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Abstract

In this paper we construct an accurate linear model describing the propagation
of both acoustic and gravity waves in water. This original model is obtained
by the linearization of the compressible Navier-Stokes equations with free sur-
face written in Lagrangian coordinates accounting for vertical variations of the
background temperature and density. The models from the literature can be
obtained from our model through two asymptotic analysis, one for the incom-
pressible regime and one for the acoustic regime. We also propose a method
to write the model in Eulerian coordinates. Our model includes many physical
properties, such as the existence of internal gravity waves or the variation of the
sound speed with depth.

1 Introduction

Several authors have proposed to use the propagation of acoustic waves in
the ocean to detect tsunamis, as the sound travels in water at approximately
1500m s~! and the velocity of tsunami wave is around 300m s~! [4]. The exis-
tence of hydro-acoustic signals generated by tsunami sources such as earthquakes
or landslides was shown in [27]. This motivates the mathematical modelling of
the propagation of both surface waves — the tsunami — and underwater acoustic
waves, also called hydroacoustic waves, in a compressible formulation.

The idea of using acoustic-gravity wave models for tsunami early-warning
systems dates back from 1950 [5]. In [26], the analytical and numerical analysis
of a two-dimensional linear model indicates that the pressure variations induced
by the tsunami are significant enough to be used for the improvement of the
tsunami early-warning systems.

For the description of the propagation of sound in water, the most common
model is a linear wave equation for the fluid potential [13]. When both surface
and acoustic waves are considered, different types of models were proposed. In



[26] the acoustic equation for the fluid potential is coupled with a free-boundary
condition. The three-dimensional acoustic equation is analyzed in [22] and a
depth-integrated version is proposed in [24] in order to reduce the computa-
tional costs. This approach was further developped in a serie of papers ([3], [1],
[10]). Another approach was proposed in [20]. The equation is still on the fluid
potential, but it includes a gravity term. This model was the starting point
of an extensive work to describe the nonlinear interactions between acoustic
and gravity waves [14]. In other works, such as [25] and [2], the flow is not as-
sumed irrotational, so that the equations are written for the fluid velocity. They
include gravity terms and a vertical stratification for the background density,
temperature and salinity. This generalisation allows to study the internal waves
caused by the stratification of the fluid, and dispersion relations for the three
types of waves (acoustic, internal, surface) are obtained.

The above cited works share some common assumptions: irrotational flow,
homogeneous background density or barotropic fluid, and a constant speed of
sound. These modelling choices have a strong influence on the structure of the
equations, resulting in a variety of tools for their analysis an their numerical
approximation. For example, the irrotationality assumption allows to reduce
the number of unknowns, but the validity of this assumption in the compress-
ible case is not clear. The choice of a constant sound speed is also interesting
to question: in the ocean, the variation of the sound speed creates the SOFAR
channel, a horizontal strip in which the acoustic waves propagate with very little
energy loss. It can be interesting to write a model in which this phenomenon
appears naturally as it is the case when considering a vertically variable back-
ground density. Finally, because of the free-surface equation, the derivation
of an accurate linear wave model is difficult, and existing justification are not
completely convincing.

The aim of this work is to adress these modelling choices by deriving an
accurate linear model as rigorously as possible with only very few assumptions.
Salinity, thermal dissipation and viscosity are neglected, and in order to lin-
earize the equations we assume that the ocean is at equilibrium and at rest
before the earthquake, and that the source of the tsunami induces only a small
displacement of the water. The obtained model describes the propagation of
acoustic, internal and surface waves. In this model, the speed of sound results
from the imposed background temperature profile, so that the effects of the
SOFAR channel on the propagation of the hydroacoustic waves are naturally
present.

Another advantage of having a model with few assumptions is that a cas-
cade of simplified systems can be obtained from it. We indeed show that with
some simplifying assumptions, our model reduces to the models proposed in the
litterature. The analysis of these simplifications helps to understand the math-
ematical and physical choices made in these models. In this paper, this idea is
applied for two common simplifications: the decoupling of acoustic and gravity
waves, and the irrotationnality hypothesis.

The paper is organized as follows. In Sec. 2 the compressible Euler equations
for a free-surface flow are written, then the system is transformed in Lagrangian



coordinates in order to keep an exact description of the free surface. After
linearization, a wave-like equation for the fluid velocity is obtained, and we show
that a particular formula for the energy is preserved locally and on the whole
domain. Finally the barotropic case is studied. In Sec. 3 the incompressible
limit and the acoustic limit of the wave equation are written in order to compare
the obtained model with linear models from the litterature. In Sec. 4, we present
a method allowing to write the model in Eulerian coordinates. The obtained
system can be linearized at the cost of an additional approximation, namely that
the equations have to be restricted to a fixed domain, and we show how to obtain
a linear free-surface condition. Finally, in Sec 5 we obtain a dispersion relation
which includes all of the physical effects mentioned above. In particular, it is a
generalization of the dispersion relation studied in [2] to the case of a varying
sound speed.

2 Linearization of compressible Euler equations
in Lagrangian coordinates

We consider a portion of the ocean away from the coast and at equilibrium: there
is no mean current and the temperature varies only vertically. In this work, we
do not take the presence of salinity into account, hence the ocean is assimilated
to pure water. The bottom and the surface of the domain are asssumed to
be parametrized as graphs, respectively the topography zy(z,y) > 0 and the
free-surface elevation n(x,y,t). The ground displacement is assumed to take
place away from the coast, so that the domain is considered infinite in the (x, y)
plane, see Figure 1. Mathematically speaking, the domain is assumed to have
the following structure, for all time t of observation,

Q(t) = {(‘T’yvz) €eR? | Zb(l’,y) <z< 77(1’73/70}-

The boundary of the domain are then defined by

Du(t) = {(z,y,2) € R® | 2 = n(x,y,1)},

and
Ty(t) = {(2,y,2) € R | 2 = z(z,y) — b(=,y,1)}.

The function b accounts for the only source term in our problem, namely the
ground displacement at the sea bottom. It is assumed that this displacement
starts at a time to > 0, so that b(z,y,0) = 0.

2.1 Euler equation in Eulerian coordinate

2.1.1 Equations in the volume

The unknowns are the fluid velocity U, its density p, its pressure p, its tempera-
ture T, its internal energy e and its entropy s. The gradient over the horizontal
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Figure 1: The domain Q(t), (1a) for time ¢ = 0, (1b) for time ¢ > 0. In (la)
typical profiles for the temperature and the density at rest are drawn.

components will be denoted V.

For future reference the equations are written for a viscous fluid with thermal
dissipation. The stress tensor of a Newtonian fluid 7 has the form

T = (—=p+ AV - U)I + 2uD(U)

Where D(U) is defined by D(U) = (5(8;U7+0,;U")); j—y .- and Lis the identity
matrix in R3. The heat flux is denoted by q and is a function of p and T.

The conservation of mass, momentum and energy of a Newtonian fluid read,
in the domain Q(t),
Ip

5 TV (PU) =0,

(1)
5 (PU) +V - (U@ U) + Vp=pg + VAV - U) + V - (2uD(U)),
9 ( UJ?
p

(2)
e +pe) +V- ((p[;|2 + pe +p)U>

ot
=pg-U+V-(AUV-U)+V.-2uD(U)-U)-V-q. (3)

The acceleration of gravity is g = —ges with g > 0 and eg is the unit vector in
the vertical direction, oriented upwards.

Among (p,e, T, p, s) only two variables are independent because of the Gibbs
law and of the equation of state [7]. When considering p and s as independent,

it is natural to introduce the scalar functions f., f, and fr satisfying

e:fe(p75)7 p:fp(p’3)7 T:fT([LS),



and from physical considerations the function f, must satisfy 9,f,(p,s) > 0.
When considering p and T' as the independent variables, we introduce

s=fs(p,T) and p= f,(p,T).

