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Refined Rellich boundary inequalities for the derivatives of a
harmonic function

Siddhant Agrawal and Thomas Alazard

ABSTRACT. The classical Rellich inequalities imply that the L2-norms of the
normal and tangential derivatives of a harmonic function are equivalent. In
this note, we prove several refined inequalities, which make sense even if the
domain is not Lipschitz. For two-dimensional domains, we obtain a sharp
LP-estimate for 1 < p < 2 by using a Riemann mapping and interpolation
argument.

1. Introduction

Let d > 1 and denote by T? a d-dimensional torus. Given two real valued
functions h € Wh°(T9) and ¢ € H'/?(T?), it is classical that there exists a
unique variational solution ¢ to the following problem

Agyd=0 inQ={(z,y) € T x R;y < h(z)},

o(z, h(z)) = ((2), (1.1)
lim sup |V, u¢(z,y)| = 0.
Y= =0 ged
We are interested by quantitative estimates for the trace of the normal derivative
On¢ on the boundary 952, where the normal unit vector N € R**! is defined by

N = \/1+1|W|2 (‘Yh) . (1.2)

By construction, the variational solution is such that V, ,¢ € L?(2), so it is not
obvious that one can consider the trace On¢|oq. However, since Ay ¢ = 0, one
can express the normal derivative in terms of the tangential derivatives and prove
that /1 + |VA[20x¢|aq is well-defined and belongs to H =2 (T%).

In this paper, we are chiefly interested by another estimate, known as Rellich
inequality, which plays a key role in the study of boundary value problems in
Lipschitz domains. This inequality shows the equivalence between the L2-norm of
the tangential derivatives and the L2-norm of the normal derivative (see [7), 18], 8,
10}, 4}, 5, 15]): there is constant C' > 0, depending only on d and ||Vh||;« such

that
1

- 2 2 2
& [ o0 dag/waq dng/m(éN(é) do, (1.3)

where do = /1 + |Vh|? dx is the surface measure on 9.
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We are going to prove several estimates which clarifies the dependance on the
domain. Hereafter, given a function f = f(x,y) we use f|,=; as a short notation
for the function x — f(z, h(x)).

THEOREM 1.1. Let d > 1. For all h € C*(T?) and for all { € H(T?), the
traces of the derivatives (Vy,¢)|y=n are well-defined and belong to L*(T%). In
addition, there holds

/ (On¢)(z, h(x))* dz < 40/ (1 + [Vh(@)[*)?[V¢(2)? da, (1.4)
Td Td

and

L V@bl de<an | 4 [9r@PvE@ e (1)

REMARK 1.2. (i) Compared to (1.3), the rather surprising feature of (1.4)
and (|1.5) is the fact that the right-hand sides can be estimated even if h is not a
Lipschitz function. For example, we can write that

/Td<1 + [VRP)?IVC do < 2 VCI7 + 2 V¢ VAL -
In the same vein, if { = h, we obtain from (1.5 that

|(Vau®=nll 2 < 7(IVRI= + IVAIE ).

Notice that the case ¢ = h is interesting for the Hele-Shaw equation (see [6), 3, 14,

9]).

(#4) One could extend the estimates (|1.4]) and ([1.5]) to the cases where h belongs
to W1>°(T?) instead of C''(T) by using the arguments in Necas [13, Chapter 5],
Brown [4] or McLean [11], Theorem 4.24].

Consider now the Dirichlet-to-Neumann operator G(h) defined by
G(h)¢ = (0,6 = Vh-Vo) | _, = T+|VAPOno| .
From the previous inequalities, we immediately obtain the following

COROLLARY 1.3. Let d > 1. For all h € C*(T9) and for all ¢ € H*(TY), there
holds G(h)¢ € L*(T?) together with the estimate

(G(h)§)? / 222
—— 2 dx < 4 1 . 1.
/l‘d 1+ [Vh|? dz < 40 Td( + [VA[%)?IV(]" dz (1.6)
REMARK 1.4. In particular,
(G(h)O)? dz < 40 (1 + [ VA|2.)? / V[ da. (L.7)
Td Td

As said above, compared to (|1.7)), the estimate ([L.6)) is quite surprising in that the
right-hand side of the former might be finite even if VA is unbounded. In this case,
we do not control the L2-norm of G(h)¢ but only a weaker quantity.

