in tropical versus 600 

polar regions are negligible relative to the effect of changes in size of the organism. 601 

 602 

Transport cost is defined as 𝑇) = 𝑃/𝑢 where 𝑃 is power and 𝑢 is swimming speed9. The master 603 

equations for the power of swimmers in the viscous regime are given by 𝑃7.JGK = 𝜇(𝑓𝑎)+𝑙 for 604 

undulatory swimmers9 and 𝑃7.LDK = 6𝜋𝜇 *
+
𝑙𝑢+ for paddlers53. Here, 𝑓, 𝑎 and 𝑙 are the kick 605 

frequency, kick amplitude and body length respectively. By using the classical relationship 606 

determined by Bainbridge10,54 607 

𝑓 ∝ 𝑢/𝑙 (2) 

and assuming changes in the length measurements 𝑎, 𝑙 are scaling approximately proportional to 608 

𝑀*/-, we have 𝑃7.JGK ∝ 𝑀1/N and 𝑃7.LDK ∝ 𝑀1/N after value substitutions. That is, the power 609 

cost scales equivalently for paddlers and undulatory swimmers in the viscous regime.  610 

 611 

For the turbulent regime, the power of inertial swimmers is given by 𝑃8 = 𝜌(𝑓𝑎)-𝐴, where 𝐴 is 612 

the frontal area of the organism (scaling as 𝑀+/- accordingly)9,10. Once again, we use Equation 2 613 
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and substitute in mass scaling values to obtain  𝑃8 ∝ 𝑀;/N. Using the definition of transport cost, 614 

we obtain 𝑇)$ ∝ 𝑀
;/*+ for organisms in the viscous environment and 𝑇)" ∝ 𝑀 for the turbulent 615 

environment. As the units for 𝑇)  are J/m, it is possible to make it unitless via multiplying by 616 

1/𝜌𝜐+, which is a constant under our assumptions of fluid properties.  617 

This means that: 𝑐7 = 𝑝7 − 𝑏 =
;
*+
− -

O
= − *

N
, and 𝑐8 = 𝑝8 − 𝑏 = 1 − -

O
	= *

O
. 618 

With the values for  𝑐, 𝑞, 𝐹 and 𝐷, we can now calculate the scaling for 𝜀 in the viscous and 619 

turbulent regime, which we then convert to length scaling: 620 

𝜀7 ∝ 𝑀"#$H$$P&$"'%Q = 𝑀
*
NH

*
OR"

*
+S =	𝑀

*
+O	621 

					∝ 𝑙
*
> 622 

𝜀8 ∝ 𝑀"#"H$"(&""') = 𝑀"*OH
*
NR"

**
*4S =	𝑀"*--4		623 

					∝ 𝑙"*.- 624 

We switch between the parameterisations at the length of 0.1m, corresponding to the transition 625 

from laminar/mixed fluid regime to a fully turbulent flow of 𝑅𝑒 > 1000. Finally, normalising 626 

constants 𝜀8#, 𝜀7# set initial values. The resultant mean, maximum and minimum conversion 627 

efficiencies are 0.09, 0.2 and  4E-3 respectively, which are within expected literature values55. 628 

 629 
Fishing-induced evolution  630 

Fishing-induced evolution (FIE), specifically, quantifying phenotypic change, was assessed by 631 

extracting size/age at maturity data from 113 time series taken from 15 studies (Extended Data, 632 

Table S3). In some cases, this was provided as probability norms of weight or length at 50% 633 

maturity (Wp50 or Lp50). Time-series with large gaps or fewer than 20 measured time points 634 

were excluded. Data was manually extracted using WebPlotDigitizer (v 3.12) and visually 635 
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verified by replotting and super-positioning over the original. For plots without discrete data 636 

points (i.e. smooth line graphs), one data point per year was used. Each time series was 637 

normalised and then split in two halves, for which mean values were calculated for the 638 

first/second half of study period. This was imported into a data structure consisting of the mean 639 

values, data type (size or age at maturity, 50% maturity, Wp50 or Lp50), gender, species, and 640 

length of study. For testing the difference in means between the first and second halves of a 641 

study period, data was firstly assessed for normality by using a 2-sided Kolmogorov-Smirnov 642 

test (n=113, critical value=0.1262, observed values 0.0774 and 0.0958 for pre- and post- 643 

respectively, MATLAB R2016b, Mathworks). A paired t-test (SPSS 24.0.0.0, 2017) indicated a 644 

10.6% shift in mean value in the second half of the study period (df=112, 95% CI (9.4,11.9), 2-645 

tailed, t-statistic -17.374, p<0.001). 646 

  647 
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