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Abstract

We study an incompressible Darcy’s free boundary problem, recently introduced
in [22]. Our goal is to prove the existence of non-trivial traveling wave solutions and
thus validate the interest of this model to describe cell motility. The model equations
include a convection diffusion equation for the polarity marker concentration and
the incompressible Darcy’s equation. The mathematical novelty of this problem
is the nonlinear destabilizing term in the boundary condition that describes the
active character of the cell cytoskeleton. We first study the linear stability of this
problem and we show that, above a well precise threshold, the disk becomes linearly
unstable. By using two different approaches we prove existence of traveling wave
solutions, which describes persistent motion of a biological cell. One is explicit,
by construction. The other is established implicitly, as the one bifurcating from
stationary solution.
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1 Introduction

In this paper we study the existence of traveling waves for a two-dimensional free
boundary problem modeling the dynamics of a living cell. We consider a coupled
incompressible Darcy’s problem whose novelty lies in the coupling in the boundary
term of the Hele-Shaw model, with surface tension, with a PDE stated on the free
evolving domain, see Section 2 for details.

More precisely, we consider a smooth open bounded set Ω0 in R
2, representing

the portion of the space occupied by an incompressible fluid at time t = 0, and a
given smooth non-negative function c0 = c0(x, y) defined on Ω0, which represents
the concentration of a solute at time t = 0. Then, we seek a family of open sets Ω(t)
of R2 with boundary Γ(t) = ∂Ω(t) and concentration functions c(t, x, y) defined on
Ω(t) solutions of

−∆P = 0 in Ω(t), (1.1a)

P = γκ+ χf(c) on Γ(t), (1.1b)

Vn = VΓ(t) · n = −∇P · n on Γ(t), (1.1c)

∂tc−D∆c = (1− a)∇P · ∇c in Ω(t), (1.1d)

D∇c · n = ac∇P · n on Γ(t), (1.1e)

c(0, x, y) = c0(x, y) in Ω0, (1.1f)

Ω(0) = Ω0, (1.1g)

where κ is the curvature (positive for a circle) of the evolving free-boundary Γ(t),
n is the outward pointing unit normal on Γ(t), the surface tension γ ≥ 0 is a given
constant, χ ≥ 0, D > 0 is the diffusion coefficient, a ∈ [0, 1], and f : R → R is a
given function. We denote by VΓ(t) (resp. Vn) the velocity (resp. normal velocity)
of the moving free-boundary Γ(t).

The first two equations (1.1a) – (1.1b) determine the pressure according to
Darcy’s law, which states that the velocity of the fluid is u = −∇P , incompressibility
of the fluid, that is divu = 0, and Laplace condition; the third one (1.1c) is a
kinematic condition which states that the interface Γ(t) is transported by the velocity
of the fluid −∇P . In (1.1e), a zero solute flux (of c) on the moving boundary Γ(t)
is imposed. The coupling with the unknown c occurs in the boundary term (1.1b).
The time evolution of c follows the advection-diffusion equation (1.1d). We refer to
Section 2 for a biological justification of the model.

Note that in (1.1), we have formally conservation of molecular content, that is
for all time t it holds that

M :=

∫

Ω(t)
c(t, x, y) dxdy =

∫

Ω0

c0(x, y) dxdy. (1.2)

For simplicity, here we will assume that

D = 1.
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We make the following assumptions on f :

f ∈ C1(R+), f is increasing, f(0) = 0, lim
x→+∞

f(x) = L. (1.3)

Remark 1.1. A prototype example, [22], of a function satisfying the previous as-
sumptions is

f(x) =
Lx

α+ x
, (1.4)

where L > 0 is the maximal pulling force and α > 0 is a satuartion parameter.

Let us briefly comment the existing literature concerning (1.1). Moving interface
problems have raised many interesting and challenging mathematical issues. A well
known example is the Stefan problem which describes the dynamics of the boundary
between ice and water. In the biophysical community, we find a large number
of free boundary models to describe tumor and tissue growth, cell motility and
other phenomena. Most of them are formulated through a fluid approach with
surface tension. Some tumor growth models (e.g. [16, 17, 18]) resemble our model
(1.1). However, there is an important difference: tumor growth naturally involves
expanding domain while we consider here incompressible solutions. In the context
of the motility of eukaryotic cells on substrates, various free boundary problems
have been derived and studied, see [2, 28, 4, 26, 5, 6, 27]. In the 1D setting, Keller-
Segel system with free boundaries as a model for contraction driven motility were
introduced and studied in [31, 34, 32, 33]. The models presented in [5, 6] show
some similarities with our model but the coupling between the bulk equation and
the boundary is different. The existence of traveling wave solutions for these models
is proved in [2, 4, 5, 6]. In the context of sharp interface limit some models for cell
motility were studied in [12, 13]. We refer to [36, 24] for a review.

1.1 On traveling waves

A remarkable feature of cell motility is the appearance of sustained movement in
a given direction without external cue, see [1, 36, 19]. This phenomenon, known
as spontaneous polarization, see [9, 15, 29] e.g., is mathematically described by the
existence of traveling wave solutions and is the main subject of this article.

Traveling wave solutions of (1.1) correspond to a fixed shape domain moving by
translation with constant velocity V ∈ R in a given direction u, that is

Ωtw(t) = Ω̃ + tV u, (1.5)

for some speed V and direction of motion u.
Note that the problem is isotropic, so we can assume without loss of generality

that u = ex = (1, 0) and V > 0. In that case, the normal boundary velocity of Ω(t)
given by (1.5) satisfies Vn = V ex · n.

Using the traveling wave ansatz

c = c(x− V t, y), P = P (x− V t, y), Ω(t) = Ω̃ + (V t, 0),

a traveling-wave solution of (1.1) is defined as following, see Section 4.1 for details.
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Definition 1.2. A traveling wave solution of (1.1) is given by a domain Ω̃ ⊂ R
2

with C2,1 boundary Γ̃, a positive real number V and two C∞ functions P, c defined
on Ω̃ satisfying

−∆P = 0 in Ω̃, (1.6a)

P = γκ+ χf(c) on Γ̃, (1.6b)

−∇P · n = (V, 0) · n on Γ̃, (1.6c)

div ((V, 0)c + (1− a) c∇P +∇c) = 0 in Ω̃, (1.6d)

ac(V, 0) · n+∇c · n = 0 on Γ̃. (1.6e)

We begin by observing that the pressure and the concentration have simple
forms.

Proposition 1.3. For traveling wave solutions of (1.1), the functions P and c have
the form:

P (x, y) = p1 − V x, p1 ∈ R, and c(x, y) =
M∫

Ω̃ e
−aV x′ dx′ dy′

e−aV x,

with M ≥ 0.

Remark 1.4 (On traveling waves and Jordan curves). The equations in (1.6) man-
date that the entire fluid bulk flows at a uniform speed, that is ∇P = −(V, 0) in Ω̃.
Traveling wave solutions of (1.1) can be regarded as a family of closed Jordan curves
Γtw(t), which represents the boundary of a domain Ωtw ⊂ R

2 at time t, traveling
with constant shape Γ̃ = ∂Ω̃ and velocity V ex ∈ R

2, i.e.,

Γtw(t) = Γ̃ + tV ex, (1.7)

for t ≥ 0, where Γ̃ is a Jordan curve that is positively oriented (counterclockwise
direction) and is governed by the curvature equation (1.6b). In particular, recalling
the expressions of P and c in Proposition 1.3, the boundary condition (1.6b) takes
the form

γκ(x) = p1 − V x− χf

(
M∫

Ω0
e−aV x′ dx′ dy′

e−aV x

)
on Γ̃. (1.8)

Remark 1.5 (On V and Ω̃). In this problem, the set Ω̃ and the speed V must be
found together and they depend on χ, p1, a, γ and f . The parameter p1 can be
seen as a Lagrange multiplier for the volume of Ω̃, but the problem is invariant by
translation. Any translation of Ω̃ leads to a solution of (1.8), with the same V but
a different value of p1.

1.2 Main results

We establish the following properties of the model (1.1) in Section 2:

|Ω(t)| = |Ω0| ∀t ≥ 0, (1.9)
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M(t) =M(0) =M (1.10)

uC(t) = − χ

|Ω0|

∫

Γ(t)
f(c)n dσ, (1.11)

where uC(t) is the velocity of the center of mass.
Let

R0 =

√
|Ω0|
π
,

that is |BR0 | = |Ω0|, where BR0 is the disk with radius R0. Then, problem (1.1)
with (1.9) and (1.10) possesses a unique radially symmetric solution with both P
and c being constant.

Lemma 1.6. Assume that |BR0 | = |Ω0|. The problem (1.1) with (1.9) and (1.10)
admits a unique radially symmetric solution (c, P ) = (c̃, P̃ ) which has the form

(
c̃, P̃

)
:=

(
M

πR2
0

,
γ

R0
+ χf

(
M

πR2
0

))
=

(
c̃,
γ

R0
+ χf(c̃)

)
. (1.12)

We begin performing a linear stability analysis around the radially symmetric
solution (c̃, P̃ ). Define

χ∗ :=
πR2

0

aMf ′
(
M
πR2

0

) =
1

ac̃f ′(c̃)
. (1.13)

Proposition 1.7. Assume that χ ∈ (χ∗,∞), then the linearized problem around
(c̃, P̃ ) associated with (1.1) has at least one eigenvalue with positive real part. On
the contrary, if χ ∈ [0, χ∗], then all the eigenvalues of the linearized problem around
(c̃, P̃ ) associated with (1.1) have non-positive real parts.

Then, we wonder when equations (1.7) – (1.8) admit traveling waves. Our first
partially result states that no traveling wave exists under a well precise condition
on the parameters.

Proposition 1.8. Assume that the function f in (1.1) verifies (1.3) and

aχsf ′(s) < 1 ∀s ∈ R
+. (1.14)

There does not exist any traveling wave solution to (1.1) in the sense of Definition
1.2.

It is the goal of this paper to prove the existence of non-trivial traveling wave
solutions of (1.1) and thus validate the interest of this model to describe cell motility.
For this purpose we use two different approaches: constructive by fixing the value
of p1 or based on a bifurcation argument by fixing the area, that is R0.

Theorem 1.9 (Explicit by construction). Assume that f satisfies assumptions
(1.3). For all a ∈ (0, 1], γ > 0 and all p1 > χL, there exists a one parameter
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family of traveling wave solutions (Ω̃p1χ , V
p1
χ ) of (1.1), parametrized by χ ∈ (χ∗,∞),

such that P is of the form P = p1 − V x.

With this constructive method we obtain conditions under which the set Ω̃p1χ is
convex, see Theorem 5.1 in Section 5 for more details.

While the proof of this Theorem is constructive, it does not clearly identify what
happens for a cell of fixed volume when the value of χ increases. The next result
solves this problem.

Theorem 1.10 (Implicit by bifurcation). Assume that f satisfies assumptions (1.3).
For all a ∈ (0, 1], γ > 0 and R0 > 0, there exists a one parameter family of traveling
wave solutions (Ω̃R0

χ , V R0
χ ) of (1.1), parametrized by χ ∈ (χ∗,∞) such that |Ω̃R0

χ | =
πR2

0.

With this implicit method we can characterize the nature of the bifurcation, either
pitchfork or saddle node, see Theorem 6.2 in Section 7 for more details.

Remark 1.11. Note that condition (1.14)

aχsf ′(s) < 1 ∀s ∈ R
+,

in Proposition 1.8, and condition χ ∈ (χ∗,∞), that is

aχc̃f ′(c̃) ≥ 1

in Proposition 1.7, Theorems 1.9 and 1.10 cannot hold at the same time.

This work is organized as follows. We give some biological justification and we
present some properties of the problem (1.1) in Section 2. In Section 3, we study the
linear stability of the system and we prove Proposition 1.7. Sections 4 and 5 contain,
respectively, the proofs of Proposition 1.8 and Theorem 1.9. Theorem 1.10 is proved
in Section 6 and in Section 7 we discuss the nature of the bifurcation. Finally, we
give some conclusions. We also provide the reader with three appendices, collecting
some useful facts and bifurcation results.

2 Biological justification and first properties of the

problem (1.1)

In this section we justify, from a biological point of view, the interest of (1.1) and
we derive some properties of the coupled free boundary problem (1.1). We proceed
formally (considering smooth enough solutions) and deduce the conservation of the
area, the marker content as well as a law for the velocity of the center of mass. We
also discuss the existence and uniqueness of a radially symmetric solution to (1.1).
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2.1 Biological justification

Cell motility at the single cell level is a prime example of self-propulsion and one of
the simplest example of active system. Recently, many free boundary models have
been proposed to describe cell motility (see [36] for a review). The model (1.1), first
introduced in [22], is a minimal hydrodynamic model of polarization, migration and
deformation of a living cell confined between two parallel surfaces. In this model, the
cell cytoplasm is an out of equilibrium system thanks to the active forces generated
in the cytoskeleton. The cytoplasm is described as a passive viscous droplet in the
Hele-Shaw flow regime. It contains a dilute solution which controls the active force
induced by the cytoskeleton. Although relatively simple, this two-dimensional model
predicts a very rich range of dynamic behaviors, see [22].

More precisely, in (1.1a) – (1.1c) a Hele-Shaw cell is considered, that is a fluid
droplet of constant viscosity is confined between two parallel plates separated by a
gap. In such a case if u denotes the gap-averaged planar flow and P = P (t, x, y) is
the fluid pressure, we let u = −∇P and rewrite equation (1.1a) – (1.1c) as

u+∇P = 0 in Ω(t),

∇ · u = 0 in Ω(t),

P − χf(c) = γκ on Γ(t),

Vn = VΓ(t) · n = u · n on Γ(t)

Ω(t = 0) = Ω0.

Note that u averages the parabolic Hele-Shaw flow profile, which approximates the
solution to the Stokes momentum-balance equation in thin films.

As anticipated, the novelty of this model lies in the normal force balance on
the boundary Γ(t). The classical Young-Laplace condition is perturbed by an active
traction force, −χf(c)n. This force is defined per unit length and is controlled locally
by the gap-integrated concentration of an internal solute, c = c(t, x, y). We stress
that f(c) can be either negative (pushing outwards) or positive (pulling inwards). In
this regard, any uniform term f0 ∈ R added to f(c) would merely offset the pressure
P by a constant and thus be irrelevant to the dynamics.

The last boundary condition is the kinematic condition, stating that the normal
velocity of the sharp interface, Vn, is given by the normal velocity of the fluid on
Γ(t).

To close the system, the internal solute transport problem is formulated in (1.1d)
– (1.1e). In the bulk Ω(t), fast adsorption on the top and bottom plates (or onto
an adhered cortex) is assumed. With rapid on and off rates, the quasi-2D transport
dynamics are given by (1.1d) – (1.1e) where a is the steady fraction of adsorbed
molecules not convected by the average flow and the effective diffusion coefficient is
assumed to be 1, see [22] for more details.

In (1.1e), a zero solute flux on the moving boundary Γ(t) is imposed. Simply put,
the solute is effectively convected at a slower velocity than that of the fluid. Hence,
its concentration decreases (increases) towards an advancing (retracting) front.

Finally the solute can be any cytoplasmic protein controlling the active force-
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generation / adhesion machinery. In this model, it is assumed that the concentration
c either induces an inwards pulling force or inhibits an outwards pushing force. This
means that f is assumed to satisfy f ′(c) > 0 for any c > 0.

2.2 Area preservation

Using the fluid volume conservation, imposed by incompressibility (1.1a) and kine-
matic condition (1.1c), we deduce that

d

dt
|Ω(t)| =

∫

Γ(t)
Vn dσ = −

∫

Γ(t)
∇P · n dσ = −

∫

Ω(t)
∆P dxdy = 0,

where dσ denotes the infinitesimal length element of Γ(t). Hence, any smooth solu-
tion of (1.1) is area preserving:

|Ω(t)| = |Ω0| ∀t ≥ 0. (2.1)

2.3 Conservation of the marker content

Let M(t) denote the mass of molecular content:

M(t) =

∫

Ω(t)
c(t, x, y) dxdy.

Thanks to the boundary condition (1.1e) and to the kinematic condition (1.1c), we
have

d

dt
M(t) =

∫

Γ(t)
cVn dσ +

∫

Ω(t)
∂tcdxdy

= −
∫

Γ(t)
D∇c · n dσ +

∫

Ω(t)
D∆cdxdy

= 0.