In dimension d = 1, we can extend the above result in two directions. The
first one is a stronger version of estimate where the right-hand side does not
involve h at all, while the second version generalizes to LP estimates. If d = 1, we
will denote simply by f, the derivative 0, f.

2



THEOREM 1.5. For all h € C*(T) and for all { € H*(T) we have

(G(h)¢ )2
/T Toh dxg4/T<§dx, (1.8)
and
<2 2
s dz < 4/T(G(h)<) de. (1.9)

As a corollary, one can get a surprising geometric estimate.

COROLLARY 1.6. Denote by k the curvature of 02 and by 0 the angle the
interface 02 makes with the x-axis, defined by

h

k=0, | —— , 0 =arctan(hy).
<\/1 +h§> (he)
1G(R)kll -1 < 2010zl 12 -

PROOF. Notice that & = hy,/(1 + h2)3/2. Since G(h) is self-adjoint for the
L2-scalar product, for any function ¢ € H'(T), we deduce from (1.8) that

/TwG(h)mdx:/TmG<h)¢dxg ([F(l“‘hi)ﬁdx)é </T(Cf(f)é)zdm)é
§2</ <th2>d”C);”*"w”LF?(/Teidw)é||sam||L27

and the result follows. O

Our final result extends (1.8) and (|1.9) to the LP-setting. In dimension d = 1,
the normal and tangential unit vectors are defined by

Then, there holds

1 —h 1 1
- (M) = , 1.10
«/1+h§< 1 > V1+h2 <hz) (1.10)
and the arc length measure on 02 is do = /1 + h2 dz.

THEOREM 1.7. For all 1 < p < 2, there exists a constant C, > 0 such that, for
all h € CY(T) and for all ¢ € HY(T), if ¢ is defined by (1.1)), then the following
two inequalities hold:

o (1+h2)=
and
|8T¢|p p o\ =1
—————do <(, |Onol" (1 + hz) = do. (1.12)
o0 (1+h2) = 0

REMARK 1.8. The estimates do not extend to p = 1, as can be seen by assuming
that h = 0. Indeed, if h = 0 and p = 1, then

P
/ %da:/ [HO,C|do / 0roP(1+h2)"T do*/ 0:¢| da,
o0 (1+h2) = T 0% T

where H is the periodic Hilbert transform (see (3.4)) and hence we see that the
estimates do not hold for p = 1, since H is not bounded on L!(T).
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2. Refined Rellich estimates
In this section we prove Theorem and Theorem
2.1. Proof of Theorem [1.1]

The proof is decomposed into four steps. We start by proving the quantitative
estimates and under the additional assumption that the functions A and
¢ are smooth, so that all calculations will be easily justified. Then, we will consider
in the fourth step the general case by an approximation argument.

Step 1: Reduction to an estimate for G(h). Assume that h and ¢ belong to
Cc (Td). Then is a classical elliptic boundary problem, which admits a unique
solution ¢ € C*(f2) such that V, ,¢ € L*(Q).

By definition of the Dirichlet-to-Neumann operator G(h), there holds

G(h)¢ = (0y¢0 — Vh-V¢) ‘ yen = V1+ |Vh|?0n¢ ’ y=h’ (2.1)
(Let us recall that V denotes the gradient with respect to z € T?.) We see that

(1.4) is equivalent to
(G(h)G)? / 2121 |2
dr <40 1+ |Vh V(|* dx. 2.2
/I‘d 1+|Vh|2 = Td( * PV de (2:2)

Let us show that (1.5)) also follows from ([2.2)). To do so, it is convenient to introduce
the notations

V= (V)ly=n, B = (9y®)|y=n-

Using , we have
Gh)¢=B—-Vh-V. (2.3)

On the other hand, it follows from the chain rule that
V¢ =V(¢|y=h) =V + BVh.
By combining the previous identities, we see that B and V can be defined only in
terms of h and ( by means of the formulas
B G(h)(+ V(- -Vh
1+ |Vhz2

V = V(- BVh. (2.4)

It follows that
(V@) ynl® = ((3y8)]y=n)® + | (V) |y=n|"

=B+ Y (2.5)
_ (G(m)¢)? 2 (Vh-V()?
=1svap TV T TR

This shows that (1.5 will follow directly from (2.2]).
Therefore, both estimates of the theorem will be proved if we show (2.2)).

