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Abstract: 33 
 34 

Cliff-top boulder deposits (CBDs) are morphological indicators of high-energy 35 

conditions. Since 2014, a monitoring of CBDs dynamics has been undertaken on the south-36 

western coast of Iceland (Reykjanes Peninsula) to monitor their long-term activation (quarrying, 37 

transport and deposition) as a proxy of the inter-annual winter storminess variations and 38 

basaltic cliff erosion processes in a context of rocky coast progradation. Annual 39 

topomorphological surveys of four study sites were conducted and Structure-from-Motion 40 

photogrammetry was performed to quantify CBDs displacements. Hydrodynamic conditions 41 

were analyzed based on offshore waves and water level. Results show that CBDs activation 42 

occurs every winter, regardless of the variability of hydrodynamic conditions. Depending on 43 

the site and the year, more than 2% and 17% of the CBDs accumulated above 8 m to 10 m asl 44 

at the top of the cliffs are regularly mobilized. While inland movements represent the main 45 

mode of transport of blocks (between 50% to 60%), seaward and longshore movements are 46 

also well represented (10% to 20%). Longshore displacement is favored by the wide tabular 47 

morpho-structural setting of the wave-scour cliff-top platforms, which is explained by the 48 

structure of pāhoehoe lava flows. The activation of CBDs –measured from the volumes of 49 

displaced boulders–, shows a good correspondence with the frequency and duration of storms. 50 

However, as was the case during the winter of 2018-2019, it was rather the intensity of two 51 

highly morphogenic episodes combining storm waves and especially very high spring tide 52 

water levels, that generated the largest boulders displacements. Substantial interannual 53 
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activation of the CBDs confirms that they constitute an important and still understudied proxy 54 

of the morphogenic system of high-energy rocky coasts, whose the dynamic in terms of 55 

carrying, transport, and deposition, could significantly increase with rising sea level. 56 

 57 

Keywords: boulder, cliff-top, storm, basaltic coast, survey, Iceland. 58 

 59 

1. Introduction 60 
 61 

Coastal boulder deposits (CBDs) are supratidal coarse-clastic sediments dislodged and 62 

transported by high-energy waves to the coast. They are widespread geomorphological features 63 

of high-energy rocky coasts such as the Atlantic coasts of western Europe (Williams and Hall, 64 

2004; Hall et al., 2006; Suanez et al., 2009; Oliveira et al., 2020b; Cox et al., 2012) and NW 65 

Africa (Mhammdi et al., 2019), the Pacific coasts –including Tasman Sea coast–, of eastern 66 

Asia (Goto et al., 2011, Kennedy et al., 2016, 2017), and Australia and New-Zeland (Sussmilch, 67 

1912; Bishop and Hughes, 1989; Shelley, 1968), or the coasts of remote oceanic islands fully 68 

exposed to powerful oceanic swells (Etienne and Paris, 2010; Richmond et al., 2011b). CBDs 69 

are also found on the coasts of semi-enclosed maritime basins exposed to intense 70 

meteorological disturbances such as along the Mediterranean coasts (Deguara and Gauci, 2017; 71 

Delle Rose et al., 2020; Pepe et al., 2018; Piscitelli et al., 2017; Scicchitano et al., 2020; Terry 72 

et al., 2016). 73 

CBDs are probably one of the most controversial types of subaerial coastal deposits 74 

among coastal sedimentary assemblages (Etienne et al., 2011; Kennedy et al., 2021; Lau and 75 

Autret, 2020; Paris et al., 2011). Their topographic positions on supratidal cliff-top platforms 76 

can reach between 10 to 20 m above the high spring water level, up to 30 m in some cases, and 77 

weigh up to 620 tons for the most massive (Cox et al., 2018a).  A large part of the dedicated 78 

literature on CBDs focuses on whether they are tsunami or storm deposits (Nott, 2003; Saintilan 79 

and Rogers, 2005;  Williams and Hall, 2004; Switzer and Burston, 2010; Richmond et al., 80 

2011a; Prizomwala et al., 2015; Kennedy et al., 2021). In recent years, numerous studies have 81 

demonstrated the critical involvement of giant storm waves in the quarrying, transport, and 82 

deposition processes of CBDs, through (i) their morphosedimentary characteristics (Cox et al., 83 

2018b; Etienne and Paris, 2010; Foster et al., 1991; Goto et al., 2010; Nanayama et al., 2000), 84 

(ii) the surveys carried out before and after high-energy storm events (Autret et al., 2016a; 85 

Fichaut and Suanez, 2010, 2011; Goto et al., 2012; May et al., 2015; Richmond et al., 2011a; 86 

Spiske and Bahlburg, 2011; Cox et al., 2018a), (iii) the critical analysis of theoretical boulder 87 

transport equations based on hydrological forcing (Dewey and Ryan, 2017; Lau et al., 2016; 88 

Prizomwala et al., 2015; Salzmann and Green, 2012; Shah-Hosseini et al., 2016; Soria et al., 89 

2018; Kennedy et al., 2017, 2021), and (iv) the modelling and/or laboratory experiments 90 

(Bressan et al., 2018; Cox et al., 2019; Hansom et al., 2008; Watanabe et al., 2019; Weiss and 91 

Sheremet, 2017; Zainali and Weiss, 2015; Kennedy et al., 2016). 92 

Cliff-top boulder deposits are highly persistent landforms in coastal landscapes. They 93 

constitute sedimentary archives capable of providing essential information on past wave 94 

climates extreme nearshore wave events (Ávila et al., 2020; Oliveira et al., 2020a). This is a 95 

key issue for future research on coastal boulder deposits (Cox et al., 2019), but we still have 96 

limited knowledge on their preservation potential. Therefore, CBDs may be considered as  97 

relevant geological records in coastal environments especially from their genesis to the moment 98 

they are considered as inert deposits (Cooper et al., 2019; Spiske et al., 2019). As indicated by 99 

Cox et al. (2019), they represent an effective proxy for long-term storminess analysis. The high 100 

frequency monitoring of CBDs carrying, transport and deposition may provide valuable 101 

information on the significant long-term variations of meteo-oceanic conditions, especially for 102 

the winter storm-periods. Coastal monitoring on sandy coast has been conducted in many 103 
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multi-decade research programs across the world and has proven its effectiveness to build up 104 

knowledge on the functioning of coastal environments driven by regular storms (Turner et al., 105 

2016; Jaud et al., 2019; Banno et al., 2020; Castelle et al., 2020; Bertin et al., 2022; Nicolae 106 

Lerma et al., 2022). Some experiments of CBD monitoring based on at least one annual 107 

measurement have been undertaken (Nagle-McNaughton and Cox, 2020), notably on the 108 

Brittany coast (Autret et al., 2018), but they remain very anecdotal compared to the monitoring 109 

carried out on sandy beaches. 110 

In this paper, we present the first results of a topo-morphological monitoring of CBDs 111 

started in 2014 on the coast of the Reykjanes peninsula, located in SW Iceland. This paper aims 112 

to study the impact of winter storms on the erosion of basaltic cliffs, resulting in the 113 

accumulation of CBDs at their top. We present annual monitoring data between 2014 and 2019 114 

from 4 study sites corresponding to rocky cliff areas where CBDs are accumulated. These data 115 

are then analyzed considering winter weather and ocean conditions, specifically swell and 116 

water levels. Through this work, the correspondence between winter forcing conditions and 117 

CBD activation is analyzed.  118 

 119 

2. Study area 120 
 121 

2.1 Geological and geomorphological settings 122 

 123 

The study area corresponds to a low rocky-cliff (with cliff-top elevations between 4 and 124 

15 m above mean sea level - asl) located on the south-western coast of the Reykjanes Peninsula, 125 

in the south-west of Iceland (Fig. 1). The Reykjanes Peninsula corresponds to the southern part 126 

of the Icelandic Western Volcanic Zone, which is the transition area between the Reykjanes 127 

Ridge to the West and the Western Rift zone to the East (Einarsson, 1991). In this area, the 128 

volcanic activity has been quasi-continuous since the Mid Pleistocene, with thirteen historic 129 

eruptions (post 1200 BP), and at least nine prehistoric eruptions (Einarsson et al., 1991; 130 