Thus, in (1.1), we have formally conservation of molecular content:

M(t) =M(0) =M. (2.2)

2.4 Velocity of the center of mass

For each t > 0, we define the momentum MΩ(t) of Ω(t) by

MΩ(t) =

∫

Ω(t)
(x, y) dxdy =

∫

Ω(t)
zdz,

where z = (x, y) is the vector coordinate of a point in Ω(t). In particular, MΩ(t) is
a vector containing the x and y-momentum.
The center of mass CΩ(t) of Ω(t) is defined by

CΩ(t) =
MΩ(t)

|Ω(t)| =
1

|Ω0|

∫

Ω(t)
(x, y) dxdy,

9



by using the area preservation (2.1).
The velocity uC(t) of the center of mass CΩ(t) is

uC(t) =
d

dt
CΩ(t). (2.3)

From the incompressibility (1.1a) and the boundary condition (1.1b), we deduce
that

d

dt

∫

Ω(t)
xdxdy =

∫

∂Ω(t)
xV dσ = −

∫

∂Ω(t)
x∇P · n dσ

= −
∫

Ω(t)
div (x∇P ) dxdy = −

∫

Ω(t)
∇P · ∇xdxdy

= −
∫

Ω(t)
div (P∇x) dxdy = −

∫

∂Ω(t)
P∇x · n dσ

= −
∫

∂Ω(t)
(γκ+ χf(c))nx dσ

and similarly
d

dt

∫

Ω(t)
y dxdy = −

∫

∂Ω(t)
(γκ++χf(c))ny dσ

Using that
∫
∂Ω(t) κn dσ = 0, it follows that

uC(t) = − χ

|Ω0|

∫

Γ(t)
f(c)n dσ. (2.4)

Remark 2.1. We recognize that (2.4) represents the external force balance on the
droplet Ω(t).

2.5 Stationary solution

Proof of Lemma 1.6. Equations (1.1a) and (1.1c) imply that any stationary so-
lution to (1.1) with (2.2) satisfies

−∆P = 0 in Ω0, ∇P · n = 0 on ∂Ω0,

hence ∇P = 0 in Ω0.
Consequently, (1.1d) and (1.1e) imply that c satisfies

−∆c = 0 in Ω0, ∇c · n = 0 on ∂Ω0,

and then ∇c = 0 in Ω0 too. From (2.2), we deduce that c̃ = M
πR0

2 , and the expression

of P follows from (1.1b).
In particular, we deduce that the mean curvature in (1.1b) is constant, hence Ω0 =
BR0 since |Ω0| = |BR0 | by assumption.
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2.6 Competition between the effects of surface tension and the

marker

Unlike the classical Hele-Shaw equation with surface tension, the perimeter P(Ω(t))
defined by

P(Ω(t)) =

∫

∂Ω(t)
dσ

is no more a Lyapunov functional for (1.1). Indeed using a classical computation
(see [30]), we obtain

d

dt
P(Ω(t)) =

∫

Γ(t)
κVn dσ

=
1

γ

∫

Γ(t)
P∇P · n dσ − χ

γ

∫

Γ(t)
f(c)∇P · n dσ

= −1

γ

∫

Ω(t)
|∇P |2 dxdy + χ

aγ

∫

Γ(t)
f(c)∇ log c · n dσ.

Note that if we consider the case where f(c) = ±c, we obtain

d

dt
P(Ω(t)) = −1

γ

∫

Ω(t)
|∇P |2 dxdy ± χ

aγ

∫

∂Ω(t)
∇c · n dσ.

Then, the effects of the two terms located in the right side might be opposite and thus
the term χ

aγ

∫
∂Ω(t) ∇c · n dσ might be destabilizing. This leads to some interesting

behaviors, see [22]. In this work we are interested in making part of this informal
statement rigorous.

3 Linear stability analysis. Proof of Proposition 1.7

In this section we perform a linear stability analysis characterizing the steady-state
solution (c̃, P̃ ) given by (1.12). This analysis shows that a global polarization-
translation (motility) mode becomes unstable beyond a critical threshold of solute
activity χ = χ∗, with χ∗ defined by (1.13), that we recall now for the convenience
of the reader

χ∗ :=
πR2

0

aMf ′
(
M
πR2

0

) =
1

ac̃f ′(c̃)
.

Note that the stability analysis only depends on three factors, i.e. a, χ and f ′(c̃).
We first construct the linearized operator A associated to (1.1) around the

circular homogeneous stationary solution (1.12). Then, we study its spectrum and
its eigenvectors. In particular, we prove that

χ ≤ χ∗

is a sufficient condition for all eigenvalues of A to be nonpositive. Finally we discuss
the well-posedness character of A.
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3.1 The linearized problem

We first recall the definition of the Dirichlet-to-Neumann operator I on the open
disk BR0 ⊂ R

2, and then we give the linearized problem associated to (1.1) around
the circular homogeneous stationary solution (c̃, P̃ ) given by (1.12).

Definition 3.1. For ψ ∈ H1(∂BR0), the Dirichlet-to-Neumann operator I is defined
by:

I[ψ] = ∇q · n, (3.1)

where q denotes the harmonic extension of ψ to the disk BR0 , that is

−∆q = 0 in BR0 , q = ψ on ∂BR0 .

By using Fourier series, the Dirichlet-to-Neumann I operator can be defined as
the following linear operator :

Definition 3.2. Given ψ : R/2πZ → R with Fourier series

ψ(θ) = a0 +
∞∑

m=1

am cos(mθ) + bm sin(mθ),

we set

I(ψ)(θ) =
∞∑

m=1

m (am cos(mθ) + bm sin(mθ)) .

Indeed, by the Definition 3.1, we have

q(r, θ) =
∑

m≥0

am cos(mθ)rm + bm sin(mθ)rm for (r, θ) ∈ [0, R]× R/2πZ

where we discarded solutions that diverge at r = 0.
Hence, the Definition 3.2 follows from (3.1) and

∂rq(r, θ) =
∑

m≥0

mrm−1 (am cos(mθ) + bm sin(mθ)) .

We take a perturbation of the free boundary of the form

r = R0 + εϕ(t, θ),

i.e.
Ω(t) = {(x, y) = (r cos θ, r sin θ) ; 0 ≤ r < R0 + ερ(t, θ)} .

Lemma 3.3. The linearized problem associated with (1.1) around the radially sym-
metric solution (1.12) is

d

dt

(
ρ
c

)
= A

(
ρ
c

)
, (3.2)

12



where A is the operator defined on H3 (∂BR0)×H2 (BR0) by

A :

(
ρ
c

)
7→
(

I
[
γ
R0

(
∂2θθρ+ ρ

)
− χf ′(c̃)c

]

∆c

)
,

with the boundary condition

∂rc = −ac̃I
[
γ

R0

(
∂2θθρ+ ρ

)
− χf ′(c̃)c

]
on ∂BR0 . (3.3)

Proof. We perform a formal expansion of the solution (P, c) to (1.1) near the radi-

ally symmetric solution (1.12), c̃ = M
πR2

0
, P̃ = γ

R0
+ χf

(
M
πR2

0

)
:

P (t, r, θ) = P̃ + εQ(t, r, θ) +O(ε2),

c(t, r, θ) = c̃+ εS(t, r, θ) +O(ε2).

For θ ∈ (−π, π] and t ≥ 0, we easily find that

∆Q(t, r, θ) = 0 if r < R0,

∂tρ(t, θ) = −∂rQ(t, 1, θ),

Q(t, 1, θ) = − γ

R0

(
∂2θθρ(t, θ) + ρ(t, θ)

)
+ χf ′(c̃)S(t, R0, θ).

Firstly, the last formula is obtained by using the general formula for the curva-
ture of a curve r = g(θ),

κ(g) =
2 (g′(θ))2 − g(θ)g′′(θ) + g(θ)2

(
g(θ)2 + (g′(θ))2

)3/2 , r = g(θ)

which gives, to the first order in ε,

κ (R0 + ερ(θ)) =
1

R0
− ε

R2
0

(
∂2θθρ(t, θ) + ρ(t, θ)

)
.

The additional term χf ′(c̃)S(t, R0, θ) comes from the linearization of f(c).

The second formula follows from the definition of the normal derivative

∂P

∂n
= ∇P · n =

1
(
g(θ)2 + (g′(θ))2

)1/2

(
g(θ)

∂P

∂r
− g′(θ)

g(θ)

∂P

∂θ

)

along the curve r = g(θ) which gives, to the first order in ε,

∇P · n(R0+ερ(θ)) =
∂P

∂r
er −

ε

R0
∂θρ(t, θ)

∂P

∂θ
eθ,

13



where n(R0+ερ(θ)) is the the unit normal vector to the boundary of

{r = R0 + ερ(t, θ)}, (3.4)

and

er =

(
cos θ
sin θ

)
and eθ =

(
sin θ

− cos θ

)
.

Furthermore, up to the first order in ε, the normal velocity Vn(R0+ερ(θ))
to the bound-

ary of (3.4) is
Vn(R0+ερ(θ))

= ε∂tρ(t, θ).

The linearization of the convection diffusion equation (1.1d) – (1.1e) around
(c̃, P̃ ) is

ε∂tS + ε(a− 1)
(
∇P̃ · ∇S +∇Q · ∇c̃

)
+ ε2(a− 1)∇Q · ∇S − ε∆S +O(ε3) = 0.

Moreover, since c̃ and P̃ are real numbers and neglecting the ε2 convection term, we
obtain the heat equation. A similar computation yields the boundary term, hence
for θ ∈ (−π, π] and t ≥ 0,

∂tS(t, r, θ) = ∆S(t, r, θ) if r < R0,

∂rS(t, R0, θ) = ac̃ ∂rQ(t, R0, θ).

Hence, the result.

3.2 Eigenvalue problem for A
The eigenvalue problem for A is:

A
(
ρ
c

)
= λ

(
ρ
c

)
.

Thanks to the radial symmetry of the problem the spectral analysis of A amounts
to perform a Fourier analysis.

Lemma 3.4. Given (ρ, c) with Fourier series, then (3.2) – (3.3) describes a closed
dynamical system for the cosine (resp. sine) perturbations.

Proof. Let
(
ρ
c

)
=
∑

m∈N

(
ρ̂cm
ĉcm(r)

)
cos(mθ) +

∑

m∈N

(
ρ̂sm
ĉsm(r)

)
sin(mθ),

by linearity of the operator A, we see that

A
(
ρ
c

)
=
∑

m≥0

Am

(
ρ̂cm
ĉcm(r)

)
cos(mθ) +

∑

m≥0

Am

(
ρ̂sm
ĉsm(r)

)
sin(mθ),
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with Am defined by

Am

(
ρ̂
ĉ(r)

)
=

(
I
[
− γ
R0

(m2 − 1)ρ̂− χf ′(c̃)ĉ(R0)
]

(
∂2r + r−1∂r − r−2m2

)
ĉ(r)

)
. (3.5)

Furthermore, the boundary condition (3.3) on ∂BR0 is

∂r ĉ(R0) = −ac̃ I
[
− γ

R0
(m2 − 1)ρ̂− χf ′(c̃)ĉ(R0)

]
.

Remark 3.5 (On symmetry properties). Since the cosine (resp. sine) perturbations
in the dynamical system (3.2) – (3.3) are independent, by rotating the coordinate
system we may consider, without loss of generality, perturbations possessing the
reflection symmetry with respect to the x-axis.
Specifically we assume symmetry of the initial data, namely domain Ω(0) and
c(0, x, y), with respect to x-axis which is preserved for t > 0 according to Lemma
3.4.

Let λ ∈ C. Then, the eigenfunctions of A associated to the eigenvalue λ are of
the form

c(r, θ) =
∑

m≥0

ĉmλ(r) cos(mθ) and ρ(θ) =
∑

m≥0

ρ̂mλ cos(mθ)

(ρ̂mλ, ĉmλ) satisfying

Am

(
ρ̂mλ
ĉmλ

)
= λ

(
ρ̂mλ
ĉmλ

)
,

and

∂r ĉmλ(R0) = −ac̃I
[
− γ

R0
(m2 − 1)ρ̂mλ − χf ′(c̃)ĉmλ(R0)

]
,

where Am is defined by (3.5).
Thanks to the previous remarks, we deduce the following result.

For the sake of clarity, we omit the ·̂ and the subscripts mλ when no ambiguity
occurs.

Lemma 3.6. The problem

Am

(
ρ
c

)
= λ

(
ρ
c

)
,

and

∂rc = −ac̃I
[
− γ

R0
(m2 − 1)ρ− χf ′(c̃)c(R0)

]
,
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is equivalent to the following one

λρ = −∂rP on ∂BR0 , (3.6a)

−∆P = 0 in BR0 , (3.6b)

P =
γ

R0
(m2 − 1)ρ+ χf ′(c̃)c on ∂BR0 , (3.6c)

λc = ∆c in BR0 , (3.6d)

∂rc = ac̃∂rP on ∂BR0 . (3.6e)

3.3 Sufficient conditions for the operator A to have all its

eigenvalues with non-positive real parts

In this paragraph we give a sufficient condition on the non-negative parameters a,
c̃, f ′(c̃) and χ so that all the eigenvalues of A have non-positive real parts.
To do so, let

Q := c− ac̃P

with c and P satisfying (3.6a) – (3.6e). We see that

∆Q = λc in BR0 , (3.7a)
(
1− χ

χ∗

)
P =

γ

R0
(m2 − 1)ρ+ χf ′(c̃)Q on ∂BR0 , (3.7b)

∇Q · n = 0 on ∂BR0 . (3.7c)

We recall that χ∗ has been defined in (1.13).
Here we prove the following result.

Proposition 3.7. Assume

0 ≤ χ

χ∗
≤ 1,

χ > 0 and m ≥ 1. Then, all the eigenvalues of Am have non-positive real parts.
More precisely, for c and P satisfying (3.6a) – (3.6e), then the following equality
holds

λ

∫

BR0

|c|2 dxdy + ac̃λ̄γ(m2 − 1)

R0χf ′(c̃)

∫

∂BR0

|ρ|2 dσ = −
ac̃
(
1− χ

χ∗

)

χf ′(c̃))

∫

BR0

|∇P |2 dxdy

−
∫

BR0

|∇Q|2 dxdy. (3.8)

Proof. We compute

λ

∫

BR0

|c|2 dxdy =

∫

BR0

c̄∆cdxdy

=

∫

BR0

(
Q̄+ ac̃P̄

)
∆Q dxdy

16



= −
∫

BR0

|∇Q|2 dxdy + ac̃

∫

BR0

P̄∆Q dxdy

= −
∫

BR0

|∇Q|2 dxdy − ac̃

∫

BR0

∇P̄∇Q dxdy.

Since P is harmonic and using (3.7b) together with (3.6a), we deduce that
∫

BR0

∇P̄∇Q dxdy =

∫

BR0

div
(
Q∇P̄

)
dxdy

=

∫

∂BR0

Q∇P̄ · n dσ

=
1

χf ′(c̃)

∫

∂BR0

((
1− χ

χ∗

)
P − γ

R0
(m2 − 1)ρ

)
∇P̄ · n dσ

=
λ̄γ(m2 − 1)

R0χf ′(c̃)

∫

∂BR0

|ρ|2 dσ +
1− χ

χ∗

χf ′(c̃)

∫

BR0

|∇P |2 dxdy,

from which the result follows.

Remark 3.8. If we have the strict inequality 0 < χ
χ∗ < 1, and if λ = iw, w ∈ R, is

an eigenvalue of Am, then we must have w = 0. Indeed in such a case both sides of
(3.8) are equal to zero, hence ∇P = 0 in BR0 . Consequently ∆P = 0 and therefore
λ = 0 or c = 0 in BR0 . But, if c = 0 in BR0 , then ρ = 0 on ∂BR0 .

Remark 3.9 (On the case f ′(c̃) ≤ 0). If we consider the negative case for the
function f , i.e. f ′(c̃) ≤ 0, then for any non negative values of a and χ, all the
eigenvalues of A have non positive real parts.

Let λm,p be the p-th real positive root of J ′
m, the derivative of the Bessel function

of the first kind of order m, Jm, see the Appendix (A.8). Then a straightforward
computation gives

Proposition 3.10. Assume that aχ = 0, then the spectrum of the operator A is
{
−m(m2 − 1),−λ2m,p,m ∈ N, p ∈ Z

}
.