Step 2: An intermediate Rellich type estimate.
To prove (2.2]), we begin by establishing a Rellich type estimate which allows
to estimate the L?-norm of G(h)¢ in terms of V = (V@) y—p.

PROPOSITION 2.1. There holds

/rd(G(h)C)de < /Td(1+ |Vh|?)|V]? da. (2.6)
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PRrROOF. By squaring the identity we get
(G(h)¢)* =B* —2BVh -V + (Vh- V)2
Since (Vh - V)2 < |Vh|* [V[?, this implies
(G(R)C)2 < B2 — |V> = 2BVh -V + (1 + |Vh*)V2. (2.7)
So,
| Gm0rar < [ @ vmR) P ek

where
R= / (32 — [V|? — 2BV - v) da. (2.8)
Td

We see that, to obtain , it is sufficient to prove that R = 0. It is interesting to
observe that the latter result is a consequence of the classical Rellich identity. It can
be proven by multiplying the equation A, ,¢ = 0 by 0,¢ and then integrating by
parts. We will give an alternative proof, following [I], which consists in observing
that R is the flux associated to a vector field. Indeed,

R= X -Ndo
bl9)
where X : Q — R*! is given by
X = (20040)V: (9,0) — [Vo[).
Then the key observation is that this vector field satisfies div,,, X = 0 since
9y ((8y9)” = [Vo|*) +2div ((8,0)Ve) = 2(9y6)As,y¢ = 0,
as can be verified by an elementary computation. Now, we see that the cancellation

R = 0 comes from the Stokes’ theorem. To rigorously justify this point, we truncate
Q in order to work in a smooth bounded domain. Given a parameter § > 0, set

Qp = {(z,y) € T x R; = <y < h(z)}.

An application of the divergence theorem in g gives that

0:// divm,deyd:U:R—i—/ X -ndo.
Qp {y=-8}

Recall that the potential ¢ satisfies (1.1
lim sup |V, ,é(x,y)| = 0.

Yy——00 zETd

Therefore, X converges to 0 uniformly when y goes to —co. So, by sending [
to 400, we obtain the expected result R = 0 which completes the proof of the
proposition. 0

Step 3: Proof of (2.2)).
Introduce the function e: T¢ — [0, +00) defined by

1
S R

Introduce also the functions
Mz)=1+¢e(z) , Al@)=14+—
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Directly from the identity (2.4]) for B and the elementary inequality
la +b)* < A(w)|al® + Az)|b]? (for any (a,b,z) € R x R? x T?),
we have the pointwise inequalities

V¢ — BVA|? < A V]2 + AB? VA

Vh|?
(1—i|—|V|h|2)2(G(h)C + V(- Vh)?

VA 2 VAl 2
=55 (G(h M———= V(|
Hence, it follows from (2.6 that we have an estimate of the form:

/v(G<h)C)2dx§/ §|V¢)? d,
Td Td

< A|VCP + A

< A|VE? + A2

where

[Vh|?

=12
K 1+ VA2’

_ 2 vh*
§:=(1+|Vh| )<A+M(1+|Vh|2)2 :

Then, we notice that
2
§ < (14 |VA*)(A+AA) < (14 |VA]?) (4 - 6) <20(1 + |Vh[*)2.

On the other hand, we have

VA 1-(2e+&) VA _ 1 1

=1-— )2 = e
K 1+ |[VA]2 1+ [VA2Z =2 1+ VA2

where we used the pointwise inequality (2¢ +¢2) |[Vh|* < 3e|Vh|2 < 1/2. Tt follows

that
}/ (G(h)Q)?
2 Jpa 14 |Vh|?

This implies the wanted result (2.2]) and hence concludes the proof of the theorem.

Step 4: The general case. We now assume only that h € C'(T?) and ¢ €
H(TY).