Note that in this case the internal energy is given by
e=fe(fo(p,T), fs(p, T)).
The Gibbs law, commonly written
de = %dp + Tds,

corresponds to a relation between the functions,

Ofe _ fo  Ofe
dp  p?2’  Os

= fr. (4)
Our objective is to derive an equation for the pressure. Using (3) — U - (2) and

(4), one obtains as an intermediate step the evolution equation of the entropy,

pT(%+U~Vs) =D(U)-V-q. (5)

The quantity D(U) is the dissipation, defined by
D(U) = \(V-U)? + 2uD(U) : D(U)
Now, since p = fp(p, s) we have

9 _9f (9 1 9fp (0s
+U - Vp= (8t+U Vo) + 7 as (Gt U V8)

ot op
hence using (1) and (5) one obtains

9p __9%
8t+U Vp = ap

1 of,

V-U)+ ——=2(D(U)-V-q). 6
(09 - U) + 752 (D(U) = ¥ ) (6)
At this point we use the common assumption that the viscous term and the
thermal dissipation can be neglected compared to the advection term (see the
discussion in [17], Chap. 1). Moreover, since d, f,(p,s) > 0, we can introduce
the speed of sound c¢ defined by

o Ol

87,0(/)’ s).
The equation (6) then reads
dp 2 _
a—i—U-Vp—i—pcV-U—O. (7)



Eq. (7) is used for the study of a compressible fluid, in the isentropic case and
when the viscosity and the thermal diffusion are neglected, see [7], Chap. 4.
Note that the speed of sound ¢ can also be viewed as a function of p and T, in
that case we have

Ofp

62(va) = ap (fp(p,T),fs(p,T))

In practice we choose to work directly with the expression ¢ = ¢(p, T') tabulated
in [6]. Note that here the temperature intervenes as a side variable, because
it is necessary to compute the speed of sound. However, we will see later that
having the temperature profile of the state at rest is needed.

2.1.2 Boundary conditions

The following boundary conditions hold,

{U-nl7 =u,=0b only, (8)
p=p* onl,. (9)

The bottom boundary condition (8) is a non-penetration condition with a source
term. It models the tsunami source as a displacement of the ocean bottom with
velocity up. The second condition (9) is a dynamic condition, where we assume
that the surface pressure is at equilibrium with a constant atmospheric pressure
p®. Also remark that one can show that the elevation 7 is solution of the
following kinematic equation

5 0zn
8—Z+U- an| =0 on TL,@. (10)
-1

2.1.3 Initial conditions and equilibrium state

It is assumed that the initial state corresponds to the rest state, meaning that
n(z,y,0) = H with the elevation at rest H being independent of space and
H > zp(z,y), therefore

Q0) = {(z,y,2) €R® | z(x,y) <z < H}.

We choose the following initial conditions for the velocity, the temperature, the
density and the pressure,

U(z,y,2,0) =0, (11)
T(x,y,2,0) =Ty(2), plx,y,2,0) =po(2), plx,y,2,0)=po(z). (12)

Where Ty, po, po are functions defined on (0, H) but because of the topography
zp(z,y), the functions T, p, p need not to be defined from z = 0 for all (z,y).



When the source term B vanishes, we have an equilibrium state around
U = 0 if the functions Ty, po, po satisfy

Voo = pog:  po = fo(po,To), po(H)=p". (13)

Hence, if Ty(2) is given then the equation

d
2 = —gf,(p0, To), =€ (0, H), (14)

po=p®*, z=H. (15)

can be solved to compute py, and then py is computed with po = f,(po, To).
Note that, in the forthcoming sections the system (1), (2), (7) with boundary
conditions (8), (9) and initial conditions (11), (12) will be linearized around the
previously defined equilibrium state.

Remark: From the equations on pg in Eq. (13) one sees that at equilibrium
the gradient of the pressure has only a component on the vertical coordinate,
hence the pressure can vary only vertically. From the equation of state in Eq.
(13) this implies that both the temperature and density depend also on the
vertical coordinate only. Indeed if they had horizontal variations the pressure
would also have vertical variations. The form of Ty, po, po in Eq. (12) is a direct
consequence of Eq. (11) when looking for an equilibrium state.

2.2 Lagrangian description

Although most of the works on free-surface flows are done in Eulerian coordi-
nates, the Lagrangian formalism is sometimes preferred, see for example [23]
and the references therein, or [9] for a precise derivation of linear models. Here
we choose the Lagrangian description in order to avoid any approximation on
the shape of the domain when we linearize the equations. The usual approxima-
tion made on the surface for the linear models in Eulerian coordinates consists
in evaluating the surface condition on pressure at a fixed height, rather than at
the actual, time-dependant free surface. The kinematic boundary condition is
also replaced by its linear approximation. For the derivation and justification
of the approximation, see [19], Chap. 3.

Let  be the domain of the ocean at a reference time, with its surface
boundary I’y and bottom boundary I',. The reference time is chosen before the
tsunami generation, so that the surface of the domain is horizontal. In fact the
following natural choice is made

Q=0Q(0), T,=T,0), I\=Ty0).

The position at the reference time of a fluid particle is denoted

£= (L, eq.
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Figure 2: The mapping ¢; between the reference domain Q) and the domain

Q(1).

At time ¢, the fluid has moved, the domain is (¢) and the new position of
a fluid particle is x = (z(&,t),y(&,t),2(€,t)) € Q(t). We denote by ¢ the
transformation from  to Q(t) that maps each particle from its reference position
£ to its position x at time ¢ (see Figure 2 ).

Q= a@)
¢.{£ o x(E, 1)

Hence one has x = ¢(&,t). The transformation is assumed invertible, in partic-
ular we do not consider the case of wave breaking. We also define the displace-
ment,

The gradient of ¢ with respect to & is denoted F,

F =V,

and its determinant is denoted J. Both F' and J can be expressed as functions
of the displacement,
F=1+Vd, J=detkF,

where V¢ is the gradient with respect to the coordinate system &. For a function
X (x,t) defined on the domain Q(t), we introduce X (&,t) defined on by

X(&,1) = X(¢(&,1),1).

Finally, note that the velocity U(&,t) = U(g(€,t),t) is the time derivative of

the displacement d.
-~ od
U=—.
ot

With this change of coordinates, the system (1), (2), (7) is now defined in the



time-independent reference domain Q) and it reads

ap P

*+m Ve (|JIF'0) =0, (16)
OU _ .
pfat + FTVep = pg, (17)
op -1
9 0 |J| VE ([J|F~U) (18)

The boundary conditions become

ﬂ'ﬁb:’&b on f‘b,
ﬁ:pa on I',

where 1y, is a unit vector normal to f‘b and pointing toward the exterior of the
domain. The variables p, p, T satisfy the same equation of state

p=Fp(p,T),
and the speed of sound is a function of the new variables, é = ¢(p, §).

Remark: in Lagrangian coordinates the continuity equation is traditionally
written (see e.g [16], Chap. 1)

ﬁ(évo) = ﬁ(g?t) |J(€’t)|a

which is equivalent to our equation (16). Indeed, from the calculus of functions
of several variables one can show that

oJ .