Einarsson and Jóhannesson, 1989; Jóhannesson, 1989; Jóhannesson and Einarsson, 1988b, 131 

1988a; Jónsson, 1983); the last eruption in Fagradalsfjall started in March 2021. This 132 

geological setting attests that this SW part of Iceland was never glaciated during the cold phases 133 

of the Quaternary period, and that as such, the boulders (e.g. CBDs) accumulated at the top of 134 

the cliffs were not eroded nor deposited by the glacier ice processes. Therefore, the Reykjanes 135 

Peninsula is indeed an active prograding lava delta, which corresponds to a particular case 136 

among rocky coast types, showing exacerbated morphosedimentary dynamics as a result of 137 

strong hydro-morphosedimentary disequilibrium (Marie, 2007; Ramalho et al., 2013). 138 

Etienne and Paris (2010), and Autret et al. (2016b) described the lithostructural setting 139 

of this Reykjanes Peninsula rocky coast, focusing on the diversity of CBDs accumulated along 140 

more than 30 km of coastline.   141 
 142 
Fig. 1. Location map. (a) Regional map of the North-East Atlantic showing boxed inset location of map (b). (b) 143 
Zoom on the study area. Squares refer to the four study sites. The tide gauges and the wave buoy for observational 144 
datasets are displayed as black triangles and polygon, respectively. The polar plot shows the wave directions at 145 
the WW3 grid output from January 1948 to April 2018 (located at W22.5°; N63.5°, 35 km south of Grindavík, 146 
~250 m depth). (c) and (d) show the monthly statistics of modeled significant wave height and peak period 147 
between 1948 and 2018, respectively. Bars indicate monthly averaged wave statistical parameters with the 148 
corresponding standard deviation (vertical error bars). 149 
 150 

The stack of lava flows through time is a determining factor in the morphology of the 151 

cliffs, the coastline shape and the cliff-top boulder deposits. The cliff-top boulder deposits stand 152 

on supratidal platforms that always correspond to the structural surface of pāhoehoe lava flows 153 

(Fig. 2). Basaltic pāhoehoe is generally characterized by a smooth or folded continuous crust 154 
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without (or few) rough topographies (Gregg, 2017). Typically, the structure of pāhoehoe lava 155 

surface is caracterized by circular wrinkles which look like ropes and therefore is called ropy 156 

pāhoehoe. These surface features are due to the movement of very fluid lava under a congealing 157 

surface crust inducing a behavioral difference between the center and the top-skin of the lava 158 

flow. However, the surface texture of pāhoehoe surface varies widely with increasing distance 159 

from the lava source, displaying in some cases all kinds of major rough topographies of various 160 

shapes often referred to as lava sculpture (e.g., collapsed tumuli, unusual craters, craters with 161 

raised rims, lava ponds, lava-rise –inflation– pits, lava-rise, inflation plateaus, etc.) (Detay 162 

and Hróarsson, 2018). 163 

In cross-section, the vertical structure of pāhoehoe flows presents 3 distinct zones 164 

(Aubele et al., 1988; Autret et al., 2016b; Gregg, 2017): (i) an upper crust, typically vesicular 165 

and glassy or microcrystalline; (ii) an interior massive zone; and (iii) a relatively thinner basal 166 

crust that is similar in morphology to the upper crust. The top of the upper vesicular zone is 167 

often a repetitive sequence of glassy and red or maroon scoria, or slab-like layers a few 168 

centimers thick, with fluid surface textures (Fig. 2). The erosion of this zone by waves provides 169 

sand, rubbles, pebbles-size particles which constitute the major part of the CTSD's 170 

accumulations. The central non-vesicular (dense) zone is characterized by distinct vertical 171 

columns consisting of clustered large vesicles with internal platy structures favoring the 172 

quarrying of large boulders by waves along the cliff sections. These few larger boulders are 173 

generally deposited front of the CTSD's accumulations (Fig. 2). 174 

This lithostructural context exerts a strong control on the clast size at a local scale. 175 

Pieces of basalt columns coming from flow interiors form the largest boulders (typically, b-176 

axis>50 cm). They sometimes break into smaller boulders, but most of the small boulders (b-177 

axis<50 cm) are typically brought by the erosion of superficial and interflow zones. In some 178 

cases (see Katlahraun site in Fig. 3c), few collapsed and well-rounded boulders are also 179 

projected from the tidal zone of the base of the cliff to the cliff-top (Autret et al., 2016b) (Fig. 180 

2). 181 

 182 
 183 
Figure 2. Lithostructural setting of the basaltic coastal bedrock of the Reykjanestá Peninsula. (a) Selatangar site; 184 
(b) Katlahraun site; (c) Reykjanestá site. 185 
 186 

The four study sites (Kerling, Reykjanestá, Katlahraun and Selatangar) are presented in 187 

Fig. 3. They are located on post-glacial basaltic outcrops aged from ~1900 to ~7000 BP 188 

resulting from subaerial volcanism (Sæmundsson et al., 2016). As indicated above, because of 189 

their ages and locations, these CBDs have a modern origin and are only related to high-energy 190 

wind-generated wave erosion processes (Etienne and Paris, 2010).  191 

Kerling (Fig. 3a) is a rocky promontory facing west. It is part of the Kerling volcanic 192 

complex. The basaltic substratum is aged ~1900-~2400 BP. The site is composed of three main 193 

geomorphological units: (i) bluffs of 2 m to 4 m high and oriented N-S; (ii) a barren and rough 194 

supratidal platform of 2 m to 4 m elevations asl where a few very coarse boulders are trapped; 195 

(iii) a boulder ridge of 165 m long, 70 m wide and 3 m tall on average. The boulder ridge is 196 

oriented N-S and faces West at a minimum inland distance (Dmin) of 20 m from the edge of the 197 

supratidal platform and a maximum inland distance (Dmax) of 75 m from the cliff edge.  198 

Reykjanestá (Fig. 3b) is the southwestern tip of the Reykjanes Peninsula, exposed South 199 

to SW. The basaltic substratum is older than ~2400 BP and younger than ~7000 BP. It also 200 

presents three main geomorphological units: (1) vertical cliffs of 4.5 m to 5 m high, oriented 201 

N-S in the west part and NW-SE in the south part; (2) a cliff-top platform at an average 202 

elevation of 4.8 m asl, barren and relatively smooth; (3) a boulder ridge located close to the 203 

cliff edge (Dmin = 1 m, Dmax = 14 m), oriented N-S, 85 m long, 25 m to 30 m wide and 2 m tall 204 

on average.  205 
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The cliff-top boulder deposits of Katlahraun (Fig. 3c) stands on a basaltic substratum 206 

aged ~1900-~2400 BP. The geomorphological setting of this site is more complex with two 207 

additional geomorphological units: (1) bluffs topped between 2 m and 3 m asl and oriented E-208 

W; (2) an intermediate supratidal platform barren and moderately rough at an average elevation 209 

of 3 m asl; (3) steps separating the intermediate supratidal platform and the top platform (e.g., 210 

P2 and P3 in Fig. 3c). The top of this step is considered as the cliff-top edge of this site; (4) a 211 

top platform at an average elevation of 4 m asl, barren and relatively smooth; (5) a boulder 212 

ridge of 150 m long, 30 m width and 2 m tall on average. The boulder ridge is oriented E-W 213 

and faces South. It is located at distances ranging from 15 m to 30 m from the cliff edge.  214 

Selatangar (Fig. 3d) is part of the same lava flow unit as Katlahraun (aged ~1900-~2400 215 

BP). It also presents three main geomorphological units: (1) vertical cliffs of 5 m high, oriented 216 

NW-SE; (2) a cliff-top platform barren and relatively smooth at an average elevation of 8 m 217 

asl; (3) a boulder ridge located at distances ranging from 8 m to 30 m from the cliff-edge, 218 

oriented NW-SE, 200 m long, 20 m to 40 m wide and 2 m to 3 m tall on average. 219 
 220 
Fig. 3. Presentation of the four study sites. Kerling (a), Reykjanestá (b), Katlahraun (c), Selatangar (d), showing 221 
for each site an oblique aerial photography, a detailed topography and a 2D view of surface profiles extracted from 222 
the DEMs. 223 
 224 