3.4 Spectrum of A
In this part we describe in more details the eigenvalues of A. The techniques de-
veloped in this section depend, in part, on expanding solutions of (3.6a) – (3.6e) in
terms of the modified Bessel functions Im(x).

Lemma 3.11. For m ∈ N, the eigenfunctions of Am associated with the eigenvalue
λ ∈ C are (

ρ(θ)
c(r, θ)

)
=

(
ρ̂mλ

ĉmλIm
(
−rλ1/2

)
)
cos(mθ),

17



with 0 < r < R0, θ ∈ (−π, π] and (ĉmλ, ρ̂mλ) ∈ C
2 solutions of

(
λ+

γ

R2
0

m(m2 − 1)

)
ρ̂mλ = −χf

′(c̃)

R0
mIm

(
−R0λ

1/2
)
ĉmλ,

(3.9)
√
λ

2

(
Im−1

(
−R0λ

1/2
)
+ Im+1

(
−R0λ

1/2
))

ĉmλ = λac̃ ρ̂mλ. (3.10)

Proof. In what follows, we only consider solutions that are smooth in r = 0.

Since P satisfies the Laplace equation, solutions have following expression:

P (r, θ) = Amλr
m cos(mθ) for 0 < r < R0, θ ∈ (−π, π],

with Amλ ∈ C.
Consider ρ(θ) = ρ̂mλ cos(mθ), with ρ̂mλ ∈ C. Using (3.6a), we get that

λρ̂mλ = −mRm−1
0 Amλ.

Furthermore, for c(r, θ) = ĉmλ(r) cos(mθ), we have that (3.6c) reads

AmλR
m
0 =

γ

R0
(m2 − 1)ρ̂mλ + χf ′(c̃)ĉmλ(R0),

so that,

λρ̂mλ = − γ

R2
0

m(m2 − 1)ρ̂mλ − χm
f ′(c̃)

R0
ĉmλ(R0). (3.11)

Finally equation (3.6d) yields

(
∂2r + r−1∂r − r−2m2

)
ĉmλ(r) = λĉmλ(r), r < R0, (3.12)

and the boundary condition (3.6e) gives

∂r ĉmλ(R0) = −λac̃ ρ̂mλ. (3.13)

The smooth solutions of (3.12) are known and given by

ĉmλ(r) = ĉmλIm

(
−rλ1/2

)
, r < R0,

with ĉmλ ∈ C and where Im is the modified Bessel function of the first kind of order
m, whose definition is recalled in (A.3) and (A.5).
The result then follows by substituting the expression of ĉmλ(r) in (3.11) and (3.13)
together with the property of the Bessel function

I ′m(x) = (Im−1(x) + Im+1(x)) /2.
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Let Hm be the function defined by

Hm(z) = z1/2I ′m

(
−R0z

1/2
)(

z +
γ

R2
0

m(m2 − 1)

)
+ aχ

c̃f ′(c̃)

R0
mzIm

(
−R0z

1/2
)
.

(3.14)
The eigenvalue equation is Hm(z) = 0, hence we deduce the spectrum of Am.

Lemma 3.12. The spectrum of Am is

sp(Am) = {λ ∈ C s.t. Hm(λ) = 0}.

We can now deduce information on the eigenvalues of A.

Theorem 3.13. For γ > 0, the following dichotomy holds.

(i) If

0 <
χ

χ∗
≤ 1,

then A has zero eigenvalue λ = 0 of multiplicity three, while the other eigen-
values have negative real parts.

(ii) If
χ

χ∗
> 1,

then the operator A has a positive eigenvalue λ > 0.

Proof. Recall that the eigenmode vmλ(r, θ) is defined by

vmλ(r, θ) =

(
ρ̂mλ

ĉmλIm(−r
√
λ)

)
cos(mθ). (3.15)

Proof of (i).
Let us start with the m = 0 mode. Substituting m = 0 in (3.14) gives

H0(λ) =
λ3/2

2
I1(−R0

√
λ). (3.16)

Using (3.9) and (3.10), we see that λ = 0 is associated to the two following eigen-
modes

v100(r, θ) =

(
I0(0)
0

)
=

(
1
0

)
and v200(r, θ) =

(
0
1

)
.

Moreover, rewriting (3.16) as

H0(λ) = −iλ
3/2

2
J1

(
−iR0λ

1/2
)
,

we deduce the other roots of H0, that is λ0k = −x21k < 0, where x1k > 0 is the
k-th zero of the Bessel function of order 1, J1(x). These real-negative roots, λ0k, are
associated with the m = 0 diffusion mode, given by

v0k(r, θ) =

(
J0(x1kr)

0

)
,
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where J0 is the Bessel function of order 0.

Consider now the m = 1 mode. Using (3.14) it yields to

H1(λ) = λ3/2I ′1

(
−R0λ

1/2
)
+ aχ

c̃f ′(c̃)

R0
λI1

(
−R0λ

1/2
)
.

We see that λ = 0 is a root of H1 and, using (3.10), it is associated with the
eigenmode

v10(r, θ) =

(
0
1

)
cos θ.

Let us now look for non zero roots of H1.
Let λ be a positive root of H1, then x = −

√
λ < 0 satisfies

x
I ′1(R0x)

I1(R0x)
− aχ

c̃f ′(c̃)

R0
= 0 . (3.17)

Since

R0x
I ′1(R0x)

I1(R0x)
= R0x

I2(R0x)

I1(R0x)
+ 1,

equation (3.17) rewrites as

R0x
I2(R0x)

I1(R0x)
+ 1− aχc̃f ′(c̃) = 0 . (3.18)

Recalling next the definition of the Bessel function Im,

Im(x) =

∞∑

p=0

1

p!(m+ p)!

(x
2

)m+2p
,

we see that

x
I2(x)

I1(x)
> 0 if x < 0,

thus from (3.18), it follows that if 0 < aχf ′(c̃) ≤ 1, there is no positive root of H1.
Let us next prove that there is no root λ of H1 that belongs to C \ R. By

contradiction, let us assume that z ∈ C\(R ∪ iR) is such that z2 = λ and is solution
of (3.18). Since z̄2 6= z2 and

z
I2(R0z)

I1(R0z)
= z̄

I2(R0z̄)

I1(R0z̄)
,

we get
zI2(R0z)I1(R0z̄)− z̄I2(R0z̄)I1(R0z) = 0.

Using equality (A.7), this leads to z2 = z̄2 hence a contradiction.
From the two previous arguments we deduce that the only non-zero roots of H1

are real and non positive.

20



Consider now the m ≥ 2 mode. Using (3.14), it rewrites as

Hm(λ) = λ1/2I ′m

(
−R0λ

1/2
)(

λ+
γ

R2
0

m(m2 − 1)

)
+ aχ

c̃f ′(c̃)

R0
mλIm

(
−R0λ

1/2
)
.

We see that λ = 0 is a root of Hm. In such a case, since γ > 0, using (3.9) we
deduce that ρ̂m0 = 0. Furthermore, from Im(0) = 0 and (3.15), we get that λ = 0 is
associated with the zero eigenmode

vm0(r, θ) =

(
0
0

)
cos(mθ),

thus λ = 0 is not an eigenvalue for m ≥ 2 and γ > 0.

Let us next look for other roots of Hm.
Let λ be a positive root of Hm, then x = −

√
λ < 0 satisfies

x
I ′m+1(R0x)

Im(R0x)
− aχ

c̃f ′(c̃)

R0

mx2

x2 + γ
R2

0
m(m2 − 1)

= 0 .

Since

R0x
I ′m(R0x)

Im(R0x)
= R0x

Im+1(R0x)

Im(R0x)
+m,

it rewrites as

R0x
Im+1(R0x)

Im(R0x)
+m− aχc̃f ′(c̃)

mx2

x2 + γ
R2

0
m(m2 − 1)

= 0 .

Using that

x
Im+1(x)

Im+1(x)
> 0 if x < 0,

we see that there is no positive root of Hm if 0 < aχc̃f ′(c̃) ≤ 1.
The end of the proof of (i) (the case where λ ∈ C) is a consequence of Proposition 3.7.

Proof of (ii).
Let us now prove (ii). To do so let us exhibit a positive eigenvalue of A. More
precisely, let us expand H1(λ) around λ = 0:

H1(λ) =
λ3/2

2

(
1− aχc̃f ′(c̃) +

1

8
(3− aχc̃f ′(c̃))λR2

0

)
+O(|λ|7/2),

which can be written as

H1(λ) =
λ3/2

2
g(λ) +O(|λ|7/2).

The function g has λ1 = 8(aχc̃f ′(c̃)−1)
R2

0(3−aχc̃f
′(c̃))

as root, which changes sign from negative

to positive as aχc̃f ′(c̃) exceeds 1. Note that λ1 approximates a true eigenvalue of
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A, for aχc̃f ′(c̃) close to 1. In such a case, we can write λ1 = 4
R2

0
(aχc̃f ′(c̃) − 1) +

o(|aχc̃f ′(c̃)− 1|) and its associated eigen-mode is

v1λ1(r, θ) =

(
λ1I1(r

√
λ1)

−χc̃c̃f ′(c̃)I1(
√
λ1)

)
cos(θ)

=

√
λ1
2

(
−λ1r
χc̃c̃f ′(c̃)

)
cos(θ) +O(|aχf ′(c̃)− 1|3/2)

=

√
aχc̃f ′(c̃)− 1

2

( 4
R−02 (1− aχc̃f ′(c̃))r

χ

)
cos(θ) +O(|aχc̃f ′(c̃)− 1|3/2),

where we expanded the Bessel functions for small values of |λ1|.

Note that as aχc̃f ′(c̃) crosses 1, the solute gradient component in v1λ1(r, θ), that
is the first component, changes its sign and v1λ1 becomes unstable.

4 Proof of Propositions 1.3 and 1.8

Proof of Proposition 1.3. Concerning P .
Since Ω(t) = Ω̃ + (V, 0)t, the shape is stationary and using (1.6c) we have

(V, 0) · n− uC · n = −(∇P + uC) · n = 0 in Γ̃,

where uC is the velocity of the center of mass defined by (2.3). Hence,

uC = (V, 0) = V ex.

Let us define ũ in Ω̃ by

ũ = −∇P − uC := ∇Φ,

with
Φ = −P − V x.

Then, we see that

−
∫

Ω̃
Φ∆Φdxdy =

∫

Ω̃
|∇Φ|2 dxdy −

∫

Γ̃
Φ∇Φ · n dσ.

Thanks to incompressibility, we deduce that ∆Φ = 0 in Ω̃. Moreover, using the
stationary shape condition (1.8) we get ∇Φ · n = ũ · n = 0 over Γ̃. Thus,

0 =

∫

Ω̃
|∇Φ|2 dxdy =

∫

Ω̃
|ũ|2 dxdy.

22



In other words, we find that the traveling state is characterized by a uniform flow
of the entire fluid bulk, i.e.

∀t ≥ 0 u(·, t) = −∇P (·, t) = uC = (V, 0) in Ω̃,

hence
P (x, y) = p1 − V x on Γ̃.

Substituting −∇P = (V, 0) in (1.6d) – (1.6e) it yields

div (ac(V, 0) +∇c) = 0 in Ω̃,

ac(V, 0) · n+∇c · n = 0 on ∂Ω̃.

Concerning c.
The fact that

c(x, y) = c1e
−aV x in Ω̃.

follows from Lemma 4.1.

Concerning (1.8).
Working in the reference frame of the moving domain, we substitute the expressions
of P (x, y) and c(x, y) in the normal force balance (1.1b) and we get that the curvature
must satisfy (1.8).

Lemma 4.1. Any non negative solution of (1.6d) – (1.6e) is given by

c(x, y) = c1e
−aV x,

where c1 > 0.

Proof. It is straightforward that e−aV x is a solution of (1.6d) – (1.6e). Assume that
c(x, y) = C1(x, y)e

−aV x is solution of (1.6d) – (1.6e), multiplying (1.6d) by C1(x, y)
and integrating by parts we obtain

∫

Ω̃
∇C1(x, y) ·

(
∇
(
C1(x, y)e

−aV x
)
+ a(V, 0)C1(x, y)e

−aV x
)
dxdy = 0,

hence ∫

Ω̃
|∇C1(x, y)|2e−aV x dxdy = 0,

which implies ∇c1 = 0.
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4.1 Graph formulation and proof of Proposition 1.8

Given γ, p1, a, χ > 0, we look for a set Ω̃, solution of (1.8), in the particular form:

Ω̃ = {(x, y) ∈ R
2 ; xL < x < xR, −h(x) < y < h(x)} (4.1)

for some positive function h(x) defined on an interval (xL, xR) and satisfying:

h(xL) = h(xR) = 0, (4.2a)

h′(xL) = +∞, (4.2b)

h′(xR) = −∞. (4.2c)

Conditions (4.2) have the following meaning. We want symmetric domains Ω̃, hence
we impose (4.2a). We also want smooth boundaries, so we require (4.2b) – (4.2c).
A possible domain is given in the following picture.

We will further fixe the invariance by translation in the ex direction by requiring
that

xL < 0 < xR, h′(0) = 0. (4.3)

Our first task is to write equation (1.8), i.e.

γκ(x) = p1 − V x− χf

(
M∫

Ω0
e−aV x′ dx′ dy′

e−aV x

)
on Γ̃,

with (4.1) – (4.2) in terms of the function h(x). Since the boundary conditions (4.2)
concern the function h and also its derivative h′, it is natural to identify a problem
for which h′ is solution and then find the function h by integration. For this reason,
we change variables.

We first notice that the tangent vector t, the normal vector n and the mean-
curvature κ of Ω̃ are defined by

t(x) = − (1, h′(x))√
1 + (h′(x))2

, n(x) =
(−h′(x), 1)√
1 + (h′(x))2

, κ(x) = − h′′(x)

(1 + (h′(x))2)3/2
.

These quantities can be written easily using the function Y (x) defined by

Y (x) = ex · n(x) = nx(x) = − h′(x)√
1 + (h′(x))2

. (4.4)
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In particular, we have
κ(x) = Y ′(x),

which is consistent with Frenet’s formula n′
x(x) = −κ

√
1 + (h′(x))2 tx(x).

Then, equation (1.8) and condition (4.3) reduce to the following initial value prob-
lem: {

γY ′(x) = p1 − V x− χf
(
c1e

−aV x
)

on (xL, xR),

Y (0) = 0,
(4.5)

where

c1 :=
M∫

Ω̃
e−aV x dxdy

. (4.6)

Taking advantage of the fact that e−aV x only depends on the x-coordinate, we
rewrite c1 in (4.6) as

c1 =
M

2
∫ xR
xL

e−aV xh(x) dx
.

Inverting (4.4), it yields

h′(x) = − Y (x)√
1− Y 2(x)

, (4.7)

integrating by parts, we see that

c1 =
aVM

2
∫ xR
xL

e−aV xh′(x) dx
= − aVM

2
∫ xR
xL

e−aV x Y (x)

(1−Y 2(x))1/2
dx
,

Such a solution has to satisfy the following properties. The boundary conditions
(4.2b) – (4.2c) imply that Y has to verify

Y (xL) = −1 and Y (xR) = 1. (4.8)

We postpone the proof of the existence and uniqueness of a solution verifying (4.8)
to Section 5 (see Lemmas 5.5 and 5.7).

Finally, using (4.7), we recover the function h and then we integrate this relation
on (xL, x).

We recall that the boundary condition (4.2a) requires the function Y to satisfy:

h(xR)− h(xL) = −
∫ xR

xL

Y (x)√
1− Y 2(x)

dx = 0. (4.9)

Proof of Proposition 1.8. We claim that κ is a non-increasing function. Indeed,
let 0 < x1 − x2 ≪ 1. Then, κ(x1)− κ(x2) reads

κ(x1)− κ(x2) = −V (x1 − x2) + χ
(
f
(
c1e

−aV x2
)
− f

(
c1e

−aV x1
))

≃ V
(
χac1e

−aV x1f ′(c1e
−aV x1)− 1

)
(x1 − x2)
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< 0

by (1.14). It follows that the mean curvature is a decreasing function. Suppose by
contradiction that there exists a closed curve ∂Ω̃ whose mean curvature is κ. Since

(
0
0

)
=

∫

∂Ω̃
κn dσ =

∫

Ω̃
∇κdxdy = 2

(∫ xR
xL

h(x)κ′(x) dx

0

)
,

it yields a contradiction with κ′(x) < 0 and h(x) ≥ 0, this proves Proposition 1.8.