Introduce two sequences of smooth functions {h, }nen and {(, }nen such that
|hn — hlly1.0c and |G, — €| g1 converge to 0 when n goes to +o00. Then it follows
from variational arguments (see [2] Section 3]) that G(h,, )¢, converges to G(h)¢ in
H~Y2(T4).

On the other hand, it follows from applied with (h, ) replaced by (hy,, ()
that the sequence {G(h,)(n}nen is bounded in L2(T4), indeed

/ (G(hp)C)? dz < 40 (1 + ||th||2m)3/ V¢ |? da.
Td Td

dxg/ 20(1 + | VA2 |VCP da.
Td

It follows that there exists a subsequence {G(hy/)(, } converging weakly in L?(T4).
Therefore, by uniqueness of the limit in the space of distributions, we see that G(h)(
belongs to L?(T%). Given (2.F)), this in turn implies that (On¢)|y=n and (Vg ¢)|y=n
are well defined and belong to L?(T4).
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It remains to prove the estimates. Notice that (G(h,)C,)//1+ |Vh,|? con-
verges weakly in L? to G(h)(/+/1 + |[Vh]|2. Therefore the L2 -norm of the latter is

bounded by
liminf [|(G(hn)Gn)/ VT + [Vinl?|| -

This establishes the estimate (2.2]). Using again (2.5, this in turn implies the
estimate (|1.5)) which completes the proof.

2.2. Proof of Theorem [I.5]

We will do the computations for smooth h and (. We can then extend the
estimates to h € C(T) and ¢ € H*(T) by the same logic as in the proof of
Theorem [[11

We know from the proof of Proposition that the quantity R defined in

is zero, i.e.
/ (B* = V? = 2h,BY) dz = 0.
T

Now as we are in one dimension, the equations (2.4) simplify

hy 1

B= 1+hQC 1 +h§G(h)C’
1 hy

V=1 +th$ 1 +th(h)C'

Substituting it in the above formula and simplifying we get
G (G(h)Q)? | 2haGG(h)C
— =0. 2.
/T{ 1+h§+ 1+ h2 + 1+h2 dr=0 (29)

Now using Young’s inequality ab < %2 + % gives

[CUR G [ Gy L [CWOR 1 B,
T T

Rl S el 5l S ) 2 Jo 1412
1 [ (G(h)¢)? /(1+2h2)z
< = Ak Saa Vi AT A )b
—2/T Trhe 9Tt e 42
L [ (G(h)¢)? /
< =
_2/Tl o +2 [ G d,

The estimate (1.8) now follows. The proof of . follows the same logic.

3. Riemann mapping and Rellich estimates

In this section, we prove Theorem [I.7]

We will do the computations for smooth h and (. We can then extend the
estimates to h € C1(T) and ¢ € H'(T) by the same logic as in the proof of
Theorem [Tl

Note that the estimate (| , which reads

/T<f<+>h<2 dz <4/ Gdx
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can be rewritten as

/ One)* 4 / 2 211

—————do <4 (0r¢) (1 + hz)2 do, (3.1)
oo (1+h2)2 a0
which is the wanted estimate for p = 2. We will deduce that holds for
1 < p < 2 by an interpolation argument. To do so, we will exploit the existence of
a Riemann mapping to reduce the problem to the study of harmonic functions in
a half-space. N

We first consider the 27 periodic version of {2 by considering the domain € =
{(z,y) € R*|3n € Z so that (z — 2nm,y) € Q}. Let P_ = {(z,y) € R*|y <0} be
the lower half plane and let ¥ : P_ — Q be a Riemann mapping. As the boundary
o€ is a Jordan curve, by Carathéodory’s theorem the map ¥ extends continuously
to a homeomorphism on the boundary. Let Z be the boundary value of ¥ and so
Z : R — 0f) is a homeomorphism. We will denote the coordinates on this R by «
so we will use quantities like Z(«), 0, etc.

Now as ¥ is a Riemann map from P_ — €, we see that z — ¥(k(z — ¢))
for £ > 0 and ¢ € R are all the Riemann maps from P_ — Q. Therefore we let
Z(0) = (0,h(0)) and Z(27) = (2, h(27)) = Z(0) 4 27. Now consider ¥y : P_ — ()
given by ¥, (z) = U(z+27) —27. Clearly ¥, is a Riemann map with ¥, (0) = ¥(0)
and so there exists k > 0 so that ¥1(z) = ¥(z + 2m) — 2 = ¥(kz). If k # 1, then
we get a contradiction by plugging in z = % in this equation. Hence ¥; = ¥ and
therefore U (z + 27) = U(z) + 2.