2.2 Oceanographic settings 225 

 226 

The Reykjanes Peninsula is located north of the North Atlantic storm track and therefore 227 

experiences frequent storm waves (Davies, 1972; Einarsson, 1976). The wave climate is 228 

characterized by a strong seasonal modulation of the monthly-averaged significant wave height 229 

(Hs), ranging from 1.5 m in July to 3.6 m in January. The four winter months (December to 230 

March) are particularly energetic with Hs reaching 3.5 m in December (σ =1.7 m), 3.6 m in 231 

January (σ =1.7 m), 3.6 m in February (σ =1.8 m) and 3.2 m in March (σ =1.7 m) (Fig. 1c). 232 

The significant wave height (Hs) frequently reaches 8 m during storms (Sigbjarnarson, 1986), 233 

with a probable maximum Hs of 16.7 m recorded by a buoy in January 1990 (Tomasson et al., 234 

1997). As a result of the narrow continental shelf, wave energy poorly dissipates into nearshore 235 

waters. Ocean waves are a major driver of coastal change in Iceland, but the impacts of storms 236 

on coastal settlements (mostly overland flooding resulting from overwash and overtopping) 237 

have been clearly linked to the concurrent forcing during peak events, i.e., when peak storm 238 

waves coincide with high tides. For instance, damages observed on buildings, roads, and 239 

coastal structures during a major coastal flood on January 9, 1990, in Stokkseyri were among 240 

the most important ever observed in south Iceland since 1910 (Geirsdóttir et al., 2014). This 241 

event occurred under an extremely low-pressure system (928 hPa), contributing to an unusually 242 

high tide (above 4 m in Reykjavik in the bay of Faxaflói), and powerful waves reaching 23 m 243 

near Surtsey (Viggósson et al., 2016). In Grindavík, the tidal range is slightly lower (mean 244 

spring tide of 3.2 m compared to 3.8 m in Faxaflói) with a mean sea level of 1.88 m (Larusson, 245 

2010). Finally, there is no sea ice formation in this area of Iceland because of the warmer water 246 

discharge from the Irminger current. Wave energy is not attenuated by coastal sea ice during 247 

the winter months. Sea ice brought by the East Greenland Current from the polar basin is also 248 

too scarce to bring significant protection against winter storms (Etienne and Paris, 2010). 249 

 250 

3. Methods 251 
 252 

We quantitatively investigated cliff-top boulders and boulder ridges’ 253 

morphosedimentary dynamics on the four study sites. Field surveys started in 2014 and are still 254 

ongoing. In this paper,  the data and surveys conducted over the period 2014-2019 are presented 255 

(Table 1). The field measurement campaigns were carried out once a year in spring (usually in 256 
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May) after the winter storm period. The measurements consisted of topomorphological surveys 257 

based on ground measurements and very high-resolution topographic monitoring using Kite 258 

Aerial Photography (KAP) and Unmanned Aerial Vehicle (UAV). 259 

 260 
Table 1.  261 
Inventory of the topomorphological surveys achieved between 2014 and 2019. 262 

 263 
 Field campaign activities Methods Sites  

2014, May 11 to 18  Field reconnaissance, identification of 
CBDs, block size measurements, 

morphological measurements and 

field photographs 

GPS-RTK, 
decameters, 

cameras 

30 km of coastline from 
Selatangar to Kerling   

2015, May 4 to 15 Topo-morphological survey  KAP, GPS-RTK Selatangar, Katlahraun, 

Reykjanestá, Kerling 

2016, May 9 to 19 Topo-morphological survey  KAP, GPS-RTK Selatangar, Katlahraun, 

Reykjanestá, Kerling 

2017, May 14 to 24, 

and August 27 to 

September 3 

Topo-morphological survey KAP, UAV 

(Phantom2 - 

DJI®),  GPS-RTK 

Selatangar, Katlahraun, 

Reykjanestá, Kerling 

2018, May 16 to 26 Topo-morphological survey UAV (Phantom4 
Pro - DJI®), GPS-

RTK 

Selatangar, Katlahraun, 
Reykjanestá, Kerling 

2019, May 12 to 19 Topo-morphological survey UAV (Phantom4 
Pro - DJI®),  GPS-

RTK 

Selatangar, Katlahraun, 
Reykjanestá 

 264 

3.1 Low-altitude aerial imagery and topography 265 

 266 

Low-altitude aerial surveys (using KAP and UAV) were carried out, providing a 267 

detailed orthorectified aerial imagery of the boulder deposition and mobility areas. Digital 268 

Elevation Models (DEM) were created with Structure -from-Motion and Multi-View Stereo 269 

(SfM-MVS) processing (Fonstad et al., 2013; Westoby et al., 2012; Nagle-McNaughton and 270 

Cox, 2020; Jaud et al., 2019) (Fig. 4).  271 

The KAP surveys were performed in May 2015, 2016 and 2017 with the following 272 

settings (Table 1): (1) two kites were alternatively used as lifters, a Delta Trooper (Dan Leigh®) 273 

for strong winds and a HQ Kites® Flowform 4.0 for light winds; (2) aerial photographs were 274 

taken with a Ricoh® GR camera (16.2 MP resolution, fixed focal length of 28 mm in the 35 275 

mm format) connected to the kite line by a BROOXES® Gent-X picavet set; (3) ground control 276 

points (GCPs) and ground validation points (GVPs) were surveyed by a Topcon Hyper V 277 

Differential GPS in Real Time Kinematics mode (Fig. 4). X, Y and Z coordinates were 278 

referenced to EPSG 3057 (ISN93). The same KAP settings or a UAV (DJI®, Phantom 2 and 4 279 

Pro equipped with a 20 MP camera with an equivalent focal length of 24 mm and stabilized on 280 

the 3-axis) were used to collect aerial images in August 2017, May 2018 and May 2019 (note 281 

that there is no data for Kerling in 2019 due to bad weather). KAP images were collected at 282 

multiple angles and altitudes depending on weather conditions. The variability of the shooting 283 

angles and heights did not affect the final data quality. Drone images were collected at a 284 

constant altitude of ~50 m and angle of -88° (subnadir) with flight paths set up to provide 80% 285 

overlap between consecutive images and 70% sidelap between contiguous paths. These settings 286 

were selected according to previous studies’ recommendations and performed very well 287 

(Dandois et al., 2015; Matthews, 2008; Mosbrucker et al., 2017; Torres-Sánchez et al., 2018). 288 

 289 
Fig. 4. SfM-MVS methodological workflow. (a) Raw images are first collected by KAP or UAV with a high rate 290 
of overlap along parallel transects. Ground markers corresponding to control (GCP) and validation (GVP) points 291 
have previously been positioned and measured on the study area. (b) step by step framework from data collection 292 
to work files generation. (c) shows an example of a volumetric differential between two surveys in the white-293 
dotted box shown on (a). The left panel shows a surface rendering, and the right panel shows the corresponding 294 
diagrams. 295 
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 296 

We used SfM-MVS algorithms to reconstruct the georeferenced dense point clouds and 297 

the orthorectified aerial images from the aerial images sets. For each survey, a set of about 200 298 

to 300 images were processed separately. The resulting dense point clouds were classified using 299 

a Cloth Simulation Filter (Zhang et al., 2016) in order to remove the vegetation and the storm 300 

debris (especially driftwood and many fishing buoys and ropes). We then generated DSMs at 301 

a 3 cm resolution by an Inverse Distance Weighting interpolation with a power of 2 (in this 302 

way, known values (the generated points) have more weight and the interpolation is closer to 303 

the ground truth). The DSMs accuracy in X, Y and Z were estimated by calculating the RMSE 304 

from GVPs independent of the GCPs network; the margins of error are between 0.044 and 305 