5 Proof of Theorem 1.9

This Section is devoted to the proof of Theorem 1.9 and it gives a constructive proof
of the existence of traveling wave solutions of (1.1) when

χ > χ∗ :=
πR2

0

aMf ′
(
M
πR2

0

) .

Here, the constant a ∈ (0, 1] and M is defined in (1.2). Furthermore, R0 > 0 is
the radius of BR0 , where |BR0 | ≡ |Ω0|. We recall that, assuming |BR0 | ≡ |Ω0|, then
Lemma 1.6 assures that problem (1.1) admits a unique stationary solution which
has the form

(
c̃, P̃

)
=

(
M

πR2
0

,
γ

R0
+ χf

(
M

πR2
0

))
=

(
c̃,
γ

R0
+ χf(c̃)

)
.

Hence, the above threshold on χ can be equivalently written as

χ > χ∗ =
1

ac̃f ′(c̃)
(5.1)

(see (1.13) too).
More precisely, we will prove the following result.

Theorem 5.1. Assume that f satisfies assumptions in (1.3). Then, for all a ∈
(0, 1], γ, p1 > χL, there exists a one parameter family of traveling wave solutions
(Ω̃p1χ , V

p1
χ ) ∈ R

2 × R of (1.1) (with u = ex), parametrized by χ such that

χ∗ ≤ χ <∞

and satisfying:

(i) V p1
χ > 0 when χ > χ∗.

(ii) There exists xL, xR ∈ R, with xL < 0 < xR, and 0 ≤ h such that the set Ω̃p1χ is
a convex set with C2,1 boundary of the form

Ω̃p1χ = {(x, y) ; xL < x < xR, −h(x) < y < h(x)},

with h satisfying h′(0) = 0.
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(iii) The normal vector n is the vertical vector (0, 1) at the point m = (0, h(0)) ∈
∂Ω̃p1χ , and the curvature is given by

κ(m) =
p1
γ

− χ

γ
f(c1). (5.2)

(iv) Assume that f statisfies the additional assumption

sf ′(s) ≤ c̃f ′(c̃) ∀s ∈ R
+. (5.3)

Then, V p1
χ → V p1

χ∗ := 0 when χ → χ∗. Furthermore, Ωp1χ∗ is a disk of radius R0 and
the following relation holds

γ = R0


p1 −

πR2
0f
(
M
πR2

0

)

aMf ′
(

M
πR2

0

)


 . (5.4)

Remark 5.2 (On Theorem 5.1). Property (i) guarantees in particular that we
are constructing non-trivial traveling wave solutions (i.e. not stationary solutions).
Property (ii) fixes the natural invariance by translation of the model. Properties
(iii) and (iv) relate the value of the parameter p1 to some geometric property of
Ω̃p1χ namely its area is |Ω̃p1χ | = 2

∫ xR
xL

h(x) dx. It proves that each value of p1 yields
of different traveling wave, see (5.2). In particular, if we let χ → χ∗, this relation
becomes

p1 =
γ

R0
+
πR2

0f
(
M
πR2

0

)

aMf ′
(

M
πR2

0

) , (5.5)

and it suggests that increasing values of p1 correspond to sets with decreasing vol-
ume. It is the case for the prototype example (5.6) of function f .

Remark 5.3. A prototype example of a function satisfying (1.3) and (5.3) is

f(x) =
Lx

c̃+ x
. (5.6)

In this Section we prove the following Proposition, which implies Theorem 5.1.

Proposition 5.4. Assume that f satisfies the assumptions in (1.3). Then, given a,
M and R0 as before, and letting χ as in (5.1), and

p1 > Lχ, (5.7)

there exists V > 0, xL, xR ∈ R such that the solution Y (x) of (4.5) satisfies the
conditions (4.8) and (4.9). Furthermore, for a fixed p1, the speed V converges to 0
when χ approaches the critical value χ∗.

Proof of Theorem 5.1. Proof of (i).
It follows from Proposition 5.4.
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Proof of (ii).
We recall the notation in Section 4.1 so that, thanks also to Proposition 5.4, we set

h(x) =

∫ x

xL

− Y (x′)√
1− Y 2(x′)

dx′ x ∈ [xL, xR].

We also recall the definition of the set Ωχ by (4.1), and that (4.9) implies that
h(xL) = h(xR) = 0.

The boundary conditions (4.8) imply that the normal vector is continuous since
it achieves the values (−1, 0) and (1, 0) continuously at the extremal points (xL, 0)
and (xR, 0). This means that ∂Ωχ is at least C1.
Furthermore, we have κ(x) = Y ′(x) hence Proposition 5.9 implies

0 ≤ γκ ≤ p1 + 4χ+

√
(p1 − 4χ)2 + 2V on ∂Ωχ,

thus Ωχ is convex and ∂Ωχ is C1,1. In turns, (4.5) can be used to show that Y ′, and
therefore κ is Lipschitz continuous so that the boundary ∂Ωχ is C2,1 and satisfies
(1.8).

Proof of (iii).
Finally, since Y (0) = 0, we get that h′(0) = 0, and from (4.5) it follows that the
mean-curvature of ∂Ωχ at the point (0, h(0)) is given by γY ′(0) = p1−χf(c1). When
χ→ χ∗, we have V → 0 and so Y converges to the solution of

γY ′ = p1 −
f(c̃)

ac̃f ′(c̃)
.

In particular Ωχ converges to the set with constant mean curvature 1
γ

(
p1 − f(c̃)

ac̃f ′(c̃)

)
,

that is the ball B

(
O, γ

p1−
f(c̃)

ac̃f ′(c̃)

)
.

Recalling the definition (1.12) of c̃ = M
πR2

0
, we obtain (5.4) and (5.5).

The remainder of this section is devoted to the proof of Proposition 5.4. We first
find the set of parameters for which the points xL and xR satisfying the condition
(4.8) exist. This is done in Section 5.1. The existence of the solution Y is then
given by regularity properties of the problem (4.5). We then fix the parameters p1,
c1 and χ such that xL exists, by considering the solutions of (4.5) for those values
of V such that also xR exists, we will prove, in Section 5.1, that there exists a value
V ∗ > 0 (depending on p1, c1 and χ) such that the condition (4.9) is verified.

5.1 Proof of Proposition 5.4

The difficulty in proving an existence result to (4.5) relies on in the fact that the
domain (xL, xR) is one of the unknown of the problem. Indeed, we need (xL, xR)
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such that condition (4.8) is satisfied.
A preliminary step consists in dealing with the intermediate problem

{
γY ′(x) = p1 − V x− χf

(
c1e

−aV x
)

on (zL, zR),

Y (0) = 0,
(5.8)

for

c1 = − aV M

2
∫ zR
zL

e−aV x Y (x)

(1−Y 2(x))1/2
dx
,

and given
zL < 0 < zR.

We can thus apply the Cauchy-Lipschitz Theorem to say that there exists a unique
solution Y ∈ C2([zL, zR]).

For the sake of clarity, we decompose the proof into two steps. First, we prove
that we can extend the interval (zL, zR) to (xL, xR) such that (4.8) holds (see Lem-
mas 5.5 and 5.7), and then the existence of V > 0 (see Subsection 5.1.2). For both
steps, we will assume (5.1) and (5.7), i.e.

χ ≥ χ∗ =
πR2

0

aMf ′
(

M
πR2

0

) and p1 > χL. (5.9)

5.1.1 The existence of xL, xR

We break the proof in two steps. We first give a sufficient condition for the existence
of xL.

Lemma 5.5. Assume that f satisfies the assumptions in (1.3), and that (5.7) holds.
For all V ≥ 0, there exists xL < 0 such that the solution of (4.5) satisfies −1 <
Y (x) < 0 for all x ∈ (xL, 0) and Y (xL) = −1. Moreover, xL is such that

(p1 − Lχ)−
√

(p1 − Lχ)2 + 2γV

V
< xL < 0,

and we have

Y ′(x) ≥ p1 − Lχ

γ
, ∀x ∈ [xL, 0]. (5.10)

Proof. From (5.7), we see that

Y ′(0) = κ(0) =
p1 − χf(c1)

γ
≥ p1 − Lχ > 0.

Moreover, since Y (0) = 0 we let

xL = inf{zL < 0 ; Y (x) ∈ (−1, 0) for all x ∈ (zL, 0)}.
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Note that {zL < 0 ; Y (x) ∈ (−1, 0) for all x ∈ (zL, 0)} 6= ∅ thanks to the regularity
of Y . We possibly have xL = −∞ if Y (x) > −1 for all x < 0. Hence, we need to
show that xL > −∞ and that Y (xL) = −1.

Recalling assumptions (1.3), we see that

0 ≤ f(c1e
−aV1x) ≤ L, ∀x ∈ R,

thus from (5.8) we deduce

p1 − Lχ− V x ≤ γY ′(x) ≤ p1 − V x, ∀x ∈ R. (5.11)

Since Y (0) = 0, we have

−V x
2

2
+ p1x ≤ γY (x) ≤ −V x

2

2
+ (p1 − Lχ)x, ∀x ∈ R

−. (5.12)

The right-hand side of the previous inequality is negative, monotone increasing on
R
− and it converges towards −∞ as x → −∞. Since Y (xL) ≥ −1, by definition of

xL, it follows that xL > −∞ and (5.12) implies that Y (xL) < 0 so that we must
have Y (xL) = −1.

Remark 5.6. Note that the assumption p1 ≥ χL is a sufficient condition for the ex-
istence of xL. Indeed, we may assume that p1 ≥ χf(c1). However, the disadvantage
of such an assumption is that the quantity f(c1) depends on V . More generally,
without any assumption on p1 we can prove that there exists xL < 0 such that
Y (xL) = −1 by using (5.12). However, in this latter case we can not assure that
(5.10) holds.

Next, we give a sufficient condition for the existence of xR.

Lemma 5.7. Assume that f satisfies the assumptions in (1.3), and that (5.7) holds.
Then, there exists

Vmax ∈
[
p1 − Lχ

2γ
,
p21
2γ

]
(5.13)

such that, for all V ∈ (0, Vmax), there exists xR > 0 such that the solution of (4.5)
satisfies

0 < Y (x) < 1 for all x ∈ (0, xR),

and
Y (xR) = 1.

Moreover, xR is such that

0 < xR ≤ p1
V
,

and {
Y ′(xR) > 0, if V < Vmax,

Y ′(xR) = 0, if V = Vmax,
(5.14)

and
Y ′(x) ≥ Y ′(xR) ∀x ∈ [0, xR]. (5.15)
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Proof. Since
γY ′(0) = p1 − χf(c1) > 0,

we can define x̄ > 0 by

x̄ := sup{zR > 0 ; Y ′(x) ≥ 0 for all x ∈ (0, zR)}.

In particular, since by (1.3)

γY ′(x) ≥ p1 − V x− χL,

we have Y ′(x) ≥ 0 if x ≤ p1−Lχ
V . Hence, by definition,

x̄ ≥ p1 − Lχ

V

Furthermore, from (5.11) evaluated in x̄ and (1.3), it follows that

p1 − Lχ ≤ V x̄+ γY ′(x̄) ≤ p1,

hence, recalling (5.7) and thanks to the definition of x̄, we also have

x̄ ≤ p1
V
.

Integrating (4.5) in x and using Y (0) = 0, we have

−V x2

2
+ (p1 − Lχ)x ≤ γY (x) ≤ −V x2

2
+ p1x, ∀x ≥ 0.

Recalling that Y is increasing in (0, x̄), we get

(p1 − Lχ)2

2γV
≤ Y (x̄) = sup

x∈(0,x̄)
Y (x) ≤ p21

2γV
.

In view of the previous computations, a sufficient condition for the existence of xR
is Y (xR) = 1 and, in such a case, it holds that

xR < x̄.

Define
Vmax := sup{V0 ; Y (x̄) > 1, ∀V ∈ [0, V0)}.

We first see that
(p1 − Lχ)2

2γ
≤ Vmax ≤ p21

2γ
,

and by continuity with respect to V , when V = Vmax, we have Y (x̄) ≥ 1. Fur-
thermore, if Y (x̄) > 1, then there exists δ > 0 such that supY > 1 for V ∈
[Vmax, Vmax + δ) which contradicts the definition of Vmax. Consequently, Y (x̄) = 1
when V = Vmax and so xR = x̄ and Y ′(xR) = 0.
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Remark 5.8. As in Remark 5.6, we may weaken the assumption made on p1 for
the existence of xR such that Y (xR) = 1. However in such a case we may not assure
that (5.14) and (5.15) hold true.

From the two previous Lemma we deduce the following result.

Proposition 5.9. Assume that f satisfies the assumptions in (1.3), that (5.7) holds,
and that V ∈ (0, Vmax) for Vmax as in (5.13). Then Y (x) the solution of (4.5) satisfies

0 ≤ γY ′(x) ≤ Lχ+

√
(p1 − Lχ)2 + 2V ∀x ∈ (xL, xR).

Proof. Lemma 5.5 implies that Y ′(x) ≥ 0 on [xL, 0] and Lemma 5.7 implies that
Y ′(x) ≥ 0 on [0, xR]. Next, Equation (4.5) implies

γY ′(x) ≤ p1 − V xL,

and the upper bound follows from Lemma 5.5.

5.1.2 The existence of V

We now turn to the proof of the existence of V . From now on, we denote by Y (x, V ),
xL(V ), xR(V ) the solutions of (4.5), (4.8) for all V ∈ (0, Vmax). Moreover, since we
can read c1 as a function of V , we rewrite it as

c1(V ) = − aV M

2
∫ xR(V )
xL(V ) e

−aV x Y (x,V )

(1−Y 2(x,V ))1/2
dx
.

To end the proof of Proposition 5.4, we must show that if χ > χ∗, then there
exists V ∈ (0, Vmax) such that (4.9) is satisfied. We introduce the function

G(V ) :=

∫ xR(V )

xL(V )

Y (x, V )√
1− Y 2(x, V )

dx, (5.16)

and first prove the following result.

Proposition 5.10. The function G : [0, Vmax) → R defined by (5.16) is continuous
and satisfies

G(0) = 0 and G(V ) → +∞ as V → Vmax.

Furthermore, when χ > χ∗, then it holds

G(V ) < 0 for 0 < V ≪ 1.

Proof. Continuity of V 7→ G(V ).
Since xL(V ) and xR(V ) are determined by the conditions

Y (xL, V ) = −1 and Y (xR, V ) = 1,
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recalling equations (5.10) and (5.14), we can apply the Implicit Function Theorem
to get that V 7→ xL(V ) and V 7→ xR(V ) are continuous functions.

To prove the continuity of G, we now consider a sequence Vn of positive numbers
such that Vn → V > 0. We fix δ > 0. The continuity of xL and xR implies that for
large enough n:

xL(Vn) ≤ xL(V ) + δ ≤ xL(Vn) + 2δ,

and
xR(Vn) ≥ xR(V )− δ ≥ xR(Vn)− 2δ.

We claim that Y (x, Vn) → Y (x, V ) uniformly in [xL(V ), xR(V )]. Indeed, differenti-
ating equation (4.5) with respect to V , we find that the function Z : x 7→ ∂V Y (x, V )
solves

γZ ′(x) = −x+ χ (ac1x− ∂V c1) e
−aV xf ′

(
c1e

−aV x
)

on (xL, xR),

Z(0) = 0,

with
∂V c1(0) = 0.

Then, we have

|Y (x, Vn)| ≤ 1− η in (xL(V ) + δ, xR(V )− δ), (5.17)

for some η > 0 and n large enough.
We now write

G(Vn) =

∫ xR(Vn)

xL(Vn)

Y (x, Vn)√
1− Y 2(x, Vn)

dx

=

∫ xR(Vn)−δ

xL(Vn)+δ

Y (x, Vn)√
1− Y 2(x, Vn)

dx+

∫ xL(Vn)+δ

xL(Vn)

Y (x, Vn)√
1− Y 2(x, Vn)

dx

+

∫ xR(Vn)

xR(Vn)−δ

Y (x, Vn)√
1− Y 2(x, Vn)

dx.