As ¥ is a Riemann map, we see that ¥, # 0 in P_ and as P_ is simply
connected, we see that log(¥,) is well defined if we fix the value of log(W,(—1))
(the choice one makes is immaterial). Now the smoothness of the domain Q implies
that log(¥,) extends continuous to P_ (see Theorem 3.5 in [16]. The proof given
there is for the unit disc but the same proof also works for the half plane). In
particular this means that there exists ¢1,c2 > 0 such that ¢; < |Z,(a)| < ¢o for
all « € R. Now we define g : R — R by

g = Im(log(Z..)). (3.2)

Notice that g is 27 periodic.
As the slope of the interface is bounded, we can define 6(x) = arctan(h,(x)),
where 6 is now the angle the interface makes with the z-axis. Hence we see that

(i0(Re(Z(a))) _ yig(a).
Therefore 1 + h,(Re(Z(a)))? = 1 + tan(g(a))?. We also note that tan(g) is a

bounded function.
Now let ¢: P_ — R be the pullback of ¢, given by

with its boundary value being ¢, i.e. ¢(a) = (o) = ¢(Z(a)). As ¥ is conformal,
we see that ¢ is also a harmonic function and on the boundary we have

(0r6)(Z()) = ﬁ(a@(a) - @(aaa(a)-

8



If n is the unit outward normal of P_, then we also see that

(Ow0)(Z(0) = 7(0,9)(@) = 7z (1DIO(e)

where |D| = v/—A. We can also see that the pullback of the measure do on 99 is
the measure |Z,|da on T. Hence (3.1)) is equivalent to
o N
2l da<4/ 0] (1 + tan?(g))
T |Zo|(1+tan(g)):  ~  Jr |Za|

If F(f) is the Fourier transform of f, then the periodic Hilbert transform H :
L?(T) — L?(T) is given by the relation

dov. (3.3)

F(Hf)(n) = —isgn(n)F(f)(n) for n € Z, (3.4)
where sgn(n) = 1if n > 0, sgn(n) = —1 if n < 0 and sgn(0) = 0. Hence
IDIC] = [HOC]

Therefore we see that is equivalent to the statement that the map H :
L?(T,vda) — L%*(T,uda) is bounded, where the weights u and v are defined
by )
(1+ tan®(g))~=
= A and v = Z0] :
Note that there exists constants ¢z, cq4 > 0 such that c3 < u,v < ¢4 on all of T due
to the properties of tan(g) and Z, mentioned above.

Now we know that H : L'(T,da) — LY*°(T,da) is bounded, where we recall
that f € L1 if we have [£1l1.00 = supsso t{z € T||f(x)] > t}| < oo (see Corollary
3.16 in [12]). Hence by real interpolation of operators with change of measures
(namely, by using Theorem 2.9 from [17] with T =H, po = qo =1, p1 = ¢1 = 2,
M =N =T, dup = dvy = do, dug = vda and dv; = uda) we see that, for all
1 <p<2,

H: LP(T,v""'da) — LP(T,u”"'da) is bounded. (3.5)
Therefore for 1 < p < 2, there exists a constant C,, > 0 such that
DIcP Dl (1 + tan?( p2;1
[ WOy, [ POy,
|Za P71 (1 + tan?(g)) "= |Za|

which is equivalent to
8 p p—1
/ |N7(Mp_1d0 < Cp/ 0rg|”(1+ h3)= do,
o (L+h2) = a0
proving the first statement. The other statement also follows directly as (3.5))
applied on the function |D|¢ instead gets us

uCl? DIC|P(1+ =
/ _ |0a| do<C, / [1DIC]"( anl (9)" d@.

|ZalP 71 (14 tan?(g)) "= |Zal?
which is equivalent to

|0r¢” / 2
—————do <C, onolP(1+h " do.
L ool (14 12)""

This completes the proof.
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