— =V, - (JF'U). 19
= Ve (JFTD) (19)
Since the transformation ¢ is assumed invertible and close to the identity, its
Jacobian is strictly positive, so that J = |J|. Using the equality (19) in Eq.
(16) and multiplying by |J| yields

% , ;0|
158 + 75

which means that 9;(5|.J]) = 0. Hence we have (&, t)|J|(&,t) = (€, )|J|(€,O).
At initial time the transformation ¢ is the identity, then |J(&,0)| =

=0,

2.3 Linearization and wave equation

We assume that the source of the tsunami is a small displacement — compared
to the water height H — at the seafloor occuring in an ocean at rest as described
in Sec. 2.1.3. In particular for this rest state there is no mean current and the
temperature, pressure and density vary only vertically. The ratio of the bottom



displacement amplitude to the water height is denoted ¢ < 1, and the source
term can be expressed as
Up = eliy,1 + 0(62).

The linearization of the equations (16)-(18) around the rest state corresponds
to the following asymptotic expansion,
d(gvt) €d1(€,t) +O(€2)7
P& 1) = po(§) +epr(§,t) + O,
D& ) = po(€) + e (&) + O(?),

Note that the displacement has no zero order term, because the reference con-
figuration used to define the Lagrangian description is the state given by the
initial conditions. It holds then dg = 0, Uy = 0 and Q@ = Q(0). From the
expansion one deduces the following Taylor expansions for the other functions,

U =cU, +0(e?),

F =1+¢eVedy + O(?),

(F)il =1—-¢eVedy + 0(52)7
J=1+¢eVe-d; +O(e%).

Injecting these expressions in Eq.(16)-(18) yields the system

0 . . R .
= (o +ep1) +epoVe - U = O(e?),

ot

00, ro N 2
epo— + (I = eVedi) " Vepo +eVepr = (po +epr)g + O(7),
o . . . o ~
— (Po + ep1) + epoc” (Po, To) Ve - Uy = O(€?).

ot

By separating the powers of € we obtain two systems: a limit system when ¢ — 0
and a system for the first order corrections. Since the limit system correspond
to the initial conditions described in Sec. 2.1.3, it remains to study the first
order correction.

First-order correction: a wave-like equation for the velocity

The system for the correction terms reads in Q,

ou;

ﬁow + Vepr — (Vedr)” Vepo = prg, (20)
0 . X

% + poVe - Up =0, (21)
oD L N

% + poéy Ve - Uy =0, (22)

10



with the boundary conditions

U, -1y =, onTy, (23)
p1=0 onT,. (24)

In this system the speed of sound is evaluated at the limit — or background —
pressure and temperature, ¢o = ¢(po, To). In particular, ¢y can be written as a
function of depth. With an adapted temperature profile it is then possible to
recover the typical speed of sound profile creating the SOFAR channel.

The correction pressure p; and density p; can be eliminated in (20) thanks
to the other equations: differentiating in time (20) and replacing p; and p; with
(21), (22) we obtain a second order equation for Uy,

A 82]31 A A2 - % T ~ ~ - . A

po—pm — Ve (POCOVE : Ul) = (VeUi)" pog+poVe-Ur g=0 in Q. (25)
Using (22), the surface boundary condition (24) is formulated for Uy, hence the
two boundary conditions for the wave-like equation (25) are

U, -1y =, only, (26)
Ve-U; =0 onl,. (27)

The wave-like equation (25) is completed with vanishing initial condition for
U,(0) and 8,U;(0). System (25) includes both gravity and acoustic terms.
This equation, which describes the velocity of a compressible, non-viscous fluid,
in Lagrangian description, is called the Galbrun equation. It is used in helio-
seismology and in aeroacoustics ([18], [12]). However, the study of this equation
with the boundary conditions (26) - (27) and a nonhomogeneous density is, to
our knowledge, new.

An energy equation for the equation (25) can be obtained by taking the
scalar product of (25) with 9;U; and integrating over the domain. After some
computations (see Appendix, Sec. 7.1), we have

d

R o R ot
—& = _ Po (C%Vg - Uy — pogUq 'Gg) b1
Ty

ot

2
- o, (28)

with the energy being the quadratic functional given by
.2
U,

ot

1

&= PO
a 2

1 A A 2
d¢ + 5/ Po (éovg U, - 29, ~e3> dg
O ¢o

1 . - 1
43 [ N0 egag+ g [
Q

ﬁog(ﬂl . 83)2 do.
Is

11



In the definition of the energy the scalar IV} is given by

3y _ g9 p6(£3))

M) =~ (e +ohies )
In order to have only positive terms in the energy equation (28), N, should be
positive. In this case we can define its square root, denoted N. The function
N is called the Brunt-Vaisdla frequency, or buoyancy frequency. It is closely
related to the internal waves that appear in a stratified medium, see for example
[19], Chap. 4 and [7], Chap. 6. Numerical values for the buoyancy frequency are
available in [15]. In the ocean, the usual values of N2 are around 10~8 rad?s—2.
The sign of N;, depends on the choice of the state at equilibrimum: pf = dpo/dz
has to be negative and satisfy

9

|26]

Po
po &

With the term in g?/é3, we see that the compressibility tends to take the fluid
away from its equilibrium. The stratification of the fluid must be strong enough
to counter this effect and keep the system stable (see the discussion in [7],
Chap.3). As a consequence, it is impossible to assume a homogeneous back-
ground density, to take the compressibility into account and to preserve an a
priori positive energy of the system at the same time. In the following, we as-
sume that the fluid has a stable stratification namely the function N, is assumed
always positive and we will use N? in the equations.

Remark: According to the equation of state (when the salinity is neglected)
p = fo(p,T), the stratification has two factors: it comes from a variation in tem-
perature and in pressure. The temperature profile can be chosen homogeneous,
but the effect of gravity — see Eq. (15) — prevents the pressure to be indepen-
dant of depth. Hence in a model with gravity, the fluid is always stratified with
density increasing with depth.

Remark: One can notice that the condition on pf is not explicit in Eq. (25)
and appears only when one is interested in the energy preservation, that is, in
the well-posedness of the equation.

The barotropic case

Finally we consider the barotropic case, which is a very common assumption
for the study of hydro-acoustic waves (see for example [2], [20], [26]). For a
barotropic fluid the pressure is a function of the density only,

fo(py5) = folp) = p-
Then, using (13) and the definition of the speed of sound,

. o Afp . . o a
by ZPSCT;(po) = —pog = pué, (29)

12



meaning that N2 = 0. This corresponds to the limit case where the density is
stratified because of the variation of pressure only. In order to use this equality,
we divide Eq. (25) by po,
9?0, R . o ) .
W - V£ (C%Vg . Ul) — <pgcg +g9 Vg -U1€3 + v{(Ul -eg)g = O, (30)
and when Eq. (29) holds, the equation (30) can be simplified and reads
U,
ot?
Taking the curl of Eq. (31) yields

Ve (8Ve-U1) + Ve(U - e5)g = 0. (31)

82V5 X ﬂl .o
——=———=0in Q.
ot?
With the vanishing initial conditions we obtain that the velocity of a barotropic
fluid is irrotational. This is a well-known result, since the fluid is also iviscid
and subject to a potential force only ([11], Chap. 7). By the Helmholtz decom-
position theorem [8] the fluid velocity is written as the gradient of a potential

1 defined up to a constant. The expression U, = Vet is used in Eq. (31), to
obtain

Py, oY
The potential v being defined up to a constant. it can always be sought as the

solution of
9% o

2 _éSAfl/J‘*‘ga*fg =0, (33)
The equation (33) is multiplied by po/¢Z, and we use g/¢3 = —p/ po,
po Y . O
POO Y s Ay — 5 2
6(2) ot2 Po fd) Po 8&3

And since py depends only on &3, the two last terms can be rewritten,

po 0% .
2oe Ve (poVer) = 0. (34)

Hence 1 satisfies a wave equation. The boundary conditions are then deduced
from Eq. (26) and Eq. (27),

Vetp -1y = @pq on Ty, (35)
. 9% oY 2
A = 5z + 93753 =0on T (36)

The system (33),(35),(36) is the first-order system obtained in [20], where the
irrotationality assumption is made independantly from the fact that the fluid is

13



barotropic and the boundary conditions are obtained with the linearized surface
condition. This shows that the linearization made in [20] gives exactly the same
result as the linearization strategy we have presented.