0.025 m. 306 

 307 

3.2 Geomorphic changes 308 

 309 

Once data collected and postprocessed, interannual cliff-top boulder displacements and 310 

related morphosedimentary dynamics were investigated in two steps: (1) by computing the 311 

digital elevation model of differences (DoDs) from one survey to another in order to quantify 312 

the overall geomorphic changes, and (2) by tracking the displaced boulders that we were able 313 

to identify with certainty in order investigate boulder transport. 314 

The DoDs were computed using the quantitative differencing method originally 315 

implemented by Wheaton et al. (2009), which improves the way to consider the total 316 

uncertainty of several topographic surveys in the DoDs, including uncertainties in the 317 

topographic survey data, the propagated error into the DoD and the significance of DoD 318 

uncertainty. A vertical detection threshold was set to 10 centimeters, minimizing the volumetric 319 

computation errors associated with SfM photogrammetry for the reconstruction of rough 3D 320 

surfaces. Nevertheless, this underestimates the net changes and the volumes given hereafter 321 

should therefore be considered as an order of magnitude rather than exact values. 322 

When it was possible, individual transported and recognizable boulders were tracked 323 

using GIS geospatial tools. According to the topographic changes highlighted by the DoDs and 324 

field or high-resolution orthomosaic validations, pre- and post-transport boulders positions 325 

were measured. For each transported boulder found into its new position, we measured: (i) the 326 

length of the a-, b- and c-axis (A, B, C); (ii) the pre- and post-transport location (start_x, start_y, 327 

start_z, end_x, end_y, end_z); (iii) the closest pre- and post-transport distance from the seaward 328 

edge of the supratidal platform (start_d, end_d). The direction and the length of transport were 329 

then computed (transport_length and transport_bearing, respectively). Finally, the a-, b- and c-330 

axis measurements were used to estimate the volume of each boulder, from which 20% were 331 

subtracted before computing the mass. One-way analysis of variance (ANOVA) was used to 332 

compare groups of displaced boulders in terms of masses, elevation and distance. A post-hoc 333 

Tukey test was performed to identify group pairing discrepancies. However, as noted above, 334 

most of the boulder movements associated with the morphological changes in the boulder 335 

ridges and/or clusters as a whole, could not be measured because it was not possible to identify 336 

the start and/or end zone of the boulder movement. 337 

 338 

3.3 Analysis of the meteo-oceanic conditions 339 

 340 
3.3.1 Wave conditions and water levels during the survey period (2014-2019) 341 

 342 

Hourly observed water levels covering the period between June 2014 and April 2019 343 

have been retrieved from the tide gauge in Sandgerdi Harbor, ~25 km from the study area (Fig. 344 

1b). This gauge was selected in order to overcome large data gaps at the Grindavik tide gauge 345 
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in 2017. Following Bernier and Thompson (2015), the water level have been decomposed into 346 

tidal components and surge residual using the Matlab tidal analysis package T_TIDE 347 

(Pawlowicz et al., 2002). Note that local effects induced by basin morphology and barometric 348 

effects (e.g., seiches) can impact the overall surge signal (Donn and Wolf, 1972). Therefore, it 349 

is expected that the surge signal recorded in Sandgerði Harbor may not represent accurately 350 

the conditions in Grindavík. For this reason, less emphasis has been laid on this aspect in the 351 

present study. 352 

Hourly offshore wave characteristics between December 1995 and April 2019, 353 

including significant wave height (Hs) and average wave period (Tz) were provided by the 354 

Icelandic Road and Coastal Administration for the Grindavík buoy (63°48.80’N; 22°27.63’E; 355 

62 m depth) (Fig. 5b). This 24-yrs continuous timeseries was used for the wave model 356 

validation (Fig. 5c). Only the 2014-2019 timeframe was used for the current analysis of 357 

hydrodynamic conditions related to morphological changes.  358 

Storminess was analyzed using a Peak Over Threshold method (POT) with a two-step 359 

threshold. Considering the high-energy wave climate near the study sites, the 99th percentile of 360 

the modeled significant wave height time series was used as a primary threshold for the 361 

strongest storms. The start and end time of the storm have been set according to a lower up- 362 

and down-crossing of the 95th percentile of the Hs time series, following the storm definition 363 

of Masselink et al. (2015) applied on the southwest coast of England. Ensuring that these storm 364 

events are all independent (Hs maxima are separated by at least a 24h independence criterion), 365 

observed water levels (WL) both at each maximum and during the events were extracted using 366 

the Sandgerði gauge as the reference to still water level.  367 

 368 
Fig. 5. Modelled (a) and observed (b) offshore significant wave height (Hs) between 1948 and 2019. The WW3 369 
validation period covers the period between 1995 and 2017. Debiased modelled Hs are plotted against 370 
observations at the Grindavík buoy (c). Example of surge waves overtopping cliffs at Reykjanestá on May 19, 371 
2018 under stormy but not extreme wave conditions (Hs = 4 m) (d). 372 
 373 

Joint probability occurrence of storms was quantified with copulas for the available 374 

observations period (2011-2019) using the MhAST toolbox (Sadegh et al., 2018). A time series 375 

of pairs of interest of the two hazard drivers Hs/WL was constructed using the Hs and WL 376 

maxima during each storm. The joint time series is short (8 years) but can be useful to 377 

understand the combinations of variables that could trigger boulder movement during this 378 

period. Following Sklar’s theorem (Nelsen, 2006), if FH (Hs) and FW (WL) are the marginal 379 

distributions of significant wave height (Hs) and water levels (WL), a copula C combining these 380 

two marginal distributions represents the joint distribution function following: 381 

 382 

𝐹(𝐻𝑠,𝑊𝐿) = 𝐶(𝐹𝐻(𝐻𝑠), 𝐹𝑊(𝑊𝐿)) = 𝐶(𝑢1, 𝑢2) 383 

 384 

If marginal distributions are continuous, C is unique and the joint probability density 385 

function c() can become: 386 

𝑐(𝑢1, 𝑢2) =
𝜕2𝐶(𝑢1, 𝑢2)

𝜕𝑢1, 𝑢2
 387 

 388 

MhAST is based on the Multivariate Copula Analysis Toolbox (MvCAT) (Sadegh et al., 389 

2017) and ranks each copula performance based on Likelihood, Akaike Information Criterion 390 

(AIC), Bayesian Information Criterion (BIC), Nash-Sutcliffe Efficiency (NSE), and Root Mean 391 

Squared Error (RMSE). 392 

 393 

3.3.2 Long-term assessment of the potential activation frequency (1948-2019) 394 
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 395 

Offshore wave statistical parameters from January 1948 to March 2017 were retrieved 396 

from a Wavewatch III regional model hindcast covering the North Atlantic Ocean (0°-80°W; 397 

0°-70°N) at a 0.5° resolution, described and validated in Masselink et al. (2016), at location 398 

W22.5°; N63.5° (35 km south of Grindavík, ~250 m depth) (Fig. 5a). To validate the model 399 

results, simulated and measured Hs and Tp (Tp = 1.4 Tz) at the Grindavík buoy located 3 km 400 

south of Grindavík at 62 m depth (Fig. 1) were compared for the period covering December 401 

1995 to March 2017 (the buoy time series extends up to April 2019 in Fig. 5b). Comparisons 402 

of modeled Hs (Hsmodel) with measured data show an averaged bias of 0.5 m, a squared 403 

correlation coefficient (ρ2) of 0.67, and a normalized root-mean square error of 0.34. Modeled 404 

Hs were then linearly corrected following Hsdeb = Hsmodel/0.96-0.58, resulting in a significantly 405 

lower bias (0.02 m for the validation period). No correction was applied to the wave period 406 

time series considering the bias under 0.2 s between simulated peak wave periods and 407 

observations during storm conditions (i.e., when Hsdeb >7.5 m). 408 

To better contextualize the observed cliff-top boulders’ morphodynamics between 2014 409 

and 2019, we analyzed the periodicity of annual offshore wave statistics and storm activity in 410 

SW Iceland over the historical period (1948-2019). Linear regressions were first computed to 411 

verify the presence of trends using the square correlation coefficient ρ2 at a 95% significance 412 

level. A wavelet analysis was performed using the Analytic Wavelet Transform toolbox in 413 

Matlab (Aguiar-Conraria and Soares, 2014). The Morlet wavelet function was applied (ω0 = 6) 414 

over the annual time series of storm occurrence and annual wave characteristics with a lower 415 

and upper period of 2 and 50 years (pad = 0). 416 

 417 

4. Results 418 
 419 

4.1 Morphological changes and boulder transport 420 

 421 

Morphological changes were quantified by DoDs calculation using low-aerial 422 

topographic data surveyed between 2015 and 2019 (except for Kerling, not surveyed in 2019). 423 