The bound (5.17) implies that

∫ xR(Vn)−δ

xL(Vn)+δ

Y (x, Vn)√
1− Y 2(x, Vn)

dx→
∫ xR(V )−δ

xL(V )+δ

Y (x, V )√
1− Y 2(x, V )

dx for n→ ∞.

Next, using that Y verifies (5.10), we have that

|Y (x)| ≤ 1 and 1 + Y (x) ≥ C(x− xL(Vn))

for x ∈ [xL(Vn), xL(Vn) + δ]. It follows that the second term satisfies

∣∣∣∣∣

∫ xL(Vn)+δ

xL(Vn)

Y (x, Vn)√
1− Y 2(x, Vn)

dx

∣∣∣∣∣ ≤
∫ xL(Vn)+δ

xL(Vn)

1√
C(x− xL(Vn))

dx ≤ C ′δ1/2,
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where C,C ′ are positive constants.
Using (5.15), we obtain a similar bound for the third term and we get that

lim
n→∞

G(Vn) =

∫ xR(V )−δ

xL(V )+δ

Y (x, V )√
1− Y 2(x, V )

dx+O(δ1/2) = G(V ) +O(δ1/2)

from which we deduce the continuity of G.

Proving that G(0) = 0.
Recalling that c1(0) = c̃ = M

|Ω0|
, it is easy to check that

γY (x, 0) = (p1 − χf(c̃)) x, xL(0) = − γ

p1 − χf(c̃)
, xR(0) =

γ

p1 − χf(c̃)
,

hence by parity

G(0) =

∫ γ
p1−χf(c̃)

− γ
p1−χf(c1)

(p1 − χf(c̃))x
(
γ2 − (p1 − χf(c̃))2 x2

)1/2 dx = 0.

On the sign of G.
Now, we define the function H : (−1, 1) → R by

H(y) =
y√

1− y2
.

For 0 < V < Vmax, we have

p1 − χf(c̃) = γ∂xY (x, V ) + V x+ χ
(
f
(
c1e

−aV x
)
− f(c̃)

)
,

hence

G(V ) =

∫ xR(V )

xL(V )
H(Y (x, V )) dx

=
1

p1 − χf(c̃)

∫ xR(V )

xL(V )
(p1 − χf(c̃))H(Y (x, V )) dx

=
1

p1 − χf(c̃)

∫ xR(V )

xL(V )

[
γ∂xY (x, V ) + V x+ χ

(
f
(
c1e

−aV x
)
− f(c̃)

)]
H(Y (x, V )) dx

=
1

p1 − χf(c̃)

∫ xR(V )

xL(V )

[
V x+ χ

(
f
(
c1e

−aV x
)
− f(c̃)

)]
H(Y (x, V )) dx, (5.18)

since ∫ xR(V )

xL(V )
∂xY (x, V )H(Y (x, V )) dx = 0.

Note that, for all V ∈ [0, Vmax), we already know that
{
H(Y (x, V )) > 0 for all 0 < x < xR(V ),

H(Y (x, V )) < 0 for all xL(V ) < x < 0,
(5.19)
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so we need to determine the sign of the function

Wχ(x) := V x+ χ
(
f
(
c1e

−aV x
)
− f(c̃)

)
. (5.20)

We split this study w.r.t. the cases V ≪ 1 and V → ∞.

Behavior of G for V ≪ 1.
For 0 < V ≪ 1, using that ∂V c1(0) = 0 and that c1(0) = c̃, we have

f(c1(V )e−aV x) = f(c̃)− axc̃f ′(c̃)V + o(V ),

hence, in such a case, (5.18) becomes

G(V ) =
1

p1 − χf(c̃

∫ xR(V )

xL(V )
V x
(
1− aχc̃f ′(c̃)

)
H(Y (x, V )) dx+ o(V )

= V
1− aχc̃f ′(c̃)

p1 − χf(c̃)

∫ xR(V )

xL(V )
xH(Y (x, V )) dx+ o(V ).

Using (5.19) we deduce that for 0 < V ≪ 1 the sign of G(V ) is that of

(p1 − χf(c̃))
(
1− aχc̃f ′(c̃)

)
.

The condition (5.9) implies that it is negative.

Behavior of G when V → Vmax.
Equation (5.14) gives:

∂xY (xR(Vmax), Vmax) = 0.

Recalling that α := 2∂xxY (xR(Vmax), Vmax) ≤ 0, we deduce

Y (x, Vmax) = 1 + α(x− xR(Vmax))
2 +O

(
|x− xR(Vmax)|3

)
as x→ xR. (5.21)

Thus, we get

1− Y 2(x, V ) = −2α(x− xR(V ))2 +O
(
|x− xR(V )|3

)
,

leading to

√
1− Y 2(x, V ) =

√
2|α| |x− xR(V )|+O

(
|x− xR(V )|3/2

)
. (5.22)

We notice that for all ε > 0 the function G can be written by

G(V ) =

∫ xR(V )−ε

xL(V )

Y (x, V )√
1− Y 2(x, V )

dx+

∫ xR(V )

xR(V )−ε

Y (x, V )√
1− Y 2(x, V )

dx.

The first right hand side is always finite, while the second right hand side by (5.21)
and (5.22) for V → Vmax we get that

∫ xR(V )

xR(V )−ε

Y (x, V )√
1− Y 2(x, V )

dx ≃
∫ xR(V )

xR(V )−ε

1√
2 |x− xR(V )|

dx = +∞.
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Therefore, for V → Vmax we get that

G(V ) → +∞,

which completes the proof of Proposition 5.10.

Proposition 5.4 is a consequence of the following result.

Corollary 5.11. Let (5.9) be in force. Then, there exists Vχ ∈ (0, Vmax) such that
G(Vχ) = 0. Furthermore, assume in addition that f satisfies (5.3). Then, Vχ → 0
as χ → χ∗.

Proof. The Corollary follows from Proposition 5.10. Indeed, for any χ > χ∗ the
Intermediate Value Theorem gives the existence of Vχ > 0 such that G(Vχ) = 0.
In order to show that Vχ → 0 as χ → χ∗, we note that if we consider G as a
function of χ and V (instead of V only), then the continuity with respect to χ
can be proved similarly to that with respect to V . Consider the situation where
χ→ χ∗ along any subsequence such that Vχ → V ∗. Such a subsequence exists since

0 ≤ V ≤ Vmax ≤ p21
2γ . In such a case we have 0 = G(χ, Vχ) → G(χ∗, V ∗). It remains

to prove that G(χ∗, V ) > 0 for all V > 0 from which it would follow that V ∗ = 0
and hence the whole sequence Vχ converges to zero.

Recalling the definition (5.20) of W , we see that

W ′
χ∗(x) = V

(
1− c1e

−aV xf ′
(
c1e

−aV x
)

c̃f ′(c̃)

)
.

Consequently, if f satisfies the additional assumption (5.3), then W ′(x) ≥ 0 for all
x ∈ R and hence H(Y (x, V ))W (x) ≥ 0 for all x ∈ R.

6 Proof of Theorem 1.10

In this section, we show that a bifurcation of traveling wave solutions occurs from
the family of radially symmetric steady states BR0 . This bifurcation is determined
by the following parameters: the size of the cell R0, the active parameter χ, the
constant M defined in (1.2), a and the function f . It is convenient to choose χ
as the bifurcation parameter in the bifurcation conditions. More precisely, we will
prove the following result which implies Theorem 1.10.

Theorem 6.1. Assume that f satisfies the assumptions in (1.3). Then, problem
(1.1) has a branch of traveling wave solutions (Ω̃R0

χ , V R0
χ ) with volume |BR0 | bifur-

cating from the radial solution BR0 at χ = χ∗.

The next result characterizes the structure of the bifurcating branch of the
traveling wave.
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Theorem 6.2. Assume that f satisfies the assumptions in (1.3). Then, the bifur-
cation solution has the following form:

χ(s) =
πR2

0

aMf ′
(
M
πR2

0

) + ηs2 + o(s2),

V (s) = s + o(s),

where η ∈ R and the parameter s takes values in an interval (−δ, δ).

Remark 6.3. By lack of uniqueness, we cannot claim that the V function in The-
orem 6.2 is the same as the previous existence Theorems.

Since the disk is a solution of the system (1.6a) – (1.6e) with zero bulk velocity
V = 0, our aim is to seek for other solutions in the form of a perturbation of the
disk of radius R0. We seek for those domain Ω0 of the form

Ω0 = {(r, θ) : 0 ≤ r < R0 + ρ(θ) and θ ∈ [−π, π]},

where the function ρ : R → (−R0,∞) is 2π-periodic and such that

∫ π

−π

(
(R0 + ρ(θ))2 −R2

0

)
dθ = 0 (6.1)

(this condition guarantees that |Ω0| = |BR0 |).
Furthermore, since we look for traveling wave propagating in the x-direction,

we restrict ourselves (as in the previous section) to domain Ω0 that are symmetric
with respect to the y-axis. We thus introduce the functional space:

X =
{
ρ ∈ C2,α

per(−π, π) : ρ(θ) = ρ(−θ), ∀θ ∈ (−π, π)
}
.

Note that the boundary ∂Ω0 is parametrized by

(
(R0 + ρ(θ)) cos θ, (R0 + ρ(θ)) sin θ

)
for θ ∈ [−π, π],

the normal vector is given by

n(θ) =
1

((R0 + ρ(θ))2 + ρ′(θ)2)1/2

(
(R0 + ρ(θ)) cos θ + ρ′(θ) sin θ
(R0 + ρ(θ)) sin θ − ρ′(θ) cos θ

)
,

and the mean-curvature by

κ(θ) =
(R0 + ρ(θ))2 + 2ρ′(θ)2 − (R0 + ρ(θ))ρ′′(θ)

((R0 + ρ(θ))2 + ρ′(θ)2)3/2
.

In such a case, equation (1.8) can be rewritten as

γκ(θ) + χf
(
c1(V, ρ)e

−aV (R0+ρ(θ)) cos θ
)
+ V (R0 + ρ(θ)) cos θ = p1, (6.2)
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for all θ ∈ [−π, π), where we recall that c1(V, ρ) is defined by

c1(V, ρ) =
M

∫ π
−π

∫ R0+ρ(θ)
r=0 e−aV r cos θrdr dθ

. (6.3)

Therefore, the existence of a boundary ∂Ω0 solving (1.8) follows from the exis-
tence of a function ρ solution of equation (6.2).

Before getting into the real proof, we also introduce the functional space

Y = C0,α
per(−π, π).

The existence of solutions of (6.2) is proved by the following result.

Theorem 6.4. There exists an interval I = (−ε,+ε) and four C1 functions

ρ : I × [−π,+π] → R, χ : I → R, V : I → R, p1 : I → R,

such that, for all s ∈ I, the equation (6.2) has a solution ρ(s, θ) for all θ ∈ [−π, π]
representing a parametrization of the boundary ∂Ω0 with χ = χ(s), V = V (s) and
p1 = p1(s).

Remark 6.5 (On Theorems 5.1 and 6.4). We note that our two approaches, Theo-
rem 5.1 on the one hand and Theorems 6.4 on the other hand are different. Indeed,
the first result fixes the Lagrange multiplier p1, while the second one fixes the vol-
ume. However, if the radius R0 of Theorems 6.4 verifies |Ω̃R0

χ | = πR2
0, then both

approaches prove the existence of non trivial traveling wave solutions for χ > χ∗,
which converge to BR0 when χ→ χ∗. Otherwise,

(Ω̃p1χ∗ , V
p1
χ∗ ) = (Ω̃R0

χ∗ , V
R0
χ∗ ) = (Ω̃χ∗ , 0).

Theorem 1.9 can be interpreted as a bifurcation in p1, since the immobile, circular
solution always exists, and this result shows that for sufficiently large p1 there are
non-trivial traveling waves.

We take advantage of the following Lemma.

Lemma 6.6. Assume that f satisfies the assumptions in (1.3). Then, the functional
F defined by (6.4) has the following properties

1. F(χ, 0, 0, 0) = 0 for all χ ∈ R.
2. Ker ∂(ρ,V,p1)F(χ∗, 0, 0, 0) is a one dimensional subspace of R×X×R×R spanned

by (0, 1, 0);
3. Range ∂(ρ,V,p1)F(χ∗, 0, 0, 0) is a closed subspace of Y ×R×R×R of codimension

1.

Remark 6.7. Note that points 2. and 3. imply that F is a Fredholm mapping of
order zero.
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Proof of Lemma 6.6. We define the function

F : R×X × R× R → Y × R× R×R

by

F(χ, ρ, V, p1) =
(
γκ(θ) + χf

(
c1(V, ρ)e

−aV (R0+ρ(θ)) cos θ
)

(6.4)

+ V (R0 + ρ(θ)) cos θ − γ

R0
− p1,

∫ π

−π

(
(R0 + ρ(θ))2 −R2

0

)
dθ,

∫ π

−π
ρ(θ) cos θ dθ,

∫ π

−π
ρ(θ) sin θ dθ

)
,

with c1(V, ρ) defined by (6.3).

Proof of 1.
The first point is obvious.

Proof of 2.
Next, recalling the definition of F in (6.4), we compute Lχ := ∂(ρ,V,p1)F(χ, 0, 0, 0)
which is the linear operator

Lχ : X × R× R → Y × R×R× R

defined by

Lχ(ρ, V, p1) = Fρ(χ, 0, 0, 0)[ ρ ] + FV (χ, 0, 0, 0)V +Fp1(χ, 0, 0, 0) p1 (6.5)

evaluated in (χ, 0, 0, 0).
We recall that the linear operator Fρ(χ, ρ, V, p1) is defined by

Fρ(χ, ρ, V, p1)[η] =
d

dε
F(χ, ρ+ εη, V, p1)|ε=0

for η ∈ X.

We thus compute:

F(χ, ρ+ εη, V, p1) =
(
γ κρ+εη(θ) + χf

(
c1(V, ρ+ εη)e−aV (R0+ρ(θ)+εη(θ)) cos θ

)

+ V [R0 + ρ(θ) + εη(θ)] cos(θ)− γ

R0
− p1,

∫ π

−π
(R0 + ρ(θ) + εη(θ))2 −R2

0 dθ,

∫ π

−π
[ρ(θ) + εη(θ)] cos θ dθ,

∫ π

−π
[ρ(θ) + εη(θ)] sin θ dθ

)
, (6.6)

where κρ+εη(θ) is the mean-curvature of the perturbed boundary, that is

κρ+εη(θ)
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=
[R0 + ρ(θ) + εη(θ)]2 + 2[ρ′(θ) + εη′(θ)]2 − [R0 + ρ(θ) + εη(θ)] [ρ′′(θ) + εη′′(θ)]

[ (R0 + ρ(θ) + εη(θ))2 + (ρ′(θ) + εη′(θ))2 ]3/2
.

We now derive (6.6) with respect to ε, we set ε = 0, and we finally consider ρ = 0,
V = 0 and p1 = 0. Hence, for η = ρ, we find the following expression

Fρ(χ, 0, 0, 0)[ ρ ] =
(
− γ

ρ(θ) + ρ′′(θ)

R0
− χc̃R0f

′(c̃)

∫ π

−π
ρ(θ) dθ, (6.7)

2R0

∫ π

−π
ρ(θ) dθ,

∫ π

−π
ρ(θ) cos θ dθ,

∫ π

−π
ρ(θ) sin θ dθ

)
.

The second and the third terms in (6.5) are simpler to compute since V and p1 are
real quantities. We obtain that

FV (χ, 0, 0, 0)V =
(
−V R0 aχc̃f

′(c̃) cos θ + V R0 cos θ, 0, 0, 0
)

since ∂V c1(0, 0) = 0, and

Fp1(χ, 0, 0, 0) p1 = (−p1, 0, 0, 0) . (6.8)

Finally, the linear operator Lχ is given by the sum of the expressions (6.7) – (6.8),
that is

Lχ(ρ, V, p1) =
(
−γ ρ(θ) + ρ′′(θ)

R2
0

−R0χc̃f
′(c̃)

∫ π

−π
ρ(θ) dθ

−V R0aχc̃f
′(c̃) cos θ + V R0 cos θ − p1,

2R0

∫ π

−π
ρ(θ) dθ,

∫ π

−π
ρ(θ) cos θ dθ,

∫ π

−π
ρ(θ) sin θ dθ

)
.