An energy equation can be then obtained for the system (34),(35),(36). The
equation (34) is multiplied by d;% and integrated by parts,

po O 0% R o
5% g dee [ o (5r) - vuae

oy oy -
/fspoatvw-engJr/fbpoatVz/wnde0.

With the boundary conditions (35) - (36) and after simplifications it holds

d L oY
%‘cjbar - = /fb Poaub,l dO’,

where the energy &, is defined by

L a0 (0N e L upaes L[ o (20
= [ B (5) derg [ mivuraee [ 2 (50) ae

In order to write the barotropic system as a wave equation, and then obtain the
energy equation, it is necessary to use the background density gy even if it does
not appear in Eq. (33). The correct manipulation was found by comparison
with the general case described by Eq. (25).

In this section we have derived a linear model around a state at rest for the
compressible Euler equation with free surface. The equations are valid for a
generic equation of state and for a temperature varying vertically. An energy
equation can be obtained for this system, and it gives a condition on the fluid
stratification. We have shown that in the barotropic case the system (25) is
equivalent to the first-order scalar equation of [20]. The goal of the next section
is to continue the comparison of Eq. (25) with other models, by writing its
approximation for two asymptotic regimes.

3 Two limits of the system

There are two main types of models for the inviscid free-surface flows: the in-
compressible models, when the acoustic waves are neglected, and the acoustic
models, when the effect of gravity is neglected. In this section we write two sim-
plified versions of the system (25)-(27) corresponding to each case. The wave
equation (25) is written in non-dimensional form, and we show that it depends
on a small nondimensional parameter. A simplified model is then obtained by
passing formally to the limit when the small parameter vanishes. By making
the appropriate choice for the time scale we obtain first an incompressible ap-
proximation, then an acoustic approximation.
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3.1 Non-dimensional equation

We introduce the following characteristic scales for the system: a time 7, a hor-
izontal scale L, a vertical scale H, a density p, and a fluid velocity U. Since
the speed of sound is not assumed constant, we denote by C' its characteristic
magnitude. Finally, the surface waves velocity is of the order of \/gH [4]. We
focus on a non-shallow water formulation, hence we take L = H. For a shallow
water version of the equation one would choose H < L.

Two dimensionless numbers are introduced: the Froude number and the
Mach number, respectively defined by

To fix the idea, we choose the following numerical values respectively for the
speed of sound, the fluid velocity and the surface waves velocity: C ~ 1480 m s,

U~1ms™ ! and /gH ~ 100 m s~'. The dimensionless numbers are then
Fr=0.01, Ma=6.10""%

The characteristic scale for time will be fixed later, as it will depend on the
regime we want to study. The variables are put in non-dimensional form and
the dimensionless variables are denoted with a *, except for the space and time
variable for the sake of conciseness. The adimensionned domain is denoted
by Q and its surface and bottom boundary are respectively [, and T',. The
non-dimensional system reads, after simplification by the factor pU,

o 02U, (2 . .
r L - Ve (Pocgvs ‘U1>

T2 Ot? L
+ %ﬁo (V§ (fJLO -eg) -~ Ve fh,o 93) =0, (37)

with the boundary conditions
fjl . flb = fbb’l on fb, (38)
Ve-U; =0 onT,, (39)

where ;1 is a dimensionless source term.

3.2 Incompressible limit

In order to study the incompressible limit, the characterisic time 7 is chosen to
follow the surface waves, which are much slower than the acoustic waves. We
take L/7 = y/gH. The equation (37) becomes

ﬁoaggl — %Vg (ﬁ063V5 : fh) + po (V§ (ﬂl '63) - Ve U, e3) =0.
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The small parameter § = Ma/Fr ~ 6.1072 is introduced in the equation,
_0°U; 1

P~ 52
and the goal is now to study the behaviour of the problem (40) when d goes to
zero. We make the following ansatz for Uy,

fjl = 6170 + (526172 + 0((52)7

Ve (ﬁOE%V§ : fjl) + fo (vg (IL -eg) ~ Ve Uy e3> =0, (40)

where fJ'LO, 61,1 and 6172 are independant of d. Since Eq. (40) has only even
powers of §, the term fJLl is equal to zero. Replacing U, by its ansatz in the
wave equation (40) and separating the powers of § yields an equation for each
term of the asymptotic developement of U,. The equation obtained with the
terms in 52 reads

Ve (#i3Ve - Uno) =0, (41)
and the equation obtained with the terms 6° reads
Fo 82;;21’0 ~Ve (ﬁo&%Vg : 61,2) + 7o (v5 (fJLO : e3> ~ Ve Uy eg) = 0. (42)
With the terms in 6° of the boundary conditions we have
Ve-Upp=0 onTy, (43)
{fJLO “hy =1, on Ty, (44)
And the terms in 42 of the boundary conditions read
Ve-Uia=0 onT,, (45)
{ Upp-0,=0 only. (46)

Property of the limit solution

We focus first on Eq. (41) with the boundary conditions (43), (44). The Hel-

moltz decomposition of U; o reads
Ui = Vepr0+ Ve X 10,

where ¢1 9 vanishes on [, and T. Injecting the decomposition of fJLO in Eq.
(41) yields
Ve (poég Aero) =0,

hence the term inside the gradient is constant in space. Since the velocity fJ'LO
is equal to zero at infinity, we obtain that A¢p1 9 =0 in Q (the quantity poco
being always strictly positive). With the vanishing boundary conditions for
©1,0, we obtain that ¢ is equal to zero everywhere in Q. Then, taking the
divergence of fJLO yields

Ve -Uig=Ve- (Ve x 1) =0,

hence U, ¢ is divergence-free.
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Limit equation

We consider now the equation (42). Using the fact that the divergence of fJ'LO
vanishes and rearranging some terms we obtain

- 8261,0
Po 912
Taking the curl of this equation yields

- V5 (ﬁoé%Vg . 6172> + V§ (,5061,0 . 93> - [)6(6170 . eg) e3 = 0. (47)

_8*U -
Ve x <p08t2170 —po(Ur-e3) e3> =0, (48)

This means that these terms can be expressed as the gradient of a potential
function defined up to a constant and denoted —@y,

_9%U
Po o2

The new function @y can be understood as the Lagrange multiplier for the
incompressibility constraint. However, one must be cautious that ¢y is not
similar to a pressure in this case, and rather plays the role of a velocity potential,
as we will see later in the case of homogeneous density. The function @y can be
expressed differently, indeed by using its definition (49) in the equation (47) we
have

— 75(U1,0 - e3) e3 = —Veo. (49)

Ve (—¢0 — p0éVe - Uy g+ Uy - 63) =0,

and since the potential ¢ is defined up to a constant, it can be chosen such
that, in €2, we have

Po = —poceVe - Ura + poUig - €. (50)
We deduce from this equality and (45) the boundary condition
@0 = ﬁoﬁLQ - €3 on fs. (51)

To recover a dimensional system, the terms are multiplied by their corresponding
characteristic scales, and ¢g9 = pU¢pq is defined. The limit solution Uy =
UU,  satisfies

. 52ﬂ1,0

P—pm 905(Ur0-e3)es +gVepo =0 in (52)