Additional qualitative analysis was also based on the 2014 field reconnaissance. The results 424 

presented hereafter are expressed in cubic meters per site and per winter, and then expressed 425 

as the relative volume of the total volume of each cliff-top boulder accumulation (percentage 426 

per winter). Note that these values are orders of magnitude, not fully accurate values. 427 

Between May 2015 and May 2016, ~522 m3 of boulders were transported at Kerling 428 

(corresponding in proportion to ~2.3% of the total number of boulders), ~17 m3 at Reykjanestá 429 

(~0.8%), ~68 m3 at Katlahraun (~1.1%) and ~41m3 at Selatangar (~0.5%). The volume of 430 

transported boulders was higher between 2016 and 2017 than the previous year, with ~1081 m3 431 

at Kerling (~4.8%), ~100 m3 at Reykjanestá (~4.8%), ~153 m3 at Katlahraun (~ 2.4%) and 432 

~103 m3 at Selatangar (~1.3%). Between 2017 and 2018, ~665 m3 of boulders were transported 433 

at Kerling, ~54 m3 at Reykjanestá, ~69 m3 at Katlahraun and ~33 m3 at Selatangar. This 434 

corresponds to ~3% of the total number of boulders in the boulder ridge at Kerling, ~2.6% at 435 

Reykjanestá, 1.1% at Katlahraun and 0.4% at Selatangar. Finally, the greatest changes occurred 436 

during the last monitoring period (2018-2019) with ~369 m3 of moved boulders at Reykjanestá 437 

(~17.6%), ~354 m3 at Katlahraun (~5.6%) and ~141 m3 at Selatangar (~1.7%). (Fig. 6a and 438 

6b). 439 

The successive DEMs and orthophotos also helped to identify the start and end positions 440 

of n = 988 recognizable boulders from one survey to the next, hereafter referred to as 441 

transported boulders. Between 2015 and 2016, n = 123 boulders were transported (i.e., n = 31 442 

at Kerling, n = 35 at Reykjanestá, n = 33 at Katlahraun, and n = 24 at Selatangar), n = 360 443 

boulders between 2016 and 2017 (i.e., n = 115 at Kerling, n = 73 at Reykjanestá, n = 83 at 444 
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Katlahraun, and n = 89 at Selatangar), n = 281 boulders between 2017 and 2018 (i.e., n = 83 at 445 

Kerling, n = 50 at Reykjanestá, n = 50 at Katlahraun, n = 98 at Selatangar), and n = 224 boulders 446 

between 2018 and 2019 (i.e., n = 39 at Reykjanestá, n = 108 at Katlahraun, n = 77 at Selatangar). 447 

We consider the distance between these two positions as a marker of boulders’ movement, but 448 

these vectors should not be interpreted as the true trajectories of the CDBs. Boulders can indeed 449 

experience multiple movements during the same winter period, especially if it is characterized 450 

by several storm events (Autret et al., 2016a). 451 
 452 
Fig. 6. Summary of transported boulders at each site between 2015 and 2019 expressed in absolute volume (m3) 453 
(a) and relative volume of the total accumulation (%) (b). Boulder mass (kg) (c), elevation above sea level (m) (d) 454 
and inland distance from the cliff-top before transport (m) (e) are also shown. 455 
 456 

The mass, the elevation and the inland distance of the transported boulders are 457 

summarized in Fig. 6c and 6e. There is a statistically significant difference between mean 458 

transported boulder masses (mean = 1.47 tons, σ = 2.66 tons) between sites, with significantly 459 

heavier transported boulders at Kerling compared to the other sites (one-way ANOVA p<0.001; 460 

post hoc Tukey HSD tested significance at the p<0.001 level). The heaviest boulders were all 461 

moved at Kerling (i.e., 29 tons between 2017 and 2018, 24 tons between 2015 and 2016, 22 462 

tons between 2016 and 2017), but regardless of the year, no significant interannual difference 463 

in averaged transported masses is observed at this site (p>0.3). Eastwards of Kerling, more 464 

variability in transported CBDs is observed. The movement of the heaviest, and statistically 465 

heavier boulders in average than other years (p<0.001), were recorded between 2016-2017 in 466 

Katlahraun or 2018-2019 in Selatangar and Reykjanestá.  467 

In average, CBDs are found at 7.28 m asl (σ = 1.97 m) (Fig. 6d), but in contrast to 468 

boulder mass, the averaged elevation of the transported boulders shows a statistically 469 

significant difference between all sites (one-way ANOVA p<0.001; post hoc Tukey HSD tested 470 

significance at the p<0.001 level). This is due to major topographic variabilities between all 471 

sites. Moreover, interannual variability in transported CBDs elevations varies greatly from one 472 

site to another. While transported CBDs elevations between 2015 and 2019 remain similar at 473 

Selatangar (p>0.19), transported boulders between 2016-2017 and 2017-2018 were higher than 474 

between 2015-2016 at Kerling (p<0.05). Statistically, averaged transported boulder elevations 475 

were higher (and at similar elevations) between 2016-2017 and 2018-2019 at Reykjanestá. 476 

Compared to these two periods at this southernmost cliff, transported boulder elevations were 477 

significantly lower between 2015-2016 and 2017-2018 (p<0.001). At Katlahraun, CBDs have 478 

been moved at higher elevations between 2018-2019 (p<0.001), and similarly to Reykjanestá, 479 

the averaged elevation of the moved boulders increased between the first two years of the 480 

surveys, followed by a decrease between 2016-2017 and 2017-2018, while an increase in 481 

transported boulder elevations is observed during the last year.  482 

At Kerling, Katlahraun, and Reykjanestá (at this later site, the averaged boulder distance 483 

relative to the cliff edge are significantly shorter than other sites (p<0.001)), boulders were 484 

moved from the supratidal platforms to the boulder fields (including the ridges). It was not the 485 

case at Selatangar, the higher site, where transport was more limited to the cliff-top platform 486 

and the face of the boulder ridges. The inland distance of the boulders before transport was of 487 

the same order of magnitudes between 2015 and 2019 at Selatangar and Kerling, except at 488 

Katlahraun and Reykjanestá where significant increases of ~41% (p<0.001) and ~20% (p<0.05) 489 

are observed, respectively, at the end of the monitoring period (Fig. 6e). 490 

Fig. 7 summarizes the raw transport directions. A large directional spreading in 491 

transported boulders is observed, both on a single site during a single period but also between 492 

each period. A majority of boulders was transported inland, which is consistent with the 493 

theoretical direction of wave-generated flows to the coast (60.7% at Kerling, 59.4% at 494 

Reykjanestá, 59.2% at Katlahraun and 59.4% at Selatangar). Seaward (22.3% at Kerling, 24.4% 495 
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at Reykjanestá, 27% at Katlahraun and 25.7% at Selatangar) and longshore transports (17% at 496 

Kerling, 16.2% at Reykjanestá, 13.8% at Katlahraun and 14.9% at Selatangar) are less 497 

important, suggesting deviated or reflected flows just as competent (Fig. 8a).  498 

There is a slight difference in mass –several tens of kilos for all sites– between the three 499 

transport directions (Fig. 8b). The same applies for the inland distance of the boulders before 500 

transport. Boulders transported seaward were generally located further inland than inland and 501 

longshore transported boulders (Fig. 8d). On the other hand, there is an inverse relationship 502 

between the length of transport and the normalized transport direction (Fig. 8d). Inland 503 

transport is longer than longshore transport by factors 1.5 to 3 depending on the site, and 504 

longshore transport is slightly longer than seaward transport. 505 
 506 
Fig. 7. Boulder transport directions relative to their initial location along the cliff-top at each site (a to d) between 507 
2015 and 2019. The bin color scale indicates boulder masses (in tons), and the blue/green background shades in 508 
the roses represent seaward and inland transport, respectively.  509 
 510 
Fig. 8. Normalized CTSD transport orientation analysis between 2015 and 2019 (a). Panels (d) and (d) represent 511 
transported boulder mass (kg.), distances from cliff-top (m) and length of boulder transport (m) relative to their 512 
initial location (inland, longshore, seaward).   513 
 514 