When χ∗ = 1
ac̃f ′(c̃) , we get

Lχ∗(ρ, V, p1) =

(
− γ

ρ(θ) + ρ′′(θ)

R2
0

− R0

a

∫ π

−π
ρ(θ) dθ − p1, 2R0

∫ π

−π
ρ(θ) dθ,

∫ π

−π
ρ(θ) cos θ dθ,

∫ π

−π
ρ(θ) sin θ dθ

)
. (6.9)

Thus, the elements {(ρ, V, p1)} belonging to KerLχ∗ are such that

ρ′′(θ) + ρ(θ) +
R3

0

aγ

∫ π

−π
ρ(θ) dθ = −R

2
0

γ
p1.

Using the condition
∫ π
−π ρ(θ) dθ = 0, we obtain that

ρ′′(θ) + ρ(θ) = −R
2
0

γ
p1. (6.10)
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The parameter V does not appear in equation (6.10), so (0, V, 0) ∈ KerLχ∗ for all
V ∈ R and thus dimKerLχ∗ ≥ 1. Furthermore, if (ρ, p1) solves (6.10), then ρ has
the form

ρ(θ) = a cos θ + b sin θ − R2
0

γ
p1, for some a, b ∈ R.

We use the conditions
∫ π

−π
ρ(θ) dθ = 0,

∫ π

−π
ρ(θ) cos θ dθ = 0,

∫ π

−π
ρ(θ) sin θ dθ = 0

to determine the coefficients a, b and to identify p1. These integral conditions re-
spectively imply that p1 = 0, a = 0 and b = 0, hence KerLχ∗ = span{(0, 1, 0)} and
dimKerLχ∗ = 1.

Proof of 3.
Next, we show that the range of Lχ∗ consists of all the quadruplets

(h,C1, C2, C3) ∈ Y × R× R× R such that

∫ π

−π
h(θ) cos θ dθ = 0.

The fact that this condition is necessary is obtained by multiplying the equation

− γ
ρ(θ) + ρ′′(θ)

R2
0

− p1 = h (6.11)

by cos(θ) and integrating over (−π, π). To check that this condition is sufficient, we
note that, for given h ∈ C0,α

per(−π, π) and p1 ∈ R, equation (6.11) has a solution in
C2,α
per(−π, π) if and only if

∫ π
−π h(θ) cos θ dθ =

∫ π
−π h(θ) sin θ dθ = 0, and the general

solution is of the form
ρ(θ) = ρ̄(θ) + a cos θ + b sin θ,

for some particular solution ρ̄, which we can assume to be even (otherwise we replace
it with 1

2 [ρ̄(θ) + ρ̄(−θ)]).
When h ∈ Y , the condition

∫ π
−π h(θ) sin θ dθ = 0 is always satisfied since h is

even, and we find a solution in X by taking the even part of ρ:

ρ(θ) =
1

2
[ρ̄(θ) + ρ̄(−θ)] + a cos θ.

We then choose a so that
∫ π
−π ρ(θ) cos θ dθ = C2 and integrating (6.11) with respect

to θ yields

− γ

R2
0

∫ π

−π
ρ(θ) dθ − 2πp1 =

∫ π

−π
f(θ) dθ

so we can now choose p1 so that 2R2
0

∫ π
−π ρ(θ) dθ = C2.

Proof of Theorem 6.4. Lemma 6.6 imply that we can apply the Implicit Function
Theorem to F .
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Proof of Theorem 1.10. We follow the arguments contained in [4, Theorem 6.4]
to prove the existence of a brunch bifurcating traveling wave solutions. In partic-
ular, we want to exploit the Leray-Schauder degree theory and its connection with
bifurcation points. We refer to the Appendix B for a brief synthesis on the theory
hidden in the proof below.

We omit the dependence on the parameter s when possible.

We take advantage of the expression of the mean-curvature in polar coordinates
to rewrite (6.2) as

(R0 + ρ)ρ′′ − (ρ′)2

(R0 + ρ)2 + (ρ′)2
(6.12)

= 1 +

(
(R0 + ρ)2 + (ρ′)2

) 1
2

γ

[
χf
(
c1e

−aV (R0+ρ) cos θ
)
+ V (R0 + ρ) cos θ − p1

]

with ρ = ρ(θ) for all θ ∈ [−π, π), where we recall that c1(V, ρ) is defined by (6.3).
Since

arctan

(
ρ′

R0 + ρ

)′

=
(R0 + ρ)ρ′′ − (ρ′)2

(R0 + ρ)2 + (ρ′)2
,

we integrate (6.12) twice in θ, and we get that

ρ = K(ρ, V ; s)

for

K(ρ, V ; s) =

∫ θ

0
(Ro + ρ) tan

[
ψ

+

∫ ψ

0

(
(R0 + ρ)2 + (ρ′)2

) 1
2

γ

[
χf
(
c1e

−aV (R0+ρ) cosψ′
)
+ V (R0 + ρ) cosψ′ − p1

]]
dψ′ dψ.

Since we have supposed that the domain is symmetric w.r.t. the x-axis, we have
that

ρ is an even function, so ρ′(0) = 0.

We also recall that the area preservation condition

∫ π

−π
ρ(θ) dθ = 0

is verified (see (6.1)).
We set the center of mass of the domain at the origin:

1

3

∫ π

−π
(R0 + ρ(θ))3 cos θ dθ = 0.

42



This implies that we do not consider copies of solutions translated in the x-direction.
The previous conditions lead us to

ρ = K1(ρ, V ; s) = K(ρ, V ; s)− 1

2π

∫ π

−π
K(ρ, V ; s) dθ.

Now, setting

V = K2(ρ, V ; s) = V +
1

3

∫ π

−π
(R0 + ρ)3 cos θ dθ,

the problem reduces to the following fixed point one

(ρ, V ) = (K1(ρ, V ; s),K2(ρ, V ; s)) = K(ρ, V ; s) in X × R. (6.13)

Remark 6.8 (On the operator K). We here collect some remarks on the component
K1 of the operator K.

• Note that, if ρ ∈ X, then
K1(ρ, V ; s) ∈ X.

Moreover, by the definition of K, K1(ρ, V ; s) maps even functions in even ones.

• The K1 just defined is equivalent to the first component of the operator F
defined in (6.4). In particular, this means that the Lemma 6.6 holds for K,
i.e.

K(0, 0; s) = 0 ∀s ∈ R,

and that K is Fréchet differentiable in 0 (see the proof of Lemma 6.6).
We can thus linearize K as explained in Remark B.5.

Reasoning as in the proof of Lemma 6.6, the linearizations of K1, K2 around
the point (0, 0; s), p1 = 0, are

Lρ(ρ, V ; s) =
R3

0

γ

∫ θ

0

∫ ψ

0
V
(
−χac̃f ′(c̃) + 1

)
cosψ′ − γ

R3
0

ρ dψ′ dψ − C (6.14)

LV (ρ, V ; s) = V +R2
0

∫ π

−π
ρ cos θ dθ (6.15)

where C is the mean value of the first term in Lρ(ρ, V ; s).
Thanks again to Remark B.5, we proceed computing the eigenvalues of

(Lρ(ρ, V ; s), LV (ρ, V ; s)) = L(ρ, V ; s).

In particular, it is without loss of generality that we reduce the case V 6= 0 to
V = ±1 by rescaling arguments.

We begin considering (ρ, V ) = (ρ,±1). Let E1 be the desired eigenvalue. Then,
from (6.15), we have ∫ π

−π
ρ cos θ dθ =

E1 − 1

R2
0

.
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We now derive (6.14)
Lρ(ρ, V ; s) = E1ρ

twice by θ, obtaining

cos θ
(
−ac̃χf ′(c̃) + 1

)
− γ

R3
0

ρ =
γ

R3
0

E1ρ
′′.

Then, we multiply this equation by cos θ, and we integrate in [−π, π], getting that

(
−aχc̃f ′(c̃) + 1

)
π = γ

(E1 − 1)2

R5
0

,

otherwise, by definition of χ∗,

(
1− χ

χ∗

)
π = γ

(E1 − 1)2

R5
0

∀χ(s) ≤ χ∗. (6.16)

We set

E1,1 = R2
0

√
R0

γ

(
1− χ

χ∗

)
π + 1 ≥ 1,

E1,2 = −R2
0

√
R0

γ

(
1− χ

χ∗

)
π + 1 ≤ 1.

We claim that the cases E1,1 = E1,2 = 1 are not admitted. Indeed, this would mean
that

χ(s) = χ∗ = χ(0),

i.e., χ = χ(s) constant, so no bifurcation occurs.
The case (ρ, V ) = (ρ,−1) can be dealt with in the same way, and it leads to

−
(
1− χ

χ∗

)
π = γ

(E−1 − 1)2

R5
0

∀χ(s) ≥ χ∗. (6.17)

This means that, there is a jump of the local Leray-Scauder index through s = 0.
As far as the case (ρ, V ) = (ρ, 0) is concerned, we need

∫ π

−π
ρ cos θ dθ = 0.

Hence
ρ = cosmθ, m ≥ 2.

Reasoning as before, we get that the condition

−ρ = E0,mρ
′′

has to be satisfied. Then
E0,m = m−2.
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Note that E0,m < 1 for all m ≥ 2.

We now want to prove that (0, 0; s∗) is a bifurcation point for some s∗ ∈ R. In
order to do so, we are going to apply Theorems B.4 and B.8.

Since we have that the l.h.s. of (6.16) (resp. (6.17)) is positive if

χ∗ > χ(s) (resp. χ∗ < χ(s)) ,

we can identify a value s− (resp. s+) such that

degLS(I −K(ρ, V ; s±), Bε(0), 0)

is well defined for

Bε(0) =
{
(ρ, V ) : |V | < ε, ‖ρ‖C2,α

per (−π,π)
< ε
}
, ε≪ 1.

We now claim that (0, 0; s) is an isolated solution for every s ∈ R.
Indeed, K is Fréchet differentiable at 0, and 1 belongs to the resolvent of L because
none of the eigenvalues we found is equal to 1.
Then, being the assumptions of Theorem B.4 satisfied, (0, 0; s) is an isolated solution
and, thanks also to (B.2), we get that

degLS(I −K(ρ, V ; s±), Bε(0), 0) = (−1)m± ,

where m± have been defined in Theorem B.4, and m+ (resp. m−) refers to s+ (resp.
s−). In order to verify that we have a bifurcation point, it suffices to prove that
m− 6= m+ (see Theorem B.8).
Since the number of eigenvalues contained in (1,+∞) coincides at s± for E1, but it
differs by one for E0,m, we conclude that

degLS(I −K(ρ, V ; s−), Bε(0), 0) 6= degLS(I −K(ρ, V ; s+), Bε(0), 0),

and then, from Theorem B.8, there exists a s∗ ∈ [min s±,max s±] such that (0, 0; s∗)
is the desired bifurcation point.
This means that there exists a sequence of solutions

(Vε, ρε) ∈ ∂Bε(0)

such that
(Vε, ρε; sε) → (0, 0; s∗).

(see Definition B.7).
We point out that we must have (Vε, ρε) ∈ ∂Bε(0) because (V, ρ) = (0, 0) is an
isolated solution in Bε(0) for ε small enough.
To conclude this proof, we have just to show that the sequence (Vε, ρε) is made of
traveling waves. This is trivial since, being (Vε, ρε) solutions to I −K(ρ, V ; s), then
they verify Definition 1.2 (see also (1.8) in Remark 1.4) by (6.13).
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7 Proof of Theorem 6.2

We now give some qualitative results on the nature of the bifurcating branch of
traveling waves, using Crandall-Rabinowitz bifurcation results.
In what follow, we assume that f verifies (1.3) and also

f ∈ C3(R+).

We begin recalling Lemma 6.6, and we prove the following.

Lemma 7.1. Let the assumptions of Lemma 6.6 be in force. Then the functional
F defined by (6.4) also verifies

∂χ ∂(ρ,V,p1)F(χ∗, 0, 0, 0)[(0, 1, 0)] /∈ Range ∂(ρ,V,p1)F(χ∗, 0, 0, 0).

Proof. We note that the original problem (1.6a) – (1.6e) is invariant by translation.
Thus, it is natural to eliminate these invariances by looking for solution of (6.2)
satisfying the orthogonality conditions

∫ π

−π
ρ(θ) cos θ dθ = 0 and

∫ π

−π
ρ(θ) sin θ dθ = 0.

We prove the transversality condition with respect to the value χ∗, that is we
have to prove that (∂χLχ∗)(0, 1, 0) /∈ RangeLχ∗ (see (6.9) for the definition of Lχ∗).
We have

(∂χLχ∗)(0, 1, 0) = (−aR0c̃f
′(c̃) cos θ, 0, 0, 0).

Assume by contradiction that (∂χLχ∗)(0, 1, 0) ∈ RangeLχ∗ . Then, we would have
that

γ
ρ(θ) + ρ′′(θ)

R2
0

+
R0

a

∫ π

−π
ρ(θ) dθ + p1 = aR0c̃f

′(c̃) cos θ.

Multiplying by cos θ and integrating on [−π, π], it yields that

γ

∫ π

−π
ρ(θ) cos θ dθ + γ

∫ π

−π
ρ′′(θ) cos θ dθ (7.1)

+

(
R0

a

∫ π

−π
ρ(θ) dθ + p1

)
R2

0

∫ π

−π
cos θ dθ = R3

0f
′(c̃)ac̃

∫ π

−π
cos2 θ dθ.

Integrating by parts twice the second term of the left-hand side and using that ρ′ is
a 2π-period function together with

∫ π
−π ρ(θ) cos θ dθ = 0, we deduce that

∫ π

−π
ρ′′(θ) cos θ dθ =

∫ π

−π
ρ′(θ) sin θ dθ = −

∫ π

−π
ρ(θ) cos θ dθ = 0.

Then, equation (7.1) leads to

0 = R3
0ac̃f

′(c̃)π,

which is a contradiction since f ′(c̃) > 0.
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Theorem 7.2. Let the assumptions of Theorem 6.4 be in force. Then, the functions
χ : I → R and V : I → R verify
(i) V = V (s) = s + o(s) for all s ∈ I.
(ii) χ(0) = 1

ac̃f ′(c̃) , χ
′(0) = 0 and

χ′′(0) =− aMR2
0

2 (f ′(c̃))2

[
M

2πR2
0

f ′′′(c̃) + f ′′(c̃)

]
.

Proof. We can now apply the Crandall-Rabinowitz Bifurcation Theorem C.1.
Let us denote by Z any complement space of KerLχ∗, there exists an interval I =
(−ε, ε) and four C1 functions ϕ : I → R, ψ1 : I × [−π, π] → Z, ψ2 : I → Z and
ψ3 : I → Z such that

F(ϕ(s), ψ1(s, θ), ψ2(s), ψ3(s)) = (0, 0, 0, 0) for all s ∈ I, θ ∈ [−π, π], (7.2)

and

ϕ(0) =
1

ac̃f ′(c̃)
, ψ1(0, θ) = 0 for all θ ∈ [−π, π], ψ2(0) = 0, ψ3(0) = 0.

In particular, the solutions (χ, ρ, V, p1) = (χ(s), ρ(s, θ), V (s), p1(s)) of the equation
F(χ, ρ, V, p1) = (0, 0, 0, 0) are of the form

{
χ(s) = ϕ(s), ρ(s, θ) = 0 + s ψ1(s, θ),

V (s) = s + s ψ2(s), p1(s) = 0 + s ψ3(s)
(7.3)

and they verify

χ(0) = χ∗ =
1

ac̃f ′(c̃)
, ρ(0, θ) = ∂sρ(0, θ) = 0 for all θ ∈ [−π, π],

V (0) = 0 and V ′(0) = 1, p1(0) = p′1(0) = 0.

(7.4)

The point (ii) will follow from Lemma 7.3 and 7.4 below.

In the proofs that follow, we use extensively the fact that the functions

θ 7→ ρ(0, θ) and θ 7→ ∂sρ(0, θ)

(and all their derivatives with respect to θ) vanish. Using that

∫ π

−π
ρ(s, θ) cos θ dθ = 0 and

∫ π

−π

(
(R0 + ρ(s, θ))2 −R2

0

)
dθ = 0

for all s, we also have
∫ π

−π
∂n
s
ρ(0, θ) cos θ dθ = 0 ∀n ∈ N and

∫ π

−π
∂ssρ(0, θ) dθ = 0. (7.5)

Some technical computations are contained in the Appendix (see Sections C.2–C.3).
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Lemma 7.3. Assume that (C.1) holds. Then, we have χ′(0) = 0.