Ve-Uig=0 inQ, (53)

with the boundary conditions

Ug-fy =1 only, (54)
VE . [AILO = 0 on fs, (55)
Po = gﬁofjl,o -e3 only, (56)
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We derive an energy equation for the system (52)-(56) with the boundary con-
ditions (54), (55), (56). Taking the scalar product of (52) with 9, U and

integrating over Q yields

Ld [ i U0 o

—— d¢— o(U1 o 3- d —. d¢ = 0.

th/ﬁp‘) £ /on( Lo-€3) €3, €+/Qg o Verodé
(57)

The last term of Eq. (57) is integrated by parts. With the vanishing divergence
of Uj ¢ and the bottom condition (54) it holds

aIAjl,o . . . 3ﬂ1,0 . Olp
/Qg 5 ngodﬁ—/fsgsao 5 esdo /fbgcpo 5 do,

then ¢ is replaced in the surface integral using Eq. (56),

2
0Ui,0

ot

U1 o

. 2 .
ld A 6U170 NG & 8U1,0
2 dt /Q Pl =5 | 4 /f2 po(Uro-es)es - —==dg
AT 6ﬂ1,0 o N (91?6@1
+/f‘s gpoU1 - €3 5 -ezdo = /f*b g¥o ot do. (58)

By defining the energy

1 [
gincomp = 5/@/00

the equation (57) can be formulated in the following way,

ig, :/ D,y
dt incomp f‘bgLPO ot .

2

ou 1 [, - 1 o
| e 5/ P6|U1,0'93‘2+§/ po|U1, - es]?,
Q Ty

ot

Recall that gy < 0, 50 Eincomyp 1S a positive quadratic functional.

Finally, note that the boudary conditions can be expressed differently, by
using the equations (52) and (56). The bottom boundary condition is obtained
by taking the scalar product of Eq. (52) with 1, and replacing the first term
with Eq. (54) differentiated twice in time,

0?1y 1

—ﬁo 3t2 — gﬁg(fjl’o . 63) e3 - Iib + ng@o . Iib =0. (59)

For the surface condition, the equation (56) is differentiated twice in time and
the term in 0y Uy o is replaced with (52),
9o
ot?

o o .
— (U1 e3) + % =0 onT,. (60)
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The boundary conditions (59), (60) will be more convenient for the homoge-
neous case.

The system (53)-(52) represents an incompressible fluid. However, this sys-
tem is different from the classical Poisson equation found in the litterature [19]
because of the assumption of a nonhomogeneous background density.

Remark: The condition |p)|/po > g/é3 is no longer required because the
destabilizing effects in the energy equation (28) come from the compressibility,
and here it is neglected. This can be seen by formally assuming that the sound
velocity is infinite, then N2 = —p0/po- Nevertheless, density must still decrease
with depth, but can be homogeneous.

Case of homogeneous density

For the sake of comparison with other models, let us assume now that the ocean
at rest has a homogeneous density, g, = 0. Taking the divergence of (52) yields

Agpo = 0. (61)

The equation is completed with the boundary conditions (59), (60)

Vepo -1y = —pog Up,1 on L'y, (62)
%P0 0Po -
52 ga—53 =0 only. (63)

Eq. (61) - (62) is the Poisson equation, with boundary conditions, satisfied
by the velocity flow in an incompressible homogeneous free-surface fluid ([19],
Chap. 3.1.). Note that it was required that pf, # 0 in the system (25) to obtain
an a priori positive energy. Here this assumption is dropped, however a rather
simple energy identity can be derived: multiplying Eq. (61) by 0;¢o, integrating
by parts and using Eq. (62)- (63), we obtain

/Am 920 4¢ — _ /Vg(p v€<a >d§

L0004y [ g,
_ [ L19%0 0o e
/1“ g Ot 0Ot? do + ., Pog =g b1 do. (64)

We define the energy
1 . 1,0¢0
& oisson — o \Y% 2d - 72(1
poivn =5 ([ 1Ve9 e [ G 7).

d . O0¢g .
*“:Poisson = _/ pOgai(ptub,l do.
Ty

Then it holds

dt
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3.3 Acoustic limit

Another possible simplification of the system (25) - (27) is to keep only the
acoustic terms. This choice is justified for short time scale, because the propa-
gation speed of the acoustic waves and the gravity waves have different orders
of magnitude (]20]).

With the timescale L/7 = C, corresponding to the acoustic wave, and with
the same small parameter 6 = Ma/Fr as before, the system (37) becomes

20 o
po g~ Ve (Ve 01)

+ 625 (Vg (fjl ~e3) — Ve .U, eg) =0 inQ, (65)
With the boundary conditions
U, -y =, only,
{ Vg-ﬁl =0 onl,.
As before, we make the following ansatz for U,
U, = U0+ 0°U; 5 + 0(62).
One can see that the limit term § — 0 for the volumic equation (65) is

_ 9?Uy
Po o2

~ Ve (ﬁoagvg : le,O) ~0. (66)

Taking the curl of this equation yields

8722 (Vg X (ﬁo'l,o)) =0,

hence the curl of pNOfJLO is constant in time due to the vanishing initial con-
ditions. By the Helmoltz decomposition theorem, it can be expressed as the
gradient of some function ¢y defined up to a constant,

poU10 = Veto.
By subsituting in equation (66) we have
821&0 ~ ~2 ~—1 7
Ve 2 pocVe - (Po Vg”tﬁo) =0,

then it holds -
9o ~ ~2 ~—1 7
2 pocyVe - (Po Vg%) =0,
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since z/NJo is defined up to a constant. We need the boundary conditions to
conclude. Evaluating (66) at the surface yields
_ Uy 0
P00~ o8

(503Ve-Uro)es =0 onT,. (67)

We take the cross product of (67) with the normal to the surface of the domain,
which is e3, and replace the velocity by the scalar potential .

-
V(a %) xe3 =0 on Ty. (68)

ot?

This implies that the tangential derivative of 1/)0 vanishes on the surface. Since
1o is defined up to a constant, it holds 32tl/10 =0 on I'y, and with the vanishing
initial conditions this implies that 1y = 0 on I'y. To recover a dimensional
system, the terms are multiplied by their corresponding characteristic scales,
and vy = pUL 1 is defined. The system reads then

99

S — Ve (5 Vedo) =0 i, (69)

with the boundary conditions

Vet -y, = Gy on T, (70)
1&0 =0 onl,. (71)

An energy equation can be obtained by multiplying Eq. (73) by 9,1/ (po¢3) and
integrating over the domain. The result reads after an integration by parts

d 1 99
%gacoustic = _/ 7%1117,1 dJa (72)

where the acoustic energy is

1 [ 1 9 / 1
acoustic — = N d = -— dg.
£ ¢ 2 /Q pocl ot &+ 2 Jo p0|v¢0| ¢

Homogeneous case

When the density po is constant, the equation (69) becomes

9o

T Ao =0 in €. (73)

Eq. (73) is completed with the boundary conditions

Vgiﬁo =, on Yy, (74)
Yo=0 onT,. (75)
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We recover the well-known linear acoustic equation ([16], Chap. 10.).

In this section we obtained two limit systems for the equation (25), respec-
tively in the incompressible regime and in the acoustic regime. We also showed
that classical models, such as the Poisson equation for an incompressible fluid, or
the acoustic wave equation, can be obtained as the formal limits of the equation
(25) with the additional assumption of an homogeneous density. The equations
with their boundary conditions and the associated energy for the general model
and its different simplifications are summarized in Appendix, Table 1.