4.2 Storm analysis over the survey period (2014-2019) 515 

 516 

The wave climate along the southwestern coast of Iceland follows a strong seasonal 517 

cycle punctuated by lows (summer) and highs (winter) (Fig. 9a and 9b). Between June 2014 518 

and April 2019, the monthly averaged significant wave height (Hs) was 2.2 m (σ = 0.9 m) 519 

offshore Grindavík (monthly Hs98% = 4 m), with a mean peak period of 10.3 s (σ = 1.1s). During 520 

winter months (Dec., Jan., Feb., March), the monthly–averaged values of Hs and Tp increases 521 

to 3.15 m (σ = 0.6 m) and 11.4 s (σ = 0.7 s), respectively. The highest Hs reached 11.4 m (Tp 522 

= 16.8 s) on March 16, 2015. March 2015 was one of the most energetic months with monthly 523 

averaged Hs reaching above 4m (monthly averaged Tp = 12.1 s), but globally mean Hs values 524 

have been slightly higher in February 2018 (4.1 m, Tp = 12.04 s). These two months were 525 

therefore characterized by waves reaching more than a meter above the maximum monthly–526 

mean value observed during the winter of 2015-2016 (Hs = 3.1 m in March). 527 
 528 
Fig. 9. Time series of corrected 6-hourly Hs modelled offshore Grindavík (a) (grey lines) and hourly observed Hs 529 
at the Grindavík buoy from 2014 to 2019 (b). Monthly moving averages of observed (green line) and modelled 530 
(blue line) are also shown in (a) and (b). Storms are detected when Hs > 99th percentile Hs (thick dashed black 531 
line, a-b). Their duration is proportionally illustrated with bubbles in panels (a) and (b), and is calculated as the 532 
time spent above the 95th percentile Hs (thin dashed black line) on either side of the peak storm. Water levels (WL) 533 
at Sandgerði (hourly) are shown in (c) for 2014-2019. WL at the peak Hs during each storm are plotted as diamond, 534 
whereas the most extreme concurrent event is indicated by circles at the maximum WL during each storm event. 535 
Residual surge is indicated as a blue line. 536 

 537 

Using the 1% exceedance Hs as a critical threshold for storm occurrence (Hs99% = 7.6 538 

m) and the lower secondary threshold Hs95% as the trigger and end time of each event, 539 

observations show a total of 85 storms in southwest Iceland, offshore Grindavík, between 540 

December 1994 and May 2019. These storms (~3.5 storms per year) lasted 28h on average with 541 

mean significant wave heights (Hs) of 6.9 m ±0.7m. During the survey period (2014-2019), 22 542 

distinct storms have been detected (~4.4 storms per year). Averaging 31 hours ±18h and lasting 543 

at least 17h, these events therefore lasted more than a tidal cycle and potentially had varying 544 

coastal impact intensities over the course of up to ~4 consecutive days (e.g., March 5, 2015). 545 

Most storms (8 events) occurred in winter 2014-2015 with a mean duration of 36 hours (mean 546 

Hs = 7.1 m and Tp = 14.2 s, mean peak Hs = 9.3 m and Tp = 16.7 s) (Table 2). Unfortunately, 547 

no detailed topographic measurements were carried out in 2014 and therefore we cannot 548 
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quantitatively address the morphogenic impacts of the 2014-2015 winter storms on the boulder 549 

activation. In winter 2015-2016, 3 storms occurred under slightly less energetic conditions 550 

(mean peak Hs = 8.7 m and Tp = 15.7 s). Earlier events are observed in the following storm 551 

seasons. A total of 6 storms occurred between October 2016 and February 2017 with similar 552 

storm characteristics (mean peak Hs = 8.3 m and peak Tp = 15.5 s). Only 3 storms impacted 553 

the coast in winter 2017-2018 (mean peak Hs = 8.8 m and Tp = 15.9 s). The following period 554 

(2018-2019), the only 2 storms recorded peaked at low tide (<–0.8 m), even though a 555 

particularly high tide (2.2 m) occurred during the February event.  556 

 557 
Table 2 558 
Storm characteristics during the survey period (2014–2019) on the southwest coast of the Reykjanes peninsula. 559 
Wave statistics (Hs and Tp) are derived from offshore observations at the Grindavík buoy. Observed water levels 560 
(referenced to mean sea level) were acquired at the Sandgerði tide gauge. 561 
 562 

Storm 

#  

date/time 

at peak event 

Max. 

Hs (m) 

Max. 

Tp (s) 

Mean 

Hs (m) 

Mean 

Tp (s) 

Duration 

(h) 

Water level 

(m) 

Max. water 

level (m) 

Time interval 

between peak 

storm and max. 

water level (h) 

1 2014–12–09 12:00 7.9 18.5 6.9 14.9 25 -0.9 1.6 8 

2 2015–01–08 09:00 8.4 17.2 6.8 14.1 48 1.4 1.8 1 

3 2015–01–19 09:00 9.3 15.9 6.9 13.8 32 -0.2 1.9 21 

4 2015–02–18 16:00 9.2 16.8 7.1 14.2 19 0.6 1.7 2 

5 2015–03–05 07:00 8.6 16.7 6.5 14.0 94 1.5 1.7 1 

6 2015–03–10 21:00 9.1 15.3 6.8 14.1 25 1.7 1.7 0 

7 2015–03–14 11:00 10.7 16.3 7.8 14.3 35 0.9 1.0 11.5 

8 2015–03–16 08:00 11.4 17.1 8.1 14.5 20 -0.7 1.2 5 

9 2015–12–31 09:00 7.9 15.5 6.3 14.0 26 1.1 1.3 0.5 

10 2016–03–12 14:00 8.5 15.5 7.0 13.1 17 -1.9 1.9 6 

11 2016–03–14 02:00 9.5 16.0 7.2 14.6 23 -0.9 1.7 4 

12 2016–10–03 14:00 7.8 16.0 6.3 13.9 28 -1.4 1.8 7 

13 2016–10–20 01:00 8.6 15.1 6.6 13.3 31 -1.0 1.9 8 

14 2016–12–13 19:00 8.8 15.4 6.4 13.4 19 1.4 2.1 11 

15 2016–12–27 20:00 8.7 15.6 7.3 13.9 46 0.3 1.7 10 

16 2017–01–21 00:00 7.5 14.0 6.4 12.7 20 0.7 0.8 2 

17 2017–02–07 07:00 8.4 16.7 6.8 13.3 66 -0.4 1.6 46 

18 2017–11–05 20:00 8.2 14.9 6.5 13.4 29 1.9 2.2 11 

19 2018–01–09 13:00 9.0 15.7 6.9 14.0 21 1.0 1.4 1 

20 2018–02–24 07:00 9.2 17.0 7.6 13.9 28 -0.7 1.2 7 

21 2018-12-11 16:00 7,6 13.5 6,5 13 21 -0.8 1.3 8 

22 2019-02-22 01:00 9,2 16.6 7,6 15 18 -1.7 2.2 7 

 563 

A statistical analysis based on the joint occurrence of storms –defined as energetic wave 564 

events–, and water levels at Sandgerði was conducted to determine favorable conditions 565 

associated to extreme water levels capable of overtopping the cliff top. During the joint time 566 

series of storm events (2011-2019), 34 storms have been detected. Maximal tidal range during 567 

spring tides is ~4.5 m to 5 m. The maximum surge level recorded is about 0.66 m (99% surge 568 