Proof. We recall that

κ(s, θ) =
((R0 + ρ)2 + 2∂θρ

2 − (R0 + ρ)∂θθρ)(s, θ)(
((R0 + ρ)2 + ∂θρ2)3/2

)
(s, θ)

, (7.6)

and we set
z(s, θ) = c1(V, ρ)e

−aV (s)(R0+ρ(s,θ)) cos θ, (7.7)

with c1(V, ρ) given by (6.3).
We differentiate with respect to s the first component of F given by (6.4) and

we use (7.2) to obtain

0 =γ∂sκ(s, θ) + χ′(s)f(z(s, θ)) + χ(s)f ′(z(s, θ))∂sz(s, θ) (7.8)

+ V ′(s)(R0 + ρ(s, θ)) cos θ + V (s)∂sρ(s, θ) cos θ − p′1(s).

Let s = 0. Then, (7.4) implies that c1(V, ρ) = c̃, hence

z(0, θ) = c̃ for all θ ∈ [−π, π].

Consequently, (7.8) simply writes as

γ∂sκ(0, θ) + χ′(0)f(c̃) + χ(0)f ′(c̃)∂sz(0, θ) +R0 cos θ = 0. (7.9)

Recalling that χ(0) = 1
ac̃f ′(c̃) and (C.6), it follows that (7.9) simplifies as

γ∂sκ(0, θ) + χ′(0)f(c̃) = 0.

The conclusion follows since we know that ∂sκ(0, θ) = 0 (see Lemma C.3) and
f(c̃) 6= 0 (see assumptions (1.3)).

Lemma 7.4. Assume (C.3). It holds that

χ′′(0) = − aMR2
0

2 (f ′(c̃))2

[
M

2πR2
0

f ′′′(c̃) + f ′′(c̃)

]
.

Proof. We now differentiate twice equation (7.8) with respect to s, obtaining

0 =γ∂sssκ(s, θ) + χ′′′(s)f(z(s, θ)) + 3χ′′(s)f ′(z(s, θ))∂sz(s, θ)

+ 3χ′(s)[f ′′(z(s, θ))(∂sz(s, θ))
2 + f ′(z(s, θ))∂ssz(s, θ)]

+ χ(s)[f ′′′(z(s, θ))(∂sz(s, θ))
3 + 3f ′′(z(s, θ))∂sz(s, θ) ∂ssz(s, θ) + f ′(z(s, θ))∂sssz(s, θ)]

+ V ′′′(s)(R0 + ρ(s, θ)) cos θ + 3V ′′(s)∂sρ(s, θ) cos θ + 3V ′(s)∂ssρ(s, θ) cos θ

+ V (s)∂sssρ(s, θ) cos θ − p′′′1 (s). (7.10)

Since we have (7.3), (C.3), (C.6), and Lemma 7.3, the expression in (7.10) for s = 0
becomes

0 =γ∂sssκ(0, θ) + χ′′′(0)f(c̃)− 3ac̃R0χ
′′(0)f ′(c̃) cos θ
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+
1

ac̃f ′(c̃)
[−f ′′′(c̃)(ac̃R0 cos θ)

3 − 3ac̃R0 cos θf
′′(c̃)∂ssz(0, θ) + f ′(c̃)∂sssz(0, θ)]

+ V ′′′(0)R0 cos θ − p′′′1 (0). (7.11)

We multiply (7.11) by cos θ, and we integrate in θ:

0 =γ

∫ π

−π
∂sssκ(0, θ) cos θ dθ − 3πac̃R0χ

′′(0)f ′(c̃)

+
1

ac̃f ′(c̃)

(
− 3π

4
f ′′′(c̃)(ac̃R0)

3 − 3ac̃R0f
′′(c̃)

∫ π

−π
cos2 θ∂ssz(0, θ) dθ

+ f ′(c̃)

∫ π

−π
cos θ∂sssz(0, θ) dθ

)
+ πV ′′′(0)R0.

Using Lemma C.6, we simplify as follows:

0 =− 3πac̃R0χ
′′(0)f ′(c̃) +

1

ac̃f ′(c̃)

[
−3π

4
f ′′′(c̃)(ac̃R0)

3 − 3

2
a3M2c̃R0f

′′(c̃)

]

+
1

ac̃

(
−aM
R0

V ′′′(0)− 2M

πR3
0

∫ π

−π
cos θ∂sssρ(0, θ) dθ

)
+ πV ′′′(0)R0. (7.12)

Since c̃ =M/πR2
0, (7.12) becomes as

0 =− 3
aM

R0
χ′′(0)f ′(c̃)− 3a2M2R0

2f ′(c̃)

[
M

2πR2
0

f ′′′(c̃) + f ′′(c̃)

]
− 2

aR0

∫ π

−π
cos θ∂sssρ(0, θ) dθ.

Using (7.5), we finally get

χ′′(0) = − aMR2
0

2 (f ′(c̃))2

[
M

2πR2
0

f ′′′(c̃) + f ′′(c̃)

]
.

A Spectrum of the heat equation with homogeneous

Neumann boundary condition

We recall here some facts concerning the spectrum of the heat equation with homo-
geneous Neumann boundary condition.

Let m ∈ Z, z ∈ C, and w : C → R. Then, the Bessel and the modified Bessel
second-order differential equations read

z2w′′(z) + zw′(z) + (z2 −m2)w(z) = 0, (A.1)

and
z2w′′(z) + zw′(z)− (z2 +m2)w(z) = 0. (A.2)
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The Bessel Jm and the modified Bessel Im functions of the first kind of order
m ∈ Z are particular solutions to (A.1) and (A.2), and their expressions are

Jm(x) =

∞∑

p=0

(−1)p

p!(p+m)!

(x
2

)2p+m
, (A.3)

and
imIm(x) = Jm(ix), (A.4)

that is

Im(x) =

∞∑

p=0

1

p!(m+ p)!

(x
2

)m+2p
. (A.5)

Note that Im and Jm verify the following equation:

− 2J ′
m(x) = Jm+1(x)− Jm−1(x), (A.6)

where J ′
m(x) is the derivative of Jm(x).

Lemma A.1. For all z ∈ C, there holds

zIm+1(z)Im(z̄)− z̄Im+1(z̄)Im(z) =
(
z2 − z̄2

) ∫ 1

0
uIm(uz)Im(uz̄) du. (A.7)

Let λm,p be the p-th real positive root of J ′
m, the derivative of Jm, such that

λm,p+1 > λm,p > · · · > λm,0 > 0. (A.8)

We consider the heat equation with Neumann boundary condition

∂tc(t, r, θ) = ∆c(t, r, θ) (r, θ) ∈ [0, 1) × [−π, π), (A.9a)

∂rc(t, 1, θ) = 0 θ ∈ [−π, π). (A.9b)

Proposition A.2. The spectrum of the operator (A.9) is

{−λ2m,p, (m, p) ∈ N× N}.

B Bifurcation through the Leray-Schauder degree

theory

We here give a very brief background on the (huge) theory regarding the Leray-
Schauder degree and the local Leray-Schauder index , LS degree and LLS index
from now on. A synthesis of the incoming presentation is given in [25].
We also recall the link among the above notions and bifurcation points. For this
part, we mainly refer to [20].
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The LS degree is a powerful tool that, under suitable hypothesis, algebraically
counts the number of zeros of functions. In our case, we are interested in functions
of the type I − F , so that their zeros are, actually, fixed points.
The LS degree is defined in normed linear space which may be infinite-dimensional,
and its expression can be derived from the Brouwer degree theory (see, for instance,
[8, Chapters 8 and 9], [14, Chapter 2], and [8, Theorem 10.6] too). However, we
do not deepen more in this direction because it would require technical tools from
homology theory. The interested reader can find the construction of the LS degree
from the Brouwer one, for instance, in [14, Section 3.3], [8, Chapter 10].

The well-posedness setting for the LS degree is the following.
Let X be a real Banach space, U a bounded open subset of X, and Ψ a mapping
such that

Ψ = I − F : U → X,

where F : U → X is a continuous and compact map. Then, the LS degree

degLS [Ψ, U, z] ,

with
z ∈ X and z /∈ Ψ(∂U),

is a function which associates to the triple (Ψ, U, z) a certain integer.
For the sake of completeness, we here list some of the most important properties
that degLS verifies. We also refer to [14, Section 3.2.2], [8, Chapter 11], and [11,
Appendix].

Theorem B.1 ([14, Theorem 3.2.2]). Let

Y = {(Ψ, U, z) defined as above} .

Then, there exists a function
degLS : Y → Z

such that the following properties are satisfied:

• normalization: degLS [I, U, z] = 1 for all z ∈ U ;

• additivity: if U1, U2 are open subsets of U such that U1 ∩ U2 = ∅, and z /∈
Ψ(U \ (U1 ∪ U2)), then

degLS [Ψ, U, z] = degLS [Ψ, U1, z] + degLS [Ψ, U2, z] ;

• homotopy invariance: if h : [0, 1] × U → X is compact, y : [0, 1] → X is
continuous, and y(t) /∈ Ψ(∂U) for all t ∈ [0, 1], then

degLS [I − h(0, ·), U, y(0)] = degLS [I − h(1, ·), U, y(1)] .

We also recall the following Theorem (see also [14, Proposition 3.2.6]).
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Theorem B.2 ([8, Theorem 11.1]). If

degLS [Ψ, U, z] 6= 0,

then Ψ(x) = 0, i.e., F (x) = x for some x ∈ U .

However, we are not interested in applying the LS degree theory to find fixed
points, but bifurcation ones. To this aim, let us introduce the bifurcation parameter
s ∈ R. We represent the dependence on s of the function Ψ with the subscript s:

s → Ψ(x; s) = Ψs(x).

Roughly speaking, once we know that

Ψs(x0) = 0

for a certain x0 ∈ U and for all s ∈ R, then we can exploit the link among LS degree
and bifurcation points to show that there exists a value s0 ∈ R such that (x0; s0) is
a bifurcation point.
With this aim, we restrict our attention to the particular case of isolated solutions,
whose definition is given below.

Definition B.3 (Isolated solution [23, Section 8]). Let

Bε(x0) = {x : ‖x− x0‖X < ε} .

Then, we say that x0 is an isolated solution to

Ψ(x0) = x0 − F (x0) = z

if the only solution contained in Bε(x0) is x = x0.

Let us show the connection among LS degree, LLS index, and solutions to
Ψ(x) = 0. We refer to [23, Section 8] for the incoming results.
Assume that there exists a finite number of xi /∈ ∂U such that they are the only
points satisfying

Ψ(xi) = xi − F (xi) = z for 1 ≤ i ≤ r <∞.

Then, the LS degree can be expressed through the following formula:

degLS [Ψ, U, z] =

r∑

i=1

ind(Ψ, xi). (B.1)

The formula in (B.1) implies that, if x0 is an isolated solution, then

degLS [Ψ, Bε(x0), y] = ind(Ψ, x0).

Hence, in order to compute the LS degree of isolated solutions, it suffices to have
a representation formula for the LLS index in this particular case. It is with this
reason that we recall the following result.
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Theorem B.4 ([11, Lemma A.4]). Let 0 ∈ U and F (0) = 0. Assume that F is
Fréchet differentiable at 0 ∈ X, and 1 belongs to the resolvent set of F ′(0).
Then, 0 is an isolated solution to Ψ(x) = 0 and

ind(Ψ, 0) = (−1)m,

where m is the sum of the multiplicities of the characteristic values of F ′(0) in the
interval (0, 1).

We recall that

• a characteristic values of F ′(0) is a real number µ such that the equation

µF ′(0)x = x

has a non-trivial solution;

• the algebraic multiplicity of an eigenvalue µ is, in this case, the dimension of

∪k∈N
(
I − µF ′(0)

)k
;

• the resolvent set is given by R \
{

1
µ : µF ′(0)x = x

}
.

Then, the m-power is the sum of the algebraic multiplicities of the real eigenvalues
to F ′(0) that are greater than one.

Remark B.5 ([20, Chapter IV §2]). Let F as in Theorem B.4. Then, the operator
F can be expressed in the form

F = F ′(0) +R,

being F ′(0) its Fréchet derivative evaluated in 0, and where the term R verifies

lim
‖x‖X

‖R(x)‖X
‖x‖X

= 0.

This is an important remark because, instead of dealing with a possibly nonlinear
F , we can consider its linearization F ′(0).

Resuming, the above Theorem B.4 and (B.1) imply that

degLS [Ψ, Bε(0), 0] = ind(Ψ, 0) = (−1)m, (B.2)

for m defined as in Theorem B.4.

We now complete the puzzle showing the link among LLS index and bifurcation
points.
Roughly speaking, as explained in [7, Section 6], we need to have a change of degree
at a certain point in order to have a bifurcation at this point.
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Definition B.6 (Bifurcation point - [21, Section 5]). Assume that F is a linear
compact Fredholm mapping of order zero, i.e. ImF is closed in X and dimkerF =
codim ImF <∞. Assume also that Ψs(0) = 0. Then, the couple

(0; s0) ∈ D = {(0; s) ∈ X × R}

is a bifurcation point for the solutions of Ψs(x) = 0 w.r.t. D if every neighborhood
of (0; s0) ∈ U × R contains at least one solution (x; s) 6= (0; s) to Ψs(x) = 0.

Definition B.7 (Bifurcation point - [25, Section 8]). Let F : U → X completely
continuous, and Ψs(0) = 0 for every s ∈ R. Then, the couple (0; s0) is a bifurcation
point to Ψs(x) = 0 if there exists a sequence {(xk; sk)} of solutions to Ψsk

(xk) = 0
with (xk; sk) ∈ (U \ {0})× R such that

sk → s0 and ‖xk‖X → 0.

We refer also to [7], [35, Section 1] and [20, Chapter IV p. 181] for the notion
of bifurcation point in Definition B.7.

Theorem B.8 ([21, Proposition 2], [20, Chapter IV §5]). Let F as in Theorem B.4.
Assume that, for some s1 < s2, we know that ind(Ψsi , 0) is well-defined, and

ind(Ψs1 , 0) 6= ind(Ψs2 , 0).

Then, there exists an s0 ∈ [s1, s2] such that (0; s0) is a bifurcation point for Ψ.

C Bifurcation through Crandall-Rabinowitz theory

C.1 A theorem of Crandall-Rabinovitz

We recall here the classical Bifurcation Theorem of Crandall-Rabinovitz [10] that
we used to prove Theorem 7.2.

Given U, V two real Banach spaces and a continuous map F : R× U → V , the
goal is to analyze the structure of the solution set

F [λ, u] = 0, (λ, u) ∈ R× U.

Theorem C.1 (Local bifurcation [10]). Let U, V be Banach spaces, W a neighbor-
hood of (λ0, 0) in R × U , and F : W −→ V . Suppose that the following properties
are satisfied

1. F(λ, 0) = 0 for all λ in a neighborhood of λ0;
2. The Fréchet partial derivatives ∂u F , ∂λ F , ∂λu F exist and are continuous;
3. Ker ∂uF(λ0, 0) is a one dimensional subspace of U spanned by a nonzero vector
u0 ∈ U ;

4. Range ∂uF(λ0, 0) is a closed subspace of V of codimension 1;
5. ∂λu F(λ0, 0)[u0] /∈ Range ∂uF(λ0, 0).
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Then, for any complement Z of Ker ∂uF(λ0, 0) in U , there exist a neighborhood
N of (λ0, 0) in R × U , an interval I = (−ε, ε) for some ε > 0 and two continuous
functions

ϕ : (−ε, ε) −→ R, ψ : (−ε, ε) −→ Z

such that ϕ(0) = λ0, ψ(0) = 0 and

F−1[0] ∩ U = {(ϕ(s), su0 + sψ(s)) : |s| < ε} ∪ {(λ, 0) : (λ, 0) ∈ N}.

Furthermore, if ∂uuF is continuous then the functions ρ and ψ are once continuously
differentiable.

Remark C.2 (Bifurcation point through Jordan curves). In Theorem C.1, (λ0, 0)
is a bifurcation point of the equation F(λ, u) = 0 in the following sense: in a
neighborhood of (λ0, 0), the set of solutions of F(λ, u) = 0 consists of two curves Γ1

and Γ2 which intersect only at the point (λ0, 0); Γ1 is the curve (λ0, 0) and Γ2 can
be parameterized as follows:

Γ2 : (λ(s), u(s)), |s| small ; (λ(0), u(0)) = (λ0, 0); u
′(0) = u0, λ

′(0) 6= 0.