Remark: In the litterature, the boundary condition used for the propagation
of acoustic waves in a free-surface, irrotational fluid, for a homogeneous density
at equilibrium are the same as (63), see for example [28], [26], [24]. In those
models, the acoustic and the gravity waves are decoupled, with the acoustic
waves propagating inside the domain and the gravity waves propagating at the
surface. One can also notice that the boundary conditions (75) and (74) ob-
tained from the acoustic approximation coincide with [20].

Remark: In the sections 3.2 and 3.3, the equations (61) - (63) and (73)-(74)
use the Lagrangian description whereas the equations from the litterature use
the Eulerian description. In the general case, the use of different coordinate
systems would cause two problems. First, when doing the change of coordi-
nates, new terms should appear from the space or time differentiation. Second,
the description of the domain is different, and this implies that the boundary
conditions are not evaluated at the same location. In the next section we will
show that the first problem does not exist in our case, due to the lack of a
background velocity. As for the second problem, the linear eulerian models are
obtained by evaluating the boundary conditions at a fixed water height. To this
regard they use the same boundary as if they were in a Lagrangian description
of the domain, so that the comparison remains valid.

4 The model in Eulerian coordinates

The equations we have been working on are defined on the reference domain
Q. However, the linear equations for the acoustic-gravity waves are generally
written in Eulerian coordinates. In order to compare our model with those from
the litterature, the equations must be formulated on the moving domain ().
In this section we present a method to write the system in Eulerian coordinate.

4.1 General method

The aim is to write the equation on a moving domain (), hence a transfor-
mation ¢ : Q@ — Q(t) is needed. We start by using a first order approximation
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of the real transformation ¢. The transformation ¢ is developed for small dis-
placements,

¢(§7 t) =I+ €¢1 (57 t) + 0(62)'
Let ¢ (&,t) = T+e¢1(&,t) be its first order approximation. ¢, is used to define
the equivalent domain and its boundary,

() = $e(Q), Tyeq = ($e(ls)), Toeq = (de(l)). (76)

The coordinates on the equivalent domain are written x = (z,y,2). For any
generic function X (&,t) defined in €2, a function X (x,t) is defined in 2. by the
following change of variables

X(x,t) = X (¢ (x,1),1),
which is equivalent to X

X(&1) = X(9:=(&,1),1), (77)
as long as ¢. is invertible. Then, if the function X has a first-order approx-

imation X = Xy 4+ ¢X; 4+ O(?), then the function X also has a first-order
approximation X = Xg +eX; + O(e?) and it holds (see Appendix, Sec. 7.2)

VeXo = VXo, (78)
0Xo  9Xo
ot ot (79)
VgXl = (ng1)TVX0 + VX, (80)
0X:  0X,
2t = ot +U; - VX (81)

In the following, when writing the equations satisfied by the free surface of €2,
we will also use

= EUl. (82)

4.2 The model in Eulerian coordinates

Using the change of variable (77) in the system (20)-(22) and with the equalities
(78)-(81) we obtain the following system for Uy, p;, p1 defined in Q,

ou
POT; + Vp1 = 18, (83)
0
% +V - (poUy) =0, (84)
0
%+vpo-U1+pocgv-U1=o. (85)
And pyg, po satisfy the limit equations
Ipo
2 _p 86
o, (56)
Vpo = pog- (87)
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We assume in the following that the equations (83)-(87) are defined in Q. It
would be true if & C Q., but the inclusion is in general not verified. The
assumption is therefore not entirely satisfactory and has partly motivated the
present work. Assuming that (83)-(87) are defined in €, it remains to write the
boundary conditions on the boundary of Q.

Boundary conditions and free surface description

Following the approach of [23], we show that a description for the free surface
can be obtained. In the following, the components of the fluid velocity are
denoted U = (U}, U2, U})T. The surface is defined by Iy .y = ¢.(T's), and
we assume that at each time ¢ it can be parametrized as the graph 7.. The
elevation 7). is a function of z,y, and ¢ and can be decomposed in the following
way,

ns(x’yat) :H+5771('r5y7t)' (88)
From the correspondence between the free surface and the particle displacement,
it holds

92(€1, €% Hot) = e (x(€1, €%, H,t), y(&, €2 H,t), t). (89)
Differentiating (89) in time and using the equation (82) yields

Me 2t ¢, 1,0 2

R . R
U (€1, Ht) = 7 + <0 (€6 Hot) 5 9y

ot

We use the change of variables ¢.(&,t) = Id + ed1(&,1),

0 0
€U13(¢6(517527H7 t)vt) = T + €U11(¢€(§17§2’ H, t)7t) Te

ot ox

on
+5U12(¢€ 17§2aH’t)7t) 6:[/6
After a Taylor developement and keeping only the terms in ¢, it holds
. 0
Uj(a,y H,t) = S, (90)

this is the linearized equation for the free surface.

Then the dynamic boundary conditions are linearized. With the change of
variables, the boundary conditions (15), (23) and (24) become

Ul Ny = Up1 on 1—‘b,eqw (91)
Po = pa on I‘ls,eq> (92)
p1=0 onT.,. (93)

If we linearize (93) only we would miss the first-order term coming from (92).
From (92) and (93) we deduce the boundary condition for the pressure

po+ep1 = pa on 1—‘s,eq~ (94)
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A Taylor developement of py and p; around z = H on I'; .4 yields
po(H) + e(pi(,y, H,t) + py(H)m) + O(e®) = p”.

After an identification of the powers of ¢ it holds
po(H) =p", pi(z,y, H,t) = po(x,y, H,t)gm(z,y,1). (95)
In a similar way, the linearization of Eq. (91) reads
U (x,y,2p) — Ul (2,9, 2) Onzp — UR (2,9, 23) Oy2p = up 1 (2,9, t). (96)

Hence the equations for Uy, p1, p1 can be fully defined on the domain Q, with an
error in O(g?). Finally, note that for the system (83)-(85) with the boundary
conditions (95),(96) and the kinematic condition (90), an energy is available,
locally as well as over a whole water column (see [19], [21]).

In this section we have derived the linear equation in Eulerian coordinates,
even though an approximation on the domain in which the equations are defined
was necessary. The computations of Sec. 4.1 also justify that in the absence of
mean flow and with the evaluation of the boundary conditions at a fixed height,
the linear system in Eulerian coordinates is similar to the one in Lagrangian
coordinate, up to terms in O(g?). At the same time, the linearization in the La-
grangian coordinates is better defined. For this reason the system in Lagrangian
coordinates is preferred for the rest of this work. We conclude this paper by the
study of the dispersion relation obtained from Eq. (25).

5 Dispersion relation

In this section we derive the dispersion relation from Eq. (25) and solve it nu-
merically. First note that if one defines the equivalent pressure p., the equivalent
density p. and the equivalent velocity U, by

Pe =po +€p1, pe=po+epr, U:=¢eUy,

then a combination of the equations (83) - (87) yields the following system for
e, pe and Ug,

oU,
PO~ + Vpe = p.g + O(e?), (97)
pe
P2 LV (VL) = O(), (99)
Ope
ap; + Vpo - U + poct V- U, = O(e?). (99)

This system is comparable — up to the terms in O(e?) — to the system studied
in [2]. From this system of equation, the authors give a thorough analysis of the
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dispersion relation for a stratified compressible fluid. This motivates the study
of the dispersion relation for the wave-like equation (25).

In order to make the computations clearer, the problem is restricted to a 2-
dimensional configuration in ¢! and &3. Following the approach of [2], the wave
angular frequency w and the horizontal wave-number frequency k, are defined,
and we seek a solution of the form

N 1 ¢3 4y _ (71(53) i(kp&t—wt)
poUL(E,€%,t) = (53(53)> e . (100)

First Eq. (25) is written differently to make the unknown ﬁoﬂl appear.