= 0.21 m). Peak water levels reached the 99th percentile value (99% WL = 1.81 m) at least 569 

during one storm each year since January 2015, but the timing of the storm peak was not always 570 

synchronized with a high tide level (Table 2). Most peak storms occurred within ±6 hours of 571 

the highest water level (53%), and about 21% of events occurred within ±1h. In the last decade, 572 
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critical extreme combination of both high Hs and high water levels at the same time occurred 573 

only once, on March 10, 2015 (Fig. 9c). 574 

Multivariate analysis and copulas were used to calculate the joint probability of Hs and 575 

water levels. Despite the short duration of the joint time series (8 years) –and acknowledging 576 

that copula model parameters depends on the length of observations (Sadegh et al., 2018)–, the 577 

best copula (Fig. 10a) describing the correlation structure between the peak storm (max Hs) 578 

and the highest water level is the Raftery copula (RMSE = 0.1098) (Nelsen, 2006). Fig. 10a 579 

shows the absence of correlation between both variables, but the joint probability contours 580 

indicate some variability in storm events characteristics. For values of Hs slightly above the 581 

detection threshold (7.5-8 m), joint probability contours are nearly vertical, indicating that these 582 

storm wave conditions can be observed under varying water levels. Moreover, storms during 583 

which water levels overpass the 99th percentile (1.82 m) are not uncommon, and they are mostly 584 

associated with Hs≲9.5 m. With increasing significant wave height above 9.5 m, lower rates 585 

of increases in joint probability (larger gaps between isolines) are associated with a lower 586 

variability in water levels (e.g., for a joint density probability of 0.8, storms associated with 587 

Hs>9.5 m would occur above the 99th percentile of WL). Therefore, different configurations of 588 

events (Hs/WL) can have similar non-exceedance probability. For instance, a storm with high 589 

waves combined with low water levels (e.g., storm #11) can have a similar probability of 590 

occurrence than a less energetic storm event with almost twice the water level (e.g., storm #18). 591 

It is interesting to note that the last storm recorded, with Hs = 9.2 m and WL = 2.2m, has the 592 

highest joint probability (p = 0.74). 593 

These results show that extreme events can yield the same return period (here shown in 594 

probability space only) while potentially inducing different morphogenic impacts on the coast. 595 

Despite the displacement of a significant volume of boulders during the survey period, the 596 

storms and the wave climate observed during the 2014-2019 period were not extreme compared 597 

to the whole storm history along the southwestern coast of Reykjanes Peninsula since 1948 598 

(Fig. 10b). Storms with energetic waves (Hs>10 m) lasted up to about a week (e.g., in January 599 

1993 and 2002). Major coastal hazards have been observed under shorter but more intense 600 

storms (storm duration <3 days and Hs>12 m) in 1990 and 1967 (Fig. 10b), during which 601 

coastal floods, damaged ships and also moving boulders have been observed (Geirsdóttir et al., 602 

2014). 603 

 604 
Fig. 10. The Raftery copula (a) shows the bivariate dependence structure of maximum significant wave height 605 
(Hs) and highest water levels observed during a single storm in southwest Iceland between 2011 and 2019. The 606 
copula isolines in (a) are plotted over data space, and all points represent observations. In (b), the density plot 607 
shows the duration (hours) and max. Hs of each detected storms between 1948 and 2019. Two of the most extreme 608 
storms in southwest Iceland during this period (Geirsdóttir et al., 2014) are indicated by dark dots (storms of 1967 609 
and 1990). Green dots and colored diamonds represent the storms detected between 2014 and 2019. Diamonds (a) 610 
and (b) show the storms with the highest Hs observed in each season during the survey period (2014-2019). The 611 
colorbar represents point density in (b). 612 
 613 
4.3 Long-term storm events analysis (1948-2019) 614 

 615 

Between 1948 and 2019, there has been important variability both in terms of storm 616 

occurrence and storm duration offshore Grindavík. No storm occurred in 2007 and 2009, while 617 

the highest number of storms occurred in 1993 with 11 storms cumulating over ~22 days, 618 

followed by 1962 (9 storms, ~19 days) and 2015 (8 storms, ~13 days) (Fig. 11). Linear 619 

regression performed on both the total number of storms and cumulative days of storms 620 

annually do not show any trend (R2<0.02) (Fig. 11a and 11b). However, the storm behavior 621 

exhibits a strong periodicity, as shown by the 3–year averages in Fig. 11a and 11b. Years with 622 

3 storms or less occurred about 48% of the time but some periods with more, longer storms 623 

annually can be identified, such as between 1987 and 1995. Significant wave heights (Hs) 624 
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during storms also exhibits no particular trend (Fig. 11c), and similarly to the storm behavior, 625 

rather appears to have undergone periods of lows and highs. Overall, Fig. 11 clearly shows that 626 

the monitoring carried out in this study (2014-2019) were not done during the most energetic 627 

period, but rather in a period of diminishing storm occurrence and duration. 628 

 629 
Fig. 11. Storm characteristics between 1948 and 2019 offshore Grindavík. The annual total number of storms (a) 630 
and duration (in days) (b) are shown with a 3-points moving average (solid lines). The linear regressions are 631 
plotted as dashed lines in panels (a) to (c). Wave characteristics during storms are shown in (c): mean Hs, mean 632 
peak Hs and maximum Hs during storms over a year are shown by khaki, green, and blue solid lines, respectively 633 
(circles represent the values in 2008). 634 

 635 

The wavelet spectral analysis performed on the total storm duration (cumulative days 636 

over a year), mean storm duration and 99.8th percentile of Hs allows a more in-depth 637 

understanding of the storm variability, periodicity and transient dynamics over time. The 638 

wavelet power spectrums (left panels on Fig. 12a to 12c) show the frequency domain (y axis in 639 

period cycles) and the time dimension with areas of higher (pink) and lower (blue) power. The 640 

average spectral power exhibits a strong peak between 2 and 5 years for all three variables. 641 

This indicates that storm climate alternates between periods characterized by longer storms 642 

associated with more extreme wave heights, and somewhat calm periods with shorter storms 643 

on a timescale of 2 to 5 years. The alternating presence of warmer areas in the wavelet power 644 

spectrum (left panels on Fig. 12a to 12c) roughly between 1950 and 1965, 1975 and 1990, and 645 

2005 and 2015 (>95% significant) also suggests that this periodicity is not stationary, which 646 

implies that the storm climate also alternates between periods of stability and periods of strong 647 

variability on a timescale of about 10 to 15 years. 648 
 649 
Figure 12. Wavelet power spectrums (scalograms on the left) and averaged wavelet power over each frequency 650 
(right column), for the total number of days of storms (a), the mean storm duration annually (b) and the extreme 651 
wave height annually (99.8th percentile Hs) (c). The color bars on the right of the scalograms indicate power 652 
intensity. Black contours on the scalograms indicate the 5% and 10% significance levels, and the black vertical 653 
curves indicate the border of the cone of influence. 654 
 655 
5. Discussion 656 
 657 

5.1 Temporal frequency of cliff-top boulders movements in SW Iceland 658 

 659 

The first finding of this 6-years monitoring is that cliff-top boulders were annually and 660 

substantially reworked. In comparison, between 2012 and 2017, pluriannual cliff-top boulder 661 

activation in Brittany was very limited, with no boulder displacements for certain years (Autret 662 

et al., 2018). In SW Iceland since 2014, hydrodynamic processes inducing wave overtopping 663 

the cliffs occurred each year on every study sites. These processes are usually described to be 664 

related to extreme storm wave events (Bressan et al., 2018; Hansom et al., 2008; Kennedy et 665 

al., 2017; Watanabe et al., 2019), generally combined with high spring tide in a macrotidal 666 

environment (Fichaut and Suanez, 2011; Autret et al., 2016a, Cox et al., 2018a). In the case of 667 

SW Iceland, such extreme meteo-oceanic conditions are not required to generate boulder 668 

displacements at the top of the cliffs. Indeed, the long-term analysis of morphogenic events 669 

combining extreme storm waves and high tide levels, showed that the 2014-2019 period was 670 

rather less impacted compared to other years, such as winter 1990 and 1967. Only one event 671 

that perfectly paired extreme waves and high spring tide levels was observed in November 5, 672 

2017 (storm #18). In details, our results highlight a significant interannual variability in boulder 673 

movement is observed. While in 2015-2016, 2016-2017, and 2017-2018, there is a good 674 

correspondence between storm frequency/duration (Fig. 9b), and the global volume of boulder 675 

displacements at each site (Fig. 6a and 6b), this is not the case for the winter of 2018-2019. 676 
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During this period, there was only one storm inventoried in February with high spring tide (Fig. 677 

10a), while the volumes of displaced boulders were larger over the entire survey period (Fig. 678 

6). In this case, it is not the frequency of winter storms that seems to have been the determining 679 

parameter for the movement of the boulders, but the intensity of an extreme event combining 680 

energetic waves and very high spring tide levels. Therefore, the interannual variability in 681 

boulder activation, or the correspondence between the morphogenic events frequency/intensity 682 