C.2 Computation of ∂sκ, ∂ssκ and ∂sssκ

Recall that ρ(s, θ) and κ(s, θ) are defined by (7.3), (7.4) and (7.6) for s ∈ I and
θ ∈ [−π, π].

Lemma C.3. Assume

∂nθ ρ(0, θ) = ∂nθ ∂sρ(0, θ) = 0 ∀θ ∈ [−π, π], ∀n ∈ N. (C.1)

Then
∂sκ(0, θ) = 0

and
R2

0∂ssκ(0, θ) = −∂ssρ(0, θ)− ∂ssθθρ(0, θ). (C.2)

Proof. We define the functions

N(s, θ) =
[
(R0 + ρ)2 + 2∂θρ

2 − (R0 + ρ)∂θθρ
]
(s, θ),

D(s, θ) =
[
((R0 + ρ)2 + ∂θρ

2)3/2
]
(s, θ).

Then, we can rewrite κ(s, θ) and ∂sκ(s, θ) as

κ(s, θ) =
N(s, θ)

D(s, θ)
and ∂sκ(s, θ) =

[
(∂sN)D −N(∂sD)

D2

]
(s, θ)

with

(∂sN)(s, θ) = [2(R0 + ρ)∂sρ+ 4∂θρ ∂sθρ−R0∂sθθρ− ∂sρ ∂θθρ− ρ ∂sθθρ] (s, θ),
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(∂sD)(s, θ) =
[
3(∂θρ ∂sθρ+ (R0 + ρ)∂sρ)

√
(R0 + ρ)2 + (∂θρ)2

]
(s, θ).

Since (C.1) holds for all θ, we see that

(∂sN)(0, θ) = (∂sD)(0, θ) = 0,

so
∂sκ(0, θ) = 0.

Next, we define

n(s, θ) = ((∂sN)D −N(∂sD))(s, θ) and d(s, θ) = D2(s, θ),

so that

∂sκ(s, θ) =
n(s, θ)

d(s, θ)
and ∂ssκ(s, θ) =

[
(∂sn)d− n(∂sd)

d2

]
(s, θ).

We compute

(∂sn)(s, θ) = [(∂ssN)D −N(∂ssD)] (s, θ) and (∂sd)(s, θ) = [2D∂sD] (s, θ),

with

(∂ssN)(s, θ) =
[
2∂sρ

2 + (2R0 + 2ρ− ∂θθρ)∂ssρ+ 4(∂sθρ)
2

+4∂θρ ∂ssθρ−R0∂ssθθρ− 2∂sρ∂sθθρ− ρ∂ssθθρ] (s, θ),

(∂ssD)(s, θ) =
[
3((R0 + ρ)2 + (∂θρ)

2)−1/2((R0 + ρ)∂sρ+ ∂θρ∂sθρ)
2

+3
√

(R0 + ρ)2 + (∂θρ)2((∂sρ)
2 + (R0 + ρ)∂ssρ

+(∂sθρ)
2 + ∂θρ∂ssθρ)

]
(s, θ).

Using (C.1), we see that

(∂ssN)(0, θ) = 2R0∂ssρ(0, θ)−R0∂ssθθρ(0, θ)

(∂ssD)(0, θ) = 3R2
0∂ssρ(0, θ).

Then, since
N(0, θ) = R2

0, D(0, θ) = R3
0, (∂sD)(0, θ) = 0,

we deduce

∂sn(0, θ) = −R4
0∂ssρ(0, θ)−R4

0∂ssθθρ(0, θ),

∂sd(0, θ) = 0.

We gather the above computations and we finally have that

∂ssκ(0, θ) =

[
(∂sn)d− n(∂sd)

d2

]
(s, θ) =

∂sn(0, θ)

D2(0, θ)

=
−R4

0∂ssρ(0, θ)−R4
0∂ssθθρ(0, θ)

R6
0

,

so (C.2) follows.
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Remark C.4. Note that, if we also suppose that

∂nθ ∂ssρ(0, θ) = 0

for all θ ∈ [−π, π] and n ≥ 0, then

∂ssκ(0, θ) = 0.

Lemma C.5. Assume

∂nθ ρ(0, θ) = ∂nθ ∂sρ(0, θ) = ∂nθ ∂ssρ(0, θ) = 0 ∀θ ∈ [−π, π], ∀n ∈ N. (C.3)

Then
R2

0∂sssκ(0, θ) = −∂sssρ(0, θ)− ∂sssθθρ(0, θ),

hence ∫ π

−π
∂sssκ(0, θ) cos θ dθ = 0.

Proof. Since we now assume that ∂ssρ(0, θ) (and all its derivatives w.r.t. θ) is zero,
the computations in Lemma C.3 give in particular

∂ssN(0, θ) = 0, ∂ssD(0, θ) = 0.

Next, we define

a(s, θ) = ((∂sn)d− n(∂sd))(s, θ) and b(s, θ) = d2(s, θ).

We thus write ∂sssκ(s, θ) as

∂sssκ(s, θ) =

[
(∂sa)b− a(∂sb)

b2

]
(s, θ). (C.4)

We compute

(∂sa)(s, θ) = [(∂ssn)d− n(∂ssd)] (s, θ) and (∂sb)(s, θ) = 2[d ∂sd](s, θ),

where

(∂ssn)(s, θ) = ((∂sssN)D −N(∂sssD) + (∂ssN)∂sD − (∂sN)(∂ssD))(s, θ),

(∂ssd)(s, θ) = 2((∂sD)2 +D∂ssD)(s, θ),

with

(∂sssN)(s, θ) = (6∂sρ ∂ssρ+ (2R0 + 2ρ− ∂θθρ)∂sssρ+ 12∂sθρ ∂ssθρ

+ 4∂θρ∂sssθρ− (R0 + ρ)∂sssθθρ− 3∂ssρ∂sθθρ− 3∂sρ∂ssθθρ)(s, θ)

(∂sssD)(s, θ) =− 3((R0 + ρ)2 + (∂θρ)
2)−3/2((R0 + ρ)∂sρ+ ∂θρ∂sθρ)

3

+ 9((R0 + ρ)2 + (∂θρ)
2)−1/2((R0 + ρ)∂sρ+ ∂θρ∂sθρ)(∂θρ∂ssθρ+ (∂sρ)

2)
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+ 9((R0 + ρ)2 + (∂θρ)
2)−1/2((R0 + ρ)∂sρ+ ∂θρ∂sθρ)

(
(R0 + ρ)∂ssρ+ (∂sθρ)

2
)

+ 3
√

(R0 + ρ)2 + (∂θρ)2)(3∂sρ∂ssρ+ (R0 + ρ)∂sssρ)

+ 3
√

(R0 + ρ)2 + (∂θρ)2)(3∂sθρ∂ssθρ+ ∂θρ∂sssθρ)(s, θ).

Using (C.3), we get:

∂sssN(0, θ) = 2R0∂sssρ(0, θ)−R0∂sssθθρ(0, θ),

∂sssD(0, θ) = 3R2
0∂sssρ(0, θ).

Furthermore, since

N(0, θ) = R2
0, D(0, θ) = R3

0, ∂sD(0, θ) = ∂ssD(0, θ) = 0,

we deduce that

(∂ssn)(0, θ) = [(∂sssN)D −N(∂sssD)] (0, θ) = −R4
0∂sssρ(0, θ)−R4

0∂sssθθρ(0, θ),

(∂ssd)(0, θ) = 0.

Hence, recalling also that ∂sd(0, θ) = 0,

(∂sa)(0, θ) = [(∂ssn)d− n(∂ssd)] (0, θ) = −R10
0 ∂sssρ(0, θ)−R10

0 ∂sssθθρ(0, θ),

(∂sb)(0, θ) = 2(d ∂sd)(0, θ) = 0,

and (C.4) becomes

∂sssκ(0, θ) =
−R10

0 ∂sssρ(0, θ)−R10
0 ∂sssθθρ(0, θ)

R12
0

,

so the result follows.

In particular

R2
0

∫ π

−π
∂sssκ(0, θ) cos θ dθ = −R2

0

∫ π

−π
(∂sssρ(0, θ) + ∂sssθθρ(0, θ)) cos θ dθ

= −R2
0

∫ π

−π
∂sssρ(0, θ) cos θ dθ +R2

0

∫ π

−π
∂sssρ(0, θ) cos θ dθ

= 0.

C.3 Computation of ∂sz, ∂ssz and ∂sssz

Recall that ρ(s, θ) and κ(s, θ) are defined by (7.3), (7.4) and (7.6) for s ∈ I and
θ ∈ [−π, π].
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Lemma C.6. Assume (C.1). Then for all θ ∈ [−π, π] we have

∫ π

−π
∂sz(0, θ) dθ = 0.

Furthermore, if we also have (C.3), then

∫ π

−π
∂ssz(0, θ) dθ =

∫ π

−π
cos2 θ∂ssz(0, θ) dθ =

a2M2

2
,

and ∫ π

−π
cos θ∂sssz(0, θ) dθ = −aM

R0
V ′′′(0)− 2M

πR3
0

∫ π

−π
cos θ∂sssρ(0, θ) dθ.

Proof. Recalling the definition of z (7.7), we see that

∂sz(s, θ) = A(s, θ)e−aV (s)(R0+ρ(s,θ)) cos θ,

with

A(s, θ) = ∂sc1(V, ρ)− a cos θc1(V, ρ)∂s (V (s)(R0 + ρ(s, θ)))

= V ′(s)∂V c1(V, ρ) + ∂sρ(s, θ)∂ρc1(V, ρ)

− c1(V, ρ)a
(
V ′(s)(R0 + ρ(s, θ)) + V (s)∂sρ(s, θ)

)
cos θ,

and c1 given by (6.3). Since

∂V c1(0, 0) = 0, c1(0, 0) = c̃, (C.5)

we deduce that
A(0, θ) = −ac̃R0 cos θ,

hence
∂sz(0, θ) = −ac̃R0 cos θ, (C.6)

and the first result follows.

We now assume (C.3).
Differentiating again, we obtain

∂ssz(s, θ) = B(V, ρ)e−aV (s)(R0+ρ(s,θ)) cos θ,

with

B(s, θ) = ∂sA(s, θ)−A(s, θ)a
(
V ′(s)(R0 + ρ(s, θ)) + V (s)∂sρ(s, θ)

)
cos θ,

and

∂sA(s, θ) = V ′′(s)∂V c1(V, ρ) +
(
V ′(s)

)2
∂V V c1(V, ρ) + ∂ssρ(s, θ)∂ρc1(V, ρ)

+ (∂sρ(s, θ))
2 ∂ρρc1(V, ρ) + 2V ′(s)∂sρ(s, θ)∂V ρc1(V, ρ)
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−
(
V ′(s)∂V c1(V, ρ) + ∂sρ(s, θ)∂ρc1(V, ρ)

)
a
(
V ′(s)(R0 + ρ(s, θ)) + V (s)∂sρ(s, θ)

)
cos θ

− c1(V, ρ)a
(
V ′′(s)(R0 + ρ(s, θ)) + 2V ′(s)∂sρ(s, θ) + V (s)∂ssρ(s, θ)

)
cos θ.

Since we have that (C.3) and (C.5) hold, the above expression reduces to

∂sA(0, θ) = ∂V V c1(0, 0) − c̃aR0V
′′(0) cos θ.

Using also that

∂V V c1(0, 0) = −a
2M

4π
(C.7)

we obtain

∂sA(0, θ) = −a
2M

4π
− ac̃V ′′(0)R0 cos θ,

and then

B(0, θ) = −a
2M

4π
− ac̃V ′′(0)R0 cos θ + a2c̃R2

0 cos
2 θ

= −a
2M

4π
− aM

πR0
V ′′(0) cos θ + a2

M

π
cos2 θ

= −a
2M

4π

(
1− 4 cos2 θ

)
− aM

πR0
V ′′(0) cos θ

thanks to the definition of c̃.
Hence,

∂ssz(0, θ) = −a
2M

4π

(
1− 4 cos2 θ

)
− aM

πR0
V ′′(0) cos θ.

Then

∫ π

−π
∂ssz(0, θ) dθ = −a

2M

4π

∫ π

−π

(
1− 4 cos2 θ

)
dθ =

a2M

2
,

∫ π

−π
∂ssz(0, θ) cos

2 θ dθ = −a
2M

4π

∫ π

−π

(
1− 4 cos2 θ

)
cos2 θ dθ =

a2M

2
.

Finally, differentiating a third time, we see that

∂sssz(s, θ) = C(s, θ)e−aV (s)(R0+ρ(s,θ)) cos θ,

with

C(s, θ) = ∂sB(s, θ)−B(s, θ)a
(
V ′(s)(R0 + ρ(s, θ)) + V (s)∂sρ(s, θ)

)
cos θ.

We compute

∂sB(s, θ) = ∂ssA(s, θ)− a∂sA(s, θ)
(
V ′(s)(R0 + ρ(s, θ)) + V (s)∂sρ(s, θ)

)
cos θ

− aA(s, θ)
(
V ′′(s)(R0 + ρ(s, θ)) + 2V ′(s)∂sρ(s, θ) + V (s)∂ssρ(s, θ)

)
cos θ,
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and

∂ssA(s, θ) = ∂sssc1(V, ρ)− ∂sss (aV (s)(R0 + ρ(s, θ)) cos θ) c1(V, ρ)

− 2∂ss (aV (s)(R0 + ρ(s, θ)) cos θ) ∂sc1(V, ρ)

− ∂s (aV (s)(R0 + ρ(s, θ)) cos θ)∂ssc1(V, ρ).

Equations (C.5), (C.7), and
∂V V V c1(0, 0) = 0

imply that

∂sc1(0, 0) = 0,

∂ssc1(0, 0) = −a
2M

4π
,

∂sssc1(0, 0) = −3
a2M

4π
V ′′(0) − 2M

R3
0π
∂sssρ(0, θ).

Then

∂ssA(0, θ) = ∂sssc1(0, 0) − c̃aR0 cos θV
′′′(0)− aR0 cos θ∂ssc1(0, 0)

= −3
a2M

4π
V ′′(0)− 2M

R3
0π
∂sssρ(0, θ)−

aM

πR0
cos θV ′′′(0) +

a3R0M

4π
cos θ

and hence

∂sB(0, θ) = −3
a2M

4π
V ′′(0)− 2M

R3
0π
∂sssρ(0, θ)−

aM

πR0
cos θV ′′′(0) +

a3R0M

4π
cos θ

+ aR0 cos θ

(
a2M

4π
+ ac̃V ′′(0)R0 cos θ

)

+ a2c̃V ′′(0)R2
0 cos

2 θ

= −3
a2M

4π
V ′′(0)− aM

πR0
cos θV ′′′(0) +

a3R0M

2π
cos θ

+ 2a2c̃V ′′(0)R2
0 cos

2 θ − 2M

πR3
0

∂sssρ(0, θ).

Finally

C(0, θ) = ∂sB(0, θ)−B(0, θ)aR0 cos θ

= −3
a2M

4π
V ′′(0)− aM

πR0
cos θV ′′′(0) +

a3R0M

2π
cos θ

+ 2a2c̃V ′′(0)R2
0 cos

2 θ − 2M

πR3
0

∂sssρ(0, θ)

+ aR0 cos θ

(
a2M

4π

(
1− 4 cos2 θ

)
+ ac̃V ′′(0)R0 cos θ

)

= 3
a2M

4π
V ′′(0)

(
4 cos2 θ − 1

)
− aM

πR0
cos θV ′′′(0) +R0 cos θ

a3M

4π

(
3− 4 cos2 θ

)
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− 2M

πR3
0

∂sssρ(0, θ),

and

∂sssz(0, θ) = 3
a2M

4π
V ′′(0)

(
4 cos2 θ − 1

)
− aM

πR0
cos θV ′′′(0) +R0 cos θ

a3M

4π

(
3− 4 cos2 θ

)

− 2M

πR3
0

∂sssρ(0, θ),

Then
∫ π

−π
∂sssz(0, θ) cos θ dθ =

∫ π

−π
C(0, θ) cos θ dθ = −aM

R0
V ′′′(0)− 2M

πR3
0

∫ π

−π
cos θ∂sssρ(0, θ) dθ.
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