22 N2

925U R N cA NN, . o
ket —Ve(& Ve (poUr))—Ve ( Og % poUs -e3> —9Ve(poUr) ez =0 (101)

ot?

Injecting the ansatz (100) in Eq. (101) yields

~ ~ ~ FP2NZ -
WU + ik, (ég(ikchl +(U*) + COgU3> =0, (102)

2N?

WO + 0y (B(ika U + (%)) + 0 ( [73) +g(ik, U + (U%)) = 0.

(103)

Using the equation (102), the horizontal component Ulis expressed as a function
of the vertical component,

&D(U?) + (3 — gD)U®
D(w? — 3k2) ’

U' = —ik,

where D is a depth scale, defined by
1 N2 /
—_— = — + % = @.
D g & po

We also define the quantity
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In order to write an harmonic equation the following change of variable is made,

H
~ ~ 1
U3(z) = U*(H)F(2) exp (/ gd%) , a:B-i—sz.
Then F(0) =0, F(H) =1 and F satisfies the equation
F'+k2F =0 (104)

where the vertical wave-number k, is defined by

N? —w?  w? 1+2D" 1
2 2 2/
Y T, L
g N? w? w1y,
S5 +———F5—=—-uw'S) =0, (105
* (ég+gw2—égkg 2D~ 4" - (109)

Eq. (105) is the dispersion relation for the two wave-numbers k,, k, and the
frequency w. If the speed of sound is assumed constant, then S = 0 and one
recovers exactly the same inner dispersion relation as [2].

Remark: When k, depends on z, it is not clear whether the solution to (104),
and then the profile U 3, can be written explicitely. When k, is constant in z,
as in [2], the expression of the profile U? is used with the boundary conditions
to obtain a boundary dispersion relation. In our case k. is not a constant, and
the boundary dispersion relation is not easily deduced.

Numerical approximation of the dispersion relation

An evaluation of the equation (105) is possible once the limit state for the pres-
sure and the density is computed. The differential equation for the pressure
(13) is numerically solved for the temperature profile shown in Fig. 3a. Then
the density and the speed of sound are computed from the tabulations given
in [6]. Fig. 3b, 3c show the obtained density and speed of sound. With these
profiles the dispersion relation (105) is computed. Fig 4 shows the contours of
the vertical wave-number as a function of the horizontal wave-number and the
angular frequency, at different depths. For the sake of comparison, the plotted
variables are the adimensionned variables §, = k. H, §, = k. H and log;,(d),

where 0, = w\/H/g.

Although Fig 4 is close to the one in [2], one can notice the influence of the
depth on the contour. The equation (105) is not further studied in this work,
but this first result suggests that the variation of the parameters ¢y, N, D with
depth plays a non-negligible role in the waves dispersion.

6 Conclusion and future work

In this work we have presented an original system describing the propagation of
the acoustic-gravity waves in an inviscid free-surface flow. Through a rigorous
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Figure 3: Temperature, density and sound velocity profiles used for the compu-
tation of the dispersion relation where ¢ = 0 is the seafloor and &3 = 4000 m
is the ocean surface.
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Figure 4: Contour of the vertical wave-number as a function of the horizontal
wave-number and the angular frequency, at different depths. 4a: £ = 2000 m,

4b: €3 = 3600 m, 4c: €3 = 4000 m.
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linearization of the compressible Euler equation we have obtained a model able
to represent many physical phenomenons, such as the SOFAR, channel or the
propagation of internal waves. The variety of these phenomenons is well repre-
sented in the dispersion relation.

In the derivation only few assumptions are made and some common sim-
plifying hypotheses were avoided. In particular, the fluid is rotational and a
generic equation of state can be used. Note also that in the present work the
source term is a displacement of the seabed, but this is not restrictive and other
source terms could be used (a change in the surface pressure for example). With
additional assumptions compatible with the derivation of the system, such as
considering a barotropic fluid, or restricting the model to the incompressible
regime or to the acoustic regime, we are able to recover simpler models widely
studied in the litterature. Hence the mathematical study of the more complete
model can help gain insight on the other ones. The linear model in Lagrangian
coordinates can also be used to recover the linearized Euler equations in Eule-
rian coordinates. This brings a clear understanding of the usual — nevertheless
non satisfactory — assumption that is used to derive the aformentionned models
in Eulerian coordinates.

The wave-like formulation of the model makes it a good candidate for a
numerical approximation by the finite elements method. The fact that it pre-
serves an energy suggests that the problem is well-posed, which motivates a
more thorough study of the mathematical problem. These two aspects will be
investigated in a future work.

Acknowledgment

This work was supported by grants from Région Ile-de-France and the project
ERC-CG-2013-PE10-617472 SLIDEQUAKES.

References

[1] A. Abdolali, J. T. Kirby, and G. Bellotti. Depth-integrated equation for
hydro-acoustic waves with bottom damping. Journal of Fluid Mechanics,
766:R1, 2015.

[2] F. Auclair, L. Debreu, E. Duval, P. Marchesiello, E. Blayo, and M. Hilt.
Theory and analysis of acoustic-gravity waves in a free-surface compressible
and stratified ocean. Ocean Modelling, 168:31, 2021.

[3] C. Cecioni, G. Bellotti, A. Romano, A. Abdolali, P. Sammarco, and
L. Franco. Tsunami Early Warning System based on Real-time Measure-
ments of Hydro-acoustic Waves. Procedia Engineering, 70:311-320, 2014.

[4] A. Constantin and ,University of Vienna, Fakultat fir Mathematik, Nord-
bergstrafie 15, 1090 Vienna. On the propagation of tsunami waves, with

30



[16]

[17]

emphasis on the tsunami of 2004. Discrete € Continuous Dynamical Sys-
tems - B, 12(3):525-537, 2009.

M. Ewing, I. Tolstoy, and F. Press. Proposed use of the T phase in
tsunami warning systems*. Bulletin of the Seismological Society of Amer-
ica, 40(1):53-58, Jan. 1950.

I. A. for the Properties of Water and Steam. IAPWS SR7-09, Supplemen-
tary Release on a Computationally Efficient Thermodynamic Formulation
for Liquid Water for Oceanographic Use, 2009.

A. E. Gill. Atmosphere-ocean dynamics. International geophysics series.
Academic Press, New York, 1982.

V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes
equations: theory and algorithms. Number 5 in Springer series in com-
putational mathematics. Springer, Berlin Heidelberg, 1. ed. 1986. edition,
1986.

E. Godlewski, M. Olazabal, and P.-A. Raviart. On the linearization of
systems of conservation laws for fluids at a material contact discontinuity.
Journal de Mathématiques Pures et Appliquées, 78(10):1013-1042, 1999.

B. Gomez and U. Kadri. Near real-time calculation of submarine fault prop-
erties using an inverse model of acoustic signals. Applied Ocean Research,
109:102557, 2021.

E. Guyon, editor. Physical hydrodynamics. Oxford University Press, Oxford
; New York, 2001. OCLC: ocm47048231.

L. Hagg and M. Berggren. On the well-posedness of Galbrun’s equation.
Journal de Mathématiques Pures et Appliquées, 150:112-133, 2021.

F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt. Computa-
tional Ocean Acoustics. Springer New York, New York, NY, 2011.

U. Kadri and M. Stiassnie. Generation of an acoustic-gravity wave by two
gravity waves, and their subsequent mutual interaction. Journal of Fluid
Mechanics, 735:R6, Nov. 2013.

B. King, M. Stone, H. P. Zhang, T. Gerkema, M. Marder, R. B. Scott, and
H. L. Swinney. Buoyancy frequency profiles and internal semidiurnal tide
turning depths in the oceans. Journal of Geophysical Research: Oceans,
117, 2012.

H. Lamb. Hydrodynamics. Cambridge mathematical library (Print). Cam-
bridge University Press, Cambridge, 6th edition edition, 1993.

D. Lannes. The water waves problem: mathematical analysis and asymp-
totics. Number volume 188 in Mathematical surveys and monographs.
American Mathematical Society, Providence, Rhode Island, 2013.

31



[18]

[19]
[20]

7

G. Legendre. Rayonnement acoustique dans un fluide en écoulement: anal-
yse mathématique et numérique de l’équation de Galbrun. PhD thesis, Paris
VI, 2003.

J. Lighthill. Waves in fluids. Cambridge University Press, 1978.

M. S. Longuet-Higgins. A Theory of the Origin of Microseisms. Philosoph-
ical Transactions of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 243(857):1-35, 1950.

G. C. Lotto and E. M. Dunham. High-order finite difference modeling
of tsunami generation in a compressible ocean from offshore earthquakes.
Computational Geosciences, 19(2):327-340, 2015.

M. A. Nosov and S. V. Kolesov. Elastic oscillations of water column in the
2003 Tokachi-oki tsunami source: in-situ measurements and 3-D numerical
modelling. Natural Hazards and Earth System Sciences, 7(2):243-249, 2007.

F. Nouguier, B. Chapron, and C.-A. Guérin. Second-order Lagrangian
description of tri-dimensional gravity wave interactions. Journal of Fluid
Mechanics, 772:165-196, 2015.

P. Sammarco, C. Cecioni, G. Bellotti, and A. Abdolali. Depth-integrated
equation for large-scale modelling of low-frequency hydroacoustic waves.
Journal of Fluid Mechanics, 722:R6, 2013.

J. A. Smith. Revisiting Oceanic Acoustic Gravity Surface Waves. Journal
of Physical Oceanography, 45(12):2953-2958, 2015.

M. Stiassnie. Tsunamis and acoustic-gravity waves from underwater earth-
quakes. Journal of Engineering Mathematics, 67(1-2):23-32, 2010.

I. Tolstoy. The T Phase of Shallow-Focus Earthquakes. Bulletin of the
Seismological Society of America 1950, 40(1):25-51, 1950.

T. Yamamoto. Gravity waves and acoustic waves generated by subma-
rine earthquakes. International Journal of Soil Dynamics and Farthquake
Engineering, 1(2):75-82, 1982.

Appendix

7.1 The energy equation

In this section an energy equation for the system (25) is obtained. Recall that
the system (25) reads in €2,

92U,

po—g — Ve (ﬁoégvg : 31) —(VeU)T pog+ poVe-Ur g =0,
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with the boundary conditions

Ijl Ny = ﬁb71 on fb,
vgﬂlzo on ;.

By taking the scalar product of (25) with 9, U and integrating over the domain
we have

200 (50 e [ 20 (0 (kv )

a0, a0, B
+ e (Vg(U1 es3) Pog) dﬁ—/ﬁ 5 (Povg U, geg) d¢§ = 0.
(106)
For the first integral of (106) it holds
. 2
8U1 8 U1 o 1 6U1
s <Po a ) ag = f/fzp% L e (107)

The second term of (106) is integrated by parts, using V, .U, = 0 on the surface
and U; - 1 = by at the bottom (hence 8,(U; - i) = 9;b1),

ou, X 1d [ .. .
—/Q Ve (poch5-U1) dg—i—/ﬁpgc(ﬂVg-UleE
—/ poC%Vg 'ﬂlﬁdd. (108)
o, ' ot

For the computation of the two last integral of (106), we define

(I) = /Q 821 . (Vg(fh -e3) ﬁog) d§ — /Q 3;1 : (ﬁovg Uy 963) dg,

an we denote by n be the vector normal to the boundary Q. (I) is integrated
by parts and reads

o ou, R L8)
(1) :/ pogUi - e3 7(%1 -ndo — / gU1 -e3Ve - (Po*atl)dé
a0 Q
L8] X
*[ﬂog 8151 -e3Ve - UpdE.
O

The boundary term is simplifed using 9y(Uy - 1iy) = O4by at the bottom. On
the boundary I'y, the surface is horizontal hence the normal vector is the unit

33



vector eg, so it holds

N 6b1 A 6UA1
1) = U, -ea—d U, ea—- -ead
() /fbpog 1-€3 It J+/fspog 1°€3 B ez do

. _oU . 0U R
= [ 901 Ve (5t de = [ gt esVe Uide (109
o ot o9 5

Next we develop the gradient in the third integral of Eq. (109). Note that pg
depends only on the vertical coordinate, then we have

. 8ﬂ1 “ ~ 6&1'63 dﬁo 1d / N ~ 9
— [ 40, Vepo = — | g U ego—t ®8%0 24 U, e,
/Qg €35 Velo /Qg N TS 53 ong| 1-€e3]

hence we obtain

. by 1d
D= [ p0gU;-e3 —Ldo+ =—
(1) /fhPOgleS T 7
1d

AT JS 0 N
—ia/ﬁgpﬁ\Ul'esﬁdﬁ—/ﬁﬂogUl'e3§(V§'U1)d€

[ ﬁog‘ﬂl ‘63|2 do
rs

ou X
—/mm—L%%wLM.um
a ot

The two last terms of (110) are put together,

R b, 1d

I = 50U - €a — d -z

() /fbpog 1-€3 ot U+2dt
1d

. d [ :
—§§/ﬁgp6lU1~e3\2d€—%/ﬂpogU1-esvg'Ul dg. (111)

/ ﬁog‘fjl . 63|2 do
Fs

Summing the terms (107), (108) and (111) yields

12
d 10U, 1d « ~ S g ?
il il -2 U — 20 cex ) d
dt/QpO2 ot £+2dt/§2p0 (covf P ! e‘3> ¢
1d A 9> gp 1d S
- . 2 0 d - / . 2d
Q*dt/ﬂpo(Ul es3) (63 + 0 €+27dt . pog(Uy - e3)”do

s

- U Otip,1
2
= [ polcgVe U — pogUs - e3 = do,
/fb (0 ¢ ) ot

and by defining

2 Al
Nb:_(%+gf)0)7
%  po

we obtain the energy equation (28).
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7.2 Space and time derivatives in (),

In this section we derive the relations between the zero- and first-order approx-
imation in Eulerian and in Lagrangian coordinates, when differentiating with
respect to time or space. First note that ¢y and ¢; can be expressed in terms
of the displacement d. From the assumption of small displacements it holds
d = ed; + O(£?), then identifying the powers of ¢ and summing yields

#:(&,1) =& +edi(é,1).
From the change of coordinate we have
VeX = (Ve)'VX = (Id + eVed))TVX,
and using this identity for X = X, + £X; yields
Ve(Xo +eX1) = VXo +¢ ((Vedi)TVXy + VX)) + O(E2).

By identifying the powers of ¢ it holds

VeXo=VXy,  VeX;=(Ved)TVX)+ VX,
The same method is used for the time derivative. Starting with

e
ot

X X
W(&vt) = E(d)s(&)vt) + (5) ) VX((;')g({),t),

we obtain after replacing X and X by their first order approximation,

ot ot ot

X, X;  0X X,  od
0 0+56 10Xy <aat1+8atl'vxo>+o(€2)'

With 8,d; (&,t) = Uy (&,t) = Uy (x,t) it holds

9Xo 89X, ,
at+€<at+U1'VXO) +O(€ )

We identify the powers of ¢,

Xy  0Xo 0X;  0Xy
ot ot ot~ o U1 VXo
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