(i.e., occurrence of joint events combining storm wave and high spring tide level) and the 683 

volume of displaced boulders, would need more detailed analysis of nearshore and coastal 684 

hydrodynamic processes. As it stands, this monitoring based on annual survey does not allow 685 

us to answer this question, which also refers to the question of storm wave thresholds (Almeida 686 

et al., 2012; Grieco and DeGaetano, 2019), the efficiency of processes combining storm waves 687 

and a spring tide (Harley, 2017), or the impact of repeated low-energy storms vs. a single 688 

extreme storm event (Ferreira, 2005). As seen on Fig. 3c, cliff overtopping can occur with 4 689 

m-high waves. Increasing the monitoring frequency of CBDs to a monthly basis, or even at the 690 

event scale, would help to better understand the various hydrodynamic conditions that generate 691 

boulder movement. 692 

In addition, this survey shows that the interannual displacements of boulders at the four 693 

monitored sites show the same morphological signature both in terms of the total volume of 694 

boulders displaced, as well as in terms of the volume as a percentage of the global volume of 695 

the ridges (Fig. 6a and 6b).  We can also note that globally, the mass of the transported boulders, 696 

as well as the altitude and the inland distance of these displacements, is proportionally the same 697 

for the four sites from year to year of monitoring (despite the lack of data for the Kerling site 698 

in 2018-2019) (Fig. 6c to 6e). 699 

Globally, these results confirm the extremely stormy and morphogenic context of the 700 

meteo-oceanic forcing that impacts SW Iceland at these sub-polar latitudes. This is consistent 701 

with the fact that this coast faces the most energetic wave climate in the North Atlantic Basin 702 

(Betts et al. 2004; Ardhuin et al., 2019). Indeed, based on atmospheric condition analysis 703 

between 1931 and 1991, Schinke (1993) showed this zone of the north Atlantic basin (up to 704 

60°-65° latitude) was 5 times more impacted by deep cyclones (≤990 hPa) than temperate 705 

latitudes (45°-50° latitude).  706 

 707 

5.2 Specifities of the boulder displacements in Reykjanes Peninsula 708 

 709 

A prominent characteristic of the cliff-top boulder deposits in the four study sites is their 710 

abundance and disposition of swash-aligned elongated ridges in a context of backstopped 711 

plateforms (Autret et al., 2016b; Etienne and Paris, 2010). As indicated by many authors, this 712 

type of morphological setting concerns imbricated boulders subject to  frequent activation 713 

(Chen et al., 2011; Cox et al., 2012; Etienne and Paris, 2010; Lorang, 2011) which is in 714 

agreement with the results obtained by our surveys. We also indicated that the cliff-top boulder 715 

deposits of the Reykjanes Peninsula experience significant changes over small areas (few 716 

square meters) spread over the seaward side of the ridges without apparent pattern of mobility. 717 

Some coarse boulders (>10 tons and up to 29 tons during our monitoring) are moved while 718 

adjacent finer boulders (<1 ton) are unaffected.  719 

The main dominant boulder transport direction (>50% of boulders displaced whatever 720 

the site and whatever the year) (Fig. 6) is oriented inland. This is in accordance with the fact 721 

that inland-directed transport is generally the most common for boulder displacements due to 722 

the cross-shore dynamic of storm wave facing cliffs.  A significant part of the cliff-top boulders 723 

is transported toward the sea (22% to 27% of the transported boulders, depending on the site) 724 

and may be attributed to backwash processes. As shown by Cox et al. (2019), even if inland 725 

transport is always dominant, seaward boulder transport by backwash also occurred on the 726 
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context of backstopped platforms where boulder accumulations take the form of strongly fixed 727 

imbricated linear ridges. In that context, the energetic bore overtopping the cliff is reflected by 728 

the boulder ridge.  729 

Longshore boulder transports are also observed on our studied sites as shown in Fig. 6 730 

(between 10% and 30% of the displacements depending on the site and the year). This is mainly 731 

due to the oblique direction of the swell at break-up in relation to the orientation of the cliff 732 

edge characterized by a certain angle to the coastline. However, these movements are facilitated 733 

by the litho-morphostructural context of the wave-scour cliff-top platforms which are particu-734 

larly tabular (Autret et al., 2016b; Etienne and Paris, 2010). This morphology is explained by 735 

the surface characteristics of pāhoehoe lava flows whose high fluidity produces smooth and 736 

flat surfaces as the lava solidifies (Fig. 2). In contrast, on the very chaotic and rough granite 737 

wave-scour cliff-top platforms of the old folded and fractured Armorican Hercynian massif 738 

(e.g., Banneg Island in Brittany), the longitudinal transport of boulders is made very difficult 739 

by the presence of multiple trapping microforms (i.e., steps, gullies, diaclases, hollow faults, 740 

etc.) (Fichaut and Suanez, 2011; Autret et al., 2016a). 741 

 742 

5.3 Boulder activation as a proxy of long-term morphogenetic/catastrophic event analysis 743 

 744 

The cliff-top boulders, throught the processes of their activation/displacement, appears 745 

to be an excellent proxy for the study of extreme events in terms of frequency and intensity.  746 

Systematic monitoring is crucial to study their morphodynamics. In addition to the proxy as 747 

geological archive they represent, it is also essential to better consider their movements and 748 

geomorphic interactions in the global high-energy rocky coast system. As shown for other 749 

coastal boulder deposits, repeated boulder activation is an important factor in platforms erosion 750 

(Cullen et al., 2018; Cullen and Bourke, 2018; Etienne, 2007; McKenna, 1990; Swirad et al., 751 

2019; Naylor and Stephenson, 2010; Naylor et al., 2016). From a geomorphological 752 

perspective, further theoretical and field-based developments coupled to continuous boulder 753 

transport and hydrodynamic observations in their natural contexts are needed to help modelers 754 

to adapt existing morphodynamic models –or develop new ones– to cliff-top boulders transport 755 

and related morphological changes. From a coastal risk perspective, they are often used as a 756 

marker of inundation extents. But when activated, they also are a risk factor on its own. For 757 

instance, coastal hazards in southwest Iceland have clearly been associated to concomitant high 758 

waves and high water levels, and the timing of the peak storm (in terms of wave energy), spring 759 

tide and surge is considered as an important risk to coastal population (Geirsdóttir et al., 2014). 760 

Such extreme event can activate boulder movement or man-made CBDs-like structure (such as 761 

breakwaters) and turn them into projectiles against infrastructure. For instance, the 1990 flood 762 

event in Stokkseryri (67 km east of Grindavík), which occured at the highest tide level, is 763 

deeply rooted in the collective memory, especially because of the large rocks that were plucked 764 

from the breakwater and spread around the village. A similar event happened during storm 765 

Dennis (February 11 to 18, 2020) on the coast of Reykjanesbær, 19 km north of our study area 766 

(Fig. 13). 767 

 768 
Figure 13. Boulder displacements during the storm event Dennis (14-15 February, 2020) in Reykjanesbær. 769 
 770 

6. Conclusion 771 

 772 
The southwest coast of Iceland, especially the Reykjanes Peninsula characterized by basaltic 773 

rocky-cliffs, is subject to an intense annual storm activity because it is located in the main track 774 

of the rail of winter atmospheric low-pressure systems that circulate in the Northern Atlantic 775 

basin. The monitoring that has been undertaken since 2014 shows that the CBDs accumulated 776 
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at the top of the cliffs are an excellent proxy to analyze the variability of this North-Atlantic 777 

cyclogenesis. However, the annual frequency of the survey does not allow us to study 778 

morphogenic processes on an episode scale; it nevertheless shows a good correspondence 779 

between the volumes of CBDs displaced and the frequency and/or intensity of storms over the 780 

entire winter period. In the longer term, this monitoring will also allow to evaluate the impact 781 

of storms on the coastal morphological dynamics of rocky coasts in a context of very high 782 

meteo-oceanic energy.  In a context of climate change and the implications that this has on the 783 

modification of hydrodynamic conditions, particularly at lower temperate latitudes, this work 784 

is of great interest. 785